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ABSTRACT  

Background: In the search for objective tools to quantify neural function in Rett Syndrome (RTT), which 

are crucial in the evaluation of therapeutic efficacy in clinical trials, recordings of sensory-perceptual 

functioning using event-related potential (ERP) approaches have emerged as potentially powerful tools.  

Considerable work points to highly anomalous auditory evoked potentials (AEPs) in RTT. However, an 

assumption of the typical signal-averaging method used to derive these measures is “stationarity” of the 

underlying responses – i.e. neural responses to each input are highly stereotyped. An alternate possibility 

is that responses to repeated stimuli are highly variable in RTT. If so, this will significantly impact the 

validity of assumptions about underlying neural dysfunction, and likely lead to overestimation of 

underlying neuropathology. To assess this possibility, analyses at the single-trial level assessing signal-to-

noise ratios (SNR), inter-trial variability (ITV) and inter-trial phase coherence (ITPC) are necessary.  

Methods: AEPs were recorded to simple 100Hz tones from 18 RTT and 27 age-matched controls (Ages: 6-

22 years). We applied standard AEP averaging, as well as measures of neuronal reliability at the single-trial 

level (i.e. SNR, ITV, ITPC). To separate signal-carrying components from non-neural noise sources, we also 

applied a denoising source separation (DSS) algorithm and then repeated the reliability measures. 

Results: Substantially increased ITV, lower SNRs, and reduced ITPC were observed in auditory responses of 

RTT participants, supporting a “neural unreliability” account. Application of the DSS technique made it 

clear that non-neural noise sources contribute to overestimation of the extent of processing deficits in 

RTT. Post-DSS, ITV measures were substantially reduced, so much so that pre-DSS ITV differences between 

RTT and TD populations were no longer detected. In the case of SNR and ITPC, DSS substantially improved 

these estimates in the RTT population, but robust differences between RTT and TD were still fully evident. 

Conclusions: To accurately represent the degree of neural dysfunction in RTT using the ERP technique, a 

consideration of response reliability at the single-trial level is highly advised. Non-neural sources of noise 

lead to overestimation of the degree of pathological processing in RTT, and denoising source separation 

techniques during signal processing substantially ameliorate this issue.   

 

Keywords: High-density electrical mapping; EEG, event-related potential; ERP; Auditory Evoked 
Potential; AEP; Auditory discrimination; Duration ERP; X-linked mutation; MECP2, 
Neurodevelopmental disorder; Females, Rett Syndrome Severity Scale (RSSS) Rett Syndrome 
Severity Scale (RSSS), Denoising Source Separation (DSS), signal-noise ratio (SNR), inter-trial 
variability (ITV), Inter-Trial Phase Coherence (ITPC) 
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INTRODUCTION 

Rett Syndrome (RTT), an X-linked monogenic disorder caused by de novo mutations in the 

Methyl-CpG-binding protein 2 gene (MeCP2), is associated with severe intellectual disability in 

female children (Amir, Van den Veyver et al. 1999) (Naidu 1997). Classical RTT begins with early 

onset neurodevelopmental regression, typically detected between 6 to 18 months of age, that 

results in progressive loss of previously acquired speech and motor skills (Hagberg 2002). The 

inability to verbalize, a feature in the vast majority of these children, substantially impedes 

objective clinical assessments of their perceptual and cognitive functioning since conventional 

cognitive evaluations rely heavily on overt verbal or gestural responses (Berger-Sweeney 2011). As 

such, primary outcome measures in RTT are generally based on clinical judgement. As a 

consequence, there is limited knowledge about the perceptual and cognitive capabilities of these 

individuals across the progressive clinical stages of RTT (Demeter 2000) (Percy, Neul et al. 2010). 

The lack of objective assessment tools adversely impacts both clinical evaluation and the 

measurement of therapeutic efficacy during intervention trials. It is therefore imperative for the 

field to identify quantitative measures of neural function that can be objectively measured and 

longitudinally monitored to capture more subtle changes in neurological function (Saby, Peters et al. 

2020) (Demeter 2000), ideally without the need for active task participation on the part of these 

individuals given the typical severity of the phenotype. Developing such measures would provide 

surrogate biomarkers of disease severity and potentially provide precise measurement of target 

engagement and longitudinal evaluations of treatment effects during clinical trials (Saby, Peters et 

al. 2020)  (Demeter 2000). 

To this end, a number of research groups have now deployed electroencephalographic (EEG) 

recordings as a means to directly measure brain function in neurodevelopmental disorders (Ortiz, 

Martinez-Murcia et al. 2020) (Rossion, Retter et al. 2020) (Banaschewski and Brandeis 2007) (Sueyoshi 

and Sumiyoshi 2018) (Black, Chen et al. 2017) (Butler, Molholm et al. 2017) (Knight, Oakes et al. 2020)   
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(Francisco, Berruti et al. 2021). EEG provides an easy-to-deploy method to assay 

neurodevelopmental regression in the absence of overt behavioral responses from participants 

(e.g. (Demeter 2000) (Banaschewski and Brandeis 2007) (Shahaf, Yariv et al. 2017) (Ortiz, Martinez-

Murcia et al. 2020)). The millisecond-precision of this tool is ideal for assessment of dynamic brain 

function and can be used to determine the processing level at which information flow is breaking 

down (Foxe and Simpson 2002, Muller, Vetsch et al. 2020) (Shahaf, Yariv et al. 2017). This is achieved 

by assaying the latencies and amplitudes of well-characterized event-related potential (ERP) 

components, which have stereotypical topology and temporal dynamics in neurotypical 

populations, and have been well characterized in thousands of papers over the past 60 years  

(Chope, Metz-Lutz et al. 1994) (Luck 2014) (Simpson, Pflieger et al. 1995) (Martin, Barajas et al. 1988) 

(Sutton, Tueting et al. 1967) (Sutton, Braren et al. 1965) (Ritter and Vaughan 1969). A high degree of 

test-retest reliability is also a feature of this method, making it ideal for longitudinal monitoring of 

intervention trials (Kileny and Kripal 1987)  (Malcolm, Foxe et al. 2019) (Beker, Foxe et al. 2021). 

However, a central assumption of this methodology is stationarity of response – that is, that when 

a stimulus is presented repeatedly to a participant, the neural response on each iteration (or trial) 

is assumed to be essentially identical, whereby the simple process of signal-averaging across 

trials will reveal this stationary canonical response because temporally random background 

activity (noise) will be eliminated through the averaging procedure (Luck 2014, Helfrich and Knight 

2019) (Ritter and Vaughan 1969). While this is perhaps not an unreasonable assumption in studies 

of neurotypical individuals, it may not be fully justified to assume that near-perfect stationarity is a 

feature of sensory perceptual processing in neurodevelopmental and neuropsychiatric conditions. 

