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Abstract 20 

It is estimated that as many as 1 in 16 people worldwide suffer from rare diseases. Rare disease patients 21 

face difficulty finding diagnosis and treatment for their conditions, including long diagnostic odysseys, 22 

multiple incorrect diagnoses, and unavailable or prohibitively expensive treatments. As a result, it is likely 23 

that large electronic health record (EHR) systems include high numbers of participants suffering from 24 

undiagnosed rare disease. While this has been shown in detail for specific diseases, these studies are 25 

expensive and time consuming and have only been feasible to perform for a handful of the thousands of 26 

known rare diseases. The bulk of these undiagnosed cases are effectively hidden, with no straightforward 27 

way to differentiate them from healthy controls. The ability to access them at scale would enormously 28 

expand our capacity to study and develop drugs for rare diseases, adding to tools aimed at increasing 29 

availability of study cohorts for rare disease. In this study, we train a deep learning transformer algorithm, 30 

RarePT (Rare-Phenotype Prediction Transformer), to impute undiagnosed rare disease from EHR 31 

diagnosis codes in 436,407 participants in the UK Biobank and validated on an independent cohort from 32 

3,333,560 individuals from the Mount Sinai Health System. We applied our model to 155 rare diagnosis 33 

codes with fewer than 250 cases each in the UK Biobank and predicted participants with elevated risk for 34 

each diagnosis, with the number of participants predicted to be at risk ranging from 85 to 22,000 for 35 

different diagnoses. These risk predictions are significantly associated with increased mortality for 65% 36 

of diagnoses, with disease burden expressed as disability-adjusted life years (DALY) for 73% of 37 

diagnoses, and with 72% of available disease-specific diagnostic tests. They are also highly enriched for 38 

known rare diagnoses in patients not included in the training set, with an odds ratio (OR) of 48.0 in cross-39 

validation cohorts of the UK Biobank and an OR of 30.6 in the independent Mount Sinai Health System 40 

cohort. Most importantly, RarePT successfully screens for undiagnosed patients in 32 rare diseases with 41 

available diagnostic tests in the UK Biobank. Using the trained model to estimate the prevalence of 42 

undiagnosed disease in the UK Biobank for these 32 rare phenotypes, we find that at least 50% of patients 43 

remain undiagnosed for 20 of 32 diseases. These estimates provide empirical evidence of a high 44 
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prevalence of undiagnosed rare disease, as well as demonstrating the enormous potential benefit of using 45 

RarePT to screen for undiagnosed rare disease patients in large electronic health systems. 46 
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Introduction 48 

Rare diseases, also known as orphan diseases, are defined by the European Union as those affecting fewer 49 

than one in 2,000 people, and in the United States as those affecting fewer than 200,000 people 50 

nationwide1,2. Rare diseases are collectively very common, and it is estimated that as many as 1 in 16 51 

people (6.2%) suffer from one or more rare diseases3. This makes them a serious public health concern, as 52 

rare disease patients are far less likely to receive accurate diagnoses or, once diagnosed, to have access to 53 

effective treatments for their conditions4–6. This is due to the difficulty of studying rare diseases, a scarcity 54 

of clinical expertise and diagnostic methods, as well as the unprofitability of developing drugs targeting 55 

them. In fact, many of these diseases are so understudied and underdiagnosed that we do not know with 56 

any certainty what their true prevalence is, and how many undiagnosed patients there may be3. One of the 57 

primary reasons for all these problems is the difficulty of finding large enough populations of patients to 58 

conduct well-powered studies on these diseases, either in the context of basic or translational research or 59 

in the context of drug trials. This is a pressing problem, and tools such as MatchMaker Exchange, which 60 

help researchers match similar cases to increase sample size for studies of rare diseases, are widely used7–61 

9. Further development of these tools is also an active area of research, including expanding them to 62 

include comparisons of phenotypic features mined from electronic health records (EHR) or imaging data9–63 

12. These tools are vital for rare disease research because undiagnosed rare disease patients masquerade as 64 

healthy controls, making them invisible and inaccessible to researchers unless they can be revealed. There 65 

is an urgent need for new approaches to reveal people suffering from hidden rare diseases in research and 66 

drug trial cohorts, and in clinical practice. 67 

In this study, we present such an approach, using a deep learning transformer model trained on 68 

EHR data. Artificial intelligence (AI) language models based on the transformer architecture, such as 69 

BERT (“Bidirectional Encoder Representations from Transformers” and GPT (“Generative Pretrained 70 

Transformers”), have proved very successful at learning the relationships between concepts in natural 71 

languages13,14. Transformer models have also been successfully applied to problems in biology that are 72 
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not directly related to language processing in methods such as AlphaFold-2, AlphaMissense, DeepMAPS, 73 

and Enformer15–18. One of the strength of the transformer architecture is that, with appropriate 74 

tokenization and training schemes, transformers can correctly model concepts that are extremely rare, and 75 

some transformer-based models have been shown to define a new word after seeing it only a small 76 

number of times19–22. We have designed a modified transformer architecture to model phenotypic concepts 77 

based on phenotypes derived from structured diagnosis codes in electronic health records (EHR), along 78 

with a modified training procedure designed to maximize power to screen for missing rare diagnoses. The 79 

resulting model, RarePT (Rare-Phenotype Prediction Transformer), was trained on EHR data from 80 

436,407 individuals from the UK Biobank and validated on an independent cohort from 3,333,560 81 

individuals from the Mount Sinai Health System in New York City, USA (Table 1). RarePT shows 82 

remarkable power to recapitulate rare diagnoses, which is robust across different racial and ethnic groups, 83 

different hospitals with different coding practices, and even different countries with different health care 84 

standards and coding vocabularies. It also detects UK Biobank participants with undiagnosed rare disease, 85 

enabling empirical measurement of the true prevalence of undiagnosed cases for rare diseases. 86 

Results 87 

Model training and cross-validation 88 

We implemented a transformer model with a self-attention mechanism similar to AI language 89 

models such as BERT and GPT, along with a “masked diagnosis modeling” training objective by analogy 90 

to the “masked language modeling” objective used by some of these language models19. In this approach, 91 

training examples consist of complete sequences with a single token removed, and the model is trained to 92 

reconstruct the missing token. In the natural language processing case, this is a sequence of words with a 93 

single word removed; in our case, it is a participant record with a single diagnosis removed (Figure 1a). 94 

The model learns the meanings of tokens based on the context they appear in, resulting in embeddings 95 

that cluster tokens that commonly appear together and tokens that appear in similar context. Models 96 

trained with this objective are known to learn informative embeddings even for very rare tokens in many 97 
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cases19–22. We made use of this feature to train a model to predict rare diagnoses, a critical need due to 98 

underdiagnosis and understudying of rare diseases. 99 

An additional advantage of the masked diagnosis modeling training objective for rare tokens is 100 

that it allows us to weight the importance of tokens to the training objective independent of their 101 

prevalence in the training corpus. This is because each training example specifies which token the model 102 

must predict correctly to be scored as successful, and the model is not necessarily required to predict 103 

every token in each example. The importance of each token to the training objective is determined by how 104 

many examples have it as the masked token. In order to prevent very common diagnoses from dominating 105 

the learned embeddings, we limited training examples to a fixed number of cases and controls for each 106 

diagnosis. While we used 100 cases and controls for each diagnosis, in principle this is a tunable 107 

parameter of the training process. Lower values allow rarer diagnoses to be included, while higher values 108 

increase the amount of training data available. 109 

In this study, we express diagnoses as phecodes23. We determined phecodes from ICD-10 codes for 110 

