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Abstract 
Brain aging is a complex process influenced by various lifestyle, environmental, and genetic 
factors, as well as by age-related and often co-existing pathologies. MRI and, more recently, AI 
methods have been instrumental in understanding the neuroanatomical changes that occur during 
aging in large and diverse populations. However, the multiplicity and mutual overlap of both 
pathologic processes and affected brain regions make it difficult to precisely characterize the 
underlying neurodegenerative profile of an individual from an MRI scan. Herein, we leverage a 
state-of-the art deep representation learning method, Surreal-GAN, and present both 
methodological advances and extensive experimental results that allow us to elucidate the 
heterogeneity of brain aging in a large and diverse cohort of 49,482 individuals from 11 studies. 
Five dominant patterns of neurodegeneration were identified and quantified for each individual 
by their respective (herein referred to as) R-indices. Significant associations between R-indices 
and distinct biomedical, lifestyle, and genetic factors provide insights into the etiology of 
observed variances. Furthermore, baseline R-indices showed predictive value for disease 
progression and mortality. These five R-indices contribute to MRI-based precision diagnostics, 
prognostication, and may inform stratification into clinical trials. 
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Introduction 
The human brain undergoes structural changes during the aging process, but the trajectories of 
these changes vary significantly among individuals, highlighting the heterogeneity in brain aging. 
Various factors, including genetic and lifestyle factors and diseases, contribute to this 
heterogeneity, either exacerbating or protecting against age-related neuropathological processes1. 
Moreover, relatively subtle brain changes in specific regions or spatial patterns can emerge early 
in the pre-clinical stages of neurodegenerative diseases such as Alzheimer's disease2,3. Therefore, 
unraveling the neuroanatomical heterogeneity in brain aging sheds light on the progression of 
underlying neuropathologic processes and might offer very early diagnostic, prognostic, 
vulnerability, or resilience markers.  
 
Neuroimaging plays a pivotal role in studying the human brain, enabling direct quantification of 
these changes in vivo4 and at a large scale. This has enriched our comprehension of how aging 
and diseases influence brain structure and function. The majority of previous studies have relied 
on case-control group comparisons, which are not designed to address heterogeneity across 
individuals and pathologies. Some machine learning methods, leveraging binary classifications, 
tried to derive neuroimaging biomarkers of brain aging at the individual level5,6. However, these 
studies still overlook the underlying heterogeneity and derive biomarkers of a typical or averaged 
pattern of diverse neuroanatomical changes. Various clustering approaches have been deployed 
to parse the heterogeneity in aging-related neurological diseases from neuroimaging data7-9. 
However, they are usually confounded by numerous variations in brain structure which are not 
related to aging and neuropathology. Moreover, they aim to cluster each individual into a single 
subtype, thus overlooking that an individual might have a mixture of underlying pathologies at 
different stages. 
 
In contrast to previous methods, Surreal-GAN10, a recent weakly-supervised, deep representation 
learning method, offers a novel and general approach applicable to disentangling the 
heterogeneity of brain aging. By learning multiple transformations from a reference (REF) group 
(e.g., young and healthy individuals) to a target (TAR) group (e.g., older adults or patients with a 
specific clinical phenotype), the model captures heterogeneous brain changes relative to the 
reference population and effectively distills them down to low-dimensional representation 
indices. These indices, herein called R-indices, indicate the severity of individualized brain 
changes along multiple dimensions, potentially reflecting the stage of a mixture of underlying 
neuropathological processes that induce deviations from the distribution of a reference brain 
structure. 
 
The contribution of the current study is twofold. First, we substantially extended the Surreal-
GAN methodology by introducing a correlation structure among the R-indices in a reduced 
representation latent space, thereby capturing interactions among multiple underlying 
neuropathological processes. Second, we applied this new methodology to a large and 
harmonized multi-study, multi-site dataset from the iSTAGING consortium11, consisting of more 
than 50,000 participants from 11 neuroimaging studies. As our goal was to capture patterns of 
brain aging, in our experiments we defined the REF group as participants younger than 50 years 
old. All other individuals above 50 years old, including those with mild cognitive impairment 
(MCI) or dementia, were grouped as the TAR group. We therefore established a mathematically 
principled representation of the dominant dimensions of neuroanatomical brain aging in this 
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cohort, and associated these dimensions with cognitive, clinical, lifestyle, and genetic measures. 
Additionally, survival analyses demonstrated that brain change along these dimensions predicted 
future disease progression and mortality. 
  

Figure 1. Surreal-GAN disentangles brain aging heterogeneity through a dimensional 
representation approach. a. The heterogeneous aging effects contribute to distinct alterations in human 
brain structures, leading to various brain change patterns. Surreal-GAN, an advanced deep learning 
approach utilizing generative learning, unravels brain variations attributed to the aging process by 
capturing transformations from a reference (REF) population to a target (TAR) population. It specifically 
represents the diversity of such brain change patterns using multi-dimensional R-indices. These R-indices 
serve as indicators of and quantify the type and severity of distinct brain change patterns, which reflect 
underlying neuropathological processes and their stages. b. In this study, to disentangle the 
neuroanatomical heterogeneity related to brain aging, we set the REF and TAR groups to pre-aging 
individuals (<50 years old) and all older adults (>50 years old), respectively. Surreal-GAN identifies five 
reproducible dimensions, each associated with distinct brain change patterns. Further statistical analyses 
uncover a range of influential factors associated with each dimension, encompassing pathological 
influences, lifestyle factors, life events, and genetic variants. MTL: medial temporal lobe; CN: cognitively 
normal; MCI: mild cognitive impairment; WMH: white matter hyperintensities, typically associated with 
small vessel vascular pathology. 
 
Surreal-GAN disentangles heterogeneity of brain aging via dimensional latent 
representation 
Surreal-GAN10 utilizes a deep generative model along with a series of effective regularization 
constraints10 to learn one-to-many transformations from brain measurements of a reference (REF) 
population, such as a pre-aging or healthy control cohort, to a target (TAR) population, such as 
aging or disease-related cohorts (Method 1). Surreal-GAN therefore captures dominant 
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dimensions, or patterns, of brain change related to a condition of interest while minimizing 
confounding variations. The expressions of brain changes along each of these dimensions are 
called R-indices. The same participant can have non-exclusive co-expression of different patterns, 
indicating that multiple pathologic processes are potentially active (Figure 1a). 
 