For example, a number of researchers have proposed that the neural response in autism 

spectrum disorder (ASD) may be more variable, or unreliable, on a trial-to-trial basis (Haigh, 

Brosseau et al. 2022) (Milne 2011) (Haigh, Heeger et al. 2015) (but see (Butler, Molholm et al. 2017) 

(Kovarski, Malvy et al. 2019) (Dwyer, Vukusic et al. 2022)). That is, it could be the case that an evoked 
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response is produced to each stimulus iteration in these conditions, but that from trial to trial, this 

evoked response might vary in the latencies and amplitudes of the canonical components. In such 

a situation, signal averaging will have the same impact on these “signals” as it does on the 

background noise – that is, they will tend to reduce towards zero.  

To date, most ERP studies in Rett have shown highly disordered sensory responses, both in 

audition (Foxe, Burke et al. 2016) (Key, Jones et al. 2019) (Saby, Benke et al. 2021)  (Sysoeva, Molholm et 

al. 2020) (Brima, Molholm et al. 2019) (Peters, Katzenstein et al. 2017) (Badr, Witt-Engerstrom et al. 

1987) and vision (Millichap 2015) (LeBlanc, DeGregorio et al. 2015) (Stauder, Smeets et al. 2006) 

(Saunders, McCulloch et al. 1995) (Kalmanchey 1990) (Bader, Witt-Engerstrom et al. 1989), but to our 

knowledge, all of these previous studies, including those from our own research group, rely on the 

standard signal-averaging approach. Here, we are interested in determining whether a higher 

degree of variability, both at the individual participant and at the group level, might be a factor in 

the reduced and delayed ERP responses typically reported in RTT. This is important, because it 

can have significant implications for the use of the standard ERP as a neuromarker in clinical 

trials, and it is plausible that functionality at the individual participant level is being obscured by 

the averaging technique. This is also the case at the group level, where idiosyncratic ERP 

morphologies and timings at the individual level, when averaged together across the group, could 

potentially give the impression that the group has a much greater overall deficit than is actually 

the case.  

We set out to test what we have termed the “unreliability account” by measuring the coherence 

of the auditory evoked potential (AEP) in both RTT and neurotypical (NT) age-matched controls at 

the single trial level, with an eye to more deeply characterizing potential auditory functionality in 

RTT.  We recorded the AEP from a 72-channel montage in response to simple 1 kHz pure tones 

at three different stimulus-onset-asynchronies (SOA’s: 450, 900 and 1800 ms, see (Brima, 

Molholm et al. 2019), in which standard group analyses of the averaged ERP focused on the 
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mismatch negativity (MMN) response is reported for the same dataset). The relatively large 

numbers of trials presented to each participant (~500 per condition on average, see Table S2) 

allowed for in-depth analysis at the single trial level, which is necessary for measures of inter-trial 

(i.e. intra-participant) variability with high statistical power. To measure inter-trial reliability of the 

auditory responses, we applied a number of relevant approaches, calculating inter-trial-variability 

(ITV), signal-to-noise estimates (SNR), and inter-trail phase coherence (ITPC) at the individual 

participant level. We additionally sought to better understand the inter-participant variability that 

may derive from combining participants across various stages of disease severity by comparing 

homogeneity of the AEP between the groups. 

Another consideration when making EEG/ERP recordings in clinical populations is baseline 

differences in non-neural sources of noise, such as those produced by muscle or movement 

artifacts (Goncharova, McFarland et al. 2003), which can also serve to reduce the reliability of 

estimations of neural activity and potentially lead to overestimation of inter-group differences. To 

this end, we applied data denoising source separation (DSS) to separate  temporally coupled 

signal carrying components from temporally decoupled activity (Särelä, Valpola et al. 2005) (de 

Cheveigne and Simon 2008) (Granados Barbero, De Vos et al. 2021), and compared all of the above 

measures post-compared to pre- DSS signal derivation.  

 

MATERIALS AND METHODS 

Participants 

Data were analyzed from 25 females with confirmed MECP2 mutations and 30 typically 

developing controls (TD) (20 females and 10 males). Participants with RTT were recruited through 

the Rett Syndrome Center of Montefiore Children’s Hospital in the Bronx, NY, while TD 

participants were recruited from the local community. Seven datasets from the RTT group and 
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three from the TD group were excluded from further analysis due to noisy EEG data that resulted 

in less than 20% accepted trials per condition. The final sample contained 17 females with RTT 

(mean age: 12.6±4.8, range 6-22) and 24 TDs (15 females and 9 males) (12.45±4.9, range 6-26). 

There was no significant difference in age between the RTT and TD group (t (41) = 0.12, p = 0.9). 

All participants with RTT underwent genetic testing and phenotypic assessment accompanied 

by detailed medical history questionnaires completed by their caregivers. Symptom severity in 

RTT was measured using the Rett Syndrome Severity Scale (RSSS) which is the primary scale 

used by the Rett Syndrome Center of Montefiore Children’s Hospital (Kaufmann, Tierney et al. 2012) 

(Kaufmann, Tierney et al. 2012, Neul, Glaze et al. 2015). This clinician-rated scale represents an 

aggregate measure of the severity of clinical symptoms, including motor function, seizures, 

autonomic function, ambulation, eye contact, and communication (Neul, Glaze et al. 2015). The 

RSSS score in the current RTT group ranged between 5 and 15 (Mean ± SD = 10.94±2.8), with 

higher scores indicating more severe disease. For reference, composite scores in the range of 0–

7 are considered to correspond to a mild phenotype, 8-14 to a moderate phenotype, and 15-21 to 

severe features (Kaufmann, Tierney et al. 2012). 

TDs were excluded if they had a family history of a neurodevelopmental disorder or any 

neurological/psychiatric disorders. All individuals in the TD group passed a hearing screen on the 

day of EEG testing. A limitation of the current study is that hearing acuity could not be similarly 

assessed in participants with RTT. However, in all cases, parents reported that the children with 

RTT could hear, and this was confirmed by clinical observation. Furthermore, participants with 

RTT were excluded if they had evidence of ear infection on the day of EEG acquisition. 

Tympanometry was performed on all participants to rule out middle-ear involvement, and Type-A 

tympanograms were observed in all cases. Clinical demographic information, including RSSS 

severity scores, ages of onset and regression, and medication of all participants, are listed in 

supplementary materials (Table S1; Clinical Demographics). There were no differences in age-
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range or RSSS scores between the seven excluded RTT datasets, and those included in the final 

analysis. 

All aspects of the research conformed to the tenets of the Declaration of Helsinki. The 

institutional review boards of the University of Rochester and the Albert Einstein College of 

Medicine approved this study. Written informed consent was obtained from parents or legal 

guardians, and where possible, informed assent from the participants was obtained. Participants 

were compensated at a rate of $15/hour for their time. 