436,407 participants in the UK Biobank based on a standard mapping24. We then filtered out all phecodes 111 

with fewer than 100 cases and controls and constructed a training dataset consisting of 100 randomly 112 

selected cases and 100 randomly selected controls for each phecode. The resulting training set consisted 113 

of 259,400 training examples representing 1,297 query phecodes and 111,331 unique participants. For 114 

each training example, input data included the following features:  115 

1. The identity of the query phecode 116 

2. All other phecodes for which the participant is considered a case 117 

3. Age at recruitment 118 

4. Sex reported from recruitment 119 

These training examples were split into 5 subsamples for cross-validation, stratified so that each 120 

participant appeared in only one split and so that each split contained a similar number of cases and 121 
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controls. Neural network architecture and other training hyperparameters were tuned on the training data 122 

for each split using the Hyperband algorithm25, and then the tuned model was trained on the same data 123 

and tested on the held-out test data; see Methods for details of model tuning and training parameters.  The 124 

final tuned architecture is shown in in Figure 1b; details of training performance can be found in 125 

Supplementary Figure S1 and Supplementary Table S1. In general, the models performed well on the 126 

test data and showed only minor loss of performance between training and test data. 127 

RarePT predicts rare diagnoses in the UK Biobank  128 

To test the ability of the trained model to predict rare diagnoses, we first selected all phecodes 129 

appearing in fewer than 1 in 2,000 UK Biobank participants, corresponding to the definition of rare 130 

diseases used by the European Union2. There were 155 rare phecodes meeting this criterion, shown in 131 

Supplementary Table S2. Not all phecodes that are rare in the UK Biobank represent phenotypes that 132 

meet the definition of rare diseases in the general population. One reason for this is the known bias of the 133 

UK Biobank population towards healthier and older participants26–28, which reduces the apparent 134 

prevalence of many diseases, especially severe diseases with early onset. For example, phecode 315.3 135 

“mental retardation” appears in fewer than 200 participants in the UK Biobank even though the disorders 136 

it represents are much more common in the general population, which is likely because severe childhood 137 

disorders are underrepresented in this cohort of healthy adults. It is also likely that many of these rare 138 

phecodes correspond to diagnosis codes that rarely appear in electronic health records (EHR) despite the 139 

conditions they refer to being common. Likely examples of this include 367.4 “presbyopia” and 523.1 140 

“gingivitis.” Nevertheless, even if not all of these phecodes represent phenotypes that are rare in the 141 

general population, they do represent phenotypes that are rare in the data used to train our model, and the 142 

model’s performance on these phecodes is informative about how our methodology handles rare 143 

phenotypes. In total, 21,636 of the 436,407 participants tested have one or more of these rare diagnoses, 144 

giving them a cumulative prevalence of 5.0%. This matches the estimated cumulative prevalence of 1.5-145 
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6.2% for rare diseases in the general population3, suggesting that our selection of rare phecodes does 146 

accurately capture the population distribution of rare diseases. 147 

After training on a 111,311-participant subset of UK Biobank data constructed to force each 148 

phecode to have prevalence of 50%, we measured RarePT’s performance in the full UK Biobank dataset 149 

of 436,407 participants. We arbitrarily chose a threshold of 0.95 in the model’s probability score output, 150 

so that participants with a score of 0.95 or higher in a given phecode were treated as positive predictions 151 

for that phecode. With this definition, across all five cross-validated models, we generate specific positive 152 

predictions for each of our 155 rare phecodes. The number of positive predictions varied by phecode, 153 

ranging between 85 and 22,000 with a median of 2,135 positive predictions per phecode (Supplementary 154 

Table 3). These positive predictions are broadly distributed across participants rather than being 155 

concentrated in a small group of unhealthy participants, with no participant receiving more than 29 156 

positive predictions and 41% of participants (177,484) receiving a positive prediction for at least one of 157 

the 155 phecodes. Figure 2 shows the performance of the 5 cross-validated models at predicting rare 158 

phecodes in the full dataset, excluding each model’s training data. We measured prediction performance 159 

using diagnostic odds ratio (OR), defined as the ratio between the odds of a participant having a diagnosis 160 

given a positive prediction from the model and the odds of a participant having a diagnosis given a 161 

negative prediction from the model. The median OR for a positive prediction across all 155 rare phecodes 162 

and across the five models trained in cross-validation was 48.0. Some specific phecodes reached a median 163 

OR over 20,000, and the lowest median OR for any rare phecode was 5.13 (Figure 2a, Supplementary 164 

Table S3). These values compare favorably to many commonly used diagnostic tests, where diagnostic 165 

odds ratios in the range of 20-50 are considered very good29,30. Similarly, the positive predictive value 166 

(PPV) for cases is nearly 40% for some phecodes, which is well within the range of a useful screening test 167 

(Supplementary Figure S2, Supplementary Table S3). Because PPV depends on the prevalence of the 168 

condition within the test population, we expect this number to increase further when applying this method 169 

in situations where the prior expectation of encountering a given diagnosis is increased, such as in 170 
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patients with undiagnosed rare conditions or patients who carry rare genetic variants. Importantly, the 171 

predictions are able to distinguish not only between cases and controls but also between cases for one 172 

phecode and cases for another, indicating that RarePT is making specific predictions for each phecode 173 

rather than measuring general health (Figure 2b).  174 

Model trained on UK Biobank is predictive in an independent EHR cohort 175 

We applied the trained RarePT model to an independent dataset derived from the Mount Sinai 176 

Data Warehouse (MSDW), consisting of anonymized EHR for a cohort of 3,333,560 patients seen in the 177 

Mount Sinai Health System in New York City. We determined phecodes for these participants in the same 178 

way as for the UK Biobank participants, but using a mapping designed for the US clinical modification to 179 

ICD-10 (ICD-10CM) rather the international standard ICD-10 system used by UK hospitals24. 151 of the 180 

155 phecodes determined to be rare in the UK Biobank cohort were present in the MSDW cohort. As a 181 

health system based cohort, this cohort is expected to be significantly less healthy than the UK Biobank31, 182 

and therefore we expect most phecodes to have higher prevalence than in the UK Biobank cohort. 183 

Nevertheless, a majority of the rare phecodes we tested (86/151; 57%) still had prevalence less than 1 in 184 

2,000 in the MSDW cohort (Supplementary Table S2). Likewise, we expect more positive predictions 185 

for each phecode, both due to the dataset being over 7-fold larger and due to participants being less 186 

healthy in general. 187 

For these phecodes in the MSDW cohort, RarePT produced between 100 and 721,000 positive 188 

predictions per phecode, with a median of 11,500, and produced at least one positive prediction in 47% of 189 

participants (1,518,757). These predictions performed similarly to the predictions for the UK Biobank 190 

cohort, with a median OR of 30.6 across all 151 phecodes (Figure 2a, Supplementary Table S4).  191 

Performance for individual phecodes was also strongly correlated across the two datasets (Pearson r = 192 

0.456, p = 5.03 × 10-40, t-test; Figure 2c). The fact that performance is similar across the two datasets 193 

indicates that RarePT’s predictions are based on features that are robust to different methodologies for 194 

sample ascertainment and data collection, rather than features that are only informative in the specialized 195 
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context of the UK Biobank. This replication is especially remarkable given the extensive differences 196 

between the two cohorts: in addition to one being a population-based cohort of healthy volunteers and the 197 

other being a health system cohort, these cohorts are also from different countries with different standard 198 

medical practices, different billing structures and coding systems, and different distributions of race, 199 

ethnicity, and genetic ancestry. This indicates the wide applicability of the RarePT method and suggests 200 

that its performance does not depend on specific features of diagnosis coding in a particular health 201 

system. 202 

Rare disease predictions are associated with mortality, disease burden, and known diagnostic biomarkers 203 

To further demonstrate that RarePT is capturing clinically relevant signals of disease rather than 204 

bioinformatic artifacts related to diagnosis coding, we performed regression analyses to test the 205 

association of positive predictions with mortality, disability, and, where available, known diagnostic 206 

biomarkers. We retrieved the latest mortality data for UK Biobank participants as of October 2023, and 207 

performed Cox proportional hazard regression to test whether a positive prediction is associated with 208 

mortality, controlling for age, sex, and self-reported ethnicity. 101 phecodes (65% of phecodes tested) had 209 

a significant association (p < 0.05) with increased mortality, of which 93 (60%) remained significant after 210 

