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					Measurement	error	limits	the	statistical	power	to	detect	group	differences	and	longitudinal	change	in	
structural	MRI	morphometric	measures	(e.g.,	hippocampal	volume,	prefrontal	thickness).	Recent	advances	
in	scan	acceleration	enable	extremely	fast	T1-weighted	scans	(~1	minute)	to	achieve	morphometric	errors	
that	are	close	to	the	errors	in	longer	traditional	scans.	As	acceleration	allows	multiple	scans	to	be	acquired	
in	rapid	succession,	 it	becomes	possible	to	pool	estimates	to	increase	measurement	precision,	a	strategy	
known	as	“cluster	scanning.”	Here	we	explored	brain	morphometry	using	cluster	scanning	in	a	test-retest	
study	of	40	individuals	(12	younger	adults,	18	cognitively	unimpaired	older	adults,	and	10	adults	diagnosed	
with	mild	cognitive	impairment	or	Alzheimer’s	Dementia).	Morphometric	errors	from	a	single	compressed	
sensing	(CS)	1.0mm	scan	with	6x	acceleration	(CSx6)	were,	on	average,	12%	larger	than	a	traditional	scan	
using	 the	 Alzheimer’s	 Disease	 Neuroimaging	 Initiative	 (ADNI)	 protocol.	 Pooled	 estimates	 from	 four	
clustered	CSx6	acquisitions	led	to	errors	that	were	34%	smaller	than	ADNI	despite	having	a	shorter	total	
acquisition	time.	Given	a	fixed	amount	of	time,	a	gain	in	measurement	precision	can	thus	be	achieved	by	
acquiring	 multiple	 rapid	 scans	 instead	 of	 a	 single	 traditional	 scan.	 Errors	 were	 further	 reduced	 when	
estimates	were	pooled	from	eight	CSx6	scans	(51%	smaller	than	ADNI).	Neither	pooling	across	a	break	nor	
pooling	across	multiple	scan	resolutions	boosted	this	benefit.	We	discuss	the	potential	of	cluster	scanning	
to	 improve	 morphometric	 precision,	 boost	 statistical	 power,	 and	 produce	 more	 sensitive	 disease	
progression	biomarkers.	
	

Introduction	
	

Structural	 MRI	 is	 widely	 used	 to	 quantify	 brain	 morphometry	 in	 the	 study	 of	 development,	 aging,	
psychopathology,	 and	 neurodegeneration	 (i.e.,	 regional	 brain	 volume	 and	 cortical	 thickness).	 For	 example,	
morphometric	studies	have	found	age-related	cortical	thinning	and	volumetric	atrophy	(Bethlehem	et	al.,	2022;	Fjell	
et	al.,	2014;	Frangou	et	al.,	2022;	Raz	et	al.,	2005;	Salat	et	al.,	2004;	Sowell	et	al.,	2003;	Storsve	et	al.,	2014),	changes	
in	 the	 hippocampus	 in	 response	 to	 extensive	 training	 (Maguire	 et	 al.,	 2000),	 and	 accelerated	 brain	 atrophy	 in	
cognitive	decline	and	neurodegenerative	disease	(Cox	et	al.,	2021;	Dickerson	et	al.,	2009;	Jack	et	al.,	2018;	Johnson	
et	 al.,	 2012;	 Keret	 et	 al.,	 2021).	However,	 the	 utility	 of	morphometric	 studies	 is	 limited	 by	measurement	 error.	
Commonly	used	MRI-derived	morphometric	 estimates	have	measurement	 errors	 of	~2-5%	 (e.g.,	 Tustison	 et	 al.,	
2014).	Measurement	error	 limits	statistical	power	and	impacts	sample	size,	 longitudinal	 follow-up	duration,	and	
study	cost.	

Recent	 advances	 in	 MRI	 acceleration	 suggest	 a	 path	 toward	 higher	 precision	 morphometrics.	 Compressed	
sensing	(CS)	and	methods	based	on	wave-controlled	aliasing	in	parallel	imaging	(Wave-CAIPI)	allow	for	a	rapid	high-
resolution	 T1-weighted	magnetization-prepared	 rapid	 gradient	 echo	 (MPRAGE)	 scan	 to	 be	 acquired	 in	 about	 a	
minute,	approximately	1/5th	the	time	of	a	current	standard	MPRAGE	with	in-plane	acceleration	(Bilgic	et	al.,	2015;	
Dieckmeyer	et	al.,	2021;	Mussard	et	al.,	2020;	Polak	et	al.,	2018).	Our	recent	explorations	found	that	a	single	rapid	
scan	collected	with	6-fold	CS	acceleration	(CSx6;	1’12’’)	or	a	Wave-CAIPI	3x3	acceleration	(WAVEx9;	1’09”)	both	
produce	 morphometric	 estimates	 with	 high	 test-retest	 reliability,	 high	 convergent	 validity,	 and	 an	 absolute	
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measurement	 error	 similar	 to	 a	 longer	 T1-weighted	 MPRAGE	 based	 on	 the	 Alzheimer’s	 Disease	 Neuroimaging	
Initiative	(ADNI)	protocol	(Elliott	et	al.,	2023).	These	findings	raise	the	possibility	that	multiple	fast	scans	acquired	
in	rapid	succession	could	be	used	together	to	drive	down	measurement	error	beyond	what	is	possible	from	a	single	
traditional	scan	(see	also	Nielsen	et	al.,	2019).		

An	 established	 method	 for	 increasing	 precision	 is	 to	 pool	 estimates	 by	 taking	 the	 average	 of	 multiple	
independent	measurements.	Morphometric	estimates,	such	as	regional	cortical	 thickness	and	brain	volumes,	are	
typically	estimated	from	a	single	scan.	Any	given	morphometric	estimate	will	be	a	combination	of	the	underlying	
signal	that	the	experiment	is	seeking	to	measure	as	well	as	the	measurement	error	(Crocker	and	Algina,	1986).	To	
the	 extent	 that	 the	 errors	 of	 repeated	measurements	 have	 low	 autocorrelation	 then	measurement	 error	 can	 be	
reduced	by	pooling	estimates	together.	Specifically,	 in	the	ideal	scenario	of	no	autocorrelation,	the	measurement	
error	will	diminish	in	proportion	to	the	square	root	of	the	number	of	measurements	(Angoff,	1953;	Brown,	1910;	
Spearman,	1910).	Pooling	multiple	assessments	to	drive	down	measurement	error	is	widely	utilized	across	fields.	
For	example,	cognitive	tests	using	response	time,	neuropsychological	tests	of	cognitive	ability,	as	well	as	personality	
and	mental	health	assessments,	often	consist	of	tens	or	hundreds	of	trials	or	items	to	drive	down	measurement	error	
to	better	estimate	an	underlying	psychological	construct	(Crocker	and	Algina,	1986;	Kuder	and	Richardson,	1937).	
Similarly,	 measures	 of	 brain	 function	 with	 fMRI	 (e.g.,	 brain	 activation	 or	 functional	 connectivity)	 increase	 in	
reliability	when	derived	from	datasets	that	combine	multiple	measurements	from	repeat	acquisitions	(Birn	et	al.,	
2013;	Elliott	et	al.,	2018;	Laumann	et	al.,	2015).	However,	to	date,	pooling	has	been	uncommon	in	structural	MRI	
studies,	mainly	because	standard	T1-weighted	scans	are	long,	causing	repeated	imaging	to	be	burdensome	and	costly.	