Experimental Design, Procedure and Stimuli  

Experimental design, procedures and stimuli were identical to those described in an earlier 

report from this dataset (Brima, Molholm et al. 2019) and have been purposefully deployed in a 

number of other rare disease populations to allow for comparisons across phenotypes (Francisco, 

Berruti et al. 2021, Brima, Freedman et al. 2024) (Francisco, Foxe et al. 2020) (Francisco, Foxe et al. 2020); 

See Figure S1 for a paradigm schematics). We presented a simple auditory mismatch-negativity 

(MMN) paradigm while recording high-density EEG (72 channels). All participants sat in a sound-

attenuated and electrically shielded booth (Industrial Acoustics Company, Bronx, New York) on a 

caregiver’s lap or in a chair/wheelchair. They watched a muted movie of their choice on a laptop 

(Dell Latitude E640) while passively listening to auditory stimuli presented at an intensity of 75 dB 

SPL using a pair of Etymotic insert earphones (Etymotic Research, Inc., Elk Grove Village, IL, 

USA). The MMN paradigm consisted of regularly (85%) occurring standard tones that were 

randomly (15%) interspersed with deviant tones, with the constraint that two deviant tones never 

occurred in succession. These tones had a frequency of 1000 Hz with a rise and fall time of 10 

ms. Standard tones had duration of 100 ms while deviant tones were 180 ms in duration. The 

responses to the deviant tones were reported in our earlier paper which concentrated on the MMN 

response (Brima, Molholm et al. 2019), and will not be discussed or analyzed further here.  The 

tones were presented in three separate conditions with stimulus onset asynchronies (SOAs) of 
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450, 900 or 1800 ms (corresponding to 2.2, 1.1 and 0.55 Hz, respectively). These SOA conditions 

were presented in separate blocks, with each block consisting of 500, 250 or 125 trials 

respectively (Fig S1A). Participants were presented with 14 blocks altogether (2x450ms, 4x900ms 

and 8x1800ms), resulting in 1000 trials per condition. Only the responses to the standard 100 ms 

tones are analyzed here. 

EEG Acquisition  

A Biosemi ActiveTwo (Bio Semi B.V., Amsterdam, Netherlands) 72-electrode array was used 

to record continuous EEG signals. The setup includes an analog-to digital converter, and fiber-

optic pass-through to a dedicated acquisition computer (digitized at 512 Hz; DC-to-150 Hz pass-

band). EEG data were referenced to an active common mode sense (CMS) electrode and a 

passive driven right leg (DRL) electrode.  

Data processing 

EEG data were processed and analyzed offline using custom scripts that included functions 

from the EEGLAB Toolbox for MATLAB (the MathWorks, Natick, MA, USA) (Delorme and Makeig 

2004) (Delorme and Makeig 2004) and the FieldTrip Toolbox for MATLAB (Oostenveld, Fries et al. 

2011). EEG data were initially filtered using a Chebyshev Type II filter between 1Hz and 40Hz, 

with the following parameters: highpass filter: stopband at 0.1Hz, passband at 1Hz, attenuation: 

65 dB. Lowpass filter: stopband at 40Hz, passband at 35Hz, attenuation: 65dB. Continuous EEG 

data were subjected to a channel rejection algorithm, which identified bad channels using 

measures of standard deviation and covariance with neighboring channels. Rejected channels 

were interpolated using the EEGLAB spherical interpolation. For all statistical analyses, data were 

epoched to 2 second segments: from 1 second pre-tone onset to 1 second post-tone onset. Trials 

with artifacts of ±150 µV were excluded from further analysis. For the remaining trials, the 

threshold was set at two standard deviations over the mean of the maximum values for each 
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epoch, to exclude any remaining artifact contaminated trials. The number of accepted trials for 

each SOA condition and group is presented in Table S2. To maximize AEP amplitudes at the 

fronto-central scalp sites where analyses were carried out, data were referenced to TP7 (or TP8 if 

TP7 was noisy), a temporo-parietal site below the Sylvian fissure where the auditory response 

tends to invert relative to fronto-central sites.  

Data Analysis 

All analyses were performed on data averaged from three electrodes over fronto-central 

scalp (FC3, FCz and FC4). A multipronged approach was taken to analyzing the data. 1) In 

accord with conventional ERP analyses, we tested for group level differences in the amplitude of 

the AEP using standard analyses of variance, for two time-windows corresponding to the two 

major deflections in the AEP: Average amplitudes were calculated for each participant for each 

group and for each SOA for the P1 (50-100 ms) and N2 (200-300 ms) timeframes. 2) Another set 

of analyses focused on measuring within-subject variability and comparing this across groups. For 

this, linear mixed effects models were applied to both regular and denoised data (as described 

below), with analyses on data from the N2 (200-300 ms) window, where response amplitude was 

greatest. Three metrics of within-subject variability were tested:  

Signal-to-Noise Ratio (SNR) - SNR was measured across trials, for each individual in 

each group and for each SOA condition using a shuffling method: Signal was calculated as mean 

amplitude in the 200-300 ms time window, and Noise was defined as mean amplitude for the 

same window, with every other trial flipped in polarity (i.e., multiplied by -1) to remove the 

stationary response (i.e., the evoked potential).  

Inter-trial Variability (ITV) - ITV was calculated as the mean of the deviations of the 

individual trials from the average AEP (standard deviations), in the 200 to 300 ms window.  
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Inter-trial phase coherence (ITPC) - To quantify the consistency of phase of the auditory 

response across trials, ITPC was calculated as the circular coherence of phases across trials for 

2-second epochs centered on stimulus onset for each individual participant, trial, and SOA 

condition.  

ITPC was calculated as follows (Luo and Poeppel 2007): 

������ �  �1
	 
  � ��������

�

�	

� 

Where 
��� is the phase at temporal bin t and frequency bin f, in trial n. Output values range 

between 0 (no phase coherence) to 1 (perfect phase coherence). Morlet wavelet convolution was 

used on the 2-second epochs. Wavelets were composed of Gaussians that ranged from 3 to 5 

cycles. For visualization, ITPC is averaged across participants and presented for each group and 

condition, pre- and post DSS. The parameter that is used for statistical analysis is the maximal 

ITPC value across frequencies, calculated on 200-300ms window post stimulus onset. 