Bonferroni correction for 155 phecodes (p < 0.00032). The median phecode had a regression coefficient 211 

of 0.70, corresponding to a hazard ratio of 2.01, or a twofold increase in mortality rate (Supplementary 212 

Table S5).   213 

Next, we estimated Disability Adjusted Life Years (DALY) and its two components, Years of Life 214 

Lost (YLL) and Years Living with Disability (YLD), for 80 conditions for all UK Biobank participants32. 215 

These measurements represent the number of years lost to both mortality and disability as a result of 216 

illness and are used as a measure of disease burden, particularly in the Global Burden of Disease study33. 217 

We performed linear regressions with DALY, YLD, and YLL as the dependent variables to test whether a 218 

positive prediction is associated with greater disease burden. In all of these regressions, we controlled for 219 

age, sex, and self-reported ethnicity. 113 phecodes (73% of phecodes tested) had a significant association 220 
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(p < 0.05) with increased estimated DALY, and 106 (68%) remained significant after Bonferroni 221 

correction for 155 phecodes (p < 0.00032). 134 phecodes (87%) had a significant association with 222 

increased estimated YLD individually, 133 (86%) after Bonferroni correction; 110 phecodes (71%) had a 223 

significant association with increased estimated YLL individually, 106 (68%) after Bonferroni correction. 224 

For the median phecode, a positive prediction was associated with an increase in estimated DALY of 1.1 225 

years (Supplementary Table S5). 226 

To identify diagnostic biomarkers, we used the SNOMED-CT vocabulary of clinical terms34,35 to 227 

identify phenotypes whose clinical definition includes laboratory tests that are available for large numbers 228 

of participants in the UK Biobank. We identified 75 defined relationships between 32 rare phecodes and 229 

23 laboratory tests (Supplementary Table S6). These tests were performed as part of the UK Biobank 230 

recruitment process and were generally not returned to participants or their physicians, so the availability 231 

of a test result does not indicate that it was ordered by a physician and the result of a test was not visible 232 

to the physicians responsible for entering diagnoses into the participants’ EHR. Since RarePT makes its 233 

predictions using only diagnosis codes and has no access to physician-ordered laboratory tests except 234 

through diagnosis codes, this means our model’s predictions are independent of these test results. This is 235 

in contrast to health system based cohorts, including our MSDW cohort, where diagnostic tests are 236 

ordered and administered in the context of treating the patient, so that the presence and timing of a test are 237 

informative about the judgment of the health care providers and the test result forms part of the diagnostic 238 

criteria36. 239 

For each of these 75 relationships, we performed a logistic regression to test whether a confident 240 

case prediction is associated with abnormal test results, again controlling for age, sex, and ethnicity. 54 of 241 

these regressions, representing 72% of these relationships, had a result that was in the expected direction 242 

and statistically significant (p < 0.05), and 45 (60%) remained significant after Bonferroni correction for 243 

75 regressions (p < 0.00067). The median regression coefficient was 0.57, corresponding to an OR of 244 

1.77. In other words, for the median diagnostic test, a participant with a positive prediction from RarePT 245 
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had 77% higher odds of having an abnormal test result. In 100 random permutations of phecode-246 

laboratory test relationships, no permutation showed as many Bonferroni-significant associations (p < 247 

0.01) (Figure 3a, Supplementary Table S7-S8).  We additionally performed linear regression for each of 248 

these relationships, testing for a relationship between the model prediction and the quantitative test result. 249 

43 of these regressions, representing 57% of these relationships, had a result that was in the expected 250 

direction and statistically significant, and 38 (51%) remained significant after Bonferroni correction. 251 

Again, 0 out of 100 random permutations showed as many Bonferroni-significant associations (p < 0.01) 252 

(Figure 3a, Supplementary Table S7-8).  253 

Taken together, these analyses demonstrate that positive predictions from RarePT do not merely 254 

predict diagnosis codes for rare diseases, but also capture clinically and biologically relevant features 255 

relevant to the diagnoses and to health outcomes more generally. 256 

Disease predictions suggest high rates of underdiagnosis for rare diseases 257 

It has been demonstrated for many diseases, both rare and common, that only a fraction of 258 

affected individuals actually have a diagnosis annotated in their EHR37–43. As a result, it is likely that 259 

many of the participants annotated as controls in our dataset are actually undiagnosed cases. In order to 260 

evaluate RarePT’s performance in these undiagnosed cases, we repeated the regression analyses of 261 

mortality and estimated DALY restricting to participants labelled as controls, so that participants who had 262 

the corresponding diagnosis in their EHR were excluded. The mortality analysis produced similar results 263 

after excluding known diagnosed cases: 101 phecodes (67% of phecodes tested) had a significant 264 

association (p < 0.05) with increased mortality, of which 93 (60%) remained significant after Bonferroni 265 

correction for 155 phecodes (p < 0.00032). The median regression coefficient for the proportional hazard 266 

regression on mortality was 0.86, corresponding to a hazard ratio of 2.4. The DALY analysis also 267 

produced similar results: 114 phecodes (74% of phecodes tested) had a significant association (p < 0.05) 268 

with increased estimated DALY, and 106 (68%) remained significant after Bonferroni correction for 155 269 

phecodes (p < 0.00032). 131 phecodes (85%) had a significant association with increased estimated YLD 270 
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individually, 126 (81%) after Bonferroni correction; 110 phecodes (71%) had a significant association 271 

with increased estimated YLL individually, 104 (67%) after Bonferroni correction. For the median 272 

phecode, a positive prediction was associated with an increase in DALY of 1.5 years in controls. These 273 

results demonstrate that RarePT predictions are associated with health outcomes even when a diagnosis is 274 

not present in the EHR, suggesting that RarePT identifies clinically relevant features even in undiagnosed 275 

individuals and may be identifying undiagnosed cases. 276 

We next repeated the logistic regression analysis testing RarePT predictions against abnormal test 277 

results. As expected, excluding known cases reduced the significance of many, but not all, of these 278 

regressions. Nevertheless, 47 of these regressions, representing 63% of these relationships, had a result 279 

that was in the expected direction and statistically significant (p < 0.05), and 36 (48%) remained 280 

significant after Bonferroni correction for 75 regressions (p < 0.00067). The median regression coefficient 281 

was 0.45, corresponding to an OR of 1.57. As with the regressions that included cases, in 100 random 282 

permutations of phecode-laboratory test relationships, no permutation showed as many Bonferroni-283 

significant associations (p < 0.01) (Figure 3b, Supplementary Tables S10-S11).  We also repeated the 284 

linear regression analysis testing RarePT predictions against quantitative test results, excluding both 285 

known cases and participants with abnormal test results. 29 of these regressions, representing 39% of 286 

these relationships, had a result that was in the expected direction and statistically significant, with 21 287 

(28%) remaining significant after Bonferroni correction. Again, 0 out of 100 random permutations 288 

showed as many Bonferroni-significant associations (Figure 3b, Supplementary Tables S10-S11). This 289 

analysis supports the conclusion that RarePT’s predictions are predictive not only of existing rare 290 

diagnoses, but also of undiagnosed cases.  291 

In order to estimate the number of these undiagnosed cases that exist in the UK Biobank dataset, 292 

we first identified participants whose test results show that they are unlikely to be undiagnosed cases for a 293 

particular phecode. We defined this category of “confirmed controls” as participants whose test results fell 294 

within 1 standard deviation of the population mean for a particular test. This is possible because these 295 
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tests were administered in an unbiased way to a large cross-section of participants, and the presence of a 296 

negative test result does not indicate that a physician ordered the test to rule out a suspected diagnosis. We 297 

then measured RarePT’s performance based on these confirmed controls and the observed diagnosed 298 

cases. Assuming that RarePT performs similarly for unconfirmed controls and undiagnosed cases as for 299 

confirmed controls and diagnosed cases, the prevalence of undiagnosed cases can be estimated by 300 

comparing the expected number of false positives among unconfirmed controls to the actual number of 301 

unconfirmed controls predicted as cases (Figure 3c, Supplementary Note 1). 302 

We estimated the number of undiagnosed cases and the fraction of actual cases that are 303 

undiagnosed for each rare phecode with an associated diagnostic test, using a bootstrap sampling 304 

procedure to obtain 95% confidence intervals (Figure 3d-e, Supplementary Table S12). The estimated 305 

proportion of undiagnosed cases varied widely by phecode, but nearly three-quarters of phecodes tested 306 

