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Summary 

The HIPRA-HH-2 was a multicentre, randomized, active-controlled, double-blind, non-inferiority phase IIb 

clinical trial to compare the immunogenicity and safety of a heterologous booster with PHH-1V adjuvanted 

recombinant vaccine versus a homologous booster with mRNA vaccine. Interim results showed a strong humoral 

and cellular immune response against the SARS-CoV-2 Wuhan-Hu-1 strain and the Beta, Delta, and Omicron 

BA.1 variants up to day 98 after dosing. Here we report that these humoral and cellular responses after PHH-1V 

dosing are sustained up to 6 months. These results are observed both when including or not participants who 

reported SARS-CoV-2 infection and in a high-risk population (≥65 years). Additional analysis revealed a non-

inferiority of PHH-1V booster in eliciting neutralizing antibodies also for SARS-CoV-2 Omicron XBB.1.5 when 

compared to mRNA vaccine after 6 months. The PHH-1V vaccine provides long-lasting protection against a wide 

variety of SARS-CoV-2 emerging variants to prevent severe COVID-19. 

 

ClinicalTrials.gov Identifier: NCT05142553 
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Introduction 

Global SARS-CoV-2 infection and COVID-19-related disease rates are transitioning from pandemic to endemic. 

Nevertheless, the virus keeps circulating globally, acquiring new mutations, and evolving [1, 2]. After a primary 

vaccination schedule (2-doses) for SARS-CoV-2, neutralizing antibody titres and efficacy against severe infections 

and hospitalizations decrease in the 2-7 months after administration [3, 4]. This waning immunity is more 

pronounced in older individuals [5, 6]. Moreover, the SARS-CoV-2 variants Omicron BQ.1.1 and XBB.1.5, 

predominant in the first half of 2023, present a several-fold resistance to antibody neutralization when compared 

with Wuhan-Hu-1 after incubation with sera from vaccinated individuals [7]. Consequently, regular administration 

of booster doses against SARS-CoV-2 is of utmost importance, and high-risk populations, such as 

immunocompromised individuals and those over 65 years of age [8, 9], should be prioritized.  

PHH-1V (BIMERVAX®; HIPRA; Spain) is a protein-based adjuvanted vaccine for the prevention of COVID-19 

caused by SARS-CoV-2, based on a fusion heterodimer consisting of the spike RBD sequence from the SARS-

CoV-2 Beta (B.1.351) and Alpha (B.1.1.7) variants [10]. PHH-1V has a good stability profile, high productivity 

yields and storage at refrigerator temperatures. Expert consensus claimed PHH-1V’s storage characteristics and 

shelf life facilitate distribution in various logistics situations and reduce costs compared to vaccines that require 

lower temperatures [11]. 

An immunogenicity and safety assessment of the heterologous booster of PHH-1V adjuvanted recombinant 

vaccine versus the homologous booster BNT162b2 mRNA vaccine (Comirnaty®; Pfizer/BioNTech; USA) was 

carried out in a multicentre, randomized, active-controlled, double-blind, non-inferiority phase IIb trial (HIPRA-

HH-2 study; NCT05142553). Interim results showed a strong humoral and cellular immune response against the 

original strain, Wuhan-Hu-1, and all the variants studied (Beta, Delta, and Omicron BA.1) up to 98 days after 

PHH-1V vaccine administration [12]. Here we present HIPRA-HH-2 results at 6 months, including humoral and 

cellular immunogenicity and additional analyses on immunity against the SARS-CoV-2 Omicron XBB.1.5 

subvariant and results by age groups. 

Methods 

This was a multicentre, randomised, active-controlled, double-blind, Phase IIb trial to assess immunogenicity and 

safety of the PHH-1V vaccine. Main eligibility criteria were individuals aged 18 years or older, who had received 

two doses of the BNT162b2 vaccine and without a history of SARS-CoV-2 infection or close contact with anyone 

positive for SARS-CoV-2 infection in the 15 days before screening. Full eligibility criteria, methods and study 

populations are detailed in the Supplementary Material and published elsewhere [12].  