Denoising Source Separation (DSS) - Recordings of EEG signals inherently contain 

both stimulus-driven responses and stimulus irrelevant responses/noise (de Cheveigne and Simon 

2008, de Cheveigné and Parra 2014). In order to extract components that are directly related to 

auditory stimulus evoked activity, we employed dimensionality reduction through the Denoising 

Source Separation (DSS) algorithm (Särelä, Valpola et al. 2005) (de Cheveigne and Simon 2008). DSS 

decomposes multi-channel EEG recordings to extract neural response components that are 

consistent across trials and has been demonstrated to be effective in denoising auditory evoked 

activity (de Cheveigne and Simon 2008). This denoising technique is based on a blind source 

separation that removes stimulus-unrelated components from stimulus-related components 

through a spatial filter. These spatial filters are linear combinations of the sensors designed to 

partition data into signal carrying components of interest and non-signal carrying components (de 
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Cheveigne and Simon 2008). In this study, DSS was performed on the 2-second-long epochs for 

each subject and each of the three conditions independently (presented here as Pre-DSS 

signals). After data from all channels were normalized, they were submitted to principal 

component analysis (PCA). This yielded a time series matrix, ordered by decreasing bias scores, 

that is partitioned to signal and noise components. Based on SNR calculation, it was determined 

that the first two DSS components contributed significantly and were optimal. These components 

were retained and projected back to sensor space to obtain the denoised EEG data (referred to 

hereafter as Post-DSS signals), which denote denoised auditory responses throughout this paper. 

Statistical analyses 

Analysis of Variance (ANOVA) - In line with the standard approach for analyzing ERP 

components (Brima, Molholm et al. 2019) (Sysoeva, Molholm et al. 2020), we employed repeated 

measures ANOVA with SOA (450 , 900, and 1800 ms) as a within participant factor and Group 

(RTT vs. TD) as a between participant factor. This analysis was conducted on data from fronto-

central electrodes (FC3, FCz and FC4), for the aforementioned time windows corresponding to 

the major deflections of the AEP (P1 and N2). 

Linear mixed effects models (LME) – For subsequent analyses, to account for random and 

fixed effects, including differences in neuronal variability between participants, we implemented 

LME on the dependent measures from the different analyses. The fitlme MATLAB function was 

used. Advantages over the standard ANOVA approach have been previously detailed 

(Wainwright, Leatherdale et al. 2007) (Krueger and Tian 2004) (Luke 2017). Mixed-effects models 

account for multiple comparisons and interactions. Condition and Group were used across all 

models as fixed effects. Participants were treated as random factors according to the following 

linear-model expression: 

(��� � ������
  ~ 1 � ������������ � ��������,������� � �1|������ !_�#$) and for analyses 

involving within-subject analyses we used (��� � ������
  ~ 1 � ������������ � �1|������ !_�#$) 
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where EEG stands for the AEP amplitude values, SOA condition corresponds to the three 

stimulus presentation intervals (450 ms, 900 ms, and 1800 ms), and Group corresponds to the 

control and RTT cohorts. 

Wilcoxon rank test – we used non-parametric testing to assess the presence of group effects 

for the following measures: AEP, SNR and ITV, in both the pre-DSS and post-DSS data, 

separately. This was done to have a first estimation of the differences between RTT and controls 

in any of these measures, prior to applying the advanced lme models.  

Cluster-based permutation - Cluster-based permutation statistics were used to assess 

significant modulations across groups and conditions and were computed as a function of 

channels*time (Maris and Oostenveld 2007) (Oostenveld, Fries et al. 2011). These univariate tests 

were performed by means of dependent samples t-tests (p<0.5 two sided), and cluster-based 

permutation tests (based on a minimum of 2 channels), to control for multiple comparisons. The 

significance of the observed cluster-level statistic (based on the t values within the cluster) was 

assessed by comparison to the distribution of all permutation-based cluster-level statistics. The 

final cluster p value that we report in all figures was assessed as the proportion of 2000 Monte 

Carlo iterations in which the cluster-level statistic was exceeded. Cluster significance was 

indicated by p values below 0.025 (two-sided cluster significance threshold).  
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RESULTS  

Standard AEP analysis 

In Figure 1, the standard “stationary” AEP is plotted for each individual in both the TD (left 

column) and RTT (right column) groups, and mean standard amplitude for the three different SOA 

conditions is shown in the three rows (Panels A to C) (Rousselet, Foxe et al. 2016). Panel D shows 

the group-averaged waveforms over-plotted for each of the SOAs. Note that the displayed AEPs 

represent an average of activity from the fronto-central electrode chain (FC3, FCz and FC4) as 

modeled in Panel E. In Panel A (the 450 ms SOA), one can readily appreciate the general 

morphology of the AEP and the relative consistency across individuals in the TD group (left 

column), with a clear P1 in the initial response (at 50-100ms; blue shaded timeframe), followed by 

a second smaller positive deflection (P2, ~150 ms) and then by a longer latency negativity 

(between 200-300 ms: N2). The dark green trace at the bottom of Panel A shows the group-

averaged TD waveform, with standard error of the mean also indicated. Despite the general 

consistency of the individual participant waveforms in Panel A, it can also be appreciated that 

even in this TD cohort, there is a high degree of inter-participant variability. This is undoubtedly 

enhanced by the wide age-range of our cohort, since the morphology of the AEP changes over 

the course of development. In the right column of Panel, A, the same over-plotting has been 

conducted for participants in the RTT cohort. Here, one can appreciate that the individual traces 

are considerably more divergent from each other, and this is reflected in the substantially reduced 

amplitude of the group averaged RTT waveform (red trace, bottom right of Panel A), where only a 

highly reduced P1 component is evident. Nonetheless, one can also appreciate that there are 

individuals in the RTT cohort who are producing waveforms with large amplitude positive and 

negative deflections that may reflect preserved auditory processing, albeit with different temporal 

dynamics to those seen in TD participants. Similar patterns are also evident in Panels B and C at 

the two slower presentation rates (900 ms SOA, panel B and 1800 ms SOA, Panel C). As the rate 
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of presentation is slowed, the second P2 positivity emerges more clearly in the TD cohort, 

whereas this is not the case in the RTT cohort. At both of these slower rates, AEP responses in 

the TD cohort are clearly more consistent across individuals than those seen in the RTT cohort. 

For the P1, repeated measures ANOVA revealed a main effect of Group (F (2, 41) =7.4, p = 

0.007) but not Condition (F (1, 41) = 0.71, p = 0.4), and no Group*Condition interaction (F(2,41) = 

0.99; p = 0.37), indicating an attenuated AEP in RTT as compared to TD across SOA conditions. 

For the N2, repeated measures ANOVA revealed a main effect of Group (F(1,43) = 11.05; p = 

0.0012) but not Condition (F(1,43) = 2.8; p = 0.06), and no Group*Condition interaction (F(1,43) = 

0.26); p = 0.77), indicating an attenuated AEP in RTT as compared to TD across SOA conditions. 

All subsequent analyses are delimited to the N2 (200-300 ms) time frame.   