Improvement of Surreal-GAN by imposing a correlation structure in its latent space 
The fundamental framework of the original Surreal-GAN model inherently encourages 
independence among the derived R-indices. As demonstrated theoretically (Supplementary 
eMethod 1.2), this poses a significant limitation when dealing with correlated ground-truth 
dimensions or patterns of brain changes. Empirically, we showcased the decline in the model’s 
performance on semi-synthetic data with different levels of simulated associations among 
ground-truth patterns. This constraint becomes particularly relevant in the context of brain aging 
due to the common co-occurrence of multiple underlying pathologies and their potential impact 
on various brain regions. 
In the current work, we addressed this limitation by introducing a parameterization of the 
correlations among the R-indices using a Gaussian copula during the training process 
(Supplementary eMethod 1.2). The enhanced Surreal-GAN was found to be robust in handling 
various levels of simulated correlations in semi-synthetic experiments (Supplementary eResult 
1 and eFigure 1). In real-data experiments, it effectively derived correlated R-indices, which 
capture the interactions among underlying pathologic mechanisms (Figure 2c). 

Application of Surreal-GAN to unravel brain aging heterogeneity 
We defined the training set by including a REF group of 1150 participants aged < 50 (i.e., pre-
aging participants) and a TAR group of 8992 participants of ages 50-97 including those with 
MCI or dementia (i.e., all older adults) from 11 studies, thus training the Surreal-GAN model to 
derive dimensional representations that capture the spectrum of brain aging patterns. 
Subsequently, we applied the resultant model to all 49,482 iSTAGING participants of ages 50-97 
to associate the expression of brain change along each dimension with demographic, clinical, 
neurocognitive, lifestyle, and genetic measures (Figure 1b). Consistency among independently 
trained models (Method 3) suggested that the most reproducible R-indices were derived from 
five dimensions, which were also replicated using an independent training set consisting of 1000 
REF and 4818 TAR participants (Supplementary eResult 2 and eFigure 2).  
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Figure 2. Surreal-GAN identifies five dimensions of brain aging. a. The severity of brain aging along 
five dimensions in each participant was quantified by the five R-indices (R1-R5), which revealed distinct 
patterns of associated gray matter atrophy. Characteristic patterns for each R-index are shown via voxel-
wise t-tests performed for each R-index while adjusting for age, sex, intracranial volume (ICV), and the 
remaining four R-indices. False discovery rate (FDR) correction was performed to adjust multiple 
comparisons with a p-value threshold of 0.001. b. The five R-indices show different levels of associations 
with white matter hyperintensity (WMH) volumes. ��  and �  denotes associations with and without 
adjusting for age and sex, respectively. R5 shows the strongest positive associations. c. The five R-indices 
demonstrate positive Pearson correlations with each other, with the strongest associations observed 
among R3, R4, and R5 d. The five R-indices exhibit significant positive associations with chronological 
age. Additionally, significant differences, as marked by asterisks, were found between males and females 
in the correlations (�) between age and R1, R3, and R5. 
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The five R-indices indicate the severity of distinct but correlated atrophy patterns.  
We first investigated neuroanatomical changes related to each index using voxel-based 
morphometry analyses. R1 exhibited significant associations with subcortical atrophy, mainly 
concentrated in the caudate and putamen. R2 was characterized by focal medial temporal lobe 
(MTL) atrophy. R3 indicated the severity of parieto-temporal atrophy, including that in 
middle temporal gyrus, angular gyrus, and middle occipital gyrus. R4 was distinguished by 
diffuse cortical atrophy in medial and lateral frontal regions, as well as superior parietal and 
occipital regions; R5 primarily indicated perisylvian atrophy centered around the insular cortex 
(Figure 2a).  
Additionally, we observed significant positive correlations between white matter hyperintensity 
volumes (WMH) and R2-R5 (Figure 2b). Among them, R5 exhibited a much stronger 
association than other dimensions with and without adjusting for age and sex (�=0.430 and 

��=0.245, p<1*10
-200) Five R-indices displayed significant associations with each other, with the 

most prominent correlations observed among R3, R4 and R5 (Pearson’s r values 0.39-0.46, 
Figure 2c). 
 
Association with demographics 
All R-indices showed significant correlations with chronological age, with the strongest 
correlations observed between R5 and age (Figure 2d). In contrast, R1 and R2 showed relatively 
lower correlations. Additionally, tested through the Fisher r-to-z transformation, we observed 
small but significant differences between male and female groups in correlations between age 
and R1 (p=1.6*10-4), R3 (p=2.7*10-5), and R5 (p=7.6*10-4), suggesting potential influences 
from sex-related factors.  
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Figure 3. R-indices are associated with chronic diseases, and MCI/Dementia progression, and the 
risk of mortality. a The distributions of R-indices are significantly different between the healthy control 
(HC) group and each patient (PT) group corresponding to one of the 13 chronic diseases, after adjusting 

for age and sex (p<6.6×10-4, Bonferroni-corrected). Warmer colors denote larger Cohen’s d (PT>HC). 
Distributions without color fill indicate no significant difference from the HC group (grey). b Values of 
the R2-5 indices exhibit associations with the risk of progression to MCI or dementia, as indicated by the 
corresponding hazard ratios. Cox proportional hazard models were used for testing associations, adjusting 
for age and sex. c The R-indices contribute to enhanced performance in predicting disease progression. 
Based on the significance of R-indices demonstrated in (b), we progressively incorporated R-indices as 
features one by one when fitting the Cox proportional hazard model on participants over 60 years old 
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at baseline. For each combination of features, 100 iterations of 20% holdout cross-validation 
were performed to derive concordance indices. d The progression paths in R2, R3, and R5 of 
eight representative participants transitioning either from CN to MCI or from MCI to dementia. 
Different colors represent the distinct diagnoses. e The baseline R5 shows significant 
associations with the risk of mortality, with age and sex adjusted as covariates in Cox regression. 
Similar to (c), R-indices were progressively included as features in cross-validation for mortality 
risk prediction among participants over 60 years old. 
 
