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Abstract

Background: A central goal of modern evidence-based medicine is the develop-
ment of simple and easy to use tools that help clinicians integrate quantitative
information into medical decision-making. The Bayesian Pre-test/Post-test
Probability (BPP) framework is arguably the most well known of such tools and
provides a formal approach to quantify diagnostic uncertainty given the result
of a medical test or the presence of a clinical sign. Yet, clinical decision-making
goes beyond quantifying diagnostic uncertainty and requires that that uncer-
tainty be balanced against the various costs and benefits associated with each
possible decision. Despite increasing attention in recent years, simple and flexible
approaches to quantitative clinical decision-making have remained elusive.

Methods: We extend the BPP framework using concepts of Bayesian Decision
Theory. By integrating cost, we can expand the BPP framework to allow for
clinical decision-making.
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Results: We develop a simple quantitative framework for binary clinical deci-
sions (e.g., action/inaction, treat/no-treat, test/no-test). Let p be the pre-test or
post-test probability that a patient has disease. We show that r∗ = (1 − p)/p
represents a critical value called a decision boundary. In terms of the relative
cost of under- to over-acting, r∗ represents the critical value at which action
and inaction are equally optimal. We demonstrate how this decision boundary
can be used at the bedside through case studies and as a research tool through
a reanalysis of a recent study which found widespread misestimation of pre-test
and post-test probabilities among clinicians.

Conclusions: Our approach is so simple that it should be thought of as a core,
yet previously overlooked, part of the BPP framework. Unlike prior approaches
to quantitative clinical decision-making, our approach requires little more than a
hand-held calculator, is applicable in almost any setting where the BPP frame-
work can be used, and excels in situations where the costs and benefits associated
with a particular decision are patient-specific and difficult to quantify.

Keywords: Pre-Test/Post-Test Probabilities, Bayesian Decision Theory

1 Introduction

The Bayesian Pre-test/Post-test Probability (BPP) framework provides a quantitative

framework for expressing diagnostic uncertainty and updating that uncertainty given

clinical signs or test results. The BPP framework is used as a tool at the bedside, in

the classroom, and as part of medical research [1]. Yet the BPP framework is only one

part of what could be a much larger toolkit that clinicians, educators, and researchers

could employ.

Though often discussed in the context of clinical decision-making [2, 3], the BPP

framework is insufficient for it: while pre- and post-test probabilities represent beliefs

in the disease state of a patient, clinical decision-making requires that diagnostic

uncertainty be balanced against various cost and benefits factors. For example, a

decision to treat must consider not only the probability that a patient has the disease

in question but also the safety and efficacy of the proposed treatment. Yet these costs

and benefits are often difficult to quantify, e.g., consider quantifying the psycho-social

costs of a prophylactic bilateral mastectomy in a BRCA1 carrier. In short, quantitative

2

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2024. ; https://doi.org/10.1101/2024.02.14.24302820doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.14.24302820
http://creativecommons.org/licenses/by-nc/4.0/


093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

approaches to clinical decision-making goes beyond the BPP framework and requires

balancing diagnostic uncertainty with patient-specific, difficult-to-quantify cost and

benefit factors.

Despite the challenges, there is a rich history of methods that have been devel-

oped for quantitative clinical decision-making. Yet most of these methods have either

required complex computational models that cannot be easily performed at the bed-

side [4–6] or are specialized to a particular decision task (such as aspirin treatment

for pre-eclampsia prevention [7]). The key exception is the almost 50 year old work

by Pauker and Kassirer [8] which provides a flexible general purpose approach to

action/inaction (e.g., treat/no-treat or test/no-test) decisions that is simple enough to

be applied at the bedside or discussed easily in a classroom. The Pauker and Kassirer

(PK) framework combines diagnostic uncertainty with quantified costs and benefits to

determine a treatment threshold based on probability: a decision boundary between

action and inaction stated in terms of diagnostic uncertainty. Despite the maturity of

that work, it has not seen widespread adoption. While it is still discussed in certain

educational settings (e.g., Newman and Kohn [9], Chapter 2), when compared to the

BPP framework, it is largely unknown. We argue that the major limitation of the

PK framework, which has limited its adoption, is its requirement that all costs and

benefits be pre-specified and explicitly quantified.