Subjects were randomly assigned in a 2:1 ratio to receive a booster dose of vaccine (third immunization) either 

with the PHH-1V vaccine (PHH-1V group) or with the BNT162b2 vaccine (BNT162b2 group). The primary 

endpoint was humoral immunogenicity measured by changes in levels of neutralizing antibodies against the 

ancestral Wuhan-Hu-1 strain and different variants of SARS-CoV-2 (Alpha, Beta, Delta, and different Omicron 

subvariants including BA.1 and XBB.1.5) after the PHH-1V or the BNT162b2 booster. Omicron XBB.1.5 

neutralising antibody analysis was not contemplated in the study protocol but performed additionally; only a subset 

of participants without reported COVID-19 were randomly selected for the analysis. Secondary endpoints included 

T-cell responses against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Serum 

neutralization titres were evaluated using a pseudovirus-based neutralization assay (PBNA), and T-cell responses 

were analysed by ELISpot assay [12]. 

A secondary analysis was performed with the modified intention-to-treat (mITT) population removing those 

observations of individuals reporting SARS-CoV-2 infection from the date of infection (i.e., if a participant got 

infected at day 80 post-vaccination, immunogenicity data at day 98 and 182 was not considered in these secondary 
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analyses). Subgroup analyses of the mITT population (considering or not SARS-CoV-2 infections) were 

performed to better characterise the immune response by age groups (<65 years and ≥65 years). In the safety 

population (SP), COVID-19 infections were retrieved from Adverse Event (AE) reporting at the extraction date 

January 26th, 2023, and AEs of Special Interest (AESIs) included only COVID-19 cases occurring ≥14 days post-

vaccination and potential immune-mediated medical conditions throughout the duration of the study.  

The trial was conducted in accordance with the Declaration of Helsinki, the Good Clinical Practice guidelines, and 

national regulations. The study protocol was reviewed and approved by the Spanish Agency of Medicines and 

Medical Devices (AEMPS) as well as Independent Ethics Committee from the Hospital Clínic de Barcelona. This 

trial is registered on ClinicalTrials.gov, NCT05142553. 

Results 

From 15th November 2021, 782 adults were randomly assigned to PHH-1V (n=522) or BNT162b2 (n=260) 

booster vaccine groups (ITT population; Figure 1) and followed up until 26th January 2023. Population baseline 

characteristics were previously published [12]. The mITT population for the primary analysis includes 504 and 

247 participants in the PHH-1V and BNT162b2 booster vaccine groups, respectively. After removing those 

observations for reported SARS-CoV-2 infections before day 182 (visit at 6 months), 347 were included in the 

PHH-1V group and 167 in the BNT162b2 group for the secondary analysis (Figure 1). The main text shows results 

for the secondary analysis, and the primary analysis for the mITT population results are in the Supplementary 

material. 

Neutralizing antibody titres determined by PBNA on day 182 post-booster for each vaccination group are 

presented as a geometric mean titre (GMT) and geometric mean fold rise (GMFR) in Table 1. GMFR results show 

a sustained booster at day 182 compared to baseline after PHH-1V administration for all variants analysed. The 

GMT ratio (BNT162b2/PHH-1V) for SARS-CoV-2 Wuhan-Hu-1 was 0.56 (95% CI: [0.46, 0.68]), for the Beta 

variant 0.55 (95% CI: [0.44, 0.68]), for the Delta variant 0.44 (95% CI: [0.36, 0.54]), for the Omicron BA.1 variant 

0.56 (95% CI: [0.45, 0.69]) (all p<0.001), and for the Omicron XBB.1.5 variant 0.83 (95% CI: [0.61, 1.13]; 

p=0.23). These results indicate superiority in humoral immunogenicity at day 182 for the PHH-1V vaccine 

compared to BNT162b2 in all analyses except Omicron XBB.1.5, which shows non-inferiority. GMFR ratios 

(BNT162b2/PHH-1V) are consistent with the GMT ratio trends observed on day 182. Complete mITT population 

data is shown in Supplementary Table 1. The neutralizing antibody titres obtained by PBNA were subsequently 

confirmed using replicative competent SARS-CoV-2 isolates by virus neutralization assay (data not shown).  