Here	we	investigated	the	potential	benefits	of	acquiring	multiple	rapid	T1-weighted	structural	MRI	scans	and	
pooling	morphometric	estimates	in	a	sample	of	younger	and	older	adults	that	included	individuals	diagnosed	with	
mild	 cognitive	 impairment	 and	 Alzheimer’s	 disease	 (AD).	 A	 critical	 feature	 of	 our	 study	 was	 to	 compare	 the	
measurement	error	of	morphometrics	from	a	single	traditional	MPRAGE	scan	using	the	ADNI	protocol	(acquisition	
time	=	5’12’’)	to	pooled	morphometric	estimates	from	four	CSx6	1.0mm	scans	that	were	collected	in	succession	(total	
acquisition	time	=	4’48’’).	This	allowed	for	a	head-to-head	comparison	of	cluster	scanning	to	standard	practices	while	
keeping	scan	time	and	participant	burden	similar.	We	discovered	that	pooling	estimates	from	multiple	rapid	scans	
can	increase	the	precision	of	morphometric	measurements.	

	
Methods	

	

Participants	
Forty-one	volunteers	participated	in	our	study	in	exchange	for	payment.	All	younger	adults	(19-49	years	old;	n	

=	12)	were	recruited	from	the	community.	All	older	adult	participants	(55-86	years	old)	were	recruited	from	the	
Massachusetts	 Alzheimer’s	 Disease	 Research	 Center	 (MADRC)	 at	 the	 Massachusetts	 General	 Hospital.	 Older	
participants	were	either	cognitively	unimpaired	(Clinical	Dementia	Rating,	CDR	=	0;	n	=	19)	or	with	mild	cognitive	
impairment	or	mild	dementia	(CDR	=	0.5	or	1;	n	=	10).	Specific	clinical	diagnoses	were	mild	multi-domain	dementia	
likely	due	to	AD	(probable	AD	dementia	with	amyloid	and	tau	CSF	or	PET	biomarker	confirmation)	(AD;	n	=	5)	or	
amnestic	mild	cognitive	impairment	possibly	due	to	AD	based	on	clinical	evaluation	with	MRI	but	without	molecular	
biomarker	confirmation	(n	=	5).	We	chose	these	groups	to	explore	the	viability	of	rapid	scans	across	individuals	with	
varying	 levels	 of	 age-related	 atrophy,	 distinct	 patterns	 and	 degrees	 of	 neurodegenerative	 atrophy,	 as	 well	 as	
potential	 movement	 and	 compliance	 challenges	 typical	 of	 patient	 samples.	 All	 participants	 provided	 written	
informed	consent	 in	 accordance	with	 the	guidelines	of	 the	 Institutional	Review	Board	of	Mass	General	Brigham	
Healthcare.	CDR	scores	(Hughes	et	al.,	1982;	Morris,	1993)	were	obtained	from	recent	clinical	or	research	visits.	Due	
to	excessive	head	motion	and	poor	data	quality	detected	during	quality	control,	one	older	participant	(CDR	=	0)	was	
excluded	from	all	analyses.	This	resulted	in	a	final	sample	of	40	analyzed	participants	(24	females;	60.1	+/-	20.2	
years;	age	range:	19	–	86	years;	Table	1).	

	

---------------------------------------------------------------------	
Insert	Table	1	About	Here	

---------------------------------------------------------------------	
	

MRI	Data	Acquisition	
MRI	 data	were	 collected	 using	 a	 3T	 Siemens	MAGNETOM	 Prismafit	 MRI	 scanner	 (Siemens	Healthineers	 AG;	

Erlangen,	Germany)	and	the	vendor’s	32-channel	head	coil	at	the	Harvard	University	Center	for	Brain	Science.	The	
ADNI	protocols	 and	 scanner	were	 certified	with	 the	 Standardized	Centralized	Alzheimer’s	&	Related	Dementias	
Neuroimaging	(SCAN)	initiative	(https://scan.naccdata.org/).	During	scanning,	participants	were	given	the	option	
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to	watch	video	clips	 (e.g.,	a	nature	documentary)	or	 to	 listen	 to	music.	 Inflatable	cushions	were	used	 to	provide	
additional	hearing	protection	and	to	immobilize	the	participants’	heads.	Every	5-10	minutes	participants	were	given	
feedback	about	motion	and	reminded	to	stay	still.	

The	 study	protocol	was	designed	 to	 compare	morphometry	 from	a	 standard	 three-dimensional	T1-weighted	
MPRAGE	from	the	ADNI	protocol	(Weiner	et	al.,	2017)	to	cluster	scanning	using	extremely	rapid	scans.	Specifically,	
we	compared	 the	ADNI	reference	T1-weighted	scan	 to	variants	of	a	 research	application	T1-weighted	rapid	scan	
sequence	 collected	 with	 6-fold	 compressed-sensing	 acceleration	 (CSx6)	 (Mussard	 et	 al.,	 2020).	 To	 estimate	
measurement	error,	all	participants	completed	two	scanning	sessions	on	separate	days	(i.e.,	 test-retest)	within	a	
short	period	(mean	time	between	scans	=	7.7	days	+/-	5.2	days;	1	-	25	days).	Errors	were	calculated	by	comparing	
morphometric	 estimates	 from	 identical	 sets	 of	 scans	 that	 were	 acquired	 on	 two	 separate	 days	 and	 analyzed	
independently	(Session	1	versus	Session	2).		

We	 investigated	6	different	T1-weighted	acquisitions:	 (1)	1.0	mm	isotropic	ADNI	MPRAGE	acquisition	(5’12’’	
acquisition;	pulse	repetition	time	(TR)	=	2300	ms;	inversion	time	(TI)	=	900	ms;	time	to	echo	(TE)	=	2.98	ms;	flip	
angle	=	9°;	field	of	view	=	256	x	240	x	208	mm;	acquisition	orientation	=	sagittal;	in-plane	GRAPPA	acceleration	=	
2)(Weiner	et	al.,	2017),	(2)	1.0	mm	isotropic	CSx6	scans	(1’12’’	acquisition;	TR	=	2300	ms;	TI	=	900	ms;	TE	=	2.96	
ms;	flip	angle	=	9°;	field	of	view	=	256	×	192	×	240	mm;	acquisition	orientation	=	coronal;	CS	acceleration	=	6x),	(3)	
0.8	mm	isotropic	compressed-sensing	scans	(1’49’’	acquisition;	TR	=	2300	ms;	TI	=	900	ms;	TE	=	3.10	ms;	flip	angle	
=	9°;	field	of	view	=	256	×	192	×	230	mm;	acquisition	orientation	=	coronal;	CS	acceleration	=	6x),	(4)	0.9	mm	isotropic	
CS	scans	(1’26’’	acquisition;	TR	=	2300	ms;	TI	=	900	ms;	TE	=	3.03	ms;	flip	angle	=	9°;	field	of	view	=	259	×	195	×	231	
mm;	acquisition	orientation	=	coronal;	CS	acceleration	=	6x),	(5)	1.1	mm	isotropic	CS	scans	(1’01’’	acquisition;	TR	=	
2300	ms;	TI	=	900	ms;	TE	=	2.92	ms;	flip	angle	=	9°;	field	of	view	=	246	×	192	×	247	mm;	acquisition	orientation	=	
coronal;	CS	acceleration	=	6x),	(6)	1.2	mm	isotropic	CS	scans	(0’49’’	acquisition;	TR	=	2300	ms;	TI	=	900	ms;	TE	=	
2.86	ms;	flip	angle	=	9°;	field	of	view	=	256	×	192	×	230	mm;	acquisition	orientation	=	coronal;	CS	acceleration	=	6x).	
Turbo	Factor/Samples-per-TR	could	be	manipulated	independently	in	the	CS	sequence	but	was	kept	approximately	
constant	at	a	value	close	to	that	used	in	the	ADNI	scan	to	avoid	effects	from	differential	T1	weighting	during	the	
readout	train.	A	coronal	acquisition	was	employed	for	the	CSx6	scans,	in	contrast	to	the	sagittal	acquisitions	in	the	
ADNI	scan,	as	piloting	revealed	that	the	sagittal	acquisition	orientation	compounded	susceptibility-induced	artifacts	
in	the	orbitofrontal	cortex	(Hanford	et	al.,	2021).			
	