(23/32 = 72%) had an estimate greater than 20%. Even more remarkably, nearly two-thirds of phecodes 307 

tested (20/32 = 63%) had more undiagnosed cases than diagnosed cases, and over a third (12/32 = 38%) 308 

had a bootstrap confidence interval entirely above the number of diagnosed cases. The median estimated 309 

rate of underdiagnosis across all phecodes tested was 83%, meaning that we estimate 83% of cases are 310 

undiagnosed for the median rare phecode. This analysis suggests that there are a very large number of 311 

undiagnosed cases of rare diseases in large population biobanks like the UK Biobank. Furthermore, it 312 

suggests that RarePT is able to predict some of these hidden undiagnosed cases, allowing them to be 313 

identified for the first time. 314 

Discussion 315 

Here we present RarePT, a transformer-based phenotype prediction method designed to predict 316 

rare disease diagnoses based on diagnosis codes present in a patient’s electronic health records (EHR). We 317 

apply this method to predicting rare disease in the UK Biobank, and find that a very large fraction of rare 318 

disease cases are undiagnosed. Our method adds to a growing collection of phenotype prediction methods 319 

that use machine learning to clean and extend EHR data for downstream analysis 44–48. Our method is 320 
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distinct from other approaches in that it focuses specifically on rare disease. It is typically difficult to train 321 

machine learning approaches for rare disease because the low prevalence of these diseases limits the 322 

availability of training data. We overcame this difficulty using a “masked diagnosis modeling” approach 323 

inspired by the approaches used to train AI language models such as BERT19. This approach learns about 324 

diagnoses by identifying which other diagnoses are most likely to appear in similar contexts, allowing it 325 

to learn informative features even for rare diagnoses. In addition to this training strategy, we reweighted 326 

our training data to give equal importance to rare and common diagnoses, boosting our power to predict 327 

rare diseases. 328 

The trained RarePT model is highly predictive of a wide range of rare disease diagnoses, showing 329 

the promise of our deep learning approach as a screening test for specific rare diagnoses that could be 330 

applied in a clinical setting in the future. Across all rare phecodes, RarePT’s predictions are associated 331 

with a median diagnostic odds ratio (OR) of 48.0 in cross-validation – that is, participants predicted to 332 

have a rare diagnosis by our model are 48.0 times more likely to have that diagnosis in their EHR 333 

compared to participants without such a prediction. For some specific rare diseases, this performance is 334 

even better, with the top 10% of diagnoses achieving a diagnostic OR over 350 in cross-validation and the 335 

top 5% achieving a diagnostic OR over 1,500 in cross-validation. These values compare favorably to 336 

many diagnostic tests currently in standard clinical use. Remarkably, this performance is replicated in a 337 

completely independent cohort of patients at the Mount Sinai Health System in New York, which 338 

represents not only a different health system but an entirely different country with different medical 339 

practices and different standards for diagnostic coding and billing. The ability to predict rare disease 340 

diagnoses in this independent cohort shows the power and transferability of this approach. 341 

In addition to successfully predicting rare diagnoses in participants’ EHR, RarePT also provides 342 

new evidence that a substantial number of participants may suffer from rare diseases without a diagnosis 343 

appearing in the EHR. This reinforces the known fact that many diagnoses are missing from EHR, due to 344 

biases in diagnosis, inconsistent use of billing codes, incomplete or fragmented patient records, and other 345 
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issues49–53. This effect has previously been quantified for a variety of diseases, both common and rare, and 346 

often found to be substantial. For example, biobank studies have estimated that up to 75% of patients with 347 

erythropoetic protoporphyria (EPP)39, approximately 85% of patients with familial 348 

hypercholesterolemia54, and approximately 90% of patients with glycated hemoglobin (HbA1c) levels 349 

indicating diabetes42 remain undiagnosed. This is especially problematic for rare diseases, due to the 350 

known difficulty of correctly diagnosing rare diseases and the long diagnostic odyssey experienced by 351 

many rare disease patients3–6,55. We hypothesized that RarePT would correctly predict many of these 352 

undiagnosed cases, causing them to appear as false positives despite actually being correct predictions. 353 

For rare diseases where relevant biomarkers were available, these biomarkers consistently showed a 354 

significant excess of abnormal values and more extreme values within the normal range in individuals 355 

predicted positive by RarePT, supporting the hypothesis that many of RarePT’s predictions are actually 356 

undiagnosed cases. Consistent with literature estimates for common diseases, we estimate the prevalence 357 

of undiagnosed cases in rare diseases to be remarkably high: 72% of phecodes we tested appeared to have 358 

an underdiagnosis rate above 20%, and 63% of phecodes we tested were consistent with a majority of 359 

cases being undiagnosed. While these numbers may be higher than the true rate in the general population 360 

due to the UK Biobank being biased towards healthier participants, who are less likely to seek out and 361 

receive diagnoses than the general population26,27,31, both the existence and magnitude of this 362 

phenomenon are consistent with previous results on underdiagnosis of diseases in EHR. The RarePT 363 

model allows us to measure this underdiagnosis systematically across a range of rare diseases, which has 364 

not previously been possible, as well as to identify specific individuals who may be suffering from rare 365 

disease and have a missing or incorrect diagnosis. 366 

There are many potential practical applications for RarePT. One of these is as a phenotype 367 

imputation step in a data preprocessing pipeline for downstream bioinformatic analysis, which has 368 

previously been unavailable for rare diagnoses31,56,57. Another application is in collecting rare disease 369 

cohorts for research studies or drug trials. Due to the rarity of rare diseases, identifying multiple patients 370 
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with the same disease is a pressing problem in rare disease research, and the international research 371 

community has developed several tools to address it7–9. RarePT can augment or support these tools by 372 

allowing researchers to rapidly search EHR for patients who are likely to have a particular disease or 373 

patients who are phenotypically similar to another specific patient. It also has the potential to be 374 

developed into a clinical screening test for rare diseases, particularly in patients with a specific risk factor 375 

such as family history of disease or a genetic risk allele.  376 

There are several limitations and areas of further development for this approach. First, phecodes 377 

are designed for phenome-wide association (PheWAS) studies primarily targeting common phenotypes 378 

and are not specifically designed to target rare diseases. While some specific rare phenotypes may be 379 

inaccessible to RarePT for this reason, recent studies have shown that vocabularies for common disease, 380 

including phecodes, do capture information about rare phenotypes58–60, and we identified phecodes that 381 

were rare in both the UK Biobank and MSDW cohorts. Future versions of this approach could increase 382 

the resolution for rare phenotypes by using phenotype ontologies designed to represent rare diseases, such 383 

as the Human Phenotype Ontology (HPO)61  or the OrphaNet disease ontology62. However, there are 384 

tradeoffs involved in this choice. Using a more fine-grained vocabulary for rare disease would 385 

dramatically increase the complexity of the model and its computational requirements. The analyses we 386 

present here require generation of millions of phenotype predictions, which took several hours of GPU 387 

time under the current RarePT architecture and would quickly become infeasible if the phenotype 388 

encoding used a complex hierarchical structure with a vocabulary many times larger. Choosing a 389 

phenotype encoding scheme that can more precisely capture rare phenotypes could also harm the model’s 390 

ability to capture information about rare and common disease in the same vocabulary, which may reduce 391 

the power of the model for rare disease and its transferability to other cohorts beyond its training set.  392 

