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Abstract

Data from multiple organizations are crucial for advancing learning health systems. However, ethical, legal, and
social concerns may restrict the use of standard statistical methods that rely on pooling data. Although distributed
algorithms offer alternatives, they may not always be suitable for healthcare research frameworks. This paper aims to
support researchers and data custodians in three ways: (1) providing a concise overview of the literature on statistical
inference methods for horizontally partitioned data; (2) describing the methods applicable to generalized linear
models (GLM) and assessing their underlying distributional assumptions; (3) adapting existing methods to make
them fully usable in healthcare research. A scoping review methodology was employed for the literature mapping,
from which methods presenting a methodological framework for GLM analyses with horizontally partitioned
data were identified and assessed from the perspective of applicability in healthcare research. From the review, 41
articles were selected, and six approaches were extracted for conducting standard GLM-based statistical analysis.
However, these approaches assumed evenly and identically distributed data across nodes. Consequently, statistical
procedures were derived to accommodate uneven node sample sizes and heterogeneous data distributions across
nodes. Workflows and detailed algorithms were developed to highlight information-sharing requirements and
operational complexity.

1 Introduction

1.1 Health Research at Scale
Learning health systems (LHS) are coming of age and are being deployed to address important health challenges at

different scales. The framework starts by leveraging health data created across various activities. It obviously includes
data points from clinics and hospitals, but the perimeter of data required to meaningfully and optimally address
important problems is much wider and includes research cohorts, biobanks, quantified self data, environmental
exposures and social service delivery.

While some questions might be addressed at the scale of an individual organisation, LHS focus on systems
interactions and often require the analysis of processes and outcomes from various organisations. For example, to
fully understand a cancer care trajectory, multiple data sources from multiple organisations will need to be examined
to cover all relevant aspects (both within the traditional health system, but also in the community). This often implies
at least regional organisations or bigger (provinces, states, countries), like in the context of the Health Data Research
Network Canada (HDRN) or Health Data Research UK. Similarly, comparing various approaches is often a fruitful
way to identify the best approaches and understand what works, why, and how to scale the promising projects. It can
also be a way to amass a critical number of observations in the context of rarer diseases for example. Nevertheless,
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working with data from multiple data sources, from multiple organisations and located in multiple jurisdictions
poses significant challenges.

Traditionally, the analytical methods used by researchers in the healthcare domain and others have relied on
data pooling (sometimes referred to as data centralisation): all required data is physically copied to a single location
where analysis can take place. However, when working with data from multiple jurisdictions (even when part of the
same country like the Canadian provinces and territories), data pooling is often very difficult if not impossible for
ethical, legal and social acceptability reasons.

There is, therefore, a pressing need to offer analytical methods allowing the analysis of such data without
requiring the need to physically copy the data in a central location.

1.2 Distributed Analysis
More formally, this paper is concerned with frameworks where the data needed for a statistical analysis consists

of the data about n individuals (referred to as the analytical dataset), which are not all stored in a single source but are
partitioned among K locations which will be called nodes hereafter. The mereological sum of all the data held at each
node therefore forms the analytical dataset. Data can be partitioned horizontally or vertically (or in a mixed way).
- A horizontal partition implies that all data pertaining to a given individual can be found in a single node. If we
assume that patients receive care only in one province, Canadian provincial health administrative datasets hosted
by organizations like Population Data BC, ICES in Ontario or the Manitoba Centre for Health Policy (MCHP) in
Manitoba can be part of a horizontal partition. A clinical trial where each recruiting site captures all data for a given
subject is another example.
- A vertical partition occurs when all data of a certain type is available in a single node for a group of individuals.
A classic example is a hospital with its various information systems. All pathology results can be found in the
pathology system, all billing information can be extracted from the finance system, all X-rays are accessible in the
picture archiving and communication system (PACS), etc. But to get the full picture of the care received by a patient,
multiple systems need to be interrogated. Similarly in the research setting, health administrative data may be in a
provincial data centre and genomics data could be held in a research institute.

A mixed partition occurs when both principles partly apply: some individuals may have their data spread out
across nodes, and different individuals may be present in different nodes.

1.2.1 Assumptions

The difficulties in conducting analyses on a large scale mentioned above are often associated with horizontally
partitioned data, and the current work focuses on this type of partition. The methods presented in this article might
therefore not be directly applicable to vertically partitioned data.