Image	Processing	and	Morphometry	
All	structural	images	were	processed	with	FreeSurfer	version	6.0.1	using	the	recon-all	processing	pipeline	(Dale	

et	al.,	1999;	Fischl	et	al.,	1999)	with	each	scan	independently	processed.	The	results	from	the	automated	recon-all	
pipeline	 were	 used	 without	 manual	 interventions	 or	 edits.	 Recon-all	 included	 volume	 and	 surfaced-based	
processing.	During	 volume-based	 processing	 intensity	 normalization,	 skull	 stripping	 (Ségonne	 et	 al.,	 2004),	 and	
segmentation	of	 regional	brain	volumes	 (Fischl	 et	 al.,	 2002)	were	 conducted.	Next,	 a	model	of	 the	white-matter	
surface	and	the	pial	surface	was	generated	from	each	scan	using	the	surface-based	processing	pipeline	(Dale	et	al.,	
1999;	 Fischl	 et	 al.,	 1999).	 Then	 morphometric	 measures	 were	 extracted	 from	 the	 standard	 recon-all	 outputs.	
Specifically,	we	 investigated	regional	brain	volumes,	cortical	 thickness,	and	gray-to-white	matter	signal	 intensity	
ratio	(GWR)	measures	estimated	for	each	parcel	in	the	Desikan-Killiany	atlas	(Desikan	et	al.,	2006;	Fischl	et	al.,	2004).	

Quality	 control	was	 conducted	by	visually	 inspecting	all	 structural	 images	 to	note	motion	artifacts,	 banding,	
ringing,	and	blurring.	During	visual	inspection,	minor	ringing	artifacts	were	detected	in	the	CSx6	scans	that	were	
most	evident	in	the	coronal	plane.	Visual	inspection	of	automated	labeling	and	estimated	pial	and	gray/white	matter	
surfaces	revealed	that	these	minor	ringing	artifacts	did	not	visibly	affect	the	estimation	process	for	the	CSx6	scans,	
an	impression	that	was	previously	tested	extensively	in	quantitative	analyses	(Elliott	et	al.,	2023).	In	addition,	the	
results	of	the	recon-all	pipeline	were	checked	to	confirm	that	automated	processing	was	completed	without	error.	
Critically,	no	estimates	were	manually	adjusted	to	allow	the	automated	metrics	to	provide	an	unbiased	estimate	of	
measurement	error.		
	

Measurement	Error	
Measurement	 error	was	 estimated	 for	152	 separate	morphometric	 estimates.	These	 included	16	 subcortical	

volumes	 (left	 and	 right	 estimates	 of	 the	 amygdala,	 accumbens/nucleus	 accumbens,	 pallidum/globus	 pallidus,	
caudate	nucleus,	hippocampus,	putamen,	thalamus,	and	ventral	diencephalon	volume	from	the	Aseg	atlas;	Dale	et	
al.,	1999),	68	regional	cortical	 thickness	measures,	and	68	regional	GWR	measures	(all	cortical	regions	 from	the	
Desikan-Killiany	atlas;	Desikan	et	al.,	2006).		

For	each	scan	type	and	morphometric	measure,	we	estimated	the	proportion	of	each	measure	 that	 is	due	 to	
measurement	error	(i.e.,	percent	error).	The	percent	error	was	estimated	for	each	morphometric	measure	as	the	
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absolute	difference	between	each	measure	estimated	from	Session	1	and	Session	2	divided	by	the	mean	of	the	two	
measures.	Larger	percent	errors	indicate	a	greater	difference	between	morphometric	estimates	from	each	session	
and	a	higher	proportion	of	the	measurement	that	is	attributable	to	measurement	error	(i.e.,	lower	precision).	

To	investigate	cluster	scanning	we	first	processed	each	scan	independently	with	FreeSurfer’s	recon-all	pipeline.	
Then,	for	each	morphometric	estimate,	we	generated	pooled	estimates	by	calculating	mean	morphometric	estimates	
from	the	multiple	CSx6	scans.	We	calculated	the	percent	error	for	the	pooled	morphometric	estimate	as	the	absolute	
difference	between	the	pooled	estimate	generated	from	Session	1	and	the	pooled	estimate	generated	from	Session	
2	divided	by	the	mean	total	size.	We	refer	to	this	procedure	as	pooling	and	to	the	outcome	of	pooling	as	a	pooled	
estimate	throughout	this	paper.		

	

Vertex-wise	Investigations	
All	vertex-wise	analyses	were	conducted	in	FsAverage	space	after	each	scan’s	cortical	thickness	estimates	were	

resampled	from	native	space	to	the	FsAverage	mesh	using	mri_surf2surf.	After	resampling	to	a	common	space	all	
cortical	thickness	maps	were	smoothed	to	20mm	FWHM.	Vertex-wise	measurement	errors	were	calculated	using	
the	same	procedure	as	regional	morphometric	measures.	
	

Pooling	Moderators	
The	scan	protocol	consisted	of	one	ADNI	scan	and	16	CSx6	scans	(Figure	1).	 In	 the	 first	half	of	 the	scanning	

session,	 eight	 CSx6	 scans	were	 collected	 along	with	 the	 single	 ADNI	 scan.	 Four	 of	 the	 CSx6	 scans	were	 1.0mm	
isotropic	scans	and	four	were	isotropic	scans	of	varying	resolutions	(0.8mm,	0.9mm,	1.1mm,	and	1.2mm).	Then	each	
participant	was	 taken	out	of	 the	 scanner	 for	 a	brief	break	 to	 stretch	 and	use	 the	 restroom.	After	 the	break,	 the	
participant	was	repositioned,	and	the	scanner	was	re-shimmed.	An	identical	set	of	eight	CSx6	scans	was	repeated	
yielding	a	total	of	16	CSx6	scans	collected	on	each	day.	Across	participants,	the	order	of	the	ADNI	and	rapid	scans	
was	counterbalanced	in	the	first	half	of	scanning	to	account	for	potential	order	effects.		Within	this	general	structure,	
three	targeted	tests	of	cluster	scanning	were	possible	(see	Figure	1).			