The neutralizing antibody response in different age groups of participants (<65 years and ≥65 years) is depicted in 

Table 2. In both age groups, GMTs indicate that PHH-1V-vaccinated subjects had numerically higher antibody 

titres at day 182 compared to BNT162b2, except for XBB.1.5 in participants ≥65 years. The GMFR in participants 

<65 years indicate statistical superiority of the PHH-1V booster for all SARS-CoV-2 variants studied compared 

to the BNT162b2 booster at day 182 except XBB.1.5. For participants 65 years or older, GMFR results show that 

the PHH-1V booster is non-inferior to BNT162b2 for SARS-CoV-2 Wuhan-Hu-1 and the variant Omicron BA.1, 

and superior for Beta and Delta variants and inconclusive for XBB.1.5. Data for the complete mITT population 

according to age groups is shown in Supplementary Table 2.  

The cellular response at day 182 after booster administration was analysed by IFN-γ ELISpot assay (Figure 2) and 

shows a significant increase of IFN- producing lymphocytes upon in vitro re-stimulation with Wuhan-Hu-1 

(p<0.0001 and p=0.0049), Alpha (p=0.0001 and p=0.0015), Beta (p<0.0001 and p=0.0029) and Delta (p<0.0001 

and p=0.017) SARS-CoV-2 RBD variants, and spike peptide pool SA (p<0.0001 and p=0.01) and SB (p=0.0033 

and p=0.001) for the PHH-1V and BNT162b2 boosters, respectively (Figure 2). Cellular response for the complete 

mITT population is shown in Supplementary Figure 1. 
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Solicited and unsolicited AEs from the booster in the PHH-1V or BNT162b2 groups up to day 28 were reported 

previously [12]. Overall, 14 serious adverse events (SAEs) were reported in 13 subjects (1.7%). The percentage 

of subjects who had at least one SAE was similar in both vaccine arms, the BNT162b2 group (2.8%) and the PHH-

1V group (1.2%) (Supplementary Table 3). No SAEs were assessed as related to the study drug by the Investigator 

or Sponsor. One participant from BNT162b2 experienced one AESI, a Raynaud’s phenomenon of mild intensity 

and unrelated to study drug. 372 participants (49.5%) experienced mild COVID-19 with no differences between 

study groups (50.4% in the PHH-1V group and 47.8% in the BNT162b2 group). No subjects experienced severe 

COVID-19 infections, were hospitalised, or were admitted to the ICU due to COVID-19.   

Discussion 

This phase IIb HIPRA-HH-2 clinical trial shows that the PHH-1V heterologous booster elicits a strong and 

sustained neutralizing antibody response against relevant SARS-CoV-2 strains, including Wuhan, Beta, Delta, and 

Omicron (BA.1 and XBB.1.5) up to 6 months after dosing. In a previous publication, neutralizing titres at days 

14, 28 and 98 showed statistical superiority of the PHH-1V booster compared to BNT1962b2 against Beta and 

Omicron BA.1 variants [12]. Now, we observe that, at day 182, the neutralizing response against Wuhan Beta, 

Delta, Omicron BA.1 triggered by PHH-1V is statistically superior to BNT162b2 and non-inferior against Omicron 

XBB.1.5 with the participant subset analysed. The age group analysis suggests an improved neutralizing response 

in all groups (age <65 and ≥65) elicited by the PHH-1V booster compared to BNT162b2, although statistical 

significance was only achieved in the younger group, in elderly patients, the number of participants was likely 

insufficient. 

IFN- is a crucial marker of an induced anti-viral T-cell immune response [13] and plays a central role in fighting 

SARS-CoV-2 infection [14]. Previously, we have shown that the PHH-1V booster confers an IFN- response 

comparable to BNT162b2 up to day 98 (3 months) [12]. In this report, cellular immune responses assessed by an 

increase in IFN-producing lymphocytes is also presented for both booster vaccines at day 182 and significantly 

different compared to baseline. However, no significant differences were found between groups. These results 

confirm a Th1-based T-cell response upon booster immunization with the PHH-1V vaccine, which is associated 

with a better disease prognosis [15] when compared to the more inflammatory profile of a Th2 cellular response 

registered in moderate-to-severe COVID-19 [16].  

The waning immunity after a primary vaccination is more pronounced in older individuals [5], likely as a 

consequence of an age-related impairment of the adaptive immune response mediated by B-cells and T-cells [17]. 