One group of approaches often labelled as distributed analysis involves calculations at each participating node
and exchanges of the resulting aggregated statistics with a coordinating centre (CC), which can itself also perform
additional calculations based on the received aggregated statistics. The CC can be an organisation not responsible for
a data node or a data node taking the additional role of CC for a given analysis.

It is important to note that whether in the more traditional way of data pooling or using distributed approaches
(where the data is not copied centrally), data sources will be different on multiple levels. They will represent
information using data models with significant variability in terms of structure and technology, but also in terms of
semantics. This situation also leads to heterogeneous data where the presence of predictors and outcomes is likely
to be different in different nodes. Different approaches (e.g. data mediation or extract-transform-load) have been
developed to address these issues, and the current work assumes that one of them has been applied so that the data
nodes mentioned hereafter are assumed to share the same structure, the same technological syntax and the same
semantics as well as no missing data.

1.2.2 Horizontally Partitioned Statistical Analytics

In what follows, the field that pertains to the statistical analysis of horizontally partitioned and semantically
homogeneous data that cannot be consolidated into a central location will be called Horizontally Partitioned Statistical
Analytics (HPSA).

Methodological contributions to this field have arisen from several streams of literature. Meta-analysis and
meta-regression methods (see e.g. [45]) can be viewed as part of HPSA, e.g. by considering that each node-specific
dataset belongs to a different "study". However, their scope is narrower compared to HPSA because they typically
assume that only established study-level estimates are available as data. Conversely, HPSA allows for the sharing
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of additional summary statistics between the nodes and the CC, such as gradients and Hessians to ensure the best
possible performance at the global level. Since meta-analysis does not leverage any supplementary information that
could be obtained from studies with access to patient-level data, it can be susceptible to biased estimation, especially
in settings with rare outcomes or in the presence of data nodes with limited sample sizes [14]. As meta-analysis and
meta-regression methods have been extensively covered in the literature, approaches specifically designed for the
analysis of already-established study-level estimates will not be discussed hereafter.

An important research community that has generated a significant amount of analytical contributions is concerned
with the massive data setting. There, a dataset often cannot be processed by a single server and is therefore split
across multiple machines, which are then considered as nodes able to perform computations and send aggregated
results to a CC tasked to fit a global model from them. The methodological avenues proposed in this setting share
similarities with the ones designed for the multi-research facility setting involved in LHS, but also have important
differences. For example, in the massive data setting, the experimenter has control over the distribution of individuals
across nodes, which is typically not the case in multi-research facility studies. So while these approaches share
mechanistic similarities and have been suggested as options to consider in the healthcare domain, some hypotheses
may not hold. In regression settings, it is often reasonable to assume that the regression link between the response
and covariate predictors is the same across nodes. However, assuming that the sampling distribution of covariates
involved is equal across nodes is unrealistic in healthcare, particularly due to the presence of data centres that
may systematically involve different types of patients. For example, certain clinics may predominantly serve older
individuals. While this may not affect the estimation of parameter values, it can have implications for computing
confidence intervals to ensure the validity of inferences.

So far, two reviews discussing methods applicable to horizontally partitioned data have been published in the
literature [18][22]. However, their focus is on the massive data setting, which works almost invariably under the
assumption of even sampling distribution of covariates and equal sample sizes across nodes, and statistical inference
tasks beyond parameter estimation are barely covered. This makes them less helpful for healthcare research purposes
since most studies involving data analyses rely on confidence intervals or hypothesis testing in settings where
predictors’ distribution and sample sizes vary across nodes.

1.3 Contemporary challenges in HPSA
The problem is threefold. First, there is a need to raise awareness regarding the existence of HPSA approaches

among researchers aiming at undertaking statistical analyses from horizontally partitioned data, especially in
healthcare. The reflex is often to request data pooling because it is perceived as the sole option. This has been the
tendency of requests made by researchers to to HDRN Canada. Practitioners are usually concerned with finding
the most appropriate statistical model that will take into account as many of the features of their specific context of
application as possible. Consequently, a clear and unifying mapping of the state of the HPSA field is needed for them
to be informed of the scope of existing methods available for their analyses to see whether alternatives to pooling
exist.

Second, as underlined above, methodological contributions came from research fields whose working assumptions
can be fundamentally different from the ones researchers would be willing to assume in healthcare research. To
ensure proper use of statistical inference techniques, it is necessary that the underlying assumptions of existing
methods be adequately identified and understood. If necessary, these methods should be adapted to suit the specific
requirements of healthcare applications, thereby ensuring accurate and reliable results.