---------------------------------------------------------------------	
Insert	Figure	1	About	Here	

---------------------------------------------------------------------	
	

	First,	the	measurement	estimates	from	cluster	scanning	were	directly	compared	to	those	obtained	from	a	single	
ADNI	scan.	Specifically,	the	pooled	estimates	from	one,	two,	and	four	CSx6	1.0mm	scans	(total	acquisition	time	=	
4’48’’)	were	compared	to	the	estimate	from	the	single	ADNI	scan	(total	acquisition	time	=	5’12’’).	As	four	consecutive	
CSx6	1.0mm	scans	can	be	acquired	in	less	time	than	it	takes	to	collect	a	single	ADNI	scan,	this	comparison	allowed	
us	to	ask	how	morphometric	estimates	obtained	from	a	standard	“gold-standard”	scan	compared	to	novel	rapid,	
pooled	estimates	that	have	lower	overall	scan	burden.	Order	was	fully	counterbalanced	for	this	key	comparison.	

Second,	to	test	the	effect	of	a	break	on	cluster	scanning,	CSx6	1.0mm	scans	were	collected	both	before	and	after	
the	break	(Figure	1).	 	This	allowed	us	to	compare	measurement	errors	between	pooled	estimates	from	two	CSx6	
1.0mm	 scans	 collected	 consecutively	 in	 the	 same	 half	 of	 scanning	 (same	 head	 position)	 with	 pooled	 estimates	
derived	 from	 two	 CSx6	 1.0mm	 scans	 when	 one	 was	 collected	 before	 and	 the	 second	 collected	 after	 the	 break	
(multiple	head	positions).	If	a	meaningful	amount	of	morphometric	error	is	driven	by	arbitrary	differences	in	head	
position	and	scanner	shimming,	pooling	scans	across	the	break	relative	to	pooling	within	a	sequential	block	would	
yield	a	lower	measurement	error.		

Third,	 we	 compared	 scans	 collected	 with	 the	 same	 versus	 mixed	 resolutions.	 Four	 CSx6	 scans	 of	 varying	
resolutions	 (0.8mm,	 0.9mm,	 1.1mm,	 and	 1.2mm)	were	 collected	 alongside	 four	 CSx6	 scans	 of	 the	 conventional	
resolution	(1.0mm)	in	the	first	half	of	scanning.	Two	of	the	non-1.0mm	scans	occurred	before	the	1.0mm	scan	block	
and	two	after	(Figure	1).	This	design	allowed	exploration	of	the	effect	of	variation	in	scan	resolution	on	measurement	
error	by	comparing	pooled	estimates	from	four	CSx6	scans	of	the	same	resolution	with	four	CSx6	scans	of	mixed	
resolutions	(i.e.,	multi-resolution).	The	average	voxel	dimension	of	both	groups	of	CSx6	scans	was	1.0mm	and	their	
average	ordering	in	the	scan	session	was	equivalent,	so	order	effects	were	mitigated	(but	not	fully	counterbalanced).		

Finally,	given	that	eight	CSx6	1.0mm	scans	were	collected	on	each	day,	the	design	also	allowed	the	pooling	of	
scans	from	five	to	eight	acquisitions	to	be	explored.	This	final	analysis	asked	whether	it	was	possible	to	further	drive	
down	measurement	 error	 by	 increasing	 scan	 time	beyond	 that	 of	 a	 typical	ADNI	 scan.	 Eight	 CSx6	1.0mm	scans	
require	9’36”	of	scan	time.	
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Results	
	

Cluster	Scanning	Improves	Precision	for	Most	Morphometric	Estimates		
Pooling	estimates	from	multiple	CSx6	scans	reduced	measurement	error.	To	illustrate	error	reduction,	Figure	2	

plots	a	 subset	of	measures	 that	were	chosen	because	of	 their	 importance	 to	brain	aging	and	neurodegenerative	
disease.	For	volume	and	thickness	measures	the	rate	of	error	reduction	was	near	the	rate	that	would	be	expected	if	
error	variance	was	unstructured	(i.e.,	proportionate	to	the	square	root	of	the	number	of	scans).	For	GWR	measures	
the	reductions	in	error	from	pooling	were	somewhat	muted,	suggesting	higher	autocorrelation	between	repeated	
measurements.	Figure	3	comprehensively	compares	the	morphometric	measurement	error	from	single	and	pooled	
CSx6	 scans	 to	 their	 equivalent	 estimates	 from	 ADNI,	 including	 every	 obtained	 volume,	 thickness,	 and	 GWR	
morphometric	estimate.	Errors	for	all	morphometric	estimates	are	reported	in	the	supplemental	materials.	

	

---------------------------------------------------------------------	
Insert	Figures	2	and	3	About	Here	

---------------------------------------------------------------------	
	

The	mean	error	for	morphometrics	from	a	single	CSx6	scan	was	on	average	3.01%	(SD	=	3.21%)	as	compared	to	
a	slightly	smaller	mean	error	for	ADNI	(M	=	2.87%,	SD	=	3.28%).	Already	revealing	the	benefit	of	pooling,	the	mean	
error	from	two	CSx6	scans	was	2.32%	(SD	=	2.36%),	which	is	smaller	than	the	error	from	ADNI.	77%	of	the	individual	
morphometric	 estimates	had	 lower	measurement	error	 than	ADNI	and	 this	difference	 in	error	was	 significantly	
lower	(p<.05)	 for	20%	of	the	morphometric	estimates.	Thus,	pooling	estimates	from	just	two	CSx6	1.0mm	scans	
resulted	in	higher	precision	than	ADNI	for	most	morphometric	estimates	while	taking	less	than	half	the	scan	time	to	
collect	(2’24’’	compared	to	5’12’’).	

The	mean	error	for	pooled	estimates	from	four	CSx6	scans	was	1.89%	(SD	=	1.91%).	This	reduction	in	error	
reflects	a	34%	lower	absolute	error	than	ADNI.	At	this	level	of	pooling,	93%	of	individual	morphometric	estimates	
had	 lower	 measurement	 error	 than	 ADNI,	 and	 the	 difference	 was	 significantly	 lower	 (p<.05)	 for	 45%	 of	 the	
morphometric	estimates.	Thus,	by	pooling	estimates	 from	four	CSx6	1.0mm	scans,	error	was	 improved	 for	most	
morphometric	estimates	while	acquisition	time	was	still	shorter	than	the	ADNI	scan	(4’48’’	compared	to	5’12’’).	

Next,	we	explored	whether	the	benefits	of	pooling	continued	out	to	eight	CSx6	scans.	The	mean	error	for	pooled	
estimates	from	eight	CSx6	scans	was	1.42%	(SD	=	1.43%).	Such	a	benefit	reflects	a	51%	lower	error	than	ADNI.	99%	
of	the	morphometric	estimates	had	lower	measurement	error	than	ADNI	and	the	difference	was	significantly	lower	
(p<.05)	for	86%	of	the	morphometric	estimates.	However,	the	rate	of	improvement	was	less	than	would	have	been	
expected	if	the	noise	in	each	scan	was	entirely	uncorrelated	(51%	relative	reduction	observed	vs.	65%	expected	if	
error	 fell	 at	 the	 square	 root	 of	 the	number	of	 scans).	Thus,	 pooling	 reduced	 error	 substantially,	 however,	 some	
autocorrelation	was	likely	present,	and	this	dampened	the	benefit.		