In a recent study [18] that assessed the durability of booster administrations in more than 12,000 healthcare 

workers, a significant waning in immunity was observed at day 140 after the booster dose in older individuals (65 

years), concomitant to concerning infections by the Omicron variants [19]. In our study, the antibody titres were 

lower in the elder subjects (≥65 years) compared with the younger, however in the elder group that received PHH-

1V, the titres were numerically higher compared to the BNT162b2 group for all variants. These results, as well as 

other published evidence on heterologous boosting [20-22], should be considered when selecting vaccines to 

protect high-risk populations. 

Concerning safety, neither study group reported severe COVID-19 cases, and both groups showed similar 

percentages of SARS-CoV-2 infections. These results indicate that the PHH-1V heterologous booster regimen has 

a comparable long-term safety profile to that of the BNT162b2 homologous booster. However, subjects vaccinated 

with PHH-1V showed significantly less AEs up to 28 days [12]. Vaccine reactogenicity is not a minor issue in 

vaccination programs since it influences individuals’ acceptance. Less reactogenic vaccines may improve 

vaccination acceptance, increasing coverage and overall protection. 
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In conclusion, the results reported here reveal that PHH-1V induces a long-term immune response to the main 

SARS-CoV-2 variants, including Wuhan, Beta, Delta, and Omicron BA.1 and XBB.1.5. At 6 months after the 

PHH-1V booster dose, there is a superior neutralising antibody response against Wuhan, Beta, Delta, and Omicron 

BA.1 compared to BNT162b2 and non-inferior for Omicron XBB.1.5. The over-time sustained antibody response 

is consistent regardless the studied virus strain, the age of participants, and whether the analysis includes or not 

participants with reported SARS-CoV-2 infection. Moreover, an IFN--mediated cellular immune response is 

conserved at 6 months after the PHH-1V booster. These data reinforce the up-to-day 98 published results and 

confirm the PHH-1V vaccine’s capability to elicit a complete immune response to a variety of emerging variants 

6 months after dosing. PHH-1V is a robust, safe, and acceptable alternative for COVID-19 booster vaccination 

campaigns, with relevant advantages such as stability at refrigerator temperatures and easier handling and 

distribution. 
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Figure 1  

  

 Figure 1: Trial Profile.  

mITT= modified intention-to-treat population; PHH-1V=PHH-1V vaccine, HIPRA. BNT162b2= BNT162b2 vaccine, Pfizer–

BioNTech. 
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Figure 2 

 

Figure 2: Cellular SARS-CoV-2 specific immune response in the secondary analysis for the mITT population 

without reported COVID-19 infection. PBMCs from participants receiving either PHH-1V (n= 35 at baseline and 

n=20 at D182; in blue) or BNT162b2 (n=11 at baseline and n=7 at D182; in grey) were isolated before (Baseline) 

and 14 and 182 days after the booster immunization (D14 and D182). Results of IFN- ELISpot assay stimulating 

PBMCs with RBD and variant peptide pools [RBD; RBD B.1.1.7; RBD B.1.351 and RBD B.1.1617.2] and Spike 

[SA and SB] peptide pools are shown. Boxes depict the median (solid line) and the interquartile range (IQR), and 

whiskers expand each box edge 1.5 times the IQR. Interaction contrasts have been displayed in the plots, 

comparing the increase rates over time between the two vaccination groups. 

IQR=interquartile range; RBD; receptor binding domain for the SARS-CoV-2 spike protein (ancestor Wuhan-Hu-

1 strain); RBD B.1.1.7 (Alpha variant); RBD B.1.351 (Beta variant); RBD B.1.1617.2 (Delta variant); Spike SA 

corresponds to 181 spike protein peptide pools overlapping the S1-2016 to S1-2196 region of the Spike protein; 

Spike SB corresponds to 181 spike protein peptide pools overlapping the S1-2197 to S2-2377 region of the Spike 

protein. Statistically significant differences between baseline and Day 182 are shown in blue colour as * for 

p 0.01; ** for p 0.001; *** for p 0.0001.  
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Table 1 

Table 1: Analysis of neutralizing antibodies against SARS-CoV-2 variants on day 182 post-vaccination 

booster for the secondary analysis in the mITT population. 