Third, data custodians have to be properly informed on data-sharing requirements entailed by the use of a
specific HPSA method applicable to a given research setting. While HPSA avoids the complexities of pooling data,
there are still flows of information that have to be acceptable to data stewards. However, even in basic statistical
scenarios, available methods are often presented in a way that makes them challenging to compare in terms of
information-sharing requirements and operational complexity. Therefore, there is a need for clearer and more
accessible presentations of these methods to facilitate decision-making regarding data sharing and operational
implementation.

Although it would be ideal to offer managers a comprehensive operational workflow for each identified method
to evaluate the information shared and execution complexity, with their accompanying underlying modelling
assumptions, the abundance and diversity of available approaches make it unfeasible to accomplish this in a single
paper. In fact, methods often differ in terms of their targeted application beyond their distributed aspect. For
example, differences may exist in the studied model (e.g., linear, logistic or Cox regression, additive models),
the dimensionality/sparsity of the predictor variable space, use of regularization or shrinkage, the presence of
missingness, confounders, imbalances, heterogeneity, etc.
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1.3.1 Objectives

The objectives of this article are:
O1 To identify and map, from the literature, methodological approaches that make it possible to perform confidence
intervals estimation and hypothesis testings from a horizontally partitioned dataset;
O2 Among the approaches identified, to describe the ones that allow to conduct general linear model analyses, and
to identify their distributional assumptions;
O3 Based on the approaches identified for GLM-based inferences, to present methods adapted to the setting of
uneven sampling distributions across nodes, and to compare them in terms of information-sharing requirements and
operational complexity.

A scoping review methodology was chosen to achieve objective O1 of mapping the state of the field of HPSA that
pertains to inference procedures. For our second objective (O2), we identified, from the articles selected from the
literature search, the ones that presented a methodological framework for conducting statistical inference procedures
from a GLM with horizontally partitioned data. We then used these frameworks to derive and describe GLM
estimators that are applicable to horizontally partitioned datasets. For each identified method, we analyzed and
reported its communication workflow and the distributional assumptions. For our third objective (O3), we first used
statistical theory to adapt the identified procedures to the unequal sample size and uneven covariate distribution
setting. Algorithms and mathematical expressions for the quantities involved are reported. For conciseness, we
present mathematical formulas for estimation procedures of confidence intervals only. Expressions involved for
hypothesis testings are similar and can be deduced following the close connecting between confidence intervals and
hypothesis tests in GLMs, see e.g. [1].

The mathematical description of the GLM setting considered for this analysis is described below, along with
mathematical notations to be used.

1.4 Mathematical framework
In the following, lowercase bold letters will represent vector-valued quantities, while uppercase bold letters will

denote matrices. The jth element of any vector a ∈ Rp will be denoted as [a]j. Similarly, the entry at position (j, l)
of any matrix A ∈ Rp×p will be denoted as [A]jl . If g is a real-valued and invertible function, we will use g−1 to
represent its inverse. Additionally, if fθ is a real-valued function that depends on a parameter vector θ and is twice
continuously differentiable, ∇θ fθ and ∇2

θ fθ will respectively indicate the gradient and Hessian matrix of fθ with
respect to θ.

1.4.1 Model mathematical assumptions

A mathematical depiction of the horizontally partitioned data framework studied in this paper is as follows.
There are n individuals horizontally partitioned across K data storage nodes. Each node’s dataset is denoted by
D(k) = {z(k)i = (x(k)1i , . . . , x(k)pi , y(k)i )⊤}n(k)

i=1 , where 1 ≤ k ≤ K. Here, z(k)i represents the measurements on the ith

individual at node k, where y(k)i ∈ R denotes their response variable and [x(k)1i , . . . , x(k)pi ]
⊤ ∈ Rp denotes their

covariate vector. The total sample size at node k is denoted by n(k). The combined datasets D(1), . . . ,D(K) make up
the whole dataset without any duplicated individuals, indicating that ∑K

k=1 n(k) = n.

Throughout the analysis, it is assumed that the z(k)i ’s are independent across 1 ≤ i ≤ n(k) and 1 ≤ k ≤ K, and

there is no missing data. Additionally, the size of the covariate space (i.e., the dimension of [x(k)1i , . . . , x(k)pi ]
⊤, which is

equal to p representing the number of features to include as predictors in the GLM) is assumed to be low, eliminating
the need for regularization or variable selection. Finally, it is assumed that each node possesses a non-negligible
proportion of the whole dataset. Specifically, for each k ∈ {1, . . . , K}, the quantity n(k)/n is bounded away from 0
and 1 as the sample size n tends to infinity, denoted as n(k)/n → p(k) ∈ (0, 1).