The purpose of this article is to review the PK framework and to propose a simple

reformulation that addresses its major limitation. In brief, the PK framework requires

that all costs and benefits be specified a priori. With these specified costs, a decision

boundary p∗ can be calculated which represents the probability of disease at which

action and inaction are equally optimal. A clinician-calculated probability p can then

be compared to p∗ to determine whether action or inaction are warranted. Here we

show that the decision boundary p∗ can be reformulated in such a way that it can

be calculated without requiring pre-specification of all costs and benefits. We call

3
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this the Simplified PK (SPK) framework. We discuss the SPK framework in clinical

and educational contexts through a series of hypothetical case studies. In addition,

we illustrate its use as a research tool through a reanalysis of a study which found

widespread overestimation of disease probabilities among clinicians [10]. Unlike prior

analyses of that data, our results suggest that this over inflation may not be due to

errors in clinical perception but instead a bluntness of the survey instrument used.

2 Methods

2.1 Probabilities and Odds

We use p to denote the probability that a patient is in an actionable state. The precise

definition of actionable state will depend on the clinical decision under question. For

example, when deciding whether or not to treat with an antibiotic, p could represent

the probability that a patient has an infection treatable with the antibiotic. At times,

it will be more natural to state our results in terms of odds rather than probabilities.

Probabilities (p) can be calculated from odds (o) and vice versa using the following

two relationships:

p =
o

o+ 1
and o =

p

1− p
.

2.2 Review of the BPP Framework

Bayesian statistics provides a quantitative tool for updating prior beliefs (quantified

as probabilities or odds) based on observed data. Compared to the full framework of

Bayesian statistics, the BPP framework includes a critical simplification: the patient

state is binary (e.g., disease or health as opposed to mild/moderate/severe disease).

Under this simplification, Bayesian statistics reduces to the BPP framework.

Let opre (or opost) denote the odds of an actionable state before (or after) observing

a particular diagnostic test or clinical sign. With this notation, the BPP framework

4
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can be written as

opost = ℓ× opre (1)

where ℓ is the likelihood ratio of the test or sign (a quantity capturing the evidence

provided by the observed data). In short, given a clinician specified pre-test odds and

given the likelihood ratio of a particular sign or test, the BPP framework computes

an updated (post-test) odds. More discussion on the BPP framework in the context

of medical decision-making can be found in Mark and Wong [11] or Armstrong and

Metlay [12].

A note on notation: Much of what follows can be applied equally well to pre-

test probabilities (or pre-test odds) as to post-test probabilities (or post-test odds).

Therefore, we will often drop the subscript pre or post and simply write p or o.

2.3 BDT and the Pauker-Kassirer (PK) Framework

Bayesian Decision Theory (BDT) extends Bayesian statistics and provides a principled

approach to making decisions under uncertainty. Compared to Bayesian statistics,

BDT requires an additional user input: a cost function which takes two inputs and

outputs a number between negative and positive infinity. The two inputs are the

patient state and a potential action. The numerical output represents the cost or loss

incurred by a given action and state of patient combination. Costs are a general concept

and may incorporate medical, monetary, psycho-social, or even opportunity costs that

may result from a given action. Negative costs are often called benefits. Were the

patient state known exactly, BDT would reduce to finding the action that minimizes

cost. Uncertainty in the state of the patient complicates the problem. To address this,

BDT defines an optimal action (the “Bayes action”) as the action that minimizes the

expected cost : the cost weighted by the probability of disease or no disease.

Optimizing expected cost often involves advanced numerical techniques, as seen in

many prior articles in medicine [4–6]. We follow Pauker and Kassirer [8] and take a
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simpler approach. Beyond the standard simplifying assumption of the BPP framework

(that the patient state is binary), we also assume that the considered action is binary

(e.g., test/no test or treat/no treat). This implies that there are four combinations of

action and patient state, each with an associated cost: accurate action (caccurate action,

e.g., treating with disease), accurate inaction (caccurate inaction, e.g., treating with no

disease), inaccurate action (cinaccurate action, e.g., treating with no disease), and inac-

curate inaction (cinaccurate inaction, e.g., not treating with disease). Using shorthand,

we denote these as caa, cai, cia, and cii, respectively. Letting that p denote the prob-

ability of an actionable state (e.g., disease), the expected cost of action (or inaction)

decisions is then given by:

Expected Cost(action) = pcaa + (1− p)cia

Expected Cost(inaction) = (1− p)cai + pcii.

The Bayes action is action or inaction depending on whether Expected Cost(action)

or Expected Cost(inaction) is less.