Variant PHH-1V (n=504) BNT162b2 (n=247) 

   

Wuhan-Hu-1   

n (%) 330 (65.5) 159 (64.4) 

GMT  1063.55 [913.81, 1237.82] 593.48 [491.04, 717.29] 

GMT ratio    0.56 [0.46, 0.68]; p<0.0001 

GMFR 11.02 [8.17, 14.88] 6.74 [4.88, 9.31] 

GMFR ratio  0.61 [0.48, 0.77]; p<0.0001 

Beta   

n (%) 330 (65.5)  159 (64.4) 

GMT  2052.17 [1735.63, 2426.43] 1127.05 [914.97, 1388.29] 

GMT ratio   0.55 [0.44, 0.68]; p<0.0001 

GMFR 28.34 [21.67, 37.07] 17.77 [13.18, 23.99] 

GMFR ratio  0.63 [0.49, 0.81]; p=0.0003 

Delta   

n (%) 330 (65.5)  159 (64.4) 

GMT  1912.72 [1626.02, 2249.96] 838.49 [686.72, 1023.80] 

GMT ratio  0.44 [0.36, 0.54]; p<0.0001 

GMFR 39.74 [31.50, 50.13] 19.25 [14.75, 25.11] 

GMFR ratio  0.48 [0.38, 0.62]; p<0.0001 

Omicron BA.1   

n (%) 330 (65.5)  159 (64.4) 

GMT  667.65 [567.81, 785.03]  373.65 [304.95, 457.83] 

GMT ratio  0.56 [0.45, 0.69]; p<0.0001 

GMFR 18.58 [14.50, 23.80] 12.22 [9.21, 16.20] 

GMFR ratio  0.66 [0.51, 0.85]; p=0.0011 

Omicron XBB.1.5*   

n (%) 98 (19.4) 51 (20.6) 

GMT  146.50 [121.56,176.57] 121.24 [93.72,156.82] 

GMT ratio  0.83 [0.61, 1.13] p=0.23 

GMFR 5.96 [4.70, 7.56] 5.47 [3.97, 7.54] 

GMFR ratio  0.92 [0.63, 1.34] p=0.66 

BNT162b2= BNT162b2 vaccine, Pfizer–BioNTech; CI = confidence interval; GMT = Geometric Mean Titre; GMFR = 

Geometric Mean Fold Rise; mITT= modified intention-to-treat population; PHH-1V=PHH-1V vaccine, HIPRA.  

n (%), refers to subjects with data; GMT is shown as adjusted treatment mean [95% CI]; GMT ratio is shown as BNT162b2 

active control vs PHH-1V [95% CI] followed by p-value for ratio=1. GMFR is shown as fold rise of adjusted treatment means 

between timepoints [95% CI]; GMFR ratio is shown as BNT162b2 active control vs PHH-1V [95% CI] followed by p-value 

for ratio=1; GMFR fold change is shown for subjects with ≥4-fold change in binding antibodies; odds are shown as back-

transformed adjusted treatment LS means [95% CI] ; Treatment effect is shown for “BNT162b2 vs PHH-1V” as the odds ratio 

[95% CI] followed by p-value for odds ratio=1.  

* The smaller number of subjects for SARS-CoV-2 Omicron XBB.1.5 is because only a subset of participants without reported 

COVID-19 were randomly selected for this analysis. 
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Table 2 

Table 2: Analysis of neutralizing antibodies and fold rise in neutralizing antibodies against SARS-CoV-2 variants on day 182 post-vaccination booster in 

participants from different age groups for the secondary analysis in the mITT population. 

 <65 years ≥65 years 

PHH-1V (n=504) BNT162b2 (n=247) PHH-1V (n=504) BNT162b2 (n=247) 

Baseline Day 182 Baseline Day 182 Baseline Day 182 Baseline Day 182 

Neutralizing 

antibodies,  

        

Wuhan-Hu-1         

n (%) 466 (92.5) 301 (59.7) 229 (92.7) 146 (59.1) 38 (7.5) 30 (6.0) 18 (7.3) 14 (5.7) 

