
 
 

1

A multimodal neural signature of face processing in autism within 
the fusiform gyrus 

 

Dorothea L. Floris1,2,3, Alberto Llera2,3, Mariam Zabihi2,4, Carolin Moessnang5,6, 

Emily J.H. Jones7, Luke Mason7,8, Rianne Haartsen7, Nathalie E. Holz9, Ting Mei2,3, 

Camille Elleaume1, Bruno Hebling Vieira1, Charlotte M. Pretzsch8, Natalie Forde2,3, 

Sarah Baumeister9, Flavio Dell’Acqua8,10, Sarah Durston11, Tobias Banaschewski9, 

Christine Ecker12, Rosemary J. Holt13, Simon Baron-Cohen13, Thomas Bourgeron14, 

Tony Charman15, Eva Loth8,10, Declan G. M. Murphy8,10, Jan K. Buitelaar2,3,16, 

Christian F. Beckmann2,3,17, the EU-AIMS LEAP group, Nicolas Langer1,18 

1Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland 
2Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, Nijmegen, The 

Netherlands  
3Department for Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The 

Netherlands 
4MRC Unit Lifelong Health and Aging, University College London, London, UK 
5Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty 

Mannheim, University of Heidelberg, Mannheim, Germany 
6Department of Applied Psychology, SRH University, Heidelberg, Germany 
7Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK 
8Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and 

Neuroscience, King’s College, London, UK 
9Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty 

Mannheim, University of Heidelberg, Mannheim, Germany 
10Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, 

King’s College London, London, UK om 
11Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The 

Netherlands 
12Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt 

am Main, Germany 
13Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK 
14Institut Pasteur, Human Genetics and Cognitive Functions Unity, Paris, France 
15Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College 

London, London, UK 
16Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands 
17Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford, UK 
18Neuroscience Center Zurich (ZNZ), Zurich, Switzerland 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.04.23300134doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.01.04.23300134
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

2

Abstract 

Background. Differences in face processing are commonly reported in case/control 

studies of autism. Their neural correlates have been explored extensively across single 

neuroimaging modalities within key regions of the face processing network, such as 

the fusiform gyrus (FFG). Nonetheless, it is poorly understood how different 

variation(s) in brain anatomy and function combine to impact face processing and 

social functioning. Extracting the shared information across different modalities is 

essential to better delineate the complex relationship between brain structure and 

function, leading to a more comprehensive understanding of the mechanisms 

underlying autism. Methods. Here, we leveraged data from the large multimodal EU-

AIMS Longitudinal European Autism Project (LEAP) to study the cross-modal 

signature of face processing within the FFG across structural magnetic resonance 

imaging (MRI), resting-state fMRI (rs-fMRI), task-fMRI (based on the Hariri 

emotional faces task) and electroencephalography (EEG; recorded when observing 

facial stimuli) in a sample of 99 autistic and 105 non-autistic individuals (NAI) aged 

6-30 years. We combined two methodological innovations: (i) normative modelling 

was employed on each imaging modality separately to derive individual-level 

deviations from a predicted developmental trajectory and (ii) unimodal deviations 

were fused through Linked Independent Component (IC) Analysis to simultaneously 

decompose the imaging data into underlying modes that characterise multi-modal 

signatures across the cohort. Next, we tested whether ICs significantly differed 

between autistic and NAI and whether multimodal ICs would outperform unimodal 

ICs in discriminating autistic individuals from NAI using a support vector machine 

under 10-fold cross-validation. Finally, we tested the association between multimodal 

ICs and cognitive, clinical measures of social or non-social functioning in autism 

using canonical correlation analysis (CCA). Results. In total, 50 independent 

components were derived. Among these one multimodal IC differed significantly 

between autistic and NAI (t=3.5, pFDR=0.03). This IC was mostly driven by bilateral 

rs-fMRI, bilateral structure, right task-fMRI, and left EEG loadings and implicated 

both face-selective and retinotopic regions of the FFG. Furthermore, multimodal ICs 

performed significantly better at differentiating autistic from NAI than unimodal ICs 

(p<0.001). Finally, there was a significant multivariate association between 

multimodal ICs and a set of cognitive and clinical features associated with social 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.04.23300134doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.04.23300134
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

3

functioning (r=0.65, pFDR=0.008); but not with non-social features. Discussion. The 

FFG appears to be a central region differentially implicated in autistic and NAI across 

a range of inter-related imaging modalities and category-selective regions in both the 

left and right hemispheres. Elucidating more integrated, individual-level neural 

associations of core social functioning in autism will pave the way for further work on 

identifying more fine-grained stratification, mechanistic and prognostic biomarkers, 

and the development of more personalised support. 

 

Introduction 

Autism is a lifelong neurodevelopmental condition with a prevalence of 1 in 36 

children1. Social-communicative differences are among the most prominent features 

of autistic individuals2. Particularly, difficulties with processing social information 

and faces, such as perceiving and interpreting facial expressions of emotions and 

other mental states are thought to have a profound impact on their social functioning 

and daily living skills3,4. While non-autistic individuals (NAI) appear to develop 

highly skilled strategies to discriminate facial cues at a very early age, autistic 

individuals have been reported to orient on average less to and acquire less expertise 

with facial expression recognition5. This has, for example, been attributed to a 

diminished social attention6 and structural and functional differences in brain regions 

implicated in face processing3,5,7. While individual neuroimaging modalities have 

separately been used to characterize the neural correlates of face processing, 

multimodal studies of key regions associated with face processing remain scarce. 

Illuminating the rich multimodal information shared across different imaging 

modalities can unravel complex interactions and variations that may only be partially 

addressed by single modalities8. Specifically, elucidating cross-modal links with 

regards to face processing in autism will be crucial for understanding the biological 

mechanisms associated with core social difficulties and paving the way for the 

development of more personalised support.  