Association with chronic diseases 
To investigate the relationship between R-indices and chronic disease risk, UKBB individuals 
with a lifetime diagnosis of a chronic disease were grouped into 14 disease categories: 
MCI/dementia, stoke, multiple sclerosis, hypertensive diseases, diabetes, depression, bipolar 
disorder, schizophrenia, Parkinson’s disease, chronic obstructive pulmonary disease, 
osteoarthritis, chronic kidney disease (CKD), osteoporosis, and ischemic heart disease. An 
additional 2550 participants from 6 other studies were included to enrich the MCI/dementia 
cohort. 2971 UKBB participants without any of the 14 diseases were categorized as a healthy 
control (HC) group. To test differences in R-indices between the control and diseased groups, we 
conducted multiple linear regression analyses, adjusting for age and sex (Figure 3a). 
The MCI/dementia cohort exhibited significantly advanced R-indices along all five dimensions, 

with the most prominent effects observed in R2 (Cohen’s d (d)=0.869, p=4.1*10
-131), R3 (d 

=0.849, p=1.6*10
-125), and R5 (d=0.673, p=5.7*10

-81). Patients with multiple sclerosis showed 

advanced aging along R3 (d=0.498, p=6.7*10
-8), R4 (d=0.515, p=2.4*10

-8), and R5 (d=0.513, 

p=2.8*10
-8 ).  Additionally, participants with schizophrenia (d=0.469, p=4.1*10

-4 ) and 

Parkinson’s disease (d=0.481, p=9.6*10
-6) demonstrated more severe aging effects along the R3 

dimension. Furthermore, the R5 dimension was associated with neuropsychiatric diseases, as 
well as a group of chronic diseases related to other organ systems, including the respiratory, 
renal, metabolic, and cardiovascular systems. Detailed results between R-indices and all diseases 
can be found in Supplementary Data 1. 

Baseline R-indices predict disease progression and mortality 
In addition to exploring baseline associations with chronic diseases, we examined the prognostic 
potential of R-indices for future progression from CN to MCI and from MCI to dementia using 
2700 participants with longitudinal data from seven studies. The Cox proportional hazard model 
was utilized to test the associations between R-indices and the risk of progression, while 

adjusting for age and sex. R2 (p=2.7*10
-8, HR (95% CI) = 4.50 (2.65, 7.64)), R4 (p=4.5*10

-3, 

HR (95% CI) = 2.05 (1.25, 3.37)), and R5 (p=1.3*10
-4, HR (95% CI) = 2.93 (1.69, 5.09)) were 

significantly associated with the risk of CN to MCI conversion, with R2 demonstrating the 

strongest prognostic indicator (Figure 3b). R2 (p=1.1*10
-26, HR (95% CI) = 6.37 (4.54, 8.94)), 

R3 (p=2.8*10
-19, HR (95% CI) = 7.97 (5.07, 12.54)), and R5 (p=2.2*10

-8, HR (95% CI) = 3.70 
(2.34, 5.86)) were significantly associated with the risk of progression from MCI to dementia, 
with R2 and R3 being the leading prognostic indices (Figure 3b). In cross-validation on 
participants over 60 years old, combining R2 (CI=0.768±0.031) and R5 (CI=0.773±0.033) as 
features in addition to age and sex (CI=0.755±0.033) improved the prediction for the risk of CN 
to MCI progression. Similarly, for predicting progression from MCI to dementia, the addition of 
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R3 (CI=0.646±0.035), R2 (CI=0.704±0.030), and R5 (CI=0.705±0.030) significantly enhanced 
the predictive performance (CI=0.550±0.034) (Figure 3c). Furthermore, in Figure 3d, we 
showcased the longitudinal progression paths of R2, R3, and R5 for eight representative 
participants who experienced disease conversions. In alignment with the baseline risk 
associations, these representative participants exhibited rapid increases in R2 before transitioning 
from CN to MCI, and rapid increases in R2 and R3 before progressing from MCI to dementia. 
Significant increases in R5 were also observed among some participants following their 
diagnoses of dementia. 
Using similar approaches, we then examined the risk of mortality using UKBB participants 

(Figure 3e). R3 (p=1.8*10
-3, HR (95% CI) = 1.95 (1.28, 2.98)), R4 (p=3.2*10

-3, HR (95% CI) = 

1.89 (1.24, 2.87)), and R5 (p=1.3*10
-6, HR (95% CI) = 2.98 (1.91, 4.64)) showed significant 

associations with the risk of mortality, with R5 being the most significant prognostic indicator. 
Among participants over 60 years old, the combination of R5 (0.672±0.029), R3, and R4 
(0.674±0.029) as features, along with age and sex (CI = 0.661±0.027), improved the prediction 
for the risk of mortality, while the subsequent addition of other R-indices resulted in slightly 
decreasing predictive performances. 

Figure 4. Associations between R-indices and lifestyle, cognition, and CSF/Plasma biomarkers. a. 
The five R-indices have distinct levels of association with different cognitive variables. Partial correlation 
was used for testing the associations between R-indices and cognitive scores, adjusting for age and sex. 
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Additional site adjustments were performed for MMSE, DSST, TMT-A, and TMT-B to account for the 

utilization of multi-site data. Significantly associated R-indices are marked by * (p< 1.25�10-3 , 
Bonferroni-corrected). b. Among the R-indices, R2, R3, and R5 have significant associations (marked by 

*) with 11 CSF/plasma biomarkers obtained from the ADNI study (p�6�10-4). The CSF biomarkers are 
labeled in blue, and the plasma biomarkers are labeled in red. The radial graph presents the values and 
standard deviations of the correlation coefficients. For easier visualization, we invert the signs of negative 
coefficient (denoted by |�|) when making the plot. The “+” and “-“ signs alongside the biomarker names 
indicate positive and negative correlations. Due to the small sample sizes, the Benjamini-Hochberg 
procedure was used for FDR correction. c. The five R-indices show significant associations with a group 

of environmental/lifestyle factors and life events from the UKBB study (p<8.7�10-5 , Bonferroni-
corrected). Partial correlation adjusting for age and sex was used, as in (a). The number of “*” indicates 
correlation coefficients (legend). Positive and negative associations are denoted by “+” and “-” signs 
respectively, adjacent to the factor names.  