Figure 1 here 

Figure 2 shows data from four participants from each cohort randomly selected and age-matched 

to illustrate one of the central points of the current work. Note that panels A through D show data 

from children at four different age brackets (6-7, 8-9, 10-12 and 14-16 years respectively). One 

can readily appreciate that each of the four control participants produces highly replicable AEPs 

across each SOA condition – that is, there is a high degree of within-participant consistency 

across conditions, but also a high degree of between-participant consistency in terms of 

component timing and morphology, despite the relatively wide span of ages represented. In most 

cases, a positive deflection at about 100 ms (the P1) is followed by a broad negative deflection at 

about 200 ms (here referred to as N2); see grey and pink shading for timeframes used for 

analyses of the P1 (50-100ms) and N2 (200-300ms), respectively. In the data from participants 

with RTT, one can also see that AEP responses, albeit noisier (see displayed standard error of 

the mean (SEM) shading around the waveform traces), are highly replicable across conditions 

within-participant, whereas the timing and morphology of the responses are evidently not as 

consistent across RTT participants as they are in TDs.  
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Figure 2 Here 

Denoising Source Separation (DSS) 

We applied the DSS technique to enhance the signal components carrying evoked activity that 

is reproducible across trials, with an eye to enhancing the signal to noise ratio of the AEP in the 

RETT data. DSS achieves this by accentuating signals which are consistent across trials while 

suppressing noise-like components that are independent of stimulus timing (Särelä, Valpola et al. 

2005)  (de Cheveigne and Simon 2008).  

Figure 3 displays ERP trials pre- and post- DSS, for each group and SOA condition. Using the 

DSS denoised data, we replicated the initial AEP analyses, over the same fixed N2 time-window 

(200-300ms) and averaged across the same channels (FC3, Fz, FC4), to further explore any 

difference that might be revealed using DSS (i.e., Post-DSS data). AEP values for N2 pre and 

post DSS are shown in Figure 4. Pre-DSS, TD individuals had significantly greater AEP N2 

amplitudes compared to RTT (RTT: Mean ± sem = -0.17 ± 0.22; TD: Mean ± sem = -0.69 ± 0.44; 

Wilcoxon rank test statistic = 3781; p = 4.58e-04). Post-DSS, this difference in AEP N2 was no 

longer detected (RTT: Mean ± sem = -0.18 ± 0.19; TD: Mean ± sem = -0.40 ± 0.15; Wilcoxon rank 

test statistic = 4093; p = 0.057)). 

Figure 3 here 

Linear-mixed effect (LME) modeling on the N2 amplitude values revealed a significant main 

effect of Group (�! %&' � �  0.81, � �   0.005,  �
,��
� � 2.81$;  �� � 0.28, $, DSS (�! %&' � �
 0.58, � �  0.001,  �
,��
� � 3.21, �� � 0.18$, and Condition 

(�! %&' � �  0.13, � � 0.0004,  �
,��
� � 3.57, �� � 0.03$. In addition, the Group*DSS interaction 

was significant (�! %&' � �  20.29, � � 0.015,  �
,��
� � 22.43, �� � 0.12$, reflecting the reduced 

group difference for the DSS transformed data.   
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Figure 4 here 

Signal-to-Noise Ratio (SNR) 

Comparisons of SNR between RTT and TD were conducted both pre- and post- DSS (Figure 

5A and 5B and Table S3). Pre-DSS, SNR in RTT (Mean ± sem = 7.75 ± 0.9dB) was significantly 

lower than in TD (Mean ± sem = 26.13 ± 0.64 dB; Wilcoxon rank test statistic = 5507; p < 0.001). 

Post-DSS, SNR increased for the RTT group (Mean ± sem = 30.06 ± 7.29 dB) but remained 

significantly lower than TD (Mean ± sem = 41.4 ± 8.45 dB; Wilcoxon rank test statistic = 5094; p = 

0.0012).  

Using an LME model with fixed effects of Group, DSS and Condition on SNR values, and 

participants as a random effect, a significant main effect of Group was revealed (�! %&' � �
 214.85, � 4 0.001 ,  �
,���� � 24.63; �� � 3.21$, in addition to an effect of DSS (�! %&' � �
 18.2, � 4 0.001 ,  �
,���� � 9.6;  �� � 1.89$ and Condition (�! %&' � �  5.65, � 4 0.001 ,  �
,���� �
4.882; �� � 1.16$. However, when including DSS*Group interaction in the model, neither the 

interaction, nor DSS as a main effect were significant (DSS: �! %&' � �  8.22, � � 0.15 ,  �
,��
� �
1.44; �� � 5.7; DSS*Group: �! %&' � �  7.04, � � 0.06 ,  �
,���� � 1.85; �� � 3.8$. Thus, DSS 

improved SNR for both groups of participants, but did not significantly reduce group differences in 

SNR. The estimated variance of the random intercepts was 24.9  �
,��
� � 2.48; � � 0.013, 

indicating that there was significant variability among subjects in the intercept of the regression 

line. Thus, subjects as a random variable was a significant contributor to the overall variability.  

Inter-trial Variability (ITV)  

To assess the degree of response stability in RTT participants, we calculated ITV on the N2 

window for each participant (see Figure 5C, 5D). Pre-DSS, higher ITV was observed for RTT 

(Mean ± sem = 7.76 ± 0.9µv) than TD (Mean ± sem = 3.5 ± 0.3µv; Wilcoxon rank test statistic: 

3152; p = 1.66e-11). Post-DSS, this ITV difference was no longer detected (RTT: Mean ± sem = 
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1.75 ± 0.21; TD: Mean ± sem = 1.54 ± 0.13; Wilcoxon rank test statistic = 3152; p = 0.23) (see 

Figure 5C and 5D and Table S3). Again, an LME model was implemented to analyze the ITV data 

with Group, SOA Conditions and DSS as fixed factors, while participants was a random factor. 

This analysis revealed a significant main effect of Group (�! %&' � �  8.2, � 4 0.001 ,  �
,���� �
11.082; �� � 0.74$ and DSS (�! %&' � �  1.98, � 4  0.001,  
,��
� � 3.68; �� � 0.53$, but not for 

Condition (�! %&' � � 0.06;  �
,��
� �  0.55, � �  0.58, �� � 0.11$. The Group*DSS interaction 

was significant (�! %&' � � 23.99;  �
,��
� �  211.12, � 4 0.001, �� � 0.36$, reflecting the 

decrease in group differences in ITV following the DSS procedure. The model included a random 

intercept for each individual to account for the correlation among the observations from the same 

subject. The estimated variance of the random intercepts was -2.75 (p = 0.015), indicating that 

there was significant variability among subjects in the intercept of the regression line. 