Second, the ICD-10 diagnosis codes we use to derive phecodes are known to be noisy and 393 

unreliable52,63,64. We have relied on established methods for automated phenome-wide phenotyping, many 394 

of which use diagnosis codes in spite of their limitations because more reliable sources of data are either 395 
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difficult to access in an automated way or are not available phenome-wide31,53. This is particularly true for 396 

rare diseases, due to the difficulty of finding specialized experts who are capable of reviewing individual 397 

patient charts in detail to arrive at a confident diagnosis, particularly at scale65–67. In spite of this, the use 398 

of these automated phenotyping approaches could be a concern in our analysis of undiagnosed cases, 399 

since both our identification of participants with a disease diagnosis and our identification of patients with 400 

abnormal test results are based on these potentially unreliable automated procedures. It is possible that 401 

some of the supposedly undiagnosed cases we identified were actually diagnosed cases where the 402 

diagnosis escaped detection by our automated phenotyping process. It is also possible that the availability 403 

of certain test results and not others biased our analysis towards specific categories of phenotypes that are 404 

not representative of rare diseases in general. For example, blood disorders and metabolic disorders 405 

appear to be overrepresented among phenotypes with available diagnostic tests, while neoplasms and 406 

neurological disorders are entirely absent (Supplementary Table S6). However, while diagnosis rates 407 

may differ by category, there is no reason to suppose that categories with greater availability of diagnostic 408 

tests are diagnosed at a lower rate than those with less availability of diagnostic tests. Indeed, if anything, 409 

the availability of simple diagnostic tests should increase the rate of diagnosis, making our estimates 410 

conservative.  It is likely that we could make more reliable determinations of both diagnosis status and 411 

true phenotype by making use of other features available in the EHR, such as lab results, vitals, 412 

medications, or unstructured physician’s notes. We chose not to include these features in this analysis to 413 

avoid circularity in training and analysis, as the diagnoses contained in the EHR are informed by the lab 414 

results, vitals, and physician’s notes from the same EHR. Without careful insulation of these different 415 

modalities of data, any trained model or statistical analysis is likely to simply recapitulate the physician’s 416 

diagnostic criteria without gaining any predictive power for undiagnosed patients, a problem which 417 

RarePT avoids by excluding these redundant data sources. Previous studies have also identified 418 

undiagnosed cases using a longitudinal study design with direct physician involvement40,41.  RarePT could 419 

facilitate this kind of analysis for specific diagnoses in future studies, following up on this broad 420 

automated analysis with in-depth analysis of individual diseases incorporating specific clinical expertise. 421 
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Finally, there are many opportunities to improve on our model architecture. Deep learning and AI 422 

is a rapidly evolving field, and the transformer-based architecture we used for this analysis may not be the 423 

optimal way to learn the semantic structure of EHR diagnoses. Recent studies have proposed new ways of 424 

derived phenotype embeddings, including extracting them from curated knowledge graphs or from 425 

general-purpose large language models pretrained on non-EHR data68–70.  There are also a variety of 426 

approaches that have been used to process time series data from EHR in machine learning applications, 427 

including neural network models designed for time series data such as recurrent neural networks and 428 

using pretrained large language models to process EHR71,72. While incorporating newer and more 429 

sophisticated approaches may improve the model, they may also promote overfitting and reduce 430 

transferability of the model across health systems and datasets, as well as slowing down training and 431 

prediction. RarePT is both transferable and tractable, essential properties for a method designed to process 432 

large health system datasets. 433 

In this paper we have shown that our deep learning phenotype prediction approach, RarePT, is 434 

capable of modeling and predicting rare disease diagnoses on a phenome-wide basis, with performance 435 

that compares favorably to diagnostic screening tests used in clinical settings. Remarkably, RarePT 436 

achieves this performance not only in held-out segments of the UK Biobank cohort it was trained on, but 437 

also on an entirely separate cohort of patients in the Mount Sinai Health System in New York City. This 438 

demonstrates that the predictive features RarePT uses are not specific to the UK Biobank, but are robust 439 

to differences in recruitment strategy, differences in race and ethnicity, and even differences in medical 440 

practices and billing procedures between countries. In addition to capturing specific diagnoses, RarePT 441 

predictions also predict clinical outcomes, including mortality, quality of life, and specific biomarkers 442 

associated with rare disease. Finally, we used predicted phenotypes from the model to estimate the 443 

prevalence of undiagnosed rare disease in the UK Biobank, showing that it is likely extremely high. This 444 

kind of systematic phenome-wide analysis has not previously been possible for rare diseases, highlighting 445 

the utility of RarePT to conduct large-scale studies on rare disease. The high rate of undiagnosed rare 446 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2023. ; https://doi.org/10.1101/2023.12.21.23300393doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.21.23300393
http://creativecommons.org/licenses/by/4.0/


disease in large population datasets like the UK Biobank also highlights the need for new methods like 447 

RarePT to address the problem of undiagnosed rare disease and suggests a wide range of valuable clinical 448 

and research applications. 449 
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Methods 488 

Data collection and preprocessing 489 

The primary training data were derived from the UK Biobank73. For each participant, we 490 

retrieved age at recruitment (field 21022), sex (field 31), and a list of all ICD-10 diagnosis codes recorded 491 

across all inpatient hospital records (field 41270). We also retrieved self-reported ethnicity (field 21000), 492 

body mass index (BMI, field 21001), blood pressure (fields 4079-4080), LDL cholesterol (field 30780), 493 

total cholesterol (field 30690), blood glucose (field 30740), and glycated hemoglobin (HbA1C, field 494 

30750) as baseline cohort characteristics (shown in Table 1), and 23 diagnostic tests and biomarkers 495 

assayed as part of the recruitment process (Supplementary Table S6), though these were not included in 496 

the data used to train the model. For this study, we represented each ICD-10 code as a binary indicator 497 

that could either be present or absent, ignoring the dates associated with each code. We mapped ICD-10 498 

codes to version 1.2 of the Phecode classification, using the published mapping24. This resulted in a 499 

dataset of 436,407 participants, 239,711 female and 196,696 male, including 1,558 of the 1,570 phecodes 500 

with defined ICD-10 code mappings. Demographic and clinical characteristics of this cohort are shown in 501 

Table 1. 502 

We constructed a balanced dataset of training examples consisting of 100 cases and 100 controls 503 

of each phecode, excluding phecodes with fewer than 100 cases or fewer than 100 controls. This excluded 504 

273 phecodes, leaving 1,297 unique query phecodes. These 273 phecodes remained in the training data as 505 

diagnoses but were never used as the query in any training examples. Cases were defined as participants 506 

whose phecode diagnoses contained the query phecode. Controls were defined as participants whose 507 

phecode diagnoses did not include the query phecode or any phecodes listed as exclusions for the query 508 

phecode. For sex-specific phecodes, controls were also required to be the correct sex for the query 509 

phecode. For cases, the query phecode and all exclusion phecodes were removed from the diagnosis list 510 

as part of preprocessing (Figure 1a). Phecode diagnoses were encoded using a many-hot encoding, with 511 
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phecodes ordered linearly by their numerical code; query phecodes were encoded using a one-hot 512 

encoding with the same ordering of phecodes. 513 

Training examples were randomly split into five equal subsets for five-fold cross validation. 514 

Since the same individual can appear multiple times with different query phecodes, we required each 515 

cross-validation subset to contain a unique set of individuals, so that each individual can only appear in 516 

one subset. This prevents the model from improving performance by recognizing specific individuals 517 

from the training set and recapitulating the known diagnoses of those individuals. Cross-validation 518 

subsets were also required to contain similar numbers of cases and controls. 519 

Our independent validation data were derived from the Mount Sinai Data Warehouse (MSDW), a 520 

database of clinical and operational data derived from the electronic health records (EHR) systems of the 521 