Associations with clinical variables.  
We further explored associations between the five dimensions and cognition, as well as 
CSF/plasma biomarkers. Using partial correlations, we first tested associations of R-indices with 
four ADNI composite scores within the ADNI cohort (N=2214), along with four other cognitive 
scores among participants from multiple studies (N=6280-30444, Figure 4a). We observed 
consistent and significant associations among R2, R3, and R5 and all cognitive scores, although 
the pattern of associations differed between the cognitive scores. Specifically, R2 exhibited a 
particularly pronounced correlation with memory performance ( �  = 

0.462 , p=1.8*10
-117

, measured by ADNI-MEM ), while R3 demonstrated similar associations 

with executive function ( � � 0.349 , p=9.8*10
-65 vs ADNI-EF) and memory ( �  = 

0.343, p=3.2*10
-62 vs ADNI-MEM).  

Among the 232 CSF/plasma biomarkers collected in the ADNI study, we identified 15 
significant associations between R-indices and biomarkers (Figure 4v). Among them, R2 and R3 

revealed significant positive associations with CSF-pTau181 (p=1.6*10
-12 vs R2; p=1.3*10

-14 vs 

R3) and negative associations with CSF-Abeta42 (p=2.6*10
-23 vs R2; p=4.4*10

-23 vs R3), two 
hallmarks of Alzheimer's disease12. Binary amyloid and tau positivity also showed significant 

associations with R2 (�=0.290, p=7.0*10
-28

 vs amyloid+; �=0.173, p=1.4*10
-10

 vs tau+) and R3 

(�=0.258, p=4.1*10
-22

 vs amyloid�; �=0.110, p=4.3*10
-5

 vs tau � .) R5 was associated with a 

group of other biomarkers, including chromogranin-A (p=1.3*10
-11), tissue factor (p=2.6*10

-7),  

AXL receptor tyrosine kinase (AXL) ( p=3.5*10
-5 ), angiotensin-converting enzyme (ACE) 

(p=5.4*10
-5), cystatin-C (p=1.1*10

-5),  and interleukin-6 receptor (IL-6r) (p=2.4*10
-4), which 

potentially reflected the underlying hemostatic and inflammatory mechanisms13-15.  
 
Association with environmental and lifestyle factors.  
We examined the influence of lifestyle and environmental factors on variations along the five 
dimensions. Using partial correlations, we assessed the associations between the R-indices and 
120 variables from the UKBB study, adjusting for age and sex (Figure 4b). In relation to all five 
atrophy dimensions, we found that alcohol intake has a statistically significant association with 
brain atrophy. Furthermore, smoking status primarily was associated with the expressions of R3 
to R5. Notably, R4 and R5 were the two dimensions most associated with these two types of 
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lifestyle factors. Moreover, the R3 dimension revealed significant associations pregnancy and 
social-recreational activities; the R4 dimension showed additional associations with various 
dietary habits; and the R5 dimension was exclusively associated with long-term illness, 
emotional factors, sleep, and environmental factors. Detailed correlations and p-values can be 
found in Supplementary eData 2. 
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Figure 5. Five R-indices were associated with genomic loci that are novel or previously 
identified for other clinical traits. a 73 genomic loci were associated with the five R-indices 
using a genome-wide P-value threshold [–log10(p) > 7.30]. For visualization purposes, we 
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annotated the locus with the top lead SNP. b Phenome-wide associations of our identified 
genomic loci in the EMBL-EBI GWAS Catalog (query date: 2nd July 2023 via FUMA version: 
v1.5.4). We examined the candidate and independent significant SNPs within each genomic 
locus and connected them to various clinical traits through a comprehensive query. The width of 
each connection represented the number of associations between the genomic loci revealed in 
our study and clinical traits in the literature. These traits were grouped into high-level categories, 
including different organ systems, psychiatric and psychological conditions, and lifestyle factors, 
body shape, etc. To enhance visual understanding of each category, we generated keyword cloud 
plots based on the frequency of clinical traits within each category. We excluded brain structure-
related traits which were expected to have the highest number of associations with the SNPs we 
identified. 
 
The five R-indices were associated with genetic variants 
GWAS (Method 10a) identified 16, 17, 13, 9, and 18 genomic loci significantly associated with 
R1-5, respectively (Figure 5a, Supplementary eFigure 3, and eData 5). Among them, 38 loci 
were never associated with any clinical traits in the EMBL-EBI GWAS Catalog16, including 11, 
7, 6, 5, and 11 loci for the five R-indices, respectively.  
Using the GWAS catalog, we performed a phenome-wide association query (Method 10b) of the 
genetic variants previously identified in our GWAS. Specifically, genetic variants in our GWAS 
were previously associated with a total of 3895 clinical traits related to multiple organ systems 
and lifestyle factors. As expected, brain volume metrics and white matter microstructure were 
the most associated traits for genetic variants of all five R-indices. Additionally, the genomic loci 
associated with five R-indices were also enriched in many traits related to other organ systems 
(Figure 5b). For instance, R1 and R5 loci were enriched in traits related to body shape and 
cardiovascular system.  R3 and R5 loci were linked to traits related to psychiatry and psychology, 
including schizophrenia, depression, worry feelings, etc. Also, R5 loci were specifically 
associated with WMH-related traits. Interestingly, through gene-set enrichment analyses 
(Method 10c), we found that the R1 dimension was enriched in the biological pathway of 

response to cortisol (p=1.1*10
-6), which is related to the mediation of stress. 
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Figure 6. The R-indices can have broad implications for healthcare. The deep learning-derived R-
indices are derived brain aging phenotypes that can serve as endophenotypes, or intermediate phenotypes, 
of diverse underlying neuropathologic processes that accompany aging. They also aid in understanding 
the risk and protective factors contributing to this heterogeneity. More importantly, these R-indices, 
combined with risk factors and clinical profiles, establish a concrete system for personalized patient 
management and targeted clinical trial recruitment designs. 
 