 

The fusiform gyrus (FFG) within the human ventral temporal cortex has been 

identified as a key neural region associated with higher-order processing of visual 

stimuli, particularly faces9. Extensive neuroimaging research has demonstrated that 

particularly the fusiform face area (FFA) within the right FFG specifically codes for 
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facial stimuli in typically developing individuals10,11. These responses entail increased 

activation during face perception tasks in functional magnetic resonance imaging 

(fMRI) studies12–14 along with evidence from electroencephalography (EEG) studies 

showing an event-related potential of negative polarity that peaks at around 170ms 

when facial stimuli are presented15,16. The necessity for a thorough examination of the 

FFG in isolation is warranted by its detailed, functional heterogeneity. More precisely, 

the FFG exhibits a fine-grained topographical organization with distinct category-

selective patches17–19 that are differentially specialized for facial recognition (i.e., 

FFA)20, body part discrimination21, object features recognition22 and even semantic 

processing23,24. Furthermore, face processing is a lateralized cognitive function with 

right hemisphere dominance across these modalities25–28. An exhaustive examination 

across different neural signatures of this fine-grained local and hemispheric 

heterogeneity of the FFG – beyond the FFA – has not been conducted in autistic 

individuals yet. This can offer valuable new insights in the light of reports of atypical 

functional specialisation in autism29,30.  

 

Accumulating evidence suggests that there is atypical neural organization within the 

FFG in autistic individuals. Functionally, many studies show that the FFG is 

hypoactive during face processing fMRI tasks31–33 and, atypically connected with the 

amygdala and superior temporal sulcus34 and frontal areas35 in autism. Furthermore, 

EEG studies show that the N170 latency is delayed in autistic compared to NAI36,37; 

and we reported that variation in N170 is associated with change in social behaviour 

over time37. Structurally, there are reports of volume increases in right FFG38, a 

reduction in mean FFG neuron density39  and reversed leftward asymmetry40 in 

autism. These atypical neural substrates are thought to be functionally relevant in 

autistic individuals. For example, they have been linked to differences in facial 

expression recognition5 and face memory41,  adaptive social functioning37,42, and 

social symptom difficulties and severity34,41,43,44. 

 

While these individual imaging modalities (i.e., structural MRI, task-fMRI, resting-

state fMRI, EEG) converge to show atypical involvement of the FFG in face 

processing and related social functioning in autism, there is still little research into 

how these different neural substrates jointly inform fine-grained FFG organisation and 

social-communicative functioning in autism. Extracting common information from 
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various modalities is crucial in gaining deeper insights into how brain structure and 

function reciprocally shape each other, and which common aspects of structure and 

function inform behaviour, cognition, and clinical conditions such as autism. To date, 

structure-function coupling has predominantly been addressed via univariate 

approaches where modalities are combined at the statistical or interpretation 

level37,45,46. However, only when employing multivariate multimodal approaches can 

we identify direct relationships between different neurobiological mechanisms and 

how they scale relative to each other. Additional benefits include: (i) we can penetrate 

across different biological spatial and temporal scales of variation leveraging the 

unique, complementary aspects covered by each individual imaging modality; (ii) we 

can gain a more comprehensive understanding of different neurobiological 

expressions that may converge on a common clinical phenotype (such as atypical face 

processing and social functioning); (iii) there is a large amount of shared variance 

across different modalities. Efficient modelling of this has been shown to increase 

robustness to noise8,47,48 and sensitivity to detect potentially subtle effects in high-

dimensional data that may otherwise be missed in one single modality47–52. 

Accordingly, prior multimodal efforts are promising as they show that combining 

information from brain structure and function significantly increases accuracy in 

predictive frameworks52–56. Also in autism, a recent study combining different 

neuroimaging measures of rs-fMRI, diffusion-weighted imaging and structural 

morphometry specifically showed that rs-connection topographies within the FFG 

were differentially implicated between autistic and NAI57. While such multimodal 

endeavours are still scarce in autism, this work specifically underscores the important 

role of the FFG in the neurobiology of autism. Still, the precise nature and a fine-

grained topographical characterization of the multimodal neurobiological interactions 

within the FFG, and their relationship with the broader clinical phenotype related to 

social functioning in autism remain to be established. 

 

In the present study, our aim was to provide a more comprehensive understanding of 

the FFG in face processing in autism by elucidating the simultaneous involvement and 

multivariate interplay of different neural sources. Such analysis requires both large 

and deeply-phenotyped samples and given scarce availability, especially in clinical 

populations, this has previously limited its application. Hence, in this study, we 

leveraged the unique, large-scale and deeply-phenotyped EU-AIMS Longitudinal 
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European Autism Project58,59 (LEAP) which is the largest European multi-centre 

initiative aimed at identifying biomarkers in autism. This dataset provides a rich set of 

different neuroimaging modalities, and cognitive, clinical measures as well as tasks 

related to face processing and social and non-social functioning. Differences in facial 

expression recognition in autistic individuals have been established in this dataset5. To 

further tap into their multimodal neural correlates, we combined two methodological 

innovations: (i) first, we employed normative modelling60 on each imaging modality 

separately to derive individual-level deviations from a predicted age-related 

trajectory. Prior research shows that modelling cortical features as deviations from a 

normative neurodevelopmental trajectory provides more sensitive measure to map 

multimodal signatures in psychopathology52 while also improving predictive 

performance61. (ii) Next, we conducted multi-modal fusion through Linked 

Independent Component Analysis49 across structural MRI, rs-fMRI, task-fMRI and 

EEG within the right and left FFG to simultaneously decompose the imaging data into 

underlying modes that characterise multi-modal signatures differentially in autistic 

and NAI. We further provided a fine-grained characterization of implicated regions 

shedding light on the topographic organisation within the FFG in autism. We 

hypothesized that multimodal components would be more sensitive to capturing 

subtle diagnostic effects cross-modally and would thus outperform unimodal 

components in discriminating autistic individuals from NAI. Finally, we hypothesized 

that joint expression across modalities related to the FFG, and face processing would 

specifically inform social functioning in autism.   

 

Methods 

Sample characterization 

Participants were part of the EU-AIMS/AIMS-2-TRIALS LEAP cohort58,59. They 

underwent comprehensive clinical, cognitive and MRI assessment at one of six 

collaborating sites. All autistic participants had an existing clinical diagnosis of 

autism which was confirmed using the combined information of gold-standard 

diagnostic instruments, the Autism Diagnostic Interview-Revised62 (ADI-R) and the 

Autism Diagnostic Observation Schedule63 (ADOS). The study was approved by the 

respective research ethics committees at each site (IRAS, UK). Informed written 

consent was obtained from all participants, or—for minors or those unable to give 
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informed consent—from a parent or legal guardian. For further details on diagnostic 

procedure, study design and exclusion criteria, see Supplemental Information (SI) and 

our earlier papers58,59.  The final sample has both complete imaging data across four 

different imaging modalities that were integrated (described below) and phenotypic 

information available. This consisted of 99 autistic individuals, and 105 NAI between 

7 and 30 years. For details on demographic information, see Table 1. 