	

Cluster	Scanning	Improves	the	Precision	of	Vertex-Wise	Cortical	Thickness	Estimates	
Pooling	 improved	 the	measurement	 of	 vertex-wise	 cortical	 thickness	 estimates	 (Figure	 4).	 The	mean	 error	

across	all	vertices	was	1.95%	for	ADNI	compared	to	2.59%	for	a	single	CSx6	scan.	As	seen	in	Figure	4,	the	errors	
were	not	uniform	and	were	higher	in	regions	that	have	low	SNR	because	of	their	distance	to	the	head	coil	or	due	to	
signal	 dropout	 from	 susceptibility	 effects	 (including	 the	 cingulate,	 medial	 occipital	 cortex,	 and	 the	 medial	 and	
anterior	temporal	lobes).	Paralleling	the	results	from	the	regional	morphometric	estimates,	the	mean	error	across	
vertices	fell	to	2.02%	for	two	CSx6	scans,	1.59%	for	four	CSx6	scans,	and	1.12%	for	eight	CSx6	scans.	Thus,	pooling	
led	to	error	reductions	across	the	cortex.	

	

---------------------------------------------------------------------	
Insert	Figure	4	About	Here	

---------------------------------------------------------------------	
	

Pooling	Works	for	All	Tested	Participant	Groups	
To	be	generally	useful,	cluster	scanning	needs	to	improve	morphometric	precision	in	patient	populations	and	in	

groups	where	atrophy	and	poor	data	quality	are	particularly	challenging.	The	present	results	investigated	pooling	
separately	for	the	three	subgroups	within	our	study:	younger	adults,	cognitively	unimpaired	older	adults,	and	older	
adults	with	MCI	or	early-stage	AD	(MCI/AD;	see	Figure	5).	All	groups	showed	benefit.	

	

---------------------------------------------------------------------	
Insert	Figure	5	About	Here	

---------------------------------------------------------------------	
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Across	morphometric	estimates,	 the	mean	measurement	error	for	ADNI	scans	for	younger	adults	was	2.45%	
(SD=2.78%),	for	older	adults	2.74%	(SD=2.85%),	and	for	MCI/AD	3.59%	(SD=4.29%).	Thus,	even	for	the	ADNI	scan	
estimates	 measurement	 error	 increased	 considerably	 as	 the	 sample	 included	 more	 challenging	 populations.	
Paralleling	the	pattern	observed	for	ADNI	scans,	the	mean	morphometric	measurement	error	for	a	single	CSx6	scan	
for	younger	adults	was	2.53%	(SD=2.67%),	for	older	adults	2.91%	(SD=3.13%),	and	for	MCI/AD	3.76%	(SD=3.67%).		

The	benefits	of	pooling	were	independently	observed	and	nearly	equivalent	across	groups.	On	average,	the	mean	
error	for	pooled	estimates	from	two	CSx6	scans	for	younger	adults	was	2.04%	(SD=2.01%),	for	older	adults	2.18%	
(SD=2.12%),	and	for	MCI/AD	2.91%	(SD=2.97%).	Thus,	in	all	groups	tested	pooling	just	two	CSx6	scans	led	to	a	lower	
mean	error	relative	to	ADNI.	The	benefit	was	about	a	20%	improvement.	

The	benefit	of	pooling	four	CSx6	scans	was	even	greater	and	also	observed	independently	in	each	of	the	groups	
tested.	 On	 average,	 the	 mean	 error	 for	 pooled	 estimates	 from	 four	 CSx6	 scans	 for	 younger	 adults	 was	 1.64%	
(SD=1.56%),	 for	 older	 adults	 1.78%	 (SD=1.72%),	 and	 for	 MCI/AD	 2.38%	 (SD=2.45%).	 In	 terms	 of	 percentage	
improvement,	this	equates	to	error	reductions	of	33%,	34%,	and	35%	for	the	younger,	older,	and	MCI/AD	groups	
respectively.	The	benefits	of	pooling	continued	to	be	consistent	across	groups	with	eight	CSx6	scans.	On	average,	the	
mean	error	for	pooled	estimates	from	eight	CSx6	scans	for	younger	adults	was	1.23%	(SD=1.13%),	for	older	adults	
1.32%	(SD=1.31%),	and	for	MCI/AD	1.81%	(SD=1.82%).	This	equates	to	error	reductions	of	50%,	52%,	and	50%	for	
the	younger,	older,	and	MCI/AD	groups	respectively.		

Overall,	these	subgroup	results	indicate	that	despite	different	levels	of	absolute	error	across	groups,	the	benefits	
of	pooling	were	consistent	in	all	groups	and	all	levels	of	pooling	that	we	investigated.		
	

Breaks	and	Multi-Resolution	Cluster	Scanning	Did	Not	Further	Improve	Precision		
Pooling	estimates	across	multiple	scans	consistently	reduced	measurement	error	but	at	a	rate	slightly	below	

what	would	be	expected	 if	 error	variance	was	unstructured,	 suggesting	 that	 there	was	autocorrelation	between	
scans	contributing	to	the	pooled	estimates.	If	the	autocorrelation	between	scans	could	be	reduced,	then	the	benefits	
of	 pooling	 could	 be	 accentuated.	 Given	 this	 possibility,	we	 investigated	whether	 further	 improvement	 could	 be	
achieved	by	breaking	the	autocorrelation	between	scans	using	two	distinct	strategies:	pooling	across	a	break	and	
pooling	across	multiple	scan	resolutions	(Figure	1).		

Halfway	through	the	scan	protocol,	participants	were	removed	from	the	scanner	and	given	a	short	break	during	
which	head	padding	was	reset,	and	the	scanner	was	re-shimmed.	If	this	break	reduced	autocorrelation,	then	pooled	
estimates	from	scan	pairs	collected	before	and	after	the	break	should	have	lower	measurement	errors	compared	
with	two	scans	collected	serially	within	the	same	head	position.	We	did	not	find	evidence	here	for	improvement.	
Across	all	morphometric	estimates,	the	mean	measurement	error	for	two	CSx6	scans	without	a	break	was	2.32%	
(SD=2.27%)	and	with	a	break	was	2.15%	(SD=2.36%)	(Figure	6).	73%	of	morphometrics	had	smaller	errors	when	
pooling	with	a	break	than	without	a	break.	On	average,	the	benefit	when	pooling	two	CSx6	scans	was	a	7%	reduction	
in	error	and	the	benefit	of	a	break	was	significantly	lower	for	only	11%	of	morphometrics	(p	<	.05).	Thus,	the	benefit	
of	adding	break	with	head	repositioning	was	minimal.		

Next,	we	compared	pooled	estimates	from	four	CSx6	1.0mm	CSx6	scans	to	pooled	estimates	from	four	CSx6	scans	
that	combined	across	multiple	resolutions	(0.8mm,	0.9mm,	1.1mm,	and	1.2mm	isotropic;	multi-resolution).	These	
pooled	scans	were	approximately	matched	in	their	acquisition	time	(four	CSx6	1.0mm	scans	=	4’48’’;	 four	multi-
resolution	scans	=	5’05’’).	Across	all	morphometric	estimates,	the	mean	measurement	error	for	four	CSx6	1.0mm	
scans	 was	 1.89%	 (SD=1.91%)	 and	 for	 four	 multi-resolution	 CSx6	 scans	 was	 1.80%	 (SD=1.81%).	 69%	 of	
morphometrics	had	smaller	errors	with	multi-resolution	pooling.	On	average	multi-resolution	pooling	resulted	in	a	
5%	reduction	in	error	and	the	benefit	of	multi-resolution	pooling	was	significantly	lower	for	7%	of	morphometrics	
(p	<	.05),	reflecting	a	result	near	to	the	false	positive	rate.		

We	thus	did	not	find	evidence	to	suggest	that	designing	studies	to	include	a	break	or	multi-resolution	scanning	
would	improve	precision	compared	with	pooling	serially	collected	1.0mm	CSx6	scans.		
	