Discussion 
Human brain aging is affected heterogeneously by a complex interplay of genetic, lifestyle, and 
pathological factors. Our study dissects the heterogeneity of neurodegenerative changes related 
to aging, and reveals the predominant patterns of neurodegeneration, as well as their genetic, 
clinical, neuropathological, cognitive, and lifestyle correlates. Importantly, these analyses 
leveraged the extension of a recently developed deep representation learning method, Surreal-
GAN, by adding a correlation structure in its latent space, which allowed us to better disentangle 
co-occurring and partially overlapping patterns of brain atrophy. Moreover, it utilized a large and 
diverse dataset of pooled and statistically harmonized MRI studies from older adults. Our 
analyses identified five reproducible dimensions of neurodegeneration: R1, subcortical atrophy; 
R2, MTL atrophy; R3, parieto-temporal atrophy; R4: diffuse cortical atrophy; and R5: 
perisylvian atrophy. Critically, our approach allows for evaluations of individualized levels of 
expression along these five dimensions, as quantified by respective R-indices, thereby offering 
additional tools for personalized patient management and clinical trial stratification.  
 
We found correlations among the expressions of the five dimensions, indicating a co-expression 
of corresponding brain atrophy patterns at varying degrees. This underscores the interconnection 
and co-occurrence of underlying biological or neuropathological mechanisms, suggesting that 
the R-indices potentially measure the impact of multiple co-pathologies on the brain at the 
individual level. Notably, even though chronological age was not included in model training, the 
derived R-indices still exhibit significant positive associations with chronological age, 
highlighting Surreal-GAN’s ability to identify aging-related brain changes.  
 
The dimensional system illuminates the intricate relationships between pathological factors and 
variations in brain aging. Conditions like multiple sclerosis show correlations with dimensions 
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R3 to R5, potentially suggesting involvement of multiple cortical systems in a disease17,18 whose 
lesions can indeed intersect multiple brain networks. R3's associations extend to schizophrenia 
and Parkinson's disease, aligning with established cerebral connections19-21. Specifically, in 
schizophrenia, the medial temporal gyrus's involvement is underscored by its role in auditory 
verbal hallucinations (AVH), a prominent symptom of this disorder22. R5 exhibits broad 
associations with various systemic diseases, including neuropsychiatric disorders and 
cardiovascular diseases, and immune health factors, which is consistent with its strongest 
associations with WMH volumes. These findings might be partially explained by the role of 
insular cortex in autonomic regulation23-25 and emotion processing26,27. Recent studies have 
increasingly recognized the role of the insula in depression and bipolar disorder specifically 
related to disordered interoceptive function28. White matter on the other hand has been shown to 
be primarily related to depression with a causal role in its etiology having postulated29. 
Furthermore, the co-occurrence of distinct diseases in the same dimensions can provide insights 
into their shared symptoms and the increased mutual risk. For example, schizophrenia, 
Parkinson’s disease, and dementia, all represented in the R3 dimension, exhibit common 
symptoms such as cognitive decline and hallucinations, with schizophrenia and Parkinson’s 
disease associated with a higher risk of dementia30,31. 
 
Projecting patient cohorts with specific diseases onto our dimensional system offered insights 
into disease heterogeneity. Various chronic diseases, including MCI/Dementia, multiple sclerosis, 
and Parkinson’s disease, exhibited elevated expressions across multiple dimensions. 
Individualized differences along these associated dimensions likely mirror their distinct 
phenotypic and pathological variations. For instance, Alzheimer’s disease (AD)32, a prevalent 
neurodegenerative condition among the elderly, presents considerable heterogeneity33-35. Among 
the five dimensions, R2, R3, and R5 are strongly correlated with MCI/dementia and display 
differential associations with main the AD-typical characteristics, including cognitive decline 
and abnormal amyloid and tau deposition12. R2 displays stronger associations with memory 
impairment, while R3 is more closely associated with executive dysfunction. In contrast to R2 
and R3, R5 reveals weaker associations with amyloid and tau, but stronger associations with 
various other CSF biomarkers, potentially linking this dimension to underlying inflammatory and 
hemostatic mechanisms. This resonates with R5’s broad associations with distinct co-pathologies, 
especially vascular pathology, that have an additive role in dementia along with AD pathology. 
Recognizing these distinctions enables us to cluster participants using these concise R-indices, 
thus allowing the creation of more homogeneous subgroups for clinical trial recruitment or 
personalized treatment strategies. 
 
Brain changes occurring along disease-associated dimensions may manifest during preclinical 
stages. R2, R3, and R5 indicate the risk of clinical progression along the AD continuum. R2 and 
R3 stand out as key predictors for the clinical conversion from CN to MCI and MCI to dementia, 
respectively. These results are consistent with early involvement of the hippocampus and MTL 
in AD, with spreading of the pathology along pathways connected to it, especially posterior 
parietal regions, aligning with the typical order of brain region involvement in AD36. Concerning 
mortality risk, chronological age and male sex emerge as the strongest risk factors. Controlling 
for them, baseline R-indices, particularly R5, retain significant prognostic values. These findings 
further underscore not only the clinical applicability of R-indices in disease prognosis but also 
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the significance of uncovering interventions targeting factors that are associated with these 
dimensions to mitigate risk. 
 
Our analyses of lifestyle and environmental factors elucidated additional correlates of the 
observed variations, thus suggesting potential interventions targeted at specific dimensions. 
Smoking and alcohol consumption, two important risk factors across organ systems, are 
negatively associated with cortical atrophy, primarily mapping to the R4 and R5 dimensions, 
with lesser effects on R3. In addition, daily dietary habits correlate with R4 and R5, having either 
negative (tea, cereal) or positive (cheese, coffee, salt) relationships. Directly managing lifestyle 
or investigating underlying mechanisms might yield feasible interventions, although further 
studies are needed to understand causal relationships. Expression of any of the 5 intermediate 
phenotypes identified herein can serve as an indicator of active involvement of respective genetic 
and lifestyle risk factors, thereby prompting more aggressive patient management as well as 
recruitment to respective clinical trials. 
 