Clinical and cognitive measures 

We split available autism-associated measures into two sets of feature sets based on 

the construct they measure 1) social-communicative features comprising measures of 

difficulties with social communication and daily living skills (i.e., ADOS-social 

affect, ADI-communication, ADI-social, Vineland Adaptive Behavior Scale64 with 

Communication, Daily Living, Socialization subscales), emotional face matching 

performance (i.e., Hariri faces task65), and social sensitivity to complex emotions (i.e., 

Reading the Mind in the Eyes test66 [RMET]) and 2) non-social features comprising 

restricted, repetitive behaviours (RRBs) (i.e., ADOS-RRB, ADI-RRB, the Repetitive 

Behavior Scale67 [RBS-R]), systemizing (i.e., the Systemizing Quotient68–70 [SQ]), 

shape matching performance (i.e., Hariri shapes task, as the control condition to the 

Hariri emotional faces task) and sensory processing atypicalities (i.e., Short Sensory 

Profile71 [SSP]) (see Supplement and Table S1). To tackle missing clinical data and to 

not further reduce sample size, we used imputed clinical data72, as in previous work 

with this dataset56,73. 

Region of interest: fusiform gyrus 

All analyses were restricted to the right and left FFG based on the Harvard-Oxford 

atlas (HOA) (FMRIB, Oxford, UK) (i.e., anterior and posterior divisions of the 

temporal fusiform cortex, temporal occipital fusiform cortex and occipital fusiform 

gyrus). The size of the ROIs was adjusted to have 100% coverage across all 

individuals for each imaging modality (for details see SI). 

Imaging modalities 

For MRI and EEG data acquisition parameters and detailed preprocessing steps, see 

SI and Table S2 and S3. 
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Structure – voxel-wise grey matter volume 

Voxel-based morphometry (VBM) analyses were run using the CAT12 toolbox 

(https://neuro-jena.github.io/cat//) in SPM12 (Wellcome Department of Imaging 

Neuroscience, London, UK). T1-weighted images were automatically segmented into 

grey matter (GM), white matter, and cerebrospinal fluid and affine registered to the 

MNI template to improve segmentation. All resulting segmented GM maps were then 

used to generate a study-specific template and registered to MNI space via a high-

dimensional, nonlinear diffeomorphic registration algorithm (DARTEL)74. A Jacobian 

modulation step was included using the flow fields to preserve voxel-wise 

information on local tissue volume. Images were smoothed with a 4 mm full-width 

half-max (FWHM) isotropic Gaussian kernel. Features for subsequent normative 

modeling were VBM-derived, voxel-wise GM volumes per individual restricted to the 

right and left FFG ROIs. 

Resting-state fMRI – seed-based connectivity  

After recombining the three rs-fMRI scan echoes using echo-time weighted 

averaging, the rs-fMRI data were preprocessed using a standard preprocessing 

pipeline that included tools from the FMRIB Software Library (FSL version 5.0.6; 

http://www.fmrib.ox.ac.uk/fsl). Preprocessing included removal of the first five 

volumes to allow longitudinal magnetization to reach equilibrium, primary head 

motion correction via realignment to the middle volume (MCFLIRT), grand mean 

scaling and spatial smoothing with a 6mm FWHM Gaussian kernel. Next, we 

thoroughly corrected for secondary head-motion related artifacts, by applying ICA-

AROMA, an ICA-based method, which automatically detects and removes motion-

related components from the data75. ICA-AROMA has been demonstrated to remove 

head motion-related artifacts with high accuracy while preserving signal of 

interest75,76. Finally, we applied nuisance regression to remove signal from white 

matter and cerebrospinal fluid, and a high-pass filter (0.01 Hz). The rs-fMRI images 

of each participant were coregistered to the participants' anatomical images via 

boundary-based registration implemented in FSL FLIRT77. The T1 images of each 

participant were registered to MNI152 standard space using 12-parameter affine 

transformation and refined using non-linear registration with FSL FNIRT (10mm 

warp, 2mm resampling resolution). Finally, we brought all participant-level rs-fMRI 

images to 2mm MNI152 standard space by applying the rs-fMRI to T1 and T1 to 

MNI152 transformations. Next, to characterize the fine-grained functional 
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subdivisions within the FFG in the context of emotional face processing, seed-based 

correlation analysis was performed between the timeseries derived from each 

individual’s peak activation voxel within the fusiform face area (FFA) and the 

remaining voxels within the FFG. This FFA-connectivity was the feature for 

subsequent normative modeling. 

Task-fMRI – contrast maps 

A well-established task was used to probe functional brain responses during 

emotional face processing65. fMRI data analysis followed standard processing 

routines in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), including slice-time 

correction, a two-step realignment procedure, unified segmentation, and 

normalization to standard stereotactic space as defined by the Montreal Neurological 

Institute (MNI), and smoothing with an 8mm full-width-at-half-maximum Gaussian 

Kernel. Task conditions were modelled as boxcar functions that accounted for the 

presentation of face blocks and shape blocks, respectively and convolved with the 

canonical hemodynamic response function (HRF) and subjected as predictors to a 

general linear model (GLM), along with six realignment parameters to account for 

head motion. During first-level model estimation, data was high-pass filtered with a 

cut-off of 256s, and a first order autoregressive model was applied. The face matching 

condition was contrasted to the shape matching condition to identify brain responses 

reflecting sensitivity to emotional faces. These T-contrast maps per individual 

(restricted to the right and left FFG ROIs) were the features for subsequent normative 

modeling. 