Figure 5 Here 

Inter-trial Phase Coherence (ITPC) 

ITPC analysis was performed to measure the level of consistency of phase angle between 

single trials for each participant in each group, for each of the conditions. The ITPC data, 

illustrated in Figure 6, show an overall reduction in ITPC for the RTT compared to the TD group, 

and ITPC was higher overall for the data post-DSS. Figure 6A shows the ITPC dynamics along 

the 2-sec epochs, for each time point and frequency sample (1-25Hz). As seen in Figure 6A, 

lower ITPC for RTT is seen across conditions around times of stimulus onset. To assess the 

degree of ITPC, we calculated ITPC on the N2 window for each participant (see Figure 6B-C). 

Pre-DSS, higher ITPC was observed for TD (Mean ± sem = 0.14 ± 0.002) than RTT (Mean ± sem 

= 0.103 ± 0.002; Wilcoxon rank test statistic: 5207; p = 1.37e-04). Post-DSS, this ITPC difference 

became stronger (TD: Mean ± sem = 0.26 ± 0.15; RTT: Mean ± sem = 0.15 ± 0.03; Wilcoxon rank 
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test statistic = 5506; p = 8.82e-08) (see Figure 6B and 6C for a group comparison, and DSS 

comparison, respectively). 

A linear-mixed effect (LME) model on the peak ITPC after stimulus onset revealed a significant 

main effect of Group (�! %&' � �  20.07, � �   7.96� 2 05,  �
,���� � 24.01$;  �� � 002, $, DSS  

(�! %&' � �  0.008, � �  3.96� 2 23,  �
,���� � 11.01, �� � 0.008$, and Condition (�! %&' � �
 0.024, � � 9.8� 2 07,  �
,���� � 5.02, �� � 0.005$. When adding an interaction term of Group*DSS 

to the model, the interaction was significant (�! %&' � �  20.07, � � 6.99� 2 06,  �
,��
� �
22.43, �� � 0.015$, while the Group main effect was not (�! %&' � �  0.03, � � 0.3,  �
,��
� �
22.43, �� � 0.015$, reflecting that most of the variance in the group effect above was driven by 

one of the DSS conditions. 

 

Figure 6 Here 
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DISCUSSION 

Event-related potential recordings provide a simple, highly portable and relatively inexpensive 

means of directly and objectively recording neural processing outcomes from human subjects, 

even in patient populations where task compliance or the following of instructions is compromised 

or infeasible. Considerable work has now shown that measures of auditory evoked potentials 

(AEPs) are highly disordered in Rett syndrome (Foxe, Burke et al. 2016) (Key, Jones et al. 2019) 

(Brima, Molholm et al. 2019, Saby, Benke et al. 2021) (Peters, Katzenstein et al. 2017) (Badr, Witt-

Engerstrom et al. 1987), and that these measures are correlated with clinical measures of disease 

severity (Sysoeva, Molholm et al. 2020). As a direct measure of neural function, therefore, these 

AEP measures hold much promise as neuromarkers against which the effectiveness of 

therapeutic interventions could be measured. It is a reasonable proposition that such measures 

are much closer to the site of action in pharmacological or gene therapy interventions and might 

be expected to show treatment-related changes much sooner than clinical observational 

measures that rely on changes in symptomatology or behavioral outcomes. These latter changes 

would be expected to emerge over relatively long timeframes, secondary to improvements in 

neural functioning. However, standard AEP/ERP signal processing techniques, which typically 

involve the averaging of multiple responses across trials, introduce significant risk of obscuring 

variability across individual neural responses, and could lead to overestimation of the extent of 

processing deficit that is actually present in a given individual. Here, the fact that there were three 

AEP conditions (i.e. three different inter-stimulus intervals were used in separate experimental 

blocks) allowed for a within-subject comparison across these conditions. What becomes clear 

upon simple visual inspection is that highly anomalous component morphology is common in RTT 

(see Figures 1 and 2), such that if an experimenter were to observe just one of these averaged 

AEPs for a given RTT participant, the presence of a response might be questionable. However, it 

is also clear from visual inspection that such anomalous morphologies are generally consistent 

across all three conditions – that is, similar appearing AEP responses are evident in most RTT 
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participants. This is in contrast to the TD participants where for the most part, typical AEP 

morphology is observed. Put another way, in TD participants, there is a “central tendency” 

whereas in RTT participants, there is a tendency towards highly individualized responses. As 

mentioned in the Introduction, this has significant impact on group-averaged comparisons. 

Whereas the central tendency of the AEP in TDs will lead to a robust group-averaged waveform, 

the highly variable individual morphologies expressed in RTT will, by definition, lead to a weak 

group-averaged estimation. The highly idiosyncratic processing within the RTT group likely 

reflects disruption of typical processing along the auditory cortical processing hierarchy that does 

not manifest across patients in a stereotyped way. 

Here, we set out to better understand this potential response variability by deploying a set of 

signal-processing tools at the single trial level, including denoising source separation, inter-trail 

variability estimation, inter-trial phase coherence measures, and estimates of signal-to-noise 

ratios. First, using the standard canonical component-based ERP analysis techniques, the current 

work replicated previous outcomes of strikingly atypical group level AEPs in individuals with RTT, 

which were evident at each of the three stimulation rates used (Figures 1 and 2) (Brima, Molholm 

et al. 2019), differences that were manifest as substantially reduced AEP component amplitudes in 

RTT versus TD (Sysoeva, Molholm et al. 2020) (Saby, Benke et al. 2021). In turn, taking advantage of 

the large number of trials per condition that were recorded in this study, we assessed inter-trial 

response variability to the auditory stimuli at the individual participant level. Across all metrics: 

signal-to-noise ratio (SNR), inter-trial variability (ITV) (see Figure 5), and inter-trial phase 

coherence (ITPC: Figure 6), significantly higher levels of response variability were observed in 

RTT compared to the TD participants.  

Another possible confounding factor when comparing RTT, or indeed any clincial population, to 

TD controls using EEG meaures is that neural repsonses might be obscured by excessive non-

neural noise (e.g. movement artifacts, muscle tension or flexion noise, excessive eye-movements 
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or blinking, bruxism, etc.). To mitigate such influences, we also applied the denoising source 

separation (DSS) algorithm, a joint-decorrelation technique that suppresses the most prominent 

non-neural noise sources, and preserves the activity of interest (de Cheveigné and Parra 2014). The 

previous set of analyses were then repeated using these DSS accentuated signals. Clear 

improvements in the signal post-DSS were observed for both groups, but especially so for the 

RTT group, such that large between-groups differences in the amplitude of the N2 AEP 

component and measures of inter-trial variability (ITV) that were observed prior to denoising, were 

no longer statistically detectable following application of the technique. However, post-DSS 

measures of SNR remained significantly lower in the RTT group, and differences between RTT 

and TD in ITPC were even more robust following DSS. Taken together, these analyses make 

clear that non-neural sources of noise very likely contribute to overestimation of the extent of AEP 

deficits in RTT but that clear deficits remain detectable following denoising that minimizes the 

contribution of non-neural noise to response estimates. This suggests that application of DSS 

should likely be a facet of any signal-processing pipeline designed to test neural information 

processing in individuals with rare diseases like RTT. 