1.4.2 Mathematical description of the GLM framework

The formulation of the GLM considered in this article encompasses various commonly used regression models
such as linear regression, logistic regression, Poisson regression, and probit models. It assumes that the density or
probability mass function of each response variable (known as the random components) belongs to the exponential
family of distributions. Within this formulation, the (conditional) mean of the response variable is expressed as
a function of a linear combination of the corresponding covariate vector. Formally, it assumes that there exist
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unknown parameters β⋆ ∈ Rp+1 and ϕ⋆ > 0, and known model-specific functions b, c, g, h such that with x(k)i =

[x(k)0i , x(k)1i , . . . , x(k)pi ]
⊤ and x(k)0i = 1,

y(k)i | x(k)i ∼ f (· ; x(k)i ,β⋆, ϕ⋆) ,

where, for any β = [β0, β1, . . . , βp]⊤ ∈ Rp+1 and ϕ,

f (y ; x(k)i ,β, ϕ) = exp

[
y h(β⊤x(k)i )− b

{
h(β⊤x(k)i )

}
ϕ

+ c(y, ϕ)

]
. (1)

In formula (1), b maps real numbers to real numbers and is such that b′
{

h(β⊤x(k)i )
}
= E(y(k)i | x(k)i ) = g−1(β⊤xk

i ),
with b′(x) = d

dx b(x). In this framework, g is called link function, the term h(β⊤xk
i ) is usually referred to as the natural

parameter and b as the cumulant function. ϕ is often called the dispersion parameter, and is either known (e.g. with
ϕ = 1) or unknown. When h(x) = x (i.e. h is the identity function), the link g is called canonical.

The logistic regression model is obtained upon taking ϕ = 1, h(x) = x, b(x) = log(1 + ex), c(y, ϕ) = 0 and
g(x) = log{x/(1 − x)}. The linear regression model with homoskedastic residual error variance ϕ is derived upon
setting h(x) = x, b(x) = x2/2, c(y, ϕ) = −y2/(2ϕ)− log(2πϕ)/2 and g(x) = x. Hence, both the logistic and the
linear regression models rely on a canonical link function in the exponential family distribution.

2 Materials and Methods

2.1 Methodology related to objective O1
Scoping reviews are well-suited to efficiently map key concepts within a research area [2]. They are widely

acknowledged for their ability to clarify working definitions and conceptual boundaries in a specific topic or field [39],
facilitating a shared understanding among researchers regarding the status of the research area. These considerations
make the scoping review methodology well-designed to achieve objective O1.

Scoping studies utilize systematic searches of relevant databases, employing specific keywords to define the
boundaries of the research field. However, identifying these keywords can be challenging, particularly when relevant
papers are scattered across different research streams or in independent clusters that do not reference each other. To
address the risk of overlooking significant methodological contributions due to a limited number of keywords, a
snowballing literature search was initially conducted to generate a comprehensive list of keywords related to HPSA.
The scoping review then proceeded with a systematic literature search using the identified keywords. It’s worth
noting that, since the planning of the scoping study is independent of the search approach, the guidelines presented
in [2] are still appropriate.

2.1.1 Methodology pertaining to the snowballing keywords search

Snowballing is generally used as a literature search method aiming at identifying papers belonging to a given
field [54]. It typically consists in three steps:

(1) Initiate searches in prominent journals and/or conference proceedings to gather an initial set of papers.
(2) Conduct a backward review by examining the reference lists of the relevant articles discovered in steps 1 and 2

(continue iterating until no new papers are found).
(3) Perform a forward search by identifying articles that cite the papers identified in the previous steps.

To avoid selection bias, the initial set of papers for the snowballing approach in (1) is sometimes generated
through a search in Google Scholar (see e.g. [23]). The latter strategy was used here too.

As mentioned earlier, here, the snowballing search strategy was used in preparation for the application of the
scoping review protocol, with the goal of identifying relevant keywords. Specifically, the starting set of papers was
assembled by screening titles and abstracts from the first 50 papers generated through a Google Scholar search using
the strings distributed inference and federated inference. The main inclusion criterion was "