EEG – source reconstruction 

Participants were presented with three repeated, upright, or inverted face stimuli, 

repeated 168 times over four blocks. Here, all face stimuli were included. The 

following preprocessing steps were carried out: 1) harmonisation of electrode labels 

to 62-electrode common montage; 2) deviation of horizontal electrooculogram 

(HEOG) from electrodes AF7/8; 3) generation of variance-based data quality metrics 

and extraction of impedance values from Brainvision sites; 4) re-reference to 

FCz. This process resulted in harmonised data in a common EEGLab78 format, upon 

which all subsequent task-specific analyses were performed. Further offline treatment 

of the data was done using the FieldTrip toolbox79. Raw EEG data were band-pass 

filtered 0.1 to 30 Hz with 2000-ms padding and epoched from −200 to 800 ms after 

stimulus onset. Artifacts were identified and removed according to criteria detailed in 
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the SI. Next, beamforming-based source level analysis was conducted within the left 

and right FFG to derive source estimates for several cortical parcels. The principal 

component across these time series was used as the feature for subsequent normative 

modeling. For a detailed description of feature extraction for each modality, see the 

SI.  

Normative modelling  

Normative modelling is an emerging statistical technique that allows parsing 

heterogeneity by charting variation in brain-behaviour mappings relative to a 

normative range and provides statistical inference at the level of the individual80. The 

term ‘normative’ should not be seen as incompatible with the neurodiversity 

framework as it simply refers to statistical norms such as growth charts that vary by 

demographics such as age and gender. Variation from the norm is part of 

neurodiversity. Here, we trained normative models60,80,81 using Bayesian Linear 

Regression (BLR)82 (https://pcntoolkit.readthedocs.io/en/latest) for each brain 

imaging modality within the right and left FFG ROI independently using age, sex and 

scanning site as covariates. A B-spline basis expansion of the covariate vector was 

used to model non-linear effects of age. Normative models were derived in an 

unbiased manner across the entire sample under 10-fold cross-validation52,60,83. This 

Bayesian approach calculates the probability distribution over all functions that fit the 

data while specifying a prior over all possible values and relocating probabilities 

based on evidence (i.e., observed data). As such, it yields unbiased estimates of 

generalizability and inferences with increasing uncertainty with fewer data. To 

estimate voxel-wise/time-point-wise deviations for each modality in each individual, 

we derived normative probability maps (NPM) that quantify the deviation from the 

normative model summarized in Z-scores. These subject-specific Z-score images 

provide a statistical estimate of how much each individual’s recorded value differs 

from the predicted value at each voxel/time-point. The accuracy of the normative 

model was evaluated using the correlation between the recorded and the predicted 

voxel values (Rho), the mean standardized log-loss (MSLL), standardized mean 

squared error (SMSE), and the explained variance (EV) (Figure S1) as well as based 

on the forward models (Figure S3). Furthermore, we compared model performance 

when modelling age linearly (without a B-spline basis expansion; Figure S2). To 

assess whether autistic and NAI differed in their extreme deviations based on 
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unimodal features, thresholded Z-scores (Z>|2.6|30,52,84,85, corresponding to the 99.5th 

percentile) were compared between the two groups using a two-sample t-test (see SI). 

Code is available at https://github.com/amarquand/PCNtoolkit. 

Linked Independent Component Analysis 

In order to gain more comprehensive insights into cross-modal signatures of face 

processing, we merged the different individual-level deviations from all imaging 

modalities (GM volume, FFA-connectivity, T-maps contrasting the faces condition to 

the shapes condition, and the principal components of source reconstructed time 

series) using Linked Independent Component Analysis (LICA)47,49–52,56,86 (see SI). 

This is a Bayesian extension of the single modality ICA model which provides an 

automatic and simultaneous decomposition of the brain features into independent 

components (ICs) that characterize the inter-subject brain variability. These multiple 

decompositions share a mixing matrix (i.e., subject course) across individual feature 

factorizations that reflect the subject contributions to each IC. These subject loadings 

per IC were later used to investigate the multivariate relationship between the brain 

phenotypes and clinical measures (see canonical correlation analysis below). Further, 

each IC also provides a map of spatial or temporal variation per modality and a vector 

reflecting the relative contribution of each modality to the component. Here, LICA 

was used to merge the unthresholded Z-deviation maps derived from normative 

modeling across the four different imaging modalities within the right and left FFG 

ROIs. Each measure per hemisphere was treated separately (i.e., right structure, left 

structure, right rs-fMRI, left rs-fMRI, right task-fMRI, left task-fMRI, right EEG, left 

EEG) resulting in eight input maps (i.e., modalities). Hemispheres were modelled 

separately given known brain asymmetric differences in autism30,44,87 and to study the 

hemispheric contributions and model the different noise characteristics individually. 

We estimated 50 independent components based on our sample size and following 

recommendations described in earlier papers50–52,56,86 (i.e., sample size ~N / 4). To 

evaluate the robustness of our selected model order (N=50), we re-ran LICA using 

different dimensional factorizations of subject loadings (N=40 and N=60) and 

computed correlations among them. LICA code is available at 

https://github.com/allera/Llera_elife_2019_1/tree/master/matlab_flica_toolbox. 
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Group Differences 

The subject loadings of all ICs were compared between autistic and NAI using a two-

sample t-test. Multiple comparisons were corrected for using the False Discovery Rate 

(FDR)88. ICs showing significant group differences were further characterized by 

plotting each contributing modality’s spatial map and temporal profile (Z-thresholded 

at the 95th percentile). To further characterize the most implicated regions within the 

FFG per modality, we computed the overlap between supra-threshold voxels and a 

structural (i.e., the Harvard-Oxford atlas, which covers the entire FFG) and a 

functional (i.e., a probabilistic functional atlas of the occipito-temporal cortex18 which 

covers category-specific FFG patches) atlas (see SI). 

Multimodal components 

Next, given the current work’s focus on multimodal neural sources, we tested the 

hypothesis whether multimodal components performed superior to unimodal 

components in differentiating autistic individuals from NAI. For this, we calculated a 

multimodal index (MMI) per independent component to quantify the multimodal 

nature of modalities in each IC50 (for details, see SI). The MMI ranges from 0 

(equating to 100% unimodal contribution) to 1 (equating to equal contributions from 

all modalities). Multimodal components were defined as each single imaging 

modality (i.e., regardless of hemisphere) not having more than a 90% contribution to 

each component and an MMI below 0.1 (see Figure S4). Components below this 

threshold were regarded as unimodal. 