Beyond daily life factors, certain life experiences also have associations with brain aging across 
dimensions. R1’s and R3’s associations with pregnancy-related factors partially explain their 
slightly larger deviation from the chronological age in females. Notably, childbirth has been 
shown to exert a long-term influence on women's brain age in late life37, possibly contributing to 
a "young-looking" brain presumed to be partially related to fluctuations in hormonal or 
inflammatory mechanisms. Our study advances understanding by mapping these effects to 
specific dimensions of brain changes in addition to the overall brain age. In cognitively normal 
participants, R2 was negatively correlated with birth weight, resonating with previous findings of 
reduced hippocampal volumes and learning difficulties among preterm-born children with very 
low birth weights38. 
 
Genetic variants influencing brain aging heterogeneity provide additional insights for 
intervention strategies, particularly in drug development. Our genetic analyses have revealed 73 
SNPs associated with the five dimensions, including 38 SNPs without associated traits in the 
GWAS Catalog. The previously identified SNPs correlate with various clinical traits that validate 
our findings. For instance, R3 loci are linked to schizophrenia-related traits, while R5 loci show 
associations with cardiovascular and neuropsychiatric conditions, along with white matter 
hyperintensities. Additionally, the R1 dimension displays a correlation with the gene set linked 
to the response to cortisol. This suggests a potential stress-related impact on morphological 
changes in the striatum, the region connected to R1 and demonstrated to be highly influenced by 
stress39,40. The identification of these SNPs and associated genes might inform drug discovery or 
repurposing efforts for interventions targeting these dimensions.  
 
The five dimensions derived herein are limited by the resolution and detail offered by MRI, 
namely patterns of regional atrophy of GM and WM, measures of small vessel ischemic disease, 
and expansion of CSF spaces. As such, they do not directly measure underlying neuropathologic 
processes that lead to these neurodegenerative changes. However, they do allow us to evaluate 
whether or not an individual with certain risk factors expresses patterns of brain changes that 
have been specifically linked to these risk factors. They can therefore offer opportunities for 
personalized patient management and clinical trial recruitment (Figure 6). In particular, the 
dimensions represented by R-indices enable the provision of more personalized therapeutic plans 
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and lifestyle recommendations tailored to individual expression levels. Moreover, beyond 
facilitating targeted patient recruitment, the five R-indices also contribute to more optimized 
clinical trial design from several other perspectives. For instance, tracking changes in specific R-
indices can significantly contribute to the assessment of trial effectiveness and boost its power41. 
Furthermore, a combination of R-indices and other clinical variables can be employed to 
establish stratified trial benchmarks due to their indication of individualized disease progression 
speed at the trial's baseline. 
 
In summary, this study characterized the neuroanatomical heterogeneity related to the aging 
process by offering a 5-dimensional representation system with five distinct brain signatures. As 
our consortium analyzes additional imaging data, including diffusion, functional, and images of 
tau and amyloid, it will continue to be extended and enriched. Currently, this dimensional system 
offers a means for dissecting the heterogeneity of neurodegeneration, as captured by sMRI, and 
to further understand its relationships to demographic, pathological, and lifestyle factors, as well 
as genetic variants. Moreover, it may contribute to personalized diagnostics and patient 
management, as well as to increased precision and effectiveness of clinical trials.  
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Method 1. Surreal-GAN model  
Surreal-GAN method10 is a weakly-supervised deep representation learning method for 
disentangling disease heterogeneity from neuroimaging data. Its key advantage lies in the ability 
to discern spatial and temporal (disease severity) variations solely from baseline data, thereby 
deriving low-dimensional R-indices that directly indicate the severity of distinct patterns of 
neuroanatomical changes. To capture phenotypic changes due to disease effects, Surreal-GAN 
learns multiple transformations from a reference (REF) group (e.g., pre-aging or health control) 
to a target (TAR) group (e.g., aging or patient)) through the generative adversarial network 
(GAN). Specifically, the method learns a function f to transform the REF data x into generated 
TAR data y� � f�x, z�, where z is a latent variable indicating the transformation directions. As is 
common in GAN-related methods42, an adversarial discriminator D is introduced to distinguish 
between real TAR data y and synthesized TAR data y� , thereby ensuring that the generated 
image data are indistinguishable from real patient data. 
Beyond that, an inverse mapping, g, is introduced to re-estimate the latent variables z

 

from the 
generated data y�  to ensure that the latent variables capture distinct and recognizable brain 
signatures. Multiple other regularizations were employed to further encourage the transformation 
function f to approximate the disease or aging effect, while boosting the positive association of 
different dimensions of the variable (z) with atrophy severity in distinct brain regions. The 
inverse function is utilized to derive the latent variables (referred to as R-indices) for real TAR 
data after the training process. More methodological details can be found in Yang et al10.  
The original Surreal-GAN model10 derives independent R-indices, which limits its ability to 
characterize atrophy patterns driven by associated underlying pathologies. To address this 
limitation, we enhanced the Surreal-GAN method by parametrizing the covariance among latent 
dimensions using the Gaussian copula (Supplementary eMethod 1.2). This improvement 
enables the identification of associated R-indices, resulting in a significant boost in model’s 
performances and enhancing the method's applicability (see Supplementary eFigure 1 and 
eResult 1 for details). 
 

 
Study 

Sample Size 
Age Sex 

Training Sample 
Longitudinal 

Data 

Mean 
Follow-up 

Years 
Pre-

aging Aging Pre-
aging Aging 

ADNI 0 2436 73.1�7.3 52.3% 0 1000 1911 3.6�2.9 

UKBB 900 38,675 64.1�9.4 47.1% 300 1000 1382 2.3�0.1 

BLSA 161 956 65.6�10.4 47.4% 161 956 694 6.8�4.7 

AIBL 5 968 73.0�7.1 44.0% 5 968 459 4.1�2.4 

BIOCARD 37 270 58.4�8.5 41.7% 37 270 235 13.3�6.5 

OASIS 35 1053 70.3�11.5 44.4% 35 1000 518 4.9�2.8 

PENN 28 1100 72.6�11.4 42.4% 28 1000 200 2.8�2.4 

WRAP 7 264 61.7�9.3 28.4% 7 264 180 5.7�2.5 

CARDIA 280 532 51.3�11.8 46.7% 280 532 270 4.7�0.4 

SHIP 1384 1810 52.8�14.2 48.1% 300 1000 - - 

WHIMS 0 1418 69.6�9.3 0% 0 1000 727 4.7�0.4 
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Table1. Participants and studies for model training and data analyses. For age and follow-up years, the mean 
and the standard deviation are reported. For sex, the percentage of males is presented. Longitudinal Data: number of 
participants with longitudinal data available. 