Given the four cost values {caa, cia, cai, cii}, Pauker and Kassirer [8] suggest calcu-

lating the threshold probability p∗ needed to warrant action. That is, p∗ is the specific

probability at which Expected Cost(action) and Expected Cost(inaction) are equal. A

physician calculated probability p (e.g., calculated using the BPP framework) can be

compared to p∗ to determine if action or inaction is optimal. They showed that this

threshold was equal to:

p∗ =
1

r + 1
(2)

where

r =
cunder-action
cover-action

=
cii − caa
cia − cai

.

The term cunder-action represents difference in costs between inaccurate and accurate

action when a patient is in a state that warrants action. Similarly, the term cover-action

6
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represents the difference in costs between inaccurate and accurate action when the

patient is in an state that warrants no action. In essence, these two terms represents

the additional cost of choosing the wrong action over the correct. We refer to these

two terms as the cost of under-action and over-action, respectively.

Overall, what we call the PK framework consists of first quantifying the four

cost values, calculating the ratio of the costs of under- to over-action and then com-

paring the resulting action threshold p∗ against a physician-calculated (or specified)

probability of an actionable state p.

2.4 The SPK Framework

The major limitation of the PK framework is the need to pre-specify the four cost

values in order to calculate the decision boundary p∗. Especially when the costs or ben-

efits of a potential action are patient-specific or even qualitative, it can be impossible

to use the PK framework. Yet, we can mitigate this limitation of the PK frame-

work by framing the same decision boundary in terms of a critical value for the ratio

r = cunder-action/cover-action rather than a critical value for the probability p:

r∗ =
1

o
=

1− p

p
. (3)

Equation (3) (SPK Framework) represents the same decision boundary as Equation

(2) (PK Framework) but is presented differently (see Supplementary Section 1, Addi-

tional File 1 for derivation). Yet, we expect Equation (3) will be substantially easier

to use than Equation (2). Consider than Equation (2) requires that all four costs val-

ues be specified in order to calculate p∗. In contrast, Equation (3) requires only that

a probability p or odds o be specified. Given the ubiquity of the BPP framework,

we expect the later will be substantially easier than the former: any clinician already

using the BPP framework can essentially calculate r∗ for free (without further input).
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There are two main ways to use Equation (3) depending on whether or not the four

cost values {caa, cia, cai, cii} can be quantified. If those cost values cannot be specified,

e.g., if the costs are fundamentally qualitative and patient-specific, then Equation (3)

can be used as a qualitative tool to help incorporate diagnostic uncertainty into the

decision-making process. As an example, consider a patient with a 20% probability

of being in an actionable state. This implies a decision boundary r∗ = 4. In words,

regardless of the particular action in question, the cost of under-treating must be at

least 4 times higher than the cost of over-treating in order to warrant action in this

patient. Even if the actual cost of under- and over-treating cannot be calculated, we

expect this result may help frame the decision and catalyze discussions about costs

and benefits. When costs can be quantified, clinicians can calculate r and compare it

to r∗ to determine whether action or inaction is warranted. In Supplementary Section

1 (Additional File 1), we discuss how to compare r and r∗ in more detail.

3 Applications

We illustrate the SPK framework through a hypothetical case study of asymptomatic

bacteriuria and a reanalysis of a recent study which found widespread misestima-

tion of pre- and post-test probabilities by clinicians [10]. In Supplementary Section

2 (Additional File 1), we provide an additional case study designed to illustrate how

subjective and objective cost factors can be combined within the SPK framework. All

three of these applications are designed to highlight the use of the SPK framework in

situations where the PK framework cannot be applied: where it is difficult to specify

the four cost values a priori.

3.1 Case Study: Antibiotics for Asymptomatic Bacteriuria

Consider a healthy, non-pregnant, pre-menopausal 35-year-old woman diagnosed with

asymptomatic gram negative bacteriuria by urine culture, with no recent history of

8
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Urinary Tract Infections (UTIs). Based on this presentation, prior work suggests that

this patient has an approximately 6% probability of progressing from asymptomatic

bacteriuria to symptomatic bacteriuria [13, 14]. Let this probability denote a post-

test probability, where the state in question is whether the patient’s pathology will

progress to symptomatic bacteriuria. We must decide whether to treat this patient

with antibiotics at this time or wait and reevaluate if symptoms present.