Autism classification 

Next, we implemented two support vector machine (SVM) classifiers with a linear 

kernel – one using unimodal and one using multimodal components as features to test 

for the added value of multimodal features. The SVM was trained and evaluated using 

10-fold cross-validation and class-weighting was used to account for group size 

imbalance. The area under the receiver operating characteristic curve (AUC) was used 

as the performance metric to assess the classifier's discrimination ability. To test for 

significant differences in AUC between multimodal and unimodal components, we 

generated a null distribution of AUC differences by shuffling the cross-validated 

scores 10.000 times and re-evaluating the classifier performance and computed the 

likelihood of observing the observed AUC difference under the null hypothesis. To 

test for robustness of results across different multimodal thresholds, we re-ran 
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analyses across different thresholds resulting in slightly varying degrees of 

multimodality ranging between 85% to 99% of single modality contributions. Given 

that each threshold resulted in a different number of unimodal vs. multimodal 

components, we further checked whether results remained stable when forcing uni- 

and multimodal components to have the same number of features; for this we selected 

between the top one and 22 most uni- and multimodal ICs.  

Clinical-cognitive associations  

To test for the clinical relevance of multimodal ICs, we ran canonical correlation 

analyses (CCA)89 modelling the multivariate relationship between multimodal ICs 

and cognitive, clinical features related to either social or non-social functioning 

(described in detail above) in autistic individuals only. CCA is a multivariate 

approach to simultaneously model two sets of linear projections (based on the brain-

related independent components and the cognitive features) to maximize their 

correlation. The statistical significance of the CCA modes was assessed by a complete 

permutation inference algorithm proposed by Winkler et al.90, where both brain and 

behaviour data were permuted separately across all participants with 10,000 iterations. 

In total, we ran two separated CCAs testing the multivariate relationship between the 

brain measures (multimodal ICs) and a) social-communicative features related to 

social functioning and face processing in autism or b) non-social features associated 

with autism. For further details, see the SI.  

 

To visualize the spatial and temporal patterns of each imaging modality associated 

with each clinical cognitive measure, we computed the correlations between the 

original imaging data (i.e., the Z-deviation maps) and the canonical imaging variate 

(V) derived from the CCA91. Significance of correlation maps was assessed with 1000 

permutations and significant clusters / timepoints were next visualized and further 

characterized in terms of their functional and anatomical characteristics by computing 

their overlap with the probabilistic functional atlas of human occipito-temporal visual 

cortex (VIS-atlas)18 of early visual and category-selective regions (see Figure 2h) and 

the HOA atlas (see Figure 2m). For further details see the SI. 

 

Finally, in order to assess robustness of CCA results, as previously, we set a range of 

multimodal thresholds between 85% to 99% and selected components with modality 
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contributions exceeding this threshold as multimodal. We then re-ran the CCA for 

each threshold to assess stability of results across slightly varying degrees of 

multimodality. 

 

Figure 1 

 
Figure 1. Overview of the methodological approach. Features for each modality were extracted from 

the right and the left fusiform gyrus. These were: a) grey matter volume based on VBM for structural 

MRI; b) T-maps contrasting the faces condition to the shapes condition reflecting sensitivity to 
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emotional faces from the Hariri paradigm for task-fMRI; c) seed-based (i.e., fusiform face area) 

connectivity (SCA) for rs-fMRI; and d) the principal component of different source reconstructed time 

series for EEG. Next normative modelling was applied to each imaging modality using Bayesian 

Linear Regression. To model cross-subject individual-level variation, resulting Z-deviation maps per 

modality were statistically merged using linked independent component analysis resulting in measures 

of modality contributions and subject loadings. Next, we tested for group differences in ICs and group 

separability using either multi- or unimodal ICs and compared their performance. Finally, we computed 

multivariate associations (i.e., canonical correlation analysis) between subject loadings and clinical, 

cognitive measures related to either social-communicative or non-social features.  

 

Results 

Sample 

The final sample of autistic (N=99) and NAI (N=105) did not differ significantly in 

sex ratio, age, measures of intellectual functioning, measures of structural image 

quality, number of EEG trials and head motion associated with task- and rs-fMRI (for 

details see Table 1). 

Unimodal normative models 

First, unimodal normative models were estimated. Their accuracy was evaluated using 

the correlation between the true and the predicted voxel values (Rho), the EV, SMSE 

and MSLL (Figure S1) and normative models per modality (Figure S3). Evaluation 

metrics were largely within recommended ranges92 and highly similar when 

modelling age linearly (Figure S2). When testing for group differences in unimodal 

features, there were no significant differences in extreme Z-deviations between 

autistic and NAI for any of the eight features (Table S4). 

Linked independent component analysis 

Next, the Z-deviations (features) were merged using LICA. Fifty independent 

components were derived across eight different brain feature maps per hemisphere 

(i.e., modalities) (Figure S5). Overall, across these, the right hemisphere (51.7%) and 

the left hemisphere (48.3%) did not contribute differentially (χ²=1.2, p=0.72). Single 

modality contributions were as follows: EEG R (35.0%) > EEG L (33.2%) > rs-fMRI 

R (11.2%) > rs-fMRI L (9.6%) > task-fMRI R (3.5%) > task-fMRI L (3.4%) > 

structure L (2.1%) > structure R (2.1%). Figure S6 shows the correlations between the 

50-dimensional factorizations (y-axis) and alternative 40 (Figure S6a) and 60 (Figure 
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S6b) dimensional factorizations. Most components were recovered with high accuracy 

independently of the order of the factorization. This is in line with previous reports51. 

Group Differences 

Next, we compared the subject loadings of all (uni- and multimodal) ICs to test for 

differences between autistic and NAI. Among these, one multimodal IC (#44) showed 

a significant group difference with autistic individuals having higher contributions 

compared to NAI (t=3.5, pFDR=0.026) (Figure 2b). There were no significant group 

differences in the remaining ICs (see Table S5). The significant multimodal 

component was not differentially driven by the right (52.8%) or left hemisphere 

(47.2%) (χ²=0.4, p=0.51) and was associated with several functional modalities (rs-

fMRI R [48.5%], rs-fMRI L [35.0%], EEG L [11.6%], task-fMRI R [3.3%]), and to a 

smaller extent with GM volume (structure R [1.0%], structure L [0.5%]). Figure 3a 

depicts the spatial and temporal patterns for each imaging modality within IC44. 