GMT  85.20 [73.37, 98.92] 1082.02 [920.36, 272.07] 84.98 [71.32, 101.26] 620.96 [508.94, 757.63] 96.42 [61.85, 150.30] 877.94 [538.73, 1430.70] 68.37 [37.88, 123.41] 410.23 [213.05, 789.90] 

GMT ratio    1.00 [0.84, 1.18]; p=0.98 0.57 [0.47, 0.70]; p<0.0001   0.71 [0.36, 1.40]; p=0.32 0.47 [0.22, 1.01]; p=0.05 

Beta         

n (%) 466 (92.5) 301 (59.7) 229 (92.7) 146 (59.1) 38 (7.5) 30 (6.0) 18 (7.3) 14 (5.7) 

GMT  67.23 [57.07, 79.20] 2137.63 [1791.85, 2550.15] 61.67 [50.87, 74.77] 1240.53 [998.63, 1541.03] 55.71 [34.09, 91.03] 1438.07 [840.14, 2461.57] 47.07 [24.69, 89.72] 425.22 [210.49, 859.02] 

GMT ratio    0.92 [0.76, 1.11]; p=0.36 0.58 [0.46, 0.73]; p<0.0001   0.84 [0.40, 1.80]; p=0.66 0.30 [0.13, 0.68]; p=0.0045 

Delta         

n (%) 466 (92.5) 301 (59.7) 229 (92.7) 146 (59.1) 38 (7.5) 30 (6.0) 18 (7.3) 14 (5.7) 

GMT  45.33 [38.62, 53.21] 1946.66 [1638.76, 2312.41] 41.81 [34.73, 50.34] 864.31 [701.38, 1065.10] 37.17 [22.61, 61.10] 1434.41 [845.61, 2433.20] 32.97 [17.52, 62.05] 557.73 [281.43, 1105.30] 

GMT ratio    0.92 [0.78, 1.10]; p=0.36 0.44 [0.36, 0.55]; p<0.0001   0.89 [0.44, 1.79]; p=0.74 0.39 [0.18, 0.84]; p=0.0173 

Omicron BA.1         

n (%) 466 (92.5) 301 (59.7) 229 (92.7) 146 (59.1) 38 (7.5) 30 (6.0) 18 (7.3) 14 (5.7) 

GMT  33.07 [28.59, 38.25] 697.85 [594.59, 819.04] 29.66 [24.84, 35.41] 395.95 [322.96, 485.43] 27.24 [16.76, 44.27] 441.55 [260.30, 749.02] 21.21 [11.21, 40.11] 195.29 [97.36, 391.73] 

GMT ratio    0.90 [0.75, 1.08]; p=0.24 0.57 [0.45, 0.71]; p<0.0001   0.78 [0.37, 1.64]; p=0.51 0.44 [0.19, 1.01]; p=0.0516 

Omicron XBB.1.5*         

n (%) 90 (17.9) 89 (17.7) 44 (17.8) 45 (18.2) 9 (1.79) 9 (1.79) 6 (2.4) 6 (2.4) 

GMT  24.74 [20.451, 29.925] 154.79 [127.839, 187.431] 22.33 [17.053, 29.246] 123.82 [94.762, 161.796] 22.11 [9.913, 49.309] 87.4 [39.188, 194.933] 21.65 [8.361, 56.038] 99.64 [38.488, 257.958] 

GMT ratio    0.90 [0.65, 1.25]; p=0.534 0.80 [0.58, 1.10]; p=0.173   0.98 [0.28, 3.40]; p=0.973 1.14 [0.33, 3.96]; p=0.8334 
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 <65 years ≥65 years 

 PHH-1V (n=504) BNT162b2 (n=247) PHH-1V (n=504) BNT162b2 (n=247) 

 Day 14 Day 182 Day 14 Day 182 Day 14 Day 182 Day 14 Day 182 

Wuhan-Hu-1         

n (%) 462 (91.7) 301 (59.7) 223 (90.3) 146 (59.1) 38 (7.5) 30 (6.0) 18 (7.3) 14 (5.7) 

GMFR  24.26 [20.60, 28.58] 12.70 [10.53, 15.32] 39.95 [31.59, 50.53] 7.31 [5.583, 9.564] 10.61 [5.34, 21.08] 9.11 [4.35, 19.04] 36.54 [13.48, 99.06] 6.00 [2.05, 17.59] 