Mount Sinai Health System in New York City. These data are anonymized, standardized, and 522 

preprocessed for use in clinical and translational research. For each patient in this database, we retrieved 523 

age as of 2009 (the median date associated with the “age of recruitment” field in the UK Biobank), 524 

physician-reported sex, and a list of all ICD-10-CM diagnosis codes recorded in the EHR. We mapped 525 

these to phecodes using the published mapping for ICD-10-CM diagnosis codes, which is slightly 526 

different from the mapping for the ICD-10 codes used in the UK Biobank24. Patient records were 527 

processed into examples suitable for the model in the same way as described above. The final size of this 528 

cohort was 3,333,560. Demographic and clinical characteristics of this cohort are shown in Table 1. 529 

Study protocols were approved by the Institutional Review Board at the Icahn School of 530 

Medicine at Mount Sinai (New York City, NY, USA; GCO#07–0529; STUDY-11–01139) and all 531 

participants provided informed consent. Use of data from the UK Biobank was approved with the UK 532 

Biobank Resource under application number 16218. 533 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2023. ; https://doi.org/10.1101/2023.12.21.23300393doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.21.23300393
http://creativecommons.org/licenses/by/4.0/


Model architecture, tuning, and training 534 

The model was implemented in Python using the Keras package74. Figure 1a shows a schematic 535 

of the model architecture. The input diagnosed phecodes feed into a stack of modified transformer 536 

decoder modules, based on the TransformerDecoder layer implemented in the KerasNLP package75. The 537 

standard TransformerDecoder layer was modified to remove the causal attention mask that prevents the 538 

self-attention layer from paying attention to positions that are later in the sequence than the token 539 

currently being considered. Since the phecode encoding is ordered by phenotype category and we are 540 

ignoring temporal sequencing, this causal mask would be inappropriate. Each decoder layer also contains 541 

a cross-attention layer which takes input from the encoded query phecode, allowing the model to learn 542 

attention relationships between the diagnosis phecodes and the query phecode. To adjust for demographic 543 

variables, the demographic variables are passed through a single densely connected layer to transform 544 

them into the same dimension as the phecodes, and then added to the output of the transformer layers and 545 

normalized. Finally, the prediction is given by a dot product between the input query phecodes and the 546 

demographics-adjusted output of the transformer layer, and transformed into a probability score using a 547 

softmax function. The Python code implementing this architecture will be made publicly available along 548 

with this publication. 549 

Hyperparameter tuning was performed using the Hyperband algorithm, as implemented in the 550 

KerasTune package25,76. The list of hyperparameters and their final tuned values are found in 551 

Supplementary Table S13. We randomly sampled 80% of the training data to use for training and used 552 

the remaining 20% as the validation set for the hyperband algorithm, choosing the hyperparameters that 553 

minimized the training loss function on the validation set. For five-fold cross-validation runs, this 20% 554 

held out validation sample was contained within the training set and did not overlap the cross-validation 555 

test set. The hyperband algorithm was run for up to 18 epochs per model, stopping if validation loss failed 556 

to improve in 5 consecutive epochs. The final selected model was then trained for up to 54 epochs, and 557 

the best epoch was selected based on validation loss. Finally, after tuning was complete, the held-out 558 
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validation set was added back into the training set and selected model was retrained for the selected 559 

number of epochs on the complete training set. Again, the Python code implementing this training 560 

procedure will be made publicly available along with this publication. We repeated this hyperparameter 561 

tuning for each of the five training subsets produced by cross-validation as well as on the full training set, 562 

and all six runs selected identical values for all hyperparameters. Models were trained using NVIDIA 563 

A100 GPUs on the Mount Sinai local high-performance computing cluster, Minerva. Each cross-564 

validation run took approximately 5 hours of GPU time to tune and train, and the full model took 565 

approximately 6 hours, for a total of approximately 31 hours. 566 

Prediction of rare phenotypes 567 

We calculated the prevalence of each phecode in the UK Biobank by dividing the number of 568 

cases by the total number of participants. We identified 155 rare phecodes with prevalence less than 1 in 569 

2,000, or 0.05%, corresponding to the European Union definition of a rare disease. We calculated model 570 

predictions from each of the six trained models (five cross-validation models and one full-dataset model) 571 

using each of these 155 phecodes as a query for 436,407 participants in the UK Biobank, excluding from 572 

each model the participants contained in its own training set. We additionally produced predictions from 573 

the full trained model for 3,333,560 patients in the MSDW cohort for each of the 151 rare phecodes that 574 

were also present in that cohort. Generating model predictions for the UK Biobank cohort took 575 

approximately 3 hours of GPU time for each of the six models, for a total of approximately 18 hours; 576 

generating model predictions for the MSDW cohort took approximately 45 hours of GPU time. The 577 

MSDW cohort took substantially longer because the dataset was too large for the model to fit into 578 

memory and had to be broken up into batches. 579 

We quantified the performance of our models by diagnostic odds ratios and positive predictive 580 

values. We arbitrarily chose a threshold probability score of 0.95 to represent a relatively high-confidence 581 

case prediction, and treated predictions with probability score > 0.95 as predicted cases and ≤ 0.95 as 582 
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predicted controls. We quantified performance using odds ratio (OR) and positive predictive value (PPV), 583 

as these are measures relevant to diagnostic screening tests29. We calculated OR as 584 

𝑂𝑅 =  
(𝑇𝑃 + 0.5)/(𝐹𝑃 + 0.5)

(𝐹𝑁 + 0.5)/(𝑇𝑁 + 0.5)
 585 

( 1 ) 586 

where 𝑇𝑃 is the number of true positive predictions (cases correctly predicted as cases), 𝐹𝑃 is the number 587 

of false positive predictions (controls incorrectly predicted as cases), 𝑇𝑁 is the number of true negative 588 

predictions (controls correctly predicted as controls), and 𝐹𝑁 is the number of false negative cases. In 589 

other words, this is the ratio between the odds of a positive prediction being a case and the odds of a 590 

negative prediction being a case. We added a correction of 0.5 to each count to correct for zeros77. We 591 

calculated PPV as  592 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 593 

( 2 ) 594 

In other words, this is the probability that a positive prediction is a case. In all instances, we excluded 595 

controls with an exclusion phecode, controls whose sex did not match the phecode, and all individuals 596 

who were included in the training set of the cross-validated models.   597 

Mortality and DALY analyses 598 

We estimated disability-adjusted life years (DALY) and its components years lost to disability 599 

(YLD) and years of life lost (YLL) for UKBB individuals using per-disease estimates from the 2019 600 

Global Burden of Disease (GBD) study. We used the 80 non-overlapping non-communicable diseases that 601 

account for the majority of a population’s DALY as described by Jukarainen et al.32,33 GBD definitions of 602 

specific diseases and conditions were used to label individuals affected by these diseases in the UK 603 

Biobank. Estimates of disease burden in the UK from GBD were then applied to individuals with each 604 
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disease to produce estimated values of DALY, YLD, and YLL.32 These estimated values were tested 605 

against RarePT predictions by linear regression. We retrieved a single prediction score by using the model 606 

trained on the full dataset for individuals who were not included in the training set, and the appropriate 607 

cross-validation model for individuals who were included in the training set (that is, the cross-validation 608 

model whose training set did not include that individual). We turned this score into a binary prediction 609 

using an arbitrary threshold of 0.95. We then performed linear regression testing the ability of this score 610 

(independent variable) to predict DALY, YLD, or YLL (dependent variable), controlling for age, sex, and 611 

self-reported ethnicity. We repeated this analysis both including all UK Biobank participants and 612 

excluding known diagnosed cases and exclusions for each phecode. 613 

We additionally retrieved date of death and date of recruitment from the UK Biobank (fields 614 

40000 and 53) and performed an analysis of mortality using Cox proportional hazard regression. We 615 

treated time from recruitment to death as a right-censored dependent variable, again using the binary 616 