When characterizing these further in terms of their anatomical and functional overlaps 

with the HOA- and VIS atlases, in the left hemisphere, autistic individuals showed 

more functional deviations than expected in rs-fMRI connectivity primarily in 

retinotopic regions of occipital FFG, while to a smaller extent also in lower-order 

face-selective regions (IOG) (Figures 3b and 3f). In the right hemisphere, they 

showed linked increased deviations in rs-fMRI and structure primarily in higher-order 

face- (mFus, pFus) and bodies-selective (OTS) regions of temporal-occipital and 

occipital FFG (Figures 3c and 3g). On the other hand, regions in the left hemisphere 

where autistic individuals showed linked decreased deviations compared to NAI, 

localized to both higher-order face-selective (mFus, pFus) and retinotopic regions of 

posterior, temporal-occipital and occipital FFG (Figures 3d and 3h). In the right 

hemisphere, these were mostly in higher-order face face-selective regions (pFus) 

across rs-fMRI and task-fMRI and in retinotopic regions across structure in temporal-

occipital FFG (Figures 3e and 3i). Furthermore, autistic individuals showed more left 

EEG source activation than expected around 195-203ms and 417-426ms, whereas less 

source activation at 444–449ms than expected. For further details see Table S6. 

Multimodal components 

For further analyses, we focused on multimodal components only by excluding those 

which were primarily driven by one imaging modality, resulting in eleven multimodal 

ICs (Figure 2a). Across these multimodal ICs, the right hemisphere (60.0%) 
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contributed more than the left hemisphere (40.0%) (χ²=7.2, p=0.007). Single modality 

contributions across all multimodal ICs were as follows: EEG R (26.3%) > rs-fMRI L 

(19.7%) > EEG L (13.9%) > rs-fMRI R (12.1%) > task-fMRI L (9.8%) > task-fMRI 

R (9.6%) > structure R (4.4%) > structure L (4.2%).  

Autism classification 

Applying an SVM, multimodal components performed significantly better at 

discriminating autistic individuals from NAI (AUC unimodal=0.48, AUC 

multimodal=0.64, p<0.001). This result was confirmed across a range of different 

multimodality thresholds (see Figure S7a) and was not influenced by varying amounts 

of features between multimodal and unimodal ICs (Figure S7b). 

 

Figure 2 
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Figure 2. Among all independent components, eleven were considered multimodal (Figure 2a), with a 

single modality contribution not more than 90%. Among these, IC44 showed a significant group 

difference where autistic individuals had higher contributions than non-autistic individuals (Figure 2b). 

Figure 2c shows spatial and temporal Z-maps thresholded at the 95th percentile of the different 

neuroimaging modalities associated with IC44. Positive values (in yellow) depict positive loadings 

onto the IC and mean autistic individuals have higher deviations than NAI; whereas negative values (in 

blue) depict negative loadings onto the IC and mean autistic individuals have lower deviations than 

NAI. Suprathreshold timepoints are depicted in red. Figures 2d-g depict the spatial overlap of 

suprathreshold voxels with a probabilistic functional atlas of the occipito-temporal cortex (i.e., VIS-
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atlas18). Figure 2h depicts the VIS -atlas and the different early visual and category-selective 

subregions covering the FFG. Figures 2i-l show the spatial overlap of suprathreshold voxels with the 

structural Harvard-Oxford atlas and the four subregions of the fusiform gyrus (i.e., anterior and 

posterior divisions of the temporal fusiform cortex, temporal occipital fusiform cortex and occipital 

fusiform gyrus depicted in Figure 2m). Here, Figures 2d-e and 2i-j show the positive loadings (i.e., 

autism > NAI) and Figures 2f-g and 2k-l the negative loadings (i.e., autism < NAI), whereas Figures 

2d/f and 2i/k depict the left hemisphere and Figures 2e/g and 2j/l the right hemisphere. 

Clinical, cognitive associations 

The CCA analysis revealed a significant multivariate association between the 

multimodal ICs and social-communicative features (i.e., ADOS-social affect, ADI-

social, ADI-communication, Vineland-Communication, Vineland-Daily Living, 

Vineland-Socialization, RMET, Hariri face matching condition) (r=0.65, pFDR=0.008; 

Figure 3b). On the other hand, testing the relationship between the multimodal ICs 

and non-social features (i.e., ADOS-RRB, ADI-RRB, RBS, SSP, SQ, Hariri shape 

matching condition), did not yield any significant association (r=0.49, pFDR=0.51; 

Figure S8) pointing to specificity with social-related features of multimodal ICs. 

These associations remained stable when varying the multimodality threshold (Figure 

S9). For the significant association, multimodal IC37 showed the largest contribution 

on the imaging side followed by IC38, IC44 and IC34 (Figure 3a and 3c), whereas 

ADOS social-affect, RMET and Hariri face matching scores showed the largest 

contribution on the behavioural side (Figure 3d). The ICs contributing most are 

depicted in Figures 2c and Figures S10-12. On average, the right (56.5%) and the left 

hemisphere (43.5%) did not contribute differentially to these four ICs (χ²=2.9, 

p=0.09) which were mostly driven by functional modalities (EEG, task- and rs-fMRI). 

Next, imaging patterns correlating with social-communication features were 

characterized in terms of their overlap with anatomical and functional overlaps with 

the HOA and VIS atlases (Figures 3e and S13). Especially in higher-order face-

selective regions (mFus and pFus) of posterior and temporal-occipital FFG, there 

were both linked increased deviations in bilateral rs-fMRI and task-fMRI and linked 

decreased deviations in bilateral structure and right rs-fMRI connectivity. At the same 

time, particularly in retinotopic regions of occipital FFG there was more bilateral GM 

volume along with less right task-activation than expected. There were more 

deviations in right EEG source activation at around 290ms, while left EEG did not 

reach significance. These joint imaging patterns were associated with more social 
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difficulties as assessed by the ADOS, ADI and Vineland and more errors on the 

RMET, while also with greater accuracy on the Hariri faces task. For more details, see 

Tables S6-10. 