Regardless of whether this 6% represents a pre-test or post-test probability, it is

enough to calculate the decision boundary: r∗ = 1−0.06
0.06 = 16. In words: Given our

diagnostic uncertainty, the cost of under-treating must be at least 16 times greater than

the cost of over-treating to warrant treatment.

In this situation, we expect that many clinicians will find it difficult to apply the

PK framework directly: it is difficult to quantify the cost of under- and over-treating as

there are many considerations including morbidity, monetary, and public-health (e.g.,

antibiotic resistance) costs. Even if all these costs could be specified exactly, combining

them into an overall cost of over- and under-treating is not straightforward. Despite

these challenges, we show that the decision boundary, particularly its translation into

words, provides insights for contextualizing the decision in terms of diagnostic uncer-

tainty. As a starting point, we suggest considering each type of cost individually (e.g.,

monetary, morbidity, and public health), from most to least important. If these costs

agree on which decision is optimal, the choice of treatment decision is obvious. If they

do not agree, we suggest careful consideration of which costs are most important and

how strongly each cost supports its preferred decision.

In this case, we consider morbidity, public health, and monetary costs in that order.

Either individually, or in concert with the patient, we would consider the following

question: “Is the morbidity associated with under-treating at least 16 times greater

than that of over-treating?” In our reading of the literature [15, 16], we expect that the

morbidity associated with under-treating is likely higher than the morbidity associated

9
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with over-treating, yet we expect it is not 16 times greater especially when the low

probability of progression to pyelonephritis and the probability of adverse reactions

to antibiotics are considered. Therefore, considering morbidity alone we consider that

no-treatment is warranted at this time. Additionally, after asking analogous questions

about the monetary and public health costs, we believe the costs are higher in the case

of over-treating. In sum, our suggestion would be to not treat this patient at this time

but to pursue watchful waiting. This conclusion is supported by current treatment

recommendations for asymptomatic bacteriuria in healthy non-pregnant persons [17].

3.2 Reevaluating the Source of Inflated Probability Estimates

among Clinicians

In a study of 553 medical practitioners presented with four different clinical scenarios,

Morgan et al. [10] found widespread over-estimation of both pre-test and post-test

probabilities compared to objective probability estimates. The results of this study

are significant and led to a conversation about potential biases affecting the observed

inflation (for example, see Chaitoff [18]; Patel and Goodman [19]). Current hypothe-

ses include various factors that confound physicians’ perceptions and interpretations

of medical tests [10, 20]. For example, Kellner [20] suggests this over-estimation comes

from less-experienced physicians included in the study cohort. While we do not doubt

that such factors are at play, we hypothesize that the observed inflation may result

from a bluntness of the survey instrument used to elicit physician probability estimates.

What if the physicians surveyed included in their reported probabilities considera-

tion of various cost factors: e.g., a physician asked to quantify the probability of

disease might modify their probability estimates based the risk of missing a diagnosis.

Assuming that the cost of under-treatment is greater than the cost of over-treatment,

we expect that such conflation would lead reported probability estimates to exceed

objective probability estimates, exactly as reported in Morgan et al. [10].

10

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 17, 2024. ; https://doi.org/10.1101/2024.02.14.24302820doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.14.24302820
http://creativecommons.org/licenses/by-nc/4.0/


461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

The SPK framework can be used to gauge the plausibility of this hypothesis. Let us

suppose that our hypothesis is true: the Morgan et al. [10] survey elicited a physician’s

probability to act (pact) rather than their estimation of the probability of disease

(pdisease). Further, let us assume that clinicians’ perceptions about disease probabilities

are accurate: physicians’ true estimates of pdisease are equal to their objective values.

Let us assume that the probability that a physician will act is proportional to their

perceptions about the expected cost of action. Using this later assumption, we can

calculate the physicians perceptions about the relative cost of under- to over-treating

(the implied cost-ratio) as:

r =
pact(1− pdisease)

pdisease(1− pact)
.

See Supplementary Section 3.1, Additional File 1 for derivation.

Below, we reanalyze the results of Morgan et al. [10] and calculate implied cost-

ratios for three diseases studied in that work. We argue that the implied cost ratios

are defensible given current evidence. In short, we are able to provide a model for the

inflated probability estimates observed in Morgan et al. [10] based only on a bluntness

of the survey instrument and without requiring overt errors in clinical perception.