RarePT prediction as an independent variable along with age at recruitment, sex, and self-reported 617 

ethnicity. As with DALY, we repeated this analysis both including all UK Biobank participants and 618 

excluding known diagnosed cases and exclusions for each phecode. All regressions were performed in 619 

Python using the statsmodels package78. 620 

Biomarker and diagnostic test analysis 621 

We collected biomarkers and diagnostic tests associated with phecodes using the SNOMED-CT 622 

database of clinical terms34,35. We identified all ICD-10 codes that mapped to any of our 155 rare 623 

phecodes and also mapped to a SNOMED-CT term with an “interprets” relationship (concept 624 

363714003). The “interprets” relationship indicates that the concept represented by the diagnosis code has 625 

an underlying evaluation that is “intrinsic to the meaning of” that concept79. Examples of this kind of 626 

relationship include the relationship between obesity and measured body weight, hypercholesterolemia 627 

and total serum cholesterol, or thrombocytopenia and platelet count. In most cases, SNOMED-CT also 628 

identifies the direction of the relationship using the “has interpretation” relationship (concept 363713009). 629 
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For example, hypercholesterolemia is interpreted as total serum cholesterol above reference range, while 630 

thrombocytopenia is interpreted as platelet count below reference range. For each concept that was the 631 

target of an “interprets” relationship, we manually searched for a corresponding measurement available in 632 

the UK Biobank and a corresponding reference range. The result was a list of 75 relationships between 633 

rare phecodes and UK Biobank data fields, encompassing 32 rare phecodes and 23 data fields, each with 634 

an expected direction of relationship (above, below, or outside) and sex-specific reference ranges 635 

(Supplementary Table S6). 636 

As with the previously described regression analyses, we retrieved a single prediction score for 637 

each of these 32 rare phecodes by using the model trained on the full dataset for individuals who were not 638 

included in the training set, and the appropriate cross-validation model for individuals who were included 639 

in the training set (that is, the cross-validation model whose training set did not include that individual). 640 

We turned this score into a binary prediction using the same 0.95 threshold. We then performed two 641 

regression analyses testing the ability of this binary prediction (independent variable) to predict the 642 

corresponding data field (dependent variable), controlling for age, sex, and self-reported ethnicity. In the 643 

first analysis, we used the expected direction of relationship and the reference range to construct a binary 644 

variable indicating whether each individual had an abnormal result in the direction expected. We 645 

performed logistic regression using this binary variable as the dependent variable. We repeated this 646 

analysis both including all participants and excluding individuals labelled as cases or exclusions for each 647 

phecode. This regression tests whether the model can predict individuals with abnormal test results 648 

consistent with a diagnosis even in individuals labelled as controls. In the second analysis, we normalized 649 

the values of each biomarker within the reference range so that the sample population for each sex had 650 

mean 0 and variance 1 after excluding all individuals with values outside the reference range. Finally, we 651 

aligned the values so that the expected direction of association was always positive, by multiplying them 652 

by -1 for “below reference range” relationships and taking their absolute value for “outside reference 653 

range” relationships. We performed standard linear regression using this normalized and aligned value as 654 
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the dependent variable. We repeated this analysis both including all participants and excluding both 655 

individuals labelled as cases or exclusions and individuals with abnormal test results. This regression tests 656 

whether the model can predict individuals with elevated or reduced results even if they are still within the 657 

normal range. Regressions were performed in Python using the statsmodels package78. 658 

Finally, we identified a set of “confirmed controls” for each phecode, defined as individuals labelled as 659 

controls who also had all associated results within the reference range and within one standard deviation 660 

of the population mean for their sex. We consider these individuals very unlikely to be undiagnosed cases 661 

incorrectly labelled as controls. We used the performance of our model on these confirmed controls to 662 

estimate the false positive rate of our model for each of the 32 phecodes with available relationships to 663 

test results. We then used this false positive rate to estimate the number of undiagnosed cases using the 664 

following relationship: 665 

𝑃𝑢 =
𝑈𝑃 − 𝐹𝑃𝑅 × 𝑈

𝑇𝑃𝑅 − 𝐹𝑃𝑅
 666 

Where 𝑃𝑢 represents the number of undiagnosed cases; 𝑈 represents the total number of individuals with 667 

unknown case-control status, excluding controls confirmed by laboratory tests but including undiagnosed 668 

cases;  𝑈𝑃 represents the total number of unknowns predicted as cases by the model, again excluding 669 

controls confirmed by laboratory tests but including undiagnosed cases; 𝐹𝑃𝑅 represents the false positive 670 

rate of the model as estimated from confirmed controls; and 𝑇𝑃𝑅 represents the true positive rate of the 671 

model as estimated from diagnosed cases. See Supplementary Note 1 for derivation and discussion of 672 

this relationship.  673 

The Python code implementing all these analyses will be made publicly available along with this 674 

publication. 675 

Software Package and Workflow 676 
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For portability and reproducibility, model training and analysis code is formatted as a Snakemake 677 

workflow.80 This allows easy retraining of the RarePT model and reproduction of the analyses reported 678 

here on any appropriately-formatted individual-level dataset. After creating an appropriately named and 679 

formatted input data file and setting up Snakemake for their execution environment, users can train a new 680 

model with a single command: 681 

snakemake 682 

results/models/my_dataset.100_case_control_sample.full_from_5_fold_cv.683 

seed_18 684 

The number of cases and controls sampled, the number of cross-validation folds used for testing, and the 685 

random seed can be changed by changing the appropriate values in the targeted filename. Likewise, 686 

snakemake 687 

results/data/my_dataset.100_case_control_sample.5_fold_cv.seed_18.all_688 

rare_predictions_with_cv.parquet 689 

trains a model and uses cross-validation to generate model predictions for all rare phecodes, and 690 

snakemake 691 

results/data/uk_biobank.100_case_control_sample.full_from_5_fold_cv.se692 

ed_18.vs.my_dataset.all_rare_predictions.parquet 693 

uses the UK Biobank trained model to generate model predictions for all rare phecodes in a user dataset. 694 

Snakemake can be configured for many different high-performance computing and cloud computing 695 

environments and, when properly configured, automatically manages resource requirements and package 696 

dependencies. 697 

The Snakemake workflow will be published with acceptance of this manuscript in a peer-698 

reviewed journal. Prior to formal publication, it is available on request from the authors. 699 

 700 
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Table 1. Baseline demographic and clinical characteristics of cohorts.  703 

Characteristic No. (%) 

UK Biobank  

(N=436,407) 

Mount Sinai Data 

Warehouse  

(N=3,333,560) 

Women 239,611 (55%) 1,861,995 (56%) 

Men 196,696 (45%) 1,471,565 (44%) 

Age, mean (SD), yrs 57 (8) 33 (22) 

Self-

Reported 

Race 

and/or 

Ethnicity 

White 411,074 (94%) 1,118,704 (34%) 

Black 6,900 (1.6%) 385,815 (12%) 

Asian 9,695 (2.2%) 185,233 (5.6%) 

Hispanic or Latino 0 (0%) 367,924 (11%) 

Multiple, Other, or Unknown 8,738 (2.0%) 383,984 (12%) 

 

BMI, mean (SD), kg/m2 27 (5) 26 (7) 

SBP, mean (SD), mmHg 138 (19) 123 (17) 

DBP, mean (SD), mmHg 82 (11) 74 (10) 

LDL-C, mean (SD), mg/dL 138 (34) 101 (35) 

Total cholesterol, mean (SD), mg/dL 220 (45) 181 (45) 

HbA1c, median (IQR), % 5.5 (0.4) 5.6 (1.6) 

Glucose, mean (SD), mg/dL 92 (22) 132 (55) 

Hypertension (phecode 401) 151,254 (34%) 497,655 (15%) 

Type 2 Diabetes (phecode 250.2) 42,335 (9.7%) 211,779 (6.4%) 