The SNR calculations pre- versus post- denoising are highly instructive in this regard, 

demonstrating clear and rather dramatic effects of applying DSS. In the case of the RTT group, 

SNR across conditions increased from 7.8 to 30.1, representing a massive 3.9-fold increase in 

signal estimation. SNR did also increase in the TD group, but by a more modest amount (26.1 to 

41.4), a 1.6-fold increase. While SNR in RTT remained significantly lower than that found in TD, it 

is clear that pre-denoising, this difference was substantially overestimated and suggested a much 

greater deficit than is likely the case. Non-evoked potential noise is therefore a major source of 

potentially confounding variance in inter-group comparisons concerning RTT individuals and 

should be a consideration in all studies assessing differences between rare-disease clinical 

groups and neurotypical control populations. Similarly, AEP peak voltage variability, assessed by 
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ITV, improved post-DSS in both groups, but more so in RTT (a 4.5-fold decrease, from 7.76 to 

1.75µv) than TD (a 2.3-fold decrease, from 3.50 to 1.54 µv). This time, group differences in ITV 

were, in fact, no longer statistically detectable post-DSS.  Lastly, in the case of ITPC, DSS also 

significantly improved these estimates in both populations. In the TD group, ITPC estimate pre-

DSS was 0.14 but this improved to 0.26 following denoising, whereas in the RTT group the 

improvement was more modest (0.10 to 0.15). For both pre- and post- DSS estimates, the 

difference between TD and RTT participants was statistically robust.  

Thus, while denoising substantially improves SNR in RTT and leads to lower estimates of inter-

trial variability both in terms of response amplitudes and phase, substantial deficits remained in 

the RTT group in SNR and ITPC measures of response variability, whereas this was not the case 

for ITV. In summary, while previous results showed robust evoked-response atypicalities using 

the standard component-based ERP approach, the present work suggests that the addition of 

measures that assess response variability can add significant insight into putative dysfunction and 

may well provide more sensitive biomarkers for assessment of treatment effects on neural 

function. That ITPC is found to be significantly lower in RTT, even post-DSS, provides at least 

partial support for a neural unreliability account of auditory processing deficits in this population, 

although lower SNR estimates and idiosyncratic temporal evolution of the AEP also suggest that 

sensory processing is both attenuated and temporally disrupted, and that the differences between 

RTT and TD are not wholly accounted for by “unreliable” responsivity. 

 

Study Limitations 

Auditory responses continue to mature with typical development (Bishop, Anderson et al. 2011, 

Brandwein, Foxe et al. 2011, Brandwein, Foxe et al. 2013), and as such, our relatively wide participant 

age range (7 to 22 years of age) is a limiting factor. Furthermore, the number of usable RTT data 
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sets was reduced from 25 to 17 due to excessively noisy EEG data and an insufficient number of 

accepted trials per condition. It will be key to develop better methods to capture adequate EEG 

data in these difficult-to-test populations, as a 68% success rate will not be adequate if such 

measures are to be fully useful as outcomes in clinical trials. It is also the case that the limited 

RTT sample precludes the possibility to meaningfully examine mutation subtype in this cohort due 

to the lack of sufficient power. Neither were we able to consider potential differences as a function 

of classic versus atypical Rett phenotype. Both of these distinctions will be of great interest as this 

work progresses.  

 

Conclusions 

This study deployed in-depth analysis of auditory evoked response variability to assess the 

contribution of the degree of response variability (unreliability) to altered auditory processing in 

RTT. We replicated previous outcomes of atypical AEP morphologies and significantly reduced 

AEP amplitudes in Rett Syndrome using standard component-based ERP analysis. Using metrics 

that specifically measured neuronal variability, we observed substantially increased inter-trial 

variability, lower signal-to-noise ratios, and reduced inter-trial phase coherence in the auditory 

responses of RTT participants, providing strong support for a “neural unreliability” account in this 

population.  However, deployment of denoising source separation (DSS) techniques painted a 

somewhat different picture, making it clear that non-neural sources of noise are a likely contributor 

to overestimation of the extent of auditory processing deficits in this population. Post-DSS, ITV 

measures were substantially reduced, so much so that pre-DSS ITV differences between RTT 

and TD populations were no longer detected. In the case of SNR and ITPC, DSS substantially 

improved these estimates in the RTT population, but robust differences between RTT and TD 

were still fully evident. This work strongly suggests that employing DSS techniques will provide 

much better estimates of veridical sensory-perceptual processing abilities in rare disease 
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populations such as RTT, or in any other population where a high degree of non-neural noise and 

high inter-individual variability are expected to be major contributors.  
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Figure 1. Standard Mean AEP (1 second epochs) for TDs (left) and RTT (right) over fronto-central 
scalp (averaged over electrodes FC3, FCz, FC4). Panels (A-C) shows colored traces representing an 
average of all trials in response to standard tones for each participant and their grand average AEP (green 
for TD and red for RTT trace with black traces – standard deviation) for all SOA conditions. TDs produced 
classic AEP waveforms while the RTT group exhibited atypical responses with reduced AEP amplitude 
across SOAs. A clear initial peak (P1) within the time period from 50 to 100 – blue shaded panels was 
present for all SOAs in both groups. Distribution of mean standard amplitude and quartiles are plotted at the 
far right in panels (A-C) for TD (green) and RTT (red) during the period of initial peak (from 50 - 100 ms) 
across SOAs. Significant difference between the groups is marked by asterisk (for the 450 (p=0.05), 900ms 
(p=0.80) and 1800ms (p=0.04) SOAs). Panel (D) shows change in AEP morphology as a function of SOA 
seen in the control and RTT group. Panel (E) illustrates the locations of the averaged fronto-cental scalp 
electors that yielded the AEPs. 
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Figure 2. ERP waveforms in TD and RTT, for the SOA conditions. Representative Individual 
Participant AEP: average trials from four typically developing control participants (green 
shades) and four individuals with RTT (red shades) over fronto-central electrode (FC3), in 4 age 
ranges (6-7, 8-9, 10-12 and 14-16 years old). Gray and pink bars represent the two time 
windows for analysis: P1 (50-100) and N2 (200-300), respectively.  
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Figure 3. ERP waveforms in TD and RTT, pre-and post DSS. A. participant waveforms in response 
to standard tones overlaid (top panels) and averaged (bottom panels) across individuals, shown for 
each Group and for each SOA condition, pre- and post denoise source separation (DSS). B. Group 
averaged ERP signals (mean ± SEM in shaded lines) compared N2 between TD and RTT, for each 
SOA condition. Lower panels show cluster permutation statistics between groups (thick red line 
indicates significant temporal regions, p < 0.05). C. Same as B, however a comparison is presented 
between averaged ERPs for all SOA conditions in each of the groups. 
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Figure 4: AEP values at N1 (200-300ms) across groups and SOA conditions. A. AEP values for 
each group and condition, pre- and post- DSS  