Method 2. Study Population 
The MRI (Method 4) and clinical (Method 5, 6) data used in this study were consolidated and 
harmonized by the Imaging-Based Coordinate System for Aging and Neurodegenerative 
Diseases (iSTAGING) study. The iSTAGING study comprises data acquired via various imaging 
protocols, scanners, data modalities, and pathologies, including more than 50,000 participants 
from more than 13 studies on 3 continents and encompassing a wide range of ages (22 to 90 
years). Specifically, the current study used data from 52,319 participants from the Alzheimer's 
Disease Neuroimaging Initiative (ADNI)43, the UK Biobank (UKBB)44, the Baltimore 
Longitudinal Study of Aging (BLSA)45,46, the Australian Imaging, Biomarker, and Lifestyle 
study of aging (AIBL)47, the Biomarkers of Cognitive Decline Among Normal Individuals in the 
Johns Hopkins (BIOCARD)48, the Open Access Series of Imaging Studies (OASIS)49, PENN, 
the Wisconsin Registry for Alzheimer's Prevention (WRAP) studies50, the Coronary Artery Risk 
Development in Young Adults (CARDIA)51, Study of Health in Pomerania (SHIP)52, and the 
Women’s Health Initiative Memory Study (WHIMS)53. Among them, longitudinal data were 
available for 6576 participants. Detailed demographics and sample sizes from each study are 
detailed in Table 1. The aging participants analyzed in this study were predominantly of White 
ethnicity (N=44,539), constituting 95.1% of the total participants with reported race information. 
Race information was provided by all studies except SHIP. Detailed race distributions across 
different studies were provided in Supplementary Data 6, with race classification criteria 
introduced in Supplementary Data 7. 
 
Method 3. R-indices Derivation 
For training the Surreal-GAN model, we included baseline data from 1150 participants below 50 
years old as the REF group and that of 8992 participants over 50 years old as the TAR group 
including those with MCI or dementia. A maximum of 300 and 1000 individuals from each study 
were included in the REF and TAR groups, respectively, to avoid dominance from one study. All 
REF and TAR subjects were first residualized to rule out the sex and intracranial volume (ICV) 
effects estimated in the REF group using linear regression. Then, adjusted features were 
standardized with respect to the REF group. Without ground truth, we selected both the optimal 
number of dimensions, M (2-7), and hyper-parameters, γ and λ, by measuring agreements among 
repetitively trained models (Supplementary eMethod 2.1). For each of them, we repetitively 
trained the model 50 times and determined the optimal hyper-parameters leading to the highest 
agreements among the 50 models (M=5, γ=0.1, λ=0.8). Among the 50 corresponding models, the 
one having the highest mean pair-wise agreement with the other models was used to derive R-
indices for all 49,482 elderly participants.  
 
Method 4. Image processing and harmonization 
A fully automated pipeline was applied to process the T1-weighted MRIs. All MRIs were first 
corrected for intensity inhomogeneities.54A multi-atlas skull stripping algorithm was applied to 
remove extra-cranial material.55 Subsequently, 139 anatomical ROIs were identified in gray 
matter (GM, 119 ROIs) and white matter (WM, 20 ROIs) using a multi�atlas label fusion 
method56. After merging symmetric ROIs from the left and right hemispheres, 72 ROI volumes 
were used as features for the Surreal-GAN model. Voxel-wise regional volumetric maps for GM 
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and WM tissues (referred to as RAVENS)57, were computed by spatially aligning skull-stripped 
images to a single subject brain template using a registration method58. White matter 
hyperintensity (WMH) volumes were calculated through a deep-learning-based segmentation 
method59 built upon the U-Net architecture60, using inhomogeneity-corrected and co-registered 
FLAIR and T1-weighted images. Site-specific mean and variance were estimated with an 
extensively validated statistical harmonization method61 in the cognitively normal population and 
applied to the entire population while controlling for covariates. 
 
Method 5. Environmental/lifestyle factors and Clinical variables 
From the UKBB study, we selected 120 variables that indicated individual differences in early 
life experience (e.g., birth weight, age at live births), lifestyle (e.g., smoking, alcohol 
consumption), social-recreation (e.g., frequency of friend-family visits, time spent watching 
television), psychological condition (e.g., mood status), local environmental exposures (e.g., 
coastal proximity, air pollution), and general health. Several variables were recoded for more 
convenient interpretation, as introduced in Tian et al5. The full list of selected variables was 
provided in Supplementary eData 2.  
 
Method 6. Cognitive, clinical, CSF, and plasma biomarkers 
We included CSF and plasma biomarkers provided by ADNI, as well as cognitive test scores 
provided by nine studies. For ADNI, all measures were downloaded from the LONI website 
(http://adni.loni.ucla.edu). Detailed methods for CSF measurements of β-amyloid (Aβ ) and 
phospho-tau (p-tau) are described in Hansson et al.62 Other CSF and plasma biomarkers were 
measured using the multiplex xMAP Luminex platform, with details described in “Biomarkers 
Consortium ADNI Plasma Targeted Proteomics Project – Data Primer” (available 
at http://adni.loni.ucla.edu). The ADNI study has previously validated several composite 
cognitive scores across several domains, including ADNI-MEM63, ADNI-EF64, and ADNI-
LAN65. Four other cognitive scores were provided by different studies. (Supplementary eData 4) 
 