 

Figure 3 

 
Figure 3. The multivariate association (i.e., canonical correlation) was significant between the eleven 

multimodal ICs and the social-communicative features associated with autism. Figure 3a shows the 

loadings of each multimodal component contributing to the CCA mode, while Figure 3d shows the 

loadings of each social-communicative feature contributing to the CCA mode; stars show the 

significant loadings. Figure 3b shows the canonical correlation scatterplot color-coded by the highest 

contributing clinical feature (ADOS social). The x-axis depicts the projected behavioural CCA variate 

and the y-axis the multimodal ICs CCA variates. Figure 3c shows the modality contributions of the 

four ICs that contribute significantly to the CCA. Figure 3e depicts the spatial and temporal patterns of 

each imaging modality that are significantly correlated with the social-communicative features. These 

are based on the significant correlation values between the Z-deviations of each imaging modality and 

the canonical imaging variate derived from the CCA. 

 

Discussion 

In the present study, we aimed to characterize the multimodal neural signature of face 

processing in autism within the FFG, the core region of the face processing network. 

We identified several ICs that were differentially associated with the four modalities 
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(structure, rs-fMRI, task-fMRI, and EEG), hemispheres, and functional subdivisions 

of the FFG. Autism-associated differences in FFG organization were more 

pronounced when penetrating across multiple than single modalities. Furthermore, a 

set of multimodal ICs was associated with core features related to social functioning, 

but not non-social functioning, in autism. Taken together, these findings highlight the 

value of cross-modal analyses in characterizing a key structure in the multilevel 

neurobiology of autism and its implication in core cognitive and clinical features 

associated with social functioning. 

 

Group differences  

Among all components, one multimodal component (i.e., IC44) showed a significant 

difference in subject loadings between autistic and NAI. Overall, the right and left 

hemisphere did not show differential contributions within this IC, and it was 

associated with all modalities fed into the analysis, with the functional modalities, 

especially rs-fMRI and EEG, contributing most (see Figure 2). Particularly, the 

overlap with the VIS-atlas highlighted that face-selective and retinotopic regions of 

the FFG were most different between autistic and NAI, again showing a differential 

pattern by modality and hemisphere. More specifically, in the right hemisphere, 

higher-order face-selective regions exhibited less task activation and FFA-

connectivity than expected, primarily in occipital FFG areas (Figures 2g and 2l). At 

the same time autistic individuals showed increased deviations in FFA-connectivity 

primarily in temporal-occipital FFG along with increased GM volume deviations in 

higher-order face-selective FFG regions (Figures 2e and 2j). This strong right-

hemisphere involvement of regions associated with FFA across several modalities is 

in line with reports of increased FFA volume38 and decreased FFA task-activation93,94 

and FFA-connectivity34,95 in autism. Similarly, temporally, autistic individuals also 

showed more positive left deviations around 195ms which can be indicative of the 

consistently reported finding of a slower N170 in autistic individuals36. This has 

specifically also been shown and extensively characterised in the same sample37. 

Together these patterns converge to point towards autism-associated differences in 

face-selective areas of the FFG, both at the structural, functional, and temporal levels. 

Although these results align with earlier unimodal discoveries, previously it was 

uncertain whether disparate signals would be separate or coalesce to a joint 
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multimodal expression. In this context, we provide evidence supporting the 

interconnected nature of distinct signals within a single, unified framework. 

 

On the other hand, in the left hemisphere, IC44-related increased deviations in EEG 

source activation at around 420ms may indicate reductions in the face-N400 which 

has been associated with familiar face recognition and semantic information96,97. 

While in NAI face processing becomes the most highly developed visual skill, in 

autistic individuals faces may convey greater novelty and thus decreased familiarity.  

Furthermore, in the left hemisphere of IC44, occipital, retinotopic areas of the FFG 

were most implicated as shown by increased functional connectivity deviations 

between the FFA and retinotopic and lower-order face-selective areas of the FFG in 

autistic individuals (Figures 2d and 2i). This was echoed by less GM volume than 

expected in left hemisphere retinotopic areas of FFG in autistic individuals (Figures 2f 

and 2k). Retinotopic, early visual areas act as the first stage in a hierarchical network 

of face processing in which lower-level feature-based components are processed 

before more complex features in higher-order face-selective regions (e.g., pFus, 

mFus)98. Neural deviations in early visual areas as seen here are in line with reports of 

autistic individuals showing differences in sensory processing at early perceptual 

stages and have been described at the cognitive level as weak central coherence99. 

Accordingly, studies show that autistic individuals exhibit a different strategy in 

processing facial and visual stimuli with a stronger focus on featural, local aspects at 

the expense of holistic, global information100. Similarly, fMRI studies converge to 

show greater feature-based perceptual strategies in autistic individuals who primarily 

tend to recruit object-related regions (such as inferior temporal gyrus101 or occipital 

cortex32) when viewing facial stimuli. Taken together, this suggests that differences 

we discovered in the left-hemisphere point primarily to low-level, bottom-up 

processing differences, whereas in the right-hemisphere they may indicate higher-

level atypicalities in the FFA, with a differential involvement across the different 

structural and functional modalities. 

 

Clinical, cognitive associations 

Multimodal ICs showed a significant multivariate association with a set of clinical 

and cognitive features associated with social functioning in autism (see Figure 3). 
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IC44 which also showed a significant group difference was among these significantly 

contributing ICs to this associations. Components mostly driven by functional 

modalities (i.e., EEG, rsfMRI and task-fMRI) loaded significantly onto the CCA. 

Right EEG source activation deviations were at around 280-300ms, potentially 

indicative of the N250r generated in the FFG102 and associated with repetition of 

familiar facial stimuli103. The amplitude of the N250r has been shown to decrease 

with increasing working memory (WM) load104. This would translate into increased 

deviations as seen in autistic individuals here and may imply differences in degrees of 

WM resources allocated to the processing of facial stimuli which in turn have a larger 

novelty character in autistic individuals requiring more attentional effort. With 

regards to the other modalities, increased deviations particularly in higher-order face-

selective regions across brain function (task-fMRI and rs-fMRI) while also in lower-

order early visual regions across brain structure were associated with more autistic 

features, such as more social difficulties as assessed by ADOS, and lower social 

sensitivity as assessed by the RMET. Previous unimodal studies for example showed 

that the delayed latency of the N170 predicts change in social adaptive behaviour in 

autistic individuals37 (i.e., EEG), autistic individuals with low performance on facial 

emotion recognition have reduced bilateral FFG activation (i.e., task-fMRI)5 and 

atypical FFA-connectivity is associated with increased social symptom severity in 

autism (i.e., rs-fMRI)34. Here, we extend unimodal results to a multivariate 

association across a range of social-communicative features that are related to cross-

modal signatures within the FFG. Previously, it was uncertain whether these separate 

neural signals contribute orthogonally or jointly to social-communicative features in 

autism. Here, we provide evidence for an interrelated biological basis of core social 

functioning in autism and that appropriately modelled shared variance across different 

modalities increases sensitivity to clinical-cognitive features associated with autism47. 