GMFR ratio    1.65 [1.34, 2.02]; p<0.0001 0.58 [0.45, 0.73]; p<0.0001   3.44 [1.45, 8.19]; p=0.0054 0.66 [0.26, 1.68]; p=0.38 

Beta         

n (%) 462 (91.7) 301 (59.7) 223 (90.3) 146 (59.1) 38 (7.5) 30 (6.0) 18 (7.3) 14 (5.7) 

GMFR  69.88 [58.88, 82.94] 31.80 [26.11, 38.72] 44.44 [34.75, 56.82] 20.11 [15.16, 26.68] 26.61 [13.58, 52.15] 25.82 [12.49, 53.37] 37.59 [14.15, 99.91] 9.03 [3.13, 26.03] 

GMFR ratio    0.64 [0.51, 0.79]; p<0.0001 0.63 [0.49, 0.81]; p=0.0003   1.41 [0.60, 3.30]; p=0.42 0.35 [0.14, 0.88]; p=0.0255 

Delta         

n (%) 462 (91.7) 301 (59.7) 223 (90.3) 146 (59.1) 38 (7.5) 30 (6.0) 18 (7.3) 14 (5.7) 

GMFR  34.70 [29.37, 41.00] 42.94 [35.46, 51.99] 35.80 [28.19, 45.48] 20.67 [15.71, 27.20] 16.05 [8.64, 29.79] 38.59 [19.80, 75.21] 38.11 [15.512 93.60] 16.92 [6.39, 44.76] 

GMFR ratio    1.03 [0.84, 1.27]; p=0.77 0.48 [0.38, 0.61]; p<0.0001   2.37 [1.09, 5.18]; p=0.0302 0.44 [0.19, 1.02]; p=0.06 

Omicron BA.1         

n (%) 462 (91.7) 301 (59.7) 223 (90.3) 146 (59.1) 38 (7.5) 30 (6.0) 18 (7.3) 14 (5.7) 

GMFR  67.29 [56.64, 79.93] 21.10 [17.31, 25.72] 42.70 [33.35, 54.67] 13.35 [10.05, 17.73] 26.35 [13.50, 51.44] 16.21 [7.88, 33.36] 34.28 [12.97, 90.59] 9.21 [3.22, 26.37] 

GMFR ratio    0.63 [0.51, 0.79]; p<0.0001 0.63 [0.49, 0.81]; p=0.0003   1.30 [0.56, 3.03]; p=0.54 0.57 [0.23, 1.42]; p=0.22 

Omicron XBB.1.5*         

n (%) 88 (17.5) 89 (17.7) 43 (17.4) 44 (17.8)) 9 (1.79) 9 (1.79) 6 (2.4) 6 (2.4) 

GMFR  8.12 [6.418, 10.281] 6.26 [4.951, 7.926] 7.44 [5.344, 10.345] 5.57 [4.015, 7.737] 3.62 [1.355, 9.699] 3.93 [1.468, 10.514] 6.06 [1.911, 19.219] 4,63 [1.459, 14.670] 

GMFR ratio    0.92 [0.62, 1.36]; p=0.66 0.89 [0.60, 1.31]; p=0.55   1.67 [0.37, 7.57]; p=0.49 1.18 [0.26, 5.33]; p=0.83 

Data for GMT are shown for baseline and Day 182. Data for GMFR are shown for Day 14 and Day 182. GMT is shown as adjusted treatment mean [95% CI]; GMT ratio is shown as BNT162b2 active control vs PHH-

1V [95% CI] followed by p-value for ratio=1. GMFR is shown as fold rise of adjusted treatment means between timepoints [95% CI]; GMFR ratio is shown as BNT162b2 active control vs PHH-1V [95% CI] followed 

by p-value for ratio=1. 

BNT162b2= BNT162b2 vaccine, Pfizer–BioNTech; CI = confidence interval; GMT = Geometric Mean Titre; GMFR = Geometric Mean Fold Rise; mITT= modified intention-to-treat population; PHH-1V=PHH-1V 

vaccine, HIPRA.  
* The smaller number of subjects for SARS-CoV-2 Omicron XBB.1.5 is because only a subset of participants without reported COVID-19 were randomly selected for this analysis 
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