Method 7. Health outcomes 
Based on the self-report (field 20002) and healthcare records (field IDs 41270 and 41271) from 
the UKBB study, we defined the patient group of 14 different chronic diseases, including 
MCI/dementia, stroke, multiple sclerosis, hypertensive diseases, diabetes, depression, bipolar 
disorder, schizophrenia, Parkinson’s disease, chronic obstructive pulmonary disease (COPD), 
osteoarthritis, chronic kidney disease (CKD), osteoporosis, and ischemic heart disease. 
Supplementary eData 3 lists non-cancer illnesses, ICD9, and ICD10 codes related to each of 
the 14 disease categories. Additionally, the MCI/dementia category also includes 2550 
participants from six other studies, including ADNI, AIBL, BIOCARD, BLSA, OASIS, and 
PENN. Individuals diagnosed with more than one disease category were assigned to multiple 
groups. 2971 UKBB participants without any of the 14 diseases were categorized as a healthy 
control (HC) group. Mortality data released on March 4, 2021, from UKBB (field 40000) were 
used for analyses of the risk of mortality. The dates of death were determined through data 
linkages to national death registries in the UK (documentation: 
https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/DeathLinkage.pdf). 397 participants 
were confirmed dead after the acquisitions of brain MRIs at baseline.  
 
Method 8. Statistical Analyses on baseline variables 
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We first calculated the Pearson’s correlations between R-indices and chronological age, as well 
as among all R-indices. For testing associations between R-indices and all other baseline 
variables, we performed partial correlations with age and sex corrected as covariates. When 
comparing HC with each disease group in R-indices, we first adjusted for age and sex effects 
through multiple linear regression, and then calculated the Cohen's d effect size between the two 
groups. For variables from multiple studies, the categorized study information was also 
incorporated as additional covariates. The FDR (false discovery rate) was controlled at 5% using 
the Benjamini-Hochberg procedure for CSF/Plasma biomarkers due to the small sample size. 
Bonferroni correction was used to control the family-wise error elsewhere.  
Through the Python package Nilearn66, voxel-based morphometry (VBM) analyses were used for 
testing associations between voxel-wise tissue density and each r-index, adjusting for age, sex, 
ICV, and the remaining four R-indices. For VBM, The FDR (false discovery rate) was controlled 
at 0.1% using the Benjamini-Hochberg procedure. 
 
Method 9. Association with future risk of disease progression or mortality 
To evaluate the association between each r-index and future progression from CN to MCI or 
from MCI to Dementia, we included 5807 participants with longitudinal diagnoses available, 
among whom 4777 were diagnosed as CN and 1030 were diagnosed as MCI at baseline. We 
employed a Cox proportional hazard model while adjusting for covariates such as age and sex to 
test the associations. The hazard ratio (HR) was calculated and reported as the effect size 
measure that indicates the influence of each r-index on the risk of disease progression. Further, to 
quantitatively assess prognostic performances with R-indices as features, we progressively added 
the most predictive r-indices to the Cox model to understand its optimal performance. The 
concordance index (CI) was utilized to quantify the performance of risk prediction in a 100 
repetition of 20% hold-out CV. Using the same pipeline, we also evaluated the association 
between each r-index and the risk of mortality using all 38,675 participants from UKBB, with 
397 confirmed dead after baseline assessments. 
 
Method 10. Genetic analyses 
We used the imputed genotype data for all genetic analyses. Our quality check pipeline resulted 
in 32,829 participants with European ancestry and 8,469,833 SNPs. To summarize, we excluded 
individuals or genetic variants based on the following exclusion criteria: 1) related individuals 
(up to 2nd-degree) identified through family relationship reference67; 2) duplicated variants; 3) 
individuals whose self-acknowledged sex did not match genetically identified sex; 4) individuals 
with more than 3% of missing genotypes; 5) variants with minor allele frequency (MAF) of less 
than 1%; 6) variants with larger than 3% missing genotyping rate; iv) variants that failed the 

Hardy-Weinberg test at 1*10-10. To adjust for population stratification68, we derived the first 40 
genetic principle components (PC) using the FlashPCA software69. Details of the genetic quality 
check protocol are described elsewhere70,71. 
(a): GWAS: For GWAS, we ran a linear regression using Plink72 for each r-index, controlling 
for confounders of age, sex, age-sex interaction, age-squared, age-squared-sex interaction, total 
intracranial volume, and the first 40 genetic principal components. We adopted the genome-wide 

P-value threshold ( 5*10-8 ) and annotated independent genetic signals considering linkage 
disequilibrium. 
(b): Phenome-wide association queries for the identified loci in GWAS Catalog:  
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We queried the significant independent SNPs within each locus in the EMBL-EBI GWAS 
Catalog (query date: 2nd June 2023, via FUMA version: v1.5.4) to determine their previously 
identified associations with any other traits. We further grouped these traits into 11 categories for 
visualization and interpretation. 
(c): Gene-set Enrichment Analyses: 
We conducted gene set enrichment analyses using gene sets from the MsigDB database (v6.2), 

Bonferroni correction was performed for all tested genes (P< 2.64*10
-6 ) and gene sets 

(P<4.68*10-6). All other parameters were set by default in FUMA.  
 
Data Availability 
The GWAS summary statistics generated in this study are provided in Supplementary Data files. 
Data used for this study were provided from several individual studies via data sharing 
agreements that did not include permission for us to further share the data. However, data from 
ADNI are available from the ADNI database (adni.loni.usc.edu) upon registration and 
compliance with the data usage agreement. Data from the UKBB are available upon request from 
the UKBB website (https://www.ukbiobank.ac.uk/). Data from the BLSA study are available 
upon request at https://www.blsa.nih.gov/how-apply. Data from the AIBL study are available 
upon request at https://aibl.org.au/. Data from the OASIS study are available upon request at 
https://www.oasis-brains.org/.  Data requests for BIOCARD, PENN, WRAP, CARDIA, SHIP, 
and WHIMS datasets should be directed to M.S.A, D.A.W, S.C.J, L.J.L, K.W, and M.A.E 
respectively. Participant-level derived R-indices generated in this study will be provided within 
one month of receiving approval granted from respective studies. 
 
Code Availability 
The software Surreal-GAN is available as a published PyPI package. Detailed information about 
software installation, usage, and license can be found 
at: https://pypi.org/project/SurrealGAN/0.1.1/. Custom code can be found 
at: https://github.com/zhijian-yang/SurrealGAN. 
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