Discussion	
	

Acquiring	multiple	 fast	 scans	 in	 rapid	 succession	 --	 cluster	 scanning	 --	 achieves	more	precise	morphometric	
estimates	than	a	standard	structural	scan	in	the	same	total	amount	of	time.	In	a	test-retest	sample	of	younger	and	
older	adults	that	included	individuals	with	neurodegenerative	disease,	we	found	that	pooled	estimates	from	four	
CSx6	scans	had	substantially	 less	measurement	error	than	estimates	from	a	single	traditional	scan	despite	being	
slightly	 faster	 to	collect.	This	was	 true	 for	regional	volume,	cortical	 thickness,	and	GWR	estimates	as	well	as	 for	
vertex-wise	cortical	thickness.	The	benefits	of	cluster	scanning	were	clear	and	consistent	in	each	group	investigated:	
younger	adults,	older	adults,	and	individuals	with	MCI	/	AD.	We	did	not	find	evidence	that	pooling	CSx6	scans	from	
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before	 and	 after	 a	 break	or	pooling	 scans	of	 different	 resolutions	provided	 further	benefit	 over	pooling	 serially	
collected	1.0mm	scans.	For	many	purposes,	cluster	scanning	can	be	considered	a	viable	alternative	to	the	standard	
5–8-minute-long	 structural	 scan.	 Cluster	 scanning	 yields	 improved	 precision	 and	 greater	 flexibility	 without	
requiring	additional	scan	time	or	participant	burden.	

	

Cluster	Scanning	Enables	New	Study	Designs	that	Were	Previously	Impractical	
The	first	potential	benefit	of	cluster	scanning	is	the	improvement	of	measurement	precision	(Nielsen	et	al.	2019).	

Compared	to	the	5’12’’	ADNI	scan,	two	rapid	scans	(total	acquisition	time	=	2’24’’)	had	morphometric	measurement	
errors	that	were	19%	lower,	while	cutting	scan	time	in	half	(total	ADNI	acquisition	time	=	5’12’’).	Studies	seeking	to	
limit	participant	burden	or	preserve	time	for	additional	types	of	imaging	could	immediately	benefit	from	this	insight.	
With	four	rapid	scans,	the	measurement	errors	were	34%	lower	than	ADNI	despite	being	slightly	faster	to	collect.	
This	result	suggests	that	studies	with	a	fixed	scan	time	can	benefit	from	the	increased	precision	and	flexibility	of	
rapid	scans	without	altering	the	structure	and	burden	of	the	study.	With	eight	rapid	scans,	morphometric	precision	
improved	with	errors	that	were	half	the	size	of	ADNI	(51%	smaller).		This	further	error	reduction	came	at	the	cost	
of	 additional	 scan	 time	 (total	 acquisition	 time	 =	 9’36’’).	When	 high	 precision	 is	 critical,	 such	 as	 in	 longitudinal	
intervention	 studies,	 and	 additional	 scan	 time	 is	 tolerable,	 cluster	 scanning	 of	 eight	 or	more	 rapid	 scans	might	
increase	sensitivity	to	detect	small	changes	within	individuals.	

The	most	general	implication	of	our	findings	is	that	studies	implementing	cluster	scanning	might	have	greater	
power	to	detect	longitudinal	change.	Longitudinal	studies	of	brain	development,	brain	aging,	and	neurodegenerative	
disease	are	especially	challenging	because	change	is	difficult	to	detect	over	short	periods	of	time.	For	example,	the	
annual	hippocampal	atrophy	rate	in	AD	is	3-6%	compared	to	1-2%	in	cognitively	unimpaired	older	adults	(Barnes	
et	al.,	2009;	Pini	et	al.,	2016;	Schuff	et	al.,	2008)	and	the	amount	of	measurement	error	for	hippocampal	volumes	is	
~2.5%	with	the	ADNI	scan.	Therefore,	the	amount	of	hippocampal	change	that	occurs	in	a	year	is	around	the	size	of	
the	measurement	error.	Large	samples	and	long	follow-up	times	are	required	to	robustly	detect	group	differences	
and	to	assess	the	efficacy	of	interventions	(Aisen	et	al.,	2022;	van	Dyck	et	al.,	2022;	Zetterberg	and	Bendlin,	2020).	
Higher	precision	MRI	biomarkers	might	accelerate	research	by	reducing	the	sample	size	and	shortening	longitudinal	
study	duration.	However,	longitudinal	cluster	scanning	studies	are	needed	to	directly	evaluate	this	possibility.	To	
this	point,	we	have	demonstrated	that	cluster	scanning	reduces	measurement	error,	but	we	have	not	yet	confirmed	
that	this	increased	precision	translates	to	better	sensitivity	to	detect	longitudinal	change.	

Another	potential	benefit	of	cluster	scanning	 is	 that	 individual	scans	are	quick.	Multiple	acquisitions	provide	
multiple	chances	to	obtain	a	usable	acquisition.	Many	of	the	most	important	groups	participating	in	basic	and	clinical	
brain	research	include	children	and	individuals	with	illness	that	have	difficulty	with	scan	adherence	and	move	during	
MRI	scanning.	Structural	data	from	these	groups	are	more	likely	to	be	affected	by	poor	data	quality		(Dosenbach	et	
al.,	2017;	Greene	et	al.,	2018;	Reuter	et	al.,	2015).	Cluster	scanning	provides	multiple	opportunities	to	address	this	
challenge.	First,	rapid	scans	are	faster.	Each	rapid	scan	is	less	likely	to	be	corrupted	by	head	motion	because	there	is	
less	 time	 for	movement	 to	occur.	Second,	 if	 a	 scan	 is	 corrupted	by	head	motion,	 rapid	scans	can	be	more	easily	
repeated.	Instead	of	5-8	minutes	of	scan	time	to	collect	an	additional	scan,	only	1	minute	is	required.	Third,	in	most	
scan	protocols,	when	a	standard	scan	is	corrupted	by	motion	and	the	scan	cannot	be	repeated,	that	participant	must	
be	 excluded	 from	 morphometric	 analyses	 because	 head	 motion	 can	 bias	 morphometric	 estimates	 and	 lead	 to	
spurious	inferences	(Reuter	et	al.,	2015).	This	is	inefficient	and	undermines	generalizability	because	participants	
who	move	tend	to	be	different	from	those	who	are	still	(Greene	et	al.,	2018;	Makowski	et	al.,	2019;	Pollak	et	al.,	2023;	
Reuter	et	al.,	2015).	When	multiple	rapid	scans	are	collected	from	each	participant,	morphometric	analyses	can	move	
forward	 even	 when	 individual	 scans	 are	 unusable	 because	 of	 motion.	 Fourth,	 rapid	 scans	 can	 be	 interspersed	
throughout	a	multi-modal	scan	session	so	that	motion	contained	to	one	portion	of	the	scan	session	will	not	corrupt	
all	 rapid	 scans.	 Future	 studies	 are	 needed	 to	 explore	 the	 benefits	 of	 cluster	 scanning	 in	 high-motion	 groups	 as	
compared	 to	 alternative	 approaches	 such	 as	 motion-tracking	 and	 dynamic	 reacquisition	 (Brown	 et	 al.,	 2010;	
Maclaren	et	al.,	2013;	Tisdall	et	al.,	2012;	Zaitsev	et	al.,	2006).	