Figure 5: Pre- and Post DSS measures of signal-noise ratio (SNR) and inter-trial 
variability (ITV) for for RTT and TD in ERP peak N1. A. SNR: Between group 
comparison for each condition, pre- and post-DSS. B. SNR: Within group pre- and 
post-DSS comparison. C. ITV: Beween group comparison for each condition, pre- and 
post-DSS. D. ITV: Withing group pre- and post-DSS comparison.  
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Figure 6: Inter-Trial phase coherence (ITPC) for each group and condition pre- and post-DSS. A. 
time-frequency ITPC plots show a reduction of coherence values in the RTT group across conditions, 
following stimulus onset. The average ITPC across frequencies is overlaid in white, on top of each plot. B. 
Raincloud plots of ITPC peak values derived from each participants (as seen in white in 4A), for each 
condition, pre- and post DSS. C. Same ITPC values shown in 4B, but now plotted within group for each 
condition, and compared between pre- and post DSS.  
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Supplementary figures: 

 

Figure S1: Oddball paradigm design: A. 3 experimental conditions with varied stimulus presentation 
intervals (SOA): (a) 450 ms intervals between stimuli, (b) 900 ms between stimuli and (c) 1800 ms between 
stimuli. B. Shows a map of the electrode site of interest (FC3, FCz, and FC4) and reference electrode R 

Subject Age Mutations (RSSS) Seizures Seizure 
OS Ambulatory Medications Age of R 

1 6-9 R255X 13 yes 48 mos no Trazadone, Depakote N/A 

2 6-9 R133C 8 yes 72 mos yes Lovastatin, Topomax, Abilify, 
Lexapro, Depakene, Nexium 

21 mos 

3 10-14 R306C 7 yes 168 mos yes Lovastatin, Ambien, Trazodone 50-60 mos 

5 10-14 C964C 5 no no yes Trazadone 156 mos 

7 6-9 deletion 9 no no yes Lovastatin 11 mos 

8 10-14 R255X 6 no no yes Lovastatin 12 mos 

9 15-19 R270X 14 N/A N/A no none N/A 

13 10-14 deletion 14 yes 30 mos no Depakene, Lexapro,Lactulose N/A 

14 10-14 

Q170x 
mutation at 
nucleotide 

c508 

10 N/A N/A yes N/A 18 mos 

16 10-14 deletion 12 no 72 mos yes Risperdol and Necon 144 mos 

17 20-24 R133C 12 yes 108 mos yes 
Depakote, Carintor, Artane, 

Copaxone 17 mos 

18 10-14 deletion 11 N/A N/A no Depakene N/A 

19 15-19 R270X 13 no N/A no N/A N/A 

21 15-19 418ins4 15 yes N/A no Diastat, Depakene, Carnitor N/A 
22 20-24 T158M 11 yes 72 mos yes Lexapro, Lamictal 15-18 mos 

23 6-9 
Large 

deletion 12 yes 60 mos no Valproic acid N/A 

24 6-9 Deletion 
exon 3&4 

9 yes 36 mos no Keppra, deplane N/A 

25 10-14 T158M 12 no N/A no Nanadol, prevacid 24 mos 

4 15-19 T158M 11 yes 120 mos yes Copaxone, Topomax, Lovastatin, 10 mos 

6 6-9 R294X 7 no no yes Lexapro, Lovastatin, Prilosec 17 mos 

10 10-14 R306C 9 no no yes Lexapro 18 mos 

11 15-19 R306C 10 no no yes Lexapro, Copaxone, Trazodone, N/A 
12 6-9 deletion 7 yes 24 mos no Depakene, Lactulose, Lovastatin, 30 mos 
15 10-14 T158M 10 N/A N/A no N/A N/A 
20 6-9 R133C 10 yes 42 mos yes Abilify, Lexapro, Desyrel 24 mos 
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(TP7). 

 

Table S1. Clinical demographics of all enrolled participants with Rett syndrome. The shaded area depicts 
excluded participants. RSSS = Rett Syndrome Severity Score; Seizure OS = Seizure on set; Age of R = 
Age of regression in months (mos.); N/A = Not Available. 

 

 
TD (N=24) 

Mean Age: 12.3 ± 4.7 
RTT (N=17) 

Mean Age: 12.6 ± 4.8 

 450 SOA 900 SOA 1800 SOA 450 SOA 900 SOA 1800 SOA 

Average Accepted 
Std. trials ± SD 412.5 ± 153 718.5 ± 96 720 ± 81 239.1 ± 81 507.6 ± 153 460.2 ± 96 

Accepted Overall 1851 1207 

Grand average AEP 
values ± SD 

1.18 ± 0.85 0.79 ± 1.01 0.61 ± 1.17 0.64 ± 0.90 0.25 ± 0.99 -0.13 ± 1.07 

 

Table S2. Number of accepted standard trials and grand average AEP values and corresponding standard 
deviations (±SD) included in the analysis across conditions in typically developing controls and in 
participants with Rett syndrome. 

 

 

 

Table S3. Mean ± SEM for SNR and ITV, Pre and Post–DSS, for each condition in typically developing 
(TD) controls and in participants with Rett syndrome (RTT).  

 

TD (N=24) RTT (N=17) 

450 SOA 900 SOA 1800 SOA 450 SOA 900 SOA 1800 SOA 

 
 
 
 
SNR 

Pre-DSS Mean ±SEM     21.09 ± 2.77 30 ± 3.25 26.55 ± 3.4 -0.81 ± 3.72 9.29 ±4.76 14.88 ± 2.86 

Mean ± SEM Across Conditions 26.13 ± 0.64 7.75 ± 0.91 

Post-DSS ± SEM 30.98 ± 3.25 49.75 ± 3.86 43.46 ± 3.69 23.13 ± 3.56 30.29 ± 4.26 36.76 ± 5.02 

Mean ± SEM Across Conditions 41.4 ± 8.45 30.06 ± 7.29 

 
 
 
 ITV 

Pre-DSS Mean ± SEM (µv) 3.57 ± 0.3 3.55 ± 0.3 3.54 ± 0.29 7.35 ± 0.88 7.93 ± 1.03 8.01 ± 1.05 

Mean ±SEM (µv) Across Conditions 3.55 ± 0.29 7.76 ± 0.97 

Post-DSS ± SEM (µv) 1.68 ± 0.14 1.52 ± 0.13 1.41 ± 0.12 1.59 ± 0.21 1.72 ± 0.23 1.95 ± 0.21 

Mean ±SEM (µv) Across Conditions 1.54 ± 0.13 1.75 ± 0.21 
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