3.2.1 Re-analyzing Morgan et al.

We calculated implied cost ratios for three of the four clinical scenarios studied in

Morgan et al. [10]: pneumonia, breast cancer, and coronary artery disease. We excluded

the asymptomatic bacteriuria scenario from our reanalysis due to concerns about the

accuracy of the survey data (see Supplementary Section 3.2, Additional File 1 for

details). The resulting cost-ratios are 15.8 for the pneumonia scenario, 16.7 for the

breast-cancer scenario, and 21.4 for the coronary artery disease scenario.

We argue that these implied cost ratios could represent realistic clinical attitudes

towards risk. To justify our opinion, we provide an example clinical argument justi-

fying the 16.7 breast-cancer cost-ratio in Supplementary Section 3.3, Additional File
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1. Moreover, we can compare to prior literature which studied physicians’ attitudes

towards the risk of over- and under-treating patients with pneumonia [21]. Based on

that prior literature, we estimate a pneumonia cost-ratio of 14.7 (see Supplementary

Section 3.4, Additional File 1). We suggest that the correspondence between that

result and the estimated results from Morgan et al. [10] is a strong argument that

these implied cost ratios reflect potentially realistic clinician attitudes towards risk.

Together, this suggests that the inflated probability reported by Morgan et al. [10] may

not be due to altered physician perceptions but may instead be due to a bluntness of

the survey instrument. Overall, our results strongly suggest that future research should

consider that physicians may conflate probabilities of disease with factors affecting

decisions to act.

4 Discussion

We introduced the Simplified PK (SPK) Framework as a flexible and easy-to-use tool

for medical decision-making when there is uncertainty in the state of the patient. This

SPK framework translates disease probabilities into quantitative statements about

the ratio of benefits to costs. For a clinician already using the BPP framework, our

approach is essentially free: simply invert an odds of disease.

The SPK framework does not replace more advanced decision support models such

as Parmigiani [4], Kornak and Lu [5], or Skaltsa et al. [6]. Those methods address

more complex decision tasks where either the patient state or the potential action is

not binary. The SPK framework is meant to fill a need unmet by those tools: a flexible

framework for quantitative decision making that matches the simplicity and ease of

use of the BPP framework. In this way, the SPK framework fills much of the same gap

as the PK framework [8] yet is easier to use in that it does not require pre-specification

and quantification of relevant costs and benefits in order to use.
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Beyond clinical practice, we expect that the SPK Framework will be useful in

medical education. Much as the BPP framework provides a formal language for inter-

preting the value of a medical test, the SPK framework provides a formal language for

medical decision-making. Educators can use this language to discuss the intricacies

of medical decision making and to explain their own decisions to students. Moreover,

this framework will clarify the distinction between quantifying the state of a patient

and quantifying costs associated with over- and under-treating.

Finally, we proposed a new interpretation of the results of Morgan et al. [10].

Beyond the factors already suggested, we argue that physicians may conflate the

probability of disease with the costs of over- and under-treating, which would appear

as over-estimation of pre- and post-test probabilities. While we believe this topic

requires further study, given the present evidence, we suggest that future studies look-

ing to elicit clinician estimated pre-test or post-test probabilities also survey attitudes

towards costs and actions (see Heckerling et al. [21] and Baghdadi et al. [22] for prac-

tical examples). Notably, this recommendation has been made elsewhere albeit due to

different concerns [19].

There are countless avenues for future study of the SPK framework; we high-

light three. First, many papers support the BPP framework by providing quantitative

estimate for likelihood ratios of different clinical signs and tests (e.g., Coburn et al.

[23]). In fact, these papers can be useful in estimating decision boundary for the SPK

framework. Future studies can similarly support both the PK and SPK framework by

providing clear statements and quantification of cost-ratios. Beyond this, we note that

more objective measures such as hazard ratios or odds ratios represent forms of cost-

ratios that can be used in the SPK framework. Second, we have only demonstrated

a very restricted set of tools for evaluating cost-ratios. A wide literature on eliciting

decision makers preferences could be applied to quantify clinicians’ and patients’ atti-

tudes towards costs [24, 25]. Finally, we have not addressed potential conflicts between
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clinicians’ and patients’ attitudes towards cost though such conflicts exist. We imagine

that future studies may find the SPK framework useful in mitigating these conflicts

as it may catalyze discussions about costs.

Additional Files

Supplementary materials and information can be found in the ‘Additional File 1’ pdf.
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