	

Limitations	
Extreme,	rapid	scanning	is	still	an	emerging	area	of	investigation	with	multiple	options	to	accelerate	scanning	

and	multiple	decisions	during	reconstruction	(Bilgic	et	al.,	2014,	2014;	Mair,	Kouwe,	et	al.,	2012;	Mair	et	al.,	2020;	
Mussard	et	al.,	2020;	Polak	et	al.,	2018).	For	example,	within	the	rapid	scanning	option	employed	in	the	present	
comparisons	CS	acquisitions	require	several	scan	and	reconstruction	parameters	to	be	manually	chosen,	including	
the	amount	of	regularization	and	the	degree	of	acceleration.	We	chose	these	parameters	based	on	extensive	piloting	
(Hanford	et	al.,	2021;	Mair	et	al.,	2020;	Nielsen	et	al.,	2019),	however	further	optimization	is	possible,	and	the	optimal	
parameters	 may	 vary	 for	 distinct	 scanner	 models.	 Technical	 advances	 in	 reconstruction	 techniques,	 including	
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reconstructions	with	deep	learning,	promise	to	provide	additional	reconstruction	options	that	may	further	improve	
in	signal-to-noise	ratio	for	images	from	rapid	scanning	and	the	precision	of	cluster	scanning	(Hammernik	et	al.,	2018;	
Knoll	et	al.,	2020).	However,	for	the	moment,	researchers	should	pilot	and	evaluate	performance	before	adopting	
compressed	sensing	at	a	new	site	and	for	a	new	study.		

Second,	we	evaluated	cluster	scanning	in	adults	across	a	broad	age	range	and	in	individuals	with	MCI	and	AD.	
These	groups	span	a	range	from	compliant	to	challenging	participant	groups.	However,	further	research	is	needed	
to	 evaluate	 cluster	 scanning	 in	 additional	 participant	 groups	 in	 particular	 children	 and	 individuals	 with	
neuropsychiatric	illness.		

Third,	 we	 investigated	many	 commonly	 used	morphometrics	 derived	 from	 FreeSurfer.	 However,	 additional	
study	is	needed	to	test	whether	cluster	scanning	provides	similar	benefits	for	other	morphometric	pipelines	(e.g.,	
ANTs,	 FIRST,	 voxel-based	 morphometry,	 and	 estimation	 of	 the	 boundary-shift-integral;	 Ashburner,	 2009;	
Freeborough	and	Fox,	1997;	Patenaude	et	al.,	2011;	Tustison	et	al.,	2014).		

Fourth,	 we	 only	 evaluated	 cluster	 scanning	 with	 T1-weighted	 morphometrics	 and	 did	 not	 investigate	 the	
potential	benefits	of	implementing	cluster	scanning	with	other	imaging	modalities	including	T2-weighted,	diffusion	
and	FLAIR	 imaging	 (e.g.,	 Bilgic	 et	 al.,	 2012;	Lustig	 et	 al.,	 2007).	 Future	 research	 is	needed	 to	 investigate	 cluster	
scanning	and	pooling	 in	studies	 that	combine	T1-	and	T2-weighted	 images	 for	morphometric	estimation	and	use	
other	MRI	modalities	to	measure	additional	metrics	(e.g.,	fractional	anisotropy	and	white	matter	hyperintensities).	
	

Conclusions	
Cluster	 scanning	 is	 a	 novel	 strategy	 for	morphometric	 studies	 that	 offers	 several	 potential	 advantages	 over	

collecting	 a	 single	 5–8-minute	 structural	 scan.	We	 compared	morphometric	 estimates	 from	 the	ADNI	 scan	with	
pooled	morphometrics	from	multiple	rapid	CSx6	scans.	Compared	to	ADNI,	we	found	that	cluster	scanning	provides	
the	same	morphometric	precision	in	less	time,	and	improved	precision	in	the	same	total	amount	of	scan	time.	Cluster	
scanning	provides	a	framework	that	can	adapt	to	the	needs	of	many	studies	to	maximize	scan	precision	and	create	
additional	flexibility	in	protocol	design.	 	 	 	 	 	 	
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Table	1.	Participant	demographics.	
	

	
Notes.	Abbreviations:	mild	cognitive	impairment	(MCI),	Alzheimer’s	Dementia	(AD),	Clinical	Dementia	Rating	(CDR),	
sum	of	boxes	(SOB),	Cognitively	unimpaired	(CU).	 	

	 	 Age	 Sex	 CDR	 CDR	SOB	

		Group	 Sample	 Mean	(range)	 (M/F)	 (0/0.5/1)	 Mean		
(range)	

Younger	 Adults	 -	
CU	 12	 29.3	 7/5	 12/0/0	 0	

(19	-	49)	 (0	-	0)	
Older	Adults	–	
CU	 18	 73.4	 6/12	 18/0/0	 0	

(64	-	86)	 (0	-	0)	
Older	Adults	–		
MCI/AD	 10	 72.1	 4/6	 0/5/5	 4.20	

(55	-	83)	 (0.5	-	9)	
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Figure	Legends	
	
Figure	1.	Study	design	to	measure	the	benefit	of	cluster	scanning.	To	explore	whether	morphometric	precision	
could	be	improved	by	pooling	multiple	CSx6	scans,	a	single	ADNI	T1-weighted	reference	scan	was	collected	as	well	
as	16	rapid	CSx6	T1-weighted	scans	in	each	of	the	two	scanning	sessions	(labeled	Session	1	and	Session	2).		In	this	
test-retest	 design,	 measurement	 error	 was	 quantified	 as	 the	 difference	 between	 Session	 1	 and	 Session	 2	
morphometric	 estimates.	 To	 estimate	 the	 benefits	 of	 pooling,	 eight	 identical	 CSx6	 1.0mm	 scans	 were	 collected	
(within-resolution	pooling).	This	allowed	for	morphometric	measures	to	be	estimated	from	the	mean	of	one	to	eight	
CSx6	scans	(labeled	CSx6	1.0mm	scans	1	to	8)	and	compared	to	the	reference	ADNI	scan.	The	potential	benefit	of	
pooling	 across	 a	 break	was	 explored	 by	 comparing	 the	 pooled	 estimates	 from	 the	 first	 two	 CSx6	 1.0mm	 scans	
(labeled	CSx6	1.0mm	scans	1	and	2)	to	the	pooled	estimates	from	the	first	CSx6	1.0mm	scan	collected	before	the	
break	 and	 the	 first	 collected	 after	 the	 break	 (labeled	 CSx6	 1.0mm	 scans	 1	 and	 5).	 The	 effect	 of	 multiple	 scan	
resolutions	was	explored	by	comparing	the	pooled	estimates	from	the	four	CSx6	1.0mm	scans	(labeled	CSx6	1.0mm	
scans	1	to	4)	to	the	four	non-1.0mm	CSx6	scans	(labeled	CSx6	1.2mm	scan	1,	CSx6	0.8mm	scan	1,	CSx6	1.1mm	scan	
1,	and	CSx6	0.9mm	scan	1).	
	