Remarkably, at the same time, there was no association with a set of non-social 

features, such as repetitive behaviours or sensory processing, pointing to specificity of 

these multimodal ICs with regards to social functioning.  

 

Summary and implications 

Taken together, the multimodal neural signature within the FFG in autism presents 

with differential effects across hemispheres, modalities, and topographic organization. 
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Specifically, the picture emerges that (i) the functional modalities contribute more 

than the structural modalities and (ii) retinotopic, posterior-occipital regions are more 

implicated in the left hemisphere and higher-order regions more implicated in the 

right hemisphere within the FFG when it comes to group differences; but they do not 

contribute differentially with regards to social functioning. (i) Concurrent neural 

activity and functional co-expressions (task-, rs-fMRI, EEG) were strongly tied to 

social features observed in autistic individuals at present (such as current performance 

and ADOS assessment). On the other hand, more stable structural aspects of the brain 

established over time and historical symptoms reported through the ADI and Vineland 

– which provide insights into past behaviors – had a comparatively smaller impact on 

the observed association. These results highlight the dynamic nature of the 

relationship between neural activity and social functioning in autism and underscore 

the importance of considering the temporal dimension when investigating the neural 

correlates of social functioning in autism. Putative future neuroscientifically informed 

interventions targeting social features may thus benefit from a focus on concurrent 

neural functioning. (ii) Topographically, the FFG is known to exhibit an anterior to 

posterior gradient with more posterior regions related to lower-order, early visual 

processing, and more anterior regions related to higher-order processing105. Here, we 

see the involvement of both retinotopic and higher-order cognitive, particularly face-

sensitive patches pointing to differences in both bottom-up perceptual processes and 

top-down cognitive information processing in face processing in autism which can 

amount to a difference in the face processing strategy employed (e.g., more feature-

based). These different processing levels are not differentially implicated across 

hemispheres in the processing of social information in autism suggesting that the 

distinctive face processing strategy in autism transcends right hemisphere dominance 

of face processing. On the other hand, hemispheric differences are more apparent in 

the group-differential IC. Teasing apart hemispheric contributions is particularly 

important in the light of reports of atypical patterns of brain asymmetry in autistic 

individuals30,44,106. More extreme deviations from a normative model have for 

example been reported in right temporal-occipital fusiform cortex asymmetry in 

autistic females30, along with more left-lateralized volume in posterior temporal FFG 

in autistic individuals40,44. Subsequent research should delve further into these more 

nuanced insights revealed by cross-modal analyses pointing to left-lateralized low-

level and right-lateralized high-level differences between autistic and NAI. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.04.23300134doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.04.23300134
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

25

 

Strengths and limitations 

Integrating data from different modalities has the advantage of being biologically 

more informative and comprehensive in characterizing a complex, heterogenous 

condition like autism. Accordingly, when comparing unimodal deviations in each 

imaging modality, as well as comparing predominantly unimodal ICs between autistic 

and NAI, there were no significant group differences, despite employing a more 

sensitive individual-level measures derived from normative modelling. Also, 

multimodal features significantly outperformed unimodal features in differentiating 

autistic form NAI. These results together confirm our hypothesis and previous 

reports47,48 that appropriately modelling cross-modal variance increases sensitivity to 

detecting subtle effects that may otherwise be missed. Thus, integrating different 

structural and functional brain measures is the most promising and powerful method 

to achieve significant advances in our understanding of system-level atypicalities in 

autism and provides the basis for elucidating mechanisms through which interventions 

can most efficiently improve clinically relevant functioning47. Furthermore, we 

combine different innovative methods. LICA is particularly powerful when modelling 

modalities that are different in their numbers of features, spatial correlations, intensity 

distributions and units. This is, because LICA optimally weighs the contributions of 

each modality by the correction for the number of effective degrees of freedom and 

the use of automatic relevance determination priors on components8,47,49. Also, by 

combining normative modelling with LICA, we employ a previously validated 

approach that has been shown to increase sensitivity in detecting cross-modal effects 

in clinical populations52.  Future studies should compare these methods with 

alternative emerging approaches that aim to combine normative modelling with 

multimodal integration in a single step, such as the use of variational autoencoders for 

example107. 

 

At the same time, it needs to be pointed out that face processing involves an extended 

neural network across the whole brain including other structures such as the 

amygdala, superior temporal sulcus and occipital and frontal cortex32,52,108,109. It may 

thus seem too simplistic to reduce face processing to a single brain region. Still, the 

FFG has been claimed the core node of a distributed face processing network, as also 
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substantiated by FFG lesion studies27,110, and its fine-grained functional heterogeneity 

warrants careful examination in isolation. Also, implementing cross-modal analyses 

presents with additional challenges, such as obtaining sufficiently large sample sizes 

with all participants having available data across all imaging modalities. Here, from a 

sample of over 600 individuals in the EU-AIMS LEAP dataset, we were able to 

conduct analysis in just over 200 individuals who had available imaging data across 

the four different modalities. Whole brain analyses based on multivariate techniques 

will ultimately require larger sample sizes.  

Conclusion 

Integrating information from multiple imaging modalities allows us to gain a more 

holistic and robust understanding of the complex neural processes underlying core 

clinical and cognitive features associated with autism. Present results suggest that the 

FFG is a central region differentially implicated across different neural signals and 

category-selective regions in autistic and NAI and that this informs cross-modally the 

mechanisms associated with core social functioning in autism. Eventually, elucidating 

more precise, integrated and individual-level neural associations of core cognitive and 

clinical features, will pave the way for further work identifying stratification, 

mechanistic and prognostic biomarkers, and the development of more personalised 

support, thereby eventually improving the quality of lives of autistic individuals.    
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