Breast Cancer (phecode 174) 436,407 (5.2%) 43,212 (1.3%) 
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BMI = body mass index, SBP = systolic blood pressure, DBP = diastolic blood pressure, LDL-C = LDL 704 

cholesterol, HbA1c = Hemoglobin A1c. For the UK Biobank cohort, demographic characteristics, vitals, 705 

and blood tests were measured at recruitment. In the Mount Sinai Data Warehouse cohort, there was no 706 

distinct recruitment visit, so individual ages were measured as age in 2009, which corresponds to the 707 

median recruitment date for the UK Biobank cohort, and individual vitals and blood tests were measured 708 

as the mean across all available measurements from each individual’s electronic health records (EHR). In 709 

both cohorts, diagnoses were measured using phecodes derived from the presence or absence of specific 710 

ICD-10 or ICD-10-CM diagnosis codes across each individual’s EHR; see methods for details. 711 

 712 

  713 
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Figure 1. Schematics of masked phenotype modeling training procedure and RarePT model 714 

architecture.  715 

(a) Masked phenotype modeling training procedure. Each individual is represented by demographic 716 

characteristics (age and sex) and the set of all diagnoses present in their EHR across all encounters, 717 

represented as phecodes. A single training example consists of all demographic characteristics, a “query” 718 

phecode indicating the phecode to be trained on, and the target case/control designation. The example is 719 

considered a “Case” if the individual’s EHR contains the query phecode, “Unknown” if the individual’s 720 

EHR does not contain the query phecode but does contain a phecode defined as an exclusion for the query 721 

phecode, and “Control” if the individual’s EHR contains neither the query phecode nor any phecode 722 

defined as an exclusion for the query phecode. In all instances, the query phecode and all phecodes 723 

defined as exclusions for the query phecode are hidden before training or prediction. (b) Rare-Phenotype 724 

Prediction Transformer (RarePT) architecture. We apply a simplified transformer architecture to the 725 

A 
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diagnoses. Diagnoses are fed into a transformer decoder in a many-hot encoding, in a single step with no 726 

sequence. The transformer decoder consists of a self-attention layer, a cross-attention attending to the 727 

query phecode, and a feed-forward layer, all connected by residual skip connections, as in the standard 728 

transformer architecture. Demographic characteristics are interpreted by a dense linear layer and then 729 

applied as an adjustment to the transformer output. The final prediction is the dot product of the query 730 

phecode input with the demographic-adjusted transformer output. 731 

  732 
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Figure 2. Performance of RarePT to predict diagnosed cases of 155 rare phecodes.  733 

 734 

 735 

(a) Box and whisker plots showing distribution of diagnostic odds ratio (ratio of odds in predicted cases 736 

to odds in predicted controls) across rare phecodes. The five blue boxes labelled “UKBB/CV1-5” show 737 

the performance of the five models trained using five-fold cross-validation within the UK Biobank, 738 

excluding each model’s training set; median OR across all five cross-validation sets was 48 (full range 739 

1.27-39,000). The orange box labeled “MSDW” shows the performance of the model trained using the 740 

full UK Biobank dataset on the Mount Sinai Data Warehouse dataset, an independent cohort from the 741 

Mount Sinai Health System in New York; median OR for this cohort was 31 (full range 0.41-4,600). 742 

Performance on the independent dataset is only slightly reduced, despite extensive differences between 743 
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these datasets and health systems, demonstrating the robustness of the approach. Boxes show 1st quartile, 744 

median, and 3rd quartile; whiskers extend to 80% of interquartile range; dashed line shows random 745 

chance. (b) Heatmap showing odds ratios (median across five-fold cross-validation) for distinguishing 746 

between diagnosed cases of one phecode and diagnosed cases of a second phecode. Columns represent 747 

different case phecodes, rows represent different control phecodes, both ordered so that phecodes in the 748 

same biological category are grouped together. For each cell, the RarePT models trained in cross-749 

validation were presented with a dataset consisting of all diagnosed cases of both phecodes in UK 750 

Biobank, excluding the model’s own training set. The model was asked to predict case status for the case 751 

phecode, treating cases of the control phecode as controls. Red indicates that the model’s case predictions 752 

are enriched for cases of the correct phecode, while blue indicates that the model’s case predictions are 753 

depleted for cases of the correct phecode. Blank (white) cells indicate phecodes that are labelled as 754 

exclusions in the definition of the target phecode. While some comparisons are more successful than 755 

others, mostly depending on the identity of the phecode used as controls, RarePT successfully predicts 756 

cases across a wide range of rare phecodes, even when the background is cases for other rare phecodes.  757 

Blue  This demonstrates that RarePT’s predictions are specific to each specific phecode, and are not 758 

primarily predicting categories of diagnoses or general health. (c) Scatterplot comparing RarePT’s 759 

performance for rare phecodes on UK Biobank and Mount Sinai Data Warehouse cohorts. Each data 760 

point represents a single phecode; horizontal error bars represent the results of five-fold cross validation 761 

within the UK Biobank cohort. Performance for specific phecodes is strongly correlated between cohorts 762 

(Pearson r = 0.456, p = 5.03 × 10-40, t-test), demonstrating that the specific features used to differentiate 763 

different phecodes are robust to differences between cohorts, including differences in diagnosis coding, 764 

recruitment, and ethnic and racial composition. Dashed lines show random chance within each cohort; 765 

dotted line shows equal performance between cohorts.  766 

 767 

 768 
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Figure 3. Estimated performance of RarePT to predict undiagnosed cases of 32 rare phecodes with 770 

available relevant laboratory tests.  771 

 772 
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(a-b) Regression analysis showing RarePT predicts diagnostic test results in UK Biobank participants. 773 

Plots show number of significant regressions after Bonferroni correction for 75 tests in known relevant 774 

diagnostic tests (red dashed lines) and 100 random permutations of test-disease relationships (blue boxes). 775 

X axis shows logistic regression of abnormal test results vs. RarePT prediction, while Y axis shows linear 776 

regression of quantitative test results vs. RarePT prediction, both controlling for age at recruitment, sex, 777 

and self-reported ethnicity. Panel a shows results among all UK Biobank participants; Panel b excludes 778 

known cases, and the Y axis of panel b additionally excludes participants with abnormal test results. For 779 

both analyses, the number of significant regressions were lower than the actual observed results for all 780 

100 permutations in both analyses. This demonstrates that RarePT predicts relevant clinical features of 781 

disease, not only the presence of a diagnosis. Individuals with a positive prediction from RarePT but no 782 

diagnosis likely have phenotypic profiles that are similar to the predicted rare diagnosis, and may include 783 

undiagnosed cases. (c) Illustration of estimation of undiagnosed cases. All individuals can be classified as 784 

known cases with EHR diagnosis, known controls with confirmed normal test results (defined as 785 

participants within 1 standard deviation of the population mean for all tests associated with a given 786 

phecode), or unknown. Unknown individuals are a mixture of undiagnosed cases and unconfirmed 787 

controls in an unknown proportion. We assume that the behavior of the model on unknown individuals 788 

("unknown positive rate") is a mixture of its behavior on cases ("true positive rate") and controls ("false 789 

positive rate"). With this assumption, we estimate the proportion of cases and controls in the unknown 790 

group based on the relationship between these three positive prediction rates. See Supplementary Note 1 791 

for discussion and derivation of this relationship. (d-e) Number of undiagnosed cases and fraction of 792 

cases undiagnosed for 32 rare phecodes, estimated from RarePT’s performance on known cases and 793 

controls. Error bars represent bootstrap 95% confidence intervals. While the presence of undiagnosed 794 

cases detected by RarePT varies across different rare phecodes, a majority of phecodes tested have an 795 

estimate above zero, and half are estimated to have a higher number of undiagnosed cases than diagnosed 796 

cases. This highlights the importance of developing methods to screen for undiagnosed cases of rare 797 

disease. 798 

799 
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