Figure	2.	Pooling	 can	 reduce	measurement	 error.	Each	plot	 displays	 the	measurement	 error	 (y-axis)	 for	 six	
morphometric	 measures	 selected	 because	 of	 their	 particular	 relevance	 to	 brain	 aging	 and	 neurodegeneration.	
Morphometric	measures	were	estimated	from	a	single	ADNI	scan	or	by	taking	the	mean	estimate	from	one	to	eight	
CSx6	scans	(x-axis).	The	first	row	displays	results	from	regional	volumetric	measures	(Hippocampal	and	Amygdala	
volumes).	 The	 second	 row	 displays	 results	 from	 regional	 cortical	 thickness	 measures	 (superior	 frontal	 and	
parahippocampal	regions).	The	third	row	displays	results	from	regional	gray	matter	to	white	matter	signal	intensity	
ratio	(GWR)	measures	(middle	temporal	and	inferior	parietal	regions).	Measures	from	each	hemisphere	are	plotted	
separately	(green	triangles	for	the	left	and	red	triangles	for	the	right).	For	each	measure,	a	dotted	curve	begins	at	the	
amount	 of	 error	 observed	 in	 a	 single	 CSx6	 scan	 and	 represents	 the	 expected	 error	 reduction	 if	 the	 error	 is	
unstructured	 (i.e.,	 the	 error	 would	 decline	 as	 the	 square	 root	 of	 the	 number	 of	 pooled	 estimates).	 Error	 bars	
represent	the	standard	error	of	the	mean.	With	a	single	scan,	CSx6	performs	similarly	to	ADNI	across	measures.	As	
morphometric	estimates	are	pooled	errors	reduce.	Notably,	four	1.0	mm	CSx6	scans	have	a	total	scan	time	of	4’48’’,	
less	than	the	scan	time	of	a	single	ADNI	scan	(5’12’’),	while	achieving	a	lower	measurement	error.			
	

Figure	3.	Pooling	reduces	measurement	error	across	most	morphometric	measures.	The	plot	displays	 the	
effect	of	pooling	for	all	measures.	Measurement	errors	are	plotted	as	the	absolute	improvement	over	a	single	ADNI	
scan	(i.e.,	reduction	in	error)	with	a	box	and	whisker	plot.	Positive	values	represent	improvements	over	ADNI.	The	
boxplot	lines	are	drawn	at	the	distribution's	median,	25th	and	75th	percentiles.	Whiskers	extend	out	to	the	largest	
point	that	is	within	1.5	times	the	interquartile	range.	Points	outside	the	interquartile	range	are	not	plotted	(6	outliers	
favored	ADNI	and	32	favored	CSx6	pooling).	To	visualize	the	effect	of	pooling,	relative	errors	are	displayed	separately	
for	one,	two,	four,	and	eight	CSx6	scans	(x-axis).	Morphometric	measures	from	a	single	CSx6	scan	had	similar	levels	
of	error	to	the	ADNI	scan	for	volumetric	and	GWR	measures,	while	thickness	measures,	on	average,	had	more	error	
from	a	single	CSx6	scan	compared	with	ADNI.	Measures	derived	from	two	CSx6	measures	were	better	on	average	
than	ADNI,	and	those	derived	from	four	CSx6	scans	reduced	error	for	almost	every	morphometric	measure	(despite	
being	 faster).	Measures	derived	 from	eight	CSx6	 scans	 cut	 the	error	 in	half.	The	benefits	of	pooling	are	 clear	 in	
volumetric,	 thickness,	and	GWR	morphometrics	with	the	largest	benefits	for	volumetric	and	thickness	measures.	
Errors	for	all	morphometric	estimates	are	reported	in	the	supplemental	materials.	
	

Figure	4.	Pooling	improves	the	precision	of	vertex-wise	cortical	thickness	estimates.	Measurement	error	was	
quantified	for	vertex-wise	cortical	thickness	from	the	single	ADNI	scan	and	from	the	mean	estimate	from	one	to	eight	
CSx6	scans.	Error	estimates	from	both	ADNI	and	CSx6	scans	revealed	that	measurement	errors	were	largest	in	areas	
that	 are	 most	 susceptible	 to	 low	 signal-to-noise,	 and	 image	 artifacts	 (e.g.,	 dropout	 and	 motion)	 including	 the	
orbitofrontal	 cortex,	 the	 temporal	pole,	 the	medial	occipital	 cortex,	and	 the	cingulate	cortex.	A	single	ADNI	scan	
tended	to	have	a	slightly	lower	measurement	error	than	a	single	CSx6	scan.	Pooling	CSx6	scans	consistently	reduced	
measurement	error	across	the	cortex	and	was	especially	effective	at	reducing	error	in	the	most	challenging	regions	
(e.g.,	cingulate	cortex).		
	

Figure	5.	Improved	precision	generalizes	across	multiple	participant	groups.	To	further	interrogate	pooling	as	
a	method	to	reduce	measurement	error,	the	effects	of	pooling	were	investigated	separately	in	each	subgroup	of	our	
study:	 younger	 adults	 (YA),	 cognitively	unimpaired	older	 adults	 (OA),	 and	older	 adults	with	 a	diagnosis	of	mild	
cognitive	 impairment	 or	 AD	 (MCI	 /	 AD).	 To	 facilitate	 the	 comparison	 between	 the	 ADNI	 and	 CSx6	 scans,	
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measurement	errors	are	plotted	as	the	absolute	improvement	over	a	single	ADNI	scan	(i.e.,	reduction	in	error)	with	
a	box	and	whisker	plot.	Positive	values	 represent	 improvements	over	ADNI.	The	boxplot	 lines	are	drawn	at	 the	
distribution's	median,	25th	and	75th	percentiles.	Whiskers	extend	out	to	the	largest	point	that	is	within	1.5	times	
the	 interquartile	 range.	 Points	 outside	 the	 interquartile	 range	 are	 not	 plotted.	 Positive	 values	 indicate	 lower	
measurement	error	in	CSx6	measures	relative	to	ADNI	and	negative	values	lower	measurement	error	in	ADNI.		The	
effect	of	pooling	is	displayed	for	one,	two,	four,	or	eight	CSx6	scans	(x-axis).	There	is	a	clear	and	consistent	benefit	of	
pooling	in	all	groups.	Errors	for	all	morphometric	estimates	are	reported	in	the	supplemental	materials.	
	

Figure	6.	Pooling	across	a	break	and	resolutions	does	not	cause	further	improvement.	To	explore	additional	
ways	that	pooling	could	be	improved,	the	effects	of	a	break	and	multiple	scan	resolutions	on	pooling	were	explored	
(see	Figure	1).	To	explore	the	effect	of	the	break	on	measurement	error,	the	distributions	are	plotted	as	absolute	
percent	differences	in	error	from	estimates	derived	from	pooling	two	CSx6	1.0mm	scans	collected	before	and	after	
a	break	compared	to	pooling	two	CSx6	1.0mm	scans	collected	serially	(left	panel).	To	explore	the	effect	of	multiple	
scan	resolutions,	the	distributions	are	plotted	from	pooling	four	CSx6	scans	of	different	resolutions	compared	to	
pooling	four	CSx6	1.0mm	scans	(right	panel).	The	boxplot	lines	are	drawn	at	the	distribution's	median,	25th	and	
75th	percentiles.	Whiskers	extend	out	to	the	largest	point	that	is	within	1.5	times	the	interquartile	range.	Outlier	
points	outside	 the	 interquartile	 range	were	not	plotted.	Positive	values	 represent	 improvements	 (i.e.,	 X%	 lower	
measurement	error).	Across	morphometric	measures,	most	estimates	are	near	the	0%	dotted	line,	indicating	that	
pooling	across	a	break	and	across	multiple	resolutions	did	not	result	in	clear	benefits.		Errors	for	all	morphometric	
estimates	are	reported	in	the	supplemental	materials.	
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