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The COVID-19 pandemic had a significant impact on endemic respiratory illnesses. Through behavioural changes in populations and
government policy, mainly through non-pharmaceutical interventions (NPIs), Canada saw historic lows in the number of Influenza A cases
from 2020 through 2022. In this study, we use historical influenza A data for Canada and three provincial jurisdictions within Canada: Ontario,
Quebec and Alberta to quantify the effects of these NPIs on influenza A. We aim to see which base parameters and derived parameters of
an SIR model are most affected by NPIs. We find that the effective population size is the main driver of change, and discuss how these
retrospective estimates can be used for future forecasting.
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1. Introduction1

The COVID-19 pandemic had a substantial impact on every facet of daily life around the world. In Canada, the non-2

pharmaceutical interventions (NPIs) put in place for much of the time period beginning around March 2020 to approximately3

the end of 2022 had a profound impact on other endemic respiratory infections.4

Beginning in March 2020, jurisdictions across Canada experienced a variety of measures that could impact the spread of5

airborne infectious diseases. These measures included lockdowns (1, 2), masking (both on a personal and institutional level6

(3, 4), and social distancing (5). While adherence, enforcement and austerity of these measures in Canada differed by province7

(6), they left a measurable effect on seasonal Influenza.8

Almost immediately, as NPIs took hold a measurable effect was seen on Influenza testing as reported by FluWatch (7). In9

fact, it is possible that one of the two major lineages of Influenza B may have been driven to extinction through COVID-1910

and associated NPIs (8). In this study, we hope to measure the qualitative and quantitative effects of NPIs on Influenza A and11

B in Canada.12

Influenza has long and thoroughly been studied using mathematical modeling. Using compartmental models, to study the13

spread of infectious diseases has been used for over a century, with work being done as early as 1911 (9). The compartmental14

SIR framework, where a population is broken into three classes: (S)usceptible, (I)nfectious, and (R)ecovered, is a popular15

choice for influenza modeling (10) and can be easily adapted to study different aspects of an epidemic such as cross-immunity16

from previous infections(11), vaccination strategies (12), . The SIR model is often well suited for parameter estimation of key17

epidemiological parameters, given appropriate population level data (13).18

Unfortunately, testing and reporting is often biased toward severe cases (14), and therefore will severely underestimate the19

true number of cases within a population. Since 2020, the amount of data collected - particularly for SARS-CoV-2 infections -20

has improved leading to better estimates of parameters (15). Meanwhile, at least in Canada, the collection and reporting of21

influenza has not changed. While this can provide overestimates or underestimates of model parameters (16), in this study we22

hope to circumvent the limits of available data by focusing on relative comparisons of parameters.23

Here we use a simple SIR model coupled with influenza A data from Summer 1999 to Spring 2023 to estimate relative24

changes in the reproduction number, attack rate, effective susceptible population, and contact rate induced by NPIs and25

COVID-19 policy. An SIR model is chosen for its simplicity as influenza data is reported weekly, resulting in fewer than 5026

data points per season. We discuss the interpretation and impacts of these parameter estimates and changes in the context of27

other endemic or emerging infectious diseases, and in relation to policy.28
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2. Methodology29

In this study, in order to reduce the effects of correlations, we will use a simple SIR model with our historical flu data. This30

technique is not new, and is the basis for forecasting of seasonal influenza in some studies (16, 17) and is used to simulate data31

in other cases (18). In implementing this model, we reduce the number of parameters required to fit by fixing those that are32

less likely to change over the period of time we are considering (i.e. the rate of recovery). The effective starting susceptible33

population is highly variables year-to-year as it depends on vaccination rates, vaccine efficacy, social behaviours, weather, etc.34

We fit this parameter and show that NPIs largely affect the effective population size.35

Our model framework is36

dS

dt
= −βSI [1]37

dI

dt
= βSI − µI [2]38

dR

dt
= µI [3]39

dC

dt
= βSI [4]40

S(0) = S0 [5]41

I(0) = I0 [6]42

R(0) = 0 [7]43

where S is the susceptible population, I is the infected population and R are those that have recovered with immunity. The44

model is augmented with C, the cumulative case counts for the flu season. We do this so that we can fit both dC/dt (new45

cases per week) and C(t) (cumulative cases) to data.46

While S0 is often taken to be the whole population, this is complicated for influenza due to potential cross-immunity (11)47

and vaccination(19). We take S0 then to be the effective susceptible population size at the beginning of the flu season. In the48

context of our study, this is further complicated as NPIs effectively remove individuals from the population in some capacity.49

Thus, we consider S0 to be an effective initial susceptible population.50

We likewise assume that the demographic changes within the approximate six months of the influenza season are negligible.51

These assumptions are again made to reduce the number of parameters of the model (to reduce covariance) and to keep the52

model mathematically tractable.53

We estimate a seasonal reproduction number for each flu season using the standard expression for the reproduction number54

of an SIR model.55

R0 = β

µ
S0 [8]56

We do not start each year with a fully susceptible population, and thus this is not a true basic reproduction number (20). Our57

interpretation of S0 as an effective population size, leads to the interpretation of R0 as a seasonal reproduction number. In58

other words, it measures the effective reproduction of Influenza A at the start of a season.59

We use provincial and national influenza data from Canada obtained from the publicly available FluWatch (21). Our interest60

is mainly in how model parameters differ in the 2020-2021 and 2021-2022 flu seasons.61

3. Fitting62

We fit this model using least squares to minimize the error between the cumulative case counts per week and the new cases per63

week. We use both data sets as often corrections and delays in data collection and reporting will be reflected in cumulative64

case counts but not in the weekly new case counts. By using both, we are able to minimize the effects of errors in data65

collection/reporting.66

By using both cumulative cases and new reported cases, we also are able to take into consideration the different scales of67

reported cases across an outbreak. If we only used cumulative case data for instance, our fitting would favour the later points68

in an outbreak as the magnitude of these points will create a larger difference in the residual. We show in Figure 1 that this69

method does indeed produce a small relative error as well 9, indicating good fits to the beginning and end of an outbreak.70

We fix µ = 7/2 based on established data that the flu lasts approximately 2.5 days (19, 22, 23). We do this as we do not71

expect non-pharmaceutical interventions to change the rate of recovery of individuals within the population.72

An influenza season is defined approximately from August of a given calendar year until July of the following calendar year.73

As an example, the 99-00 season runs from August 1999 through July, 2000.74

Seasons are fit sequentially against data from Canada’s FluWatch (21) where available. For Ontario and Quebec, provincial75

level databases, (24) and (25), respectively, were used when FluWatch data was missing. We use direct reported case values for76

cumulative cases and new cases as opposed to percent positivity.77

Literature estimates are used for the initial guess at β (19).78
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Parameter Value Fixed
β 0.000017 False
S0 Total Seasonal Tests or Estimated False
µ 7/2.5 True

I(0) 1 False
R(0) 0 True
Table 1. Table of initial values for model fitting.

The initial susceptible population, S0, is fit. We use the total number of tests done in a season as a starting point for fitting;79

where this is unavailable, we use an estimated attack rate of 0.25 (19) and start fitting from the cumulative cases at the end of80

the season over the assumed attack rate.81

Starting values and fixed values for parameter fitting are given in Table 1.82

This method of fitting give the lowest relative root-mean square error,83

RRMSE =

√√√√ 1
(N − P )m

N∑
i=1

(yi − ŷi)2, [9]84

where N is the number of of data points, P is the number of parameters fit, m is the mean of squares of all values fit, yi are85

the data points and ŷi are the fitted values.86

We compare two fitting algorithms per season: least-squares and dual annealing, and take the better fit of the two in a87

relative root-mean-square error sense.88

4. Results89

Figure 1 shows the relative root mean-square error of the fit for each season. We can see from the plot that we generally fit90

seasonal data quite well. Any fit with a RMSE > 2% is discounted as the fitting did not visually accurately describe the data91

in any of these cases.92

Figure 2 shows these fits overlaid on the data for each season for Canada. Due to each season being considered in isolation,93

there is little continuity between the seasons. We see that the fitted curves generally agree with the data on a per-season basis.94

Provincial level fits give qualitatively similar visuals.95

Table 2 shows the estimates for β, S0, R0 and the Attack Rate for each flu season for Canada, Ontario, Alberta and Quebec96

for which at least one fitting method converged. We note that Canada’s FluWatch did not report provincial-level data for the97

2020-2021 season, or for proceeding seasons. For these seasons, provincial level data was used when available (24–26), As such,98

this season is absent from analysis. Other missing rows of data are indicative of non-convergent fitting or large (> 2%) RRMSE.99

Of particular interest are seasons 2020 − 2021 and 2021 − 2022, during which NPIs for COVID-19 were highly used, including100

increased masking by the general public, widespread social distancing, and intermittent lockdowns. We see that the effect is101

largely seen in the base parameters through effective susceptible population size, S0. Which translates to decreases in R0 and102

Attack Rate.103

We mark Spring/Summer 2022 as its own season as the changes in NPIs created conditions for a secondary flu season in104

2022. This can be seen in Figures 3, and 4. We across all four jurisdictions a delayed Influenza A season in Spring of 2022.105

Figure 5 shows the mean R0 and 95% confidence interval for this mean for season 99-00 through 18-19, deemed pre-COVID,106

and how the seasons 19-20, 20-21, 21-22, 22, and 22-23 compare. Similarly, Figure 6 shows the mean Attack Rate and a 95%107

confidence interval for this mean for the seasons 99-00 through 18-19. Also on the figure are point estimates of Attack Rate for108

the seasons 19-20 through 22-23. All mean values exclude the 09-10 season due to the effects of the H1N1 pandemic (28).109

Table 3 gives mean values for R0, Attack Rate, and S0 for Influenza A across all seasons studied, with the exception of 2009110

due to the H1N1 pandemic (27). This table largely quantifies information in Figures 5 and 6 and shows the relative change in111

value for seasons in which NPIs were in effect. We include the 22-23 season to highlight the substantial rebound in Influenza A112

‘post’-COVID, when NPIs have been largely abandoned. Instead of a return to the mean, we see a more severe Influenza A113

season.114

The pre-COVID mean values of R0 and the attack rate are similar to those found in the literature (19, 29–31).115

5. Discussion116

The results show that the effective initial susceptible population size is greatly affected by NPIs. While S0 and β are correlated117

in the expression for R0, the additional information at hand, like the number of tests conducted and the cumulative number of118

infections in one season, give us bounds on S0 so that a model parameterized with the same R0, but different S0 will not yield119

the same fit.120

With less biased and more randomized testing of influenza case data, this information could readily be applied to an entire121

population to monitor the effectiveness of NPIs during an outbreak of a novel infectious disease with similar transmission122

routes to the flu. As it stands, the raw parameters are subject to limitations of available data.123
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Fig. 1. Root Mean-Square Error, equation Eq. (9) for the best fit model for each season. We use the RRMSE and a visual inspection to flag and remove bad or non-convergent
fits.
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Canada Alberta

Season beta S0 R0 Attack Rate beta S0 R0 Attack Rate
99-00 0.00016622 20462.8498 1.21473396 0.33483552 0.00151036 2457.57559 1.3256531 0.44755481
00-01 0.00084378 4028.24184 1.2139103 0.33065638 0.00541328 652.489663 1.26146686 0.3837101
01-02 0.00011566 27349.6485 1.12971228 0.22064108 0.00135953 2456.36191 1.19267561 0.30468599
02-03 0.00030219 10261.5702 1.10748155 0.18811571 0.0004846 5948.61466 1.02952665 0.05823518
03-04 6.05E-05 52142.6253 1.12735838 0.21760458 0.00100328 3427.25511 1.22803561 0.34724654
04-05 7.52E-05 42887.2548 1.15171921 0.25141863 0.0001697 17004.3483 1.03056289 0.06476137
05-06 0.00014047 22397.7092 1.12365913 0.21172432 0.00101366 3147.40347 1.1394265 0.23432425
06-07 0.00010339 30877.4116 1.140166 0.23537004 0.00037969 7983.6144 1.08259861 0.14970736
07-08 0.00010339 30877.4116 1.140166 0.23537004 0.00072213 4368.71252 1.12670388 0.21618121
08-09 - - - - 0.00072213 4368.71252 1.12670388 0.21618121
09-10 - - - - 0.00043458 9780.91446 1.5180509 0.5943478
10-11 - - - - 0.00058206 5376.39581 1.11764071 0.20299028
11-12 - - - - 0.00047632 6596.29444 1.12213486 0.20949767
12-13 - - - - 0.00041514 7979.79024 1.18311704 0.29272945
13-14 - - - - 0.00037289 9565.34304 1.2738693 0.39670902
14-15 - - - - 0.00037808 9393.82048 1.26842327 0.39104772
15-16 3.41E-05 97157.9315 1.18415282 0.294231 0.00023391 14072.5729 1.17559655 0.28306968
16-17 - - - - 0.00023164 14074.295 1.16433378 0.26844891
17-18 1.82E-05 172721.58 1.11996118 0.20692799 0.00018046 18464.4047 1.19006223 0.30154145
18-19 1.09E-05 280261.419 1.09060028 0.16248652 0.00010419 30140.5105 1.12155327 0.2100721
19-20 2.10E-05 150376.379 1.13046545 0.22182137 0.00014545 21557.9891 1.11987677 0.20638974
20-21 0.01075928 275.094253 1.05707739 0.11709196 - - - -
21-22 0.0035854 916.891558 1.17408102 0.284589 0.02212772 148.882271 1.17658036 0.28451531
22* 6.93E-05 48541.2115 1.2010877 0.3249449 0.00028839 11209.0558 1.1544847 0.26096192
22-23 2.09E-05 166948.38 1.24519128 0.36630147 0.00015764 22485.5027 1.26594304 0.38850824

Ontario Quebec

99-00 0.00074962 4851.85059 1.29894834 0.4230064 0.00077977 4342.60522 1.20937034 0.32530217
00-01 0.00296546 1138.75531 1.20604749 0.32103014 0.00541212 649.274594 1.25498398 0.37677228
01-02 0.00088892 3725.36893 1.18270203 0.29216692 0.00064844 5494.58375 1.27246434 0.39525457
02-03 0.00177442 1942.89855 1.23125333 0.35153767 0.00153609 2133.80177 1.17061285 0.27659946
03-04 0.00046549 7789.40159 1.29495522 0.41827243 0.00039401 8571.04925 1.20610585 0.32109775
04-05 0.0003318 9905.84902 1.1738567 0.28081599 0.00031742 10819.6541 1.22656879 0.34515459
05-06 0.00054947 5975.2032 1.17256237 0.27913414 0.00089931 3894.79047 1.25093969 0.37239322
06-07 0.00035166 9220.84317 1.15808148 0.25998643 0.00081906 4307.13253 1.25992366 0.38206704
07-08 0.00018104 16750.107 1.08298577 0.14954702 0.00040096 8148.89306 1.16690804 0.27173346
08-09 9.53E-05 32397.7244 1.10266733 0.18025097 7.70E-05 38451.7123 1.05740624 0.10710804
09-10 - - - - - - - -
10-11 0.00014013 23577.9282 1.18001947 0.28877445 0.00015133 21651.0311 1.17014936 0.27602551
11-12 0.00086374 3730.03208 1.15063427 0.24987398 0.00050017 6561.96133 1.17216564 0.27861838
12-13 0.00014499 23590.2503 1.22153541 0.33955597 0.00017254 20963.9145 1.29181146 0.41490045
13-14 0.00022792 15057.8952 1.22570189 0.34435907 0.00021373 16006.0153 1.22177968 0.33962464
14-15 0.00011358 29328.1298 1.18968194 0.30103562 0.00011507 29182.9071 1.19935499 0.31292873
15-16 0.00015381 21998.8842 1.2084727 0.32393718 0.0001359 25391.9529 1.23238512 0.35179066
16-17 9.34E-05 34930.4781 1.16542693 0.26989898 6.85E-05 46505.5978 1.13827091 0.23275074
17-18 0.00011989 26279.2055 1.12525571 0.21463281 5.66E-05 57014.6818 1.15221044 0.25206623
18-19 0.0001122 27927.841 1.11908254 0.2056516 5.07E-05 62989.0653 1.14088207 0.23646914
19-20 0.0001419 23132.3505 1.17228102 0.27940252 5.73E-05 55742.2386 1.14034734 0.23568172
20-21 0.0093146 308.51246 1.02631054 0.06245293 - - - -
21-22 0.01059945 311.293043 1.17840484 0.29000035 0.01365794 242.424461 1.18250705 0.29204132
22* 0.00044435 7215.20374 1.14502913 0.26338778 0.00018216 19384.4053 1.26108525 0.3836769
22-23 5.23E-05 64596.1557 1.20684163 0.32451261 7.90E-05 45305.5685 1.27857975 0.40156215

Table 2. Fitted β, S0, R0 and computed Attack Rate for historical influenza A data for Canada, Ontario, Alberta and Quebec. Can see from this
data that the effects of NPIs put in place for COVID-19 have quantitative and qualitative effects on the Influenza A. We see that on average
we see approximately 5% decrease in the basic reproduction number of Influenza A, and we see that this mostly comes from a decrease in
the effective susceptible population S0, rather than the contact rate, β. Note that Ontario experienced two waves of influenza A, one over
2021-2022 Winter, and one in Spring 2022.
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R0 Attack Rate
Canada Alberta Ontario Quebec Canada Alberta Ontario Quebec

Mean 1.15±0.04 1.18±0.11 1.18±0.06 1.20±0.06 0.24±0.05 0.28±0.13 0.29±0.07 0.31±0.07
% Change 20-21 -7.70 - -13.29 - -51.37 - -78.40 -
% Change 21-22 2.51 -0.62 -0.45 -1.43 18.19 2.10 0.30 -5.45
% Change 22* 4.87 -2.49 -3.27 5.12 34.95 -6.35 -8.90 24.22
% Change 22-23 8.72 6.93 1.96 6.57 52.13 39.42 12.24 30.01

Table 3. Mean values of R0 and Attack Rate of Influenza A across all available pre-COVID seasons (with exception of the 2009-2010 season due
to the H1N1 pandemic(27)) for Canada, Ontario, Alberta and Quebec. We also report the percent change from the mean for the 20-21, 21-22,
and 22-23 seasons.

(a) (b)

(c) (d)

Fig. 2. Influenza A data for Canada, Alberta, Ontario, and Quebec plotted per season starting from 1990 through 2023. The data is fit individually per season, as shown by the
colour variation. Gaps show missing seasons from the dataset, or non-convergent fits.
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(a) (b)

(c) (d)

Fig. 3. Influenza A reported cases for (a) Canada, (b) Alberta, (c) Ontario, and (d) Quebec. The grey shaded area shows the typical Influenza A season, and the pink shaded
area shows the shifted outbreak in 2022. This was common across all three provinces and nationally.
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Fig. 4. Plot showing the week with the most new Influenza A reports per season for each of the four studied jurisdictions. We see that in 2022 there was an abnormal outbreak
of Influenza A in the spring. The year 08-09 is likely affected by the H1N1 pandemic which was officially declared in August 2009, straddling two influenza seasons.
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Fig. 5. Mean R0 values for all seasons pre-COVID (i.e. seasons 99-00 through 18-19), the season 09-10 is excluded from any computation due to the H1N1 pandemic. Point
estimates are given for the 19-20, 20-21, 21-22, 22, and 22-23 seasons for comparison.
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Fig. 6. Mean Attack Rate values for all seasons pre-COVID (i.e. seasons 99-00 through 18-19), the season 09-10 is excluded from any computation due to the H1N1 pandemic.
Point estimates are given for the 19-20, 20-21, 21-22, 22, and 22-23 seasons for comparison.
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Due to these limitations, we focus on the relative change in epidemiological parameters of seasonal influenza A in each124

jurisdiction of study. In the 2020-2021 flu season, we see large changes (50% decrease) in the attack rate for influenza and125

about a 7% decrease in the reproduction number for influenza nation-wide. Further suggesting that when forecasting and126

modeling disease transmission during periods of wide-spread societal changes, the effective population number is incredibly127

important and cannot be assumed to be the entire population. Using a known disease with similar routes of transmission may128

help guide estimates for effective population size during future outbreaks of novel infectious diseases.129

We note that in Table 3, we see that by Spring 2022, the behavioural changes induced by the COVID-19 pandemic largely130

fell out of favour nationally leading to a moderate rebound of influenza A. We see specifically in Ontario, where the data exists,131

that the reduction in R0 and the Attack Rate are substantially lower than in the 20-21 season.132

These values also give measures of adherence to NPIs. We see, by comapring the % Change in the 21-22, 22, and 22-23133

seasons that more Ontarians likely continued to practice person NPIs like masking and distancing. Another factor that can134

impact the milder rebound of influenza could be vaccine up-take of the flu vaccine in different jurisdictions.135

Because they are inversely correlated, we see in our fitting that when S0 sees a significant decrease, β, the contact rate,136

shows a significant increase. The fact that R0 was lower during the 2020-2021 season shows that the increase in β is not exactly137

proportional to the decrease in S0. Our interpretation is that there are effectively fewer individuals in the population but they138

are generally those with higher contacts. This may inform estimates of effective contact rates of the subsets of the population139

who are considered ’essential workers’ during a pandemic.140

The data shown in Figure 2 shows, particularly in the 2021-2022 season, that temporary regional lockdowns had minimal141

effect on influenza. This could be due to the timing of the lockdowns compared to the flu season of that year, or the relative142

length of flu season against the length and scope of lockdowns. This suggests that it was the social behaviours like masking143

and long-term policy and behavioural changes that drove a reduction in influenza A cases.144

Future work includes expanding this framework and pipeline to other endemic, airborne infections in Canada to see if145

different pathogens are affected differently by NPIs. This work could help inform how certain policies will affect pathogens146

with differing properties. This could lead to targeted, effective NPIs being put in place once certain characteristics of infectious147

diseases are known.148

We would also like to expand to different jurisdictions, perhaps all provinces and territories of Canada and other countries.149

Here we focus on three large provincial jurisdictions to highlight that this fitting pipeline can be extended to the provincial150

level and produces consistent results.151

Another curiosity is the increase in the reproduction number and the attack rate in the 2022-2023 season when NPIs and152

associated policies were phased out by the population at large. This may be tied to a possible decrease in uptake of the153

flu shot(32), a reduction in cross-immunity through several seasons without exposure to Influenza A, or cross-infection with154

COVID-19 (33). While there are many open questions about the mechanics of this rebound that we aim to study in the near155

future, we hope that these estimates of the effects on NPIs on an endemic infection like influenza A can help modeling and156

forecasting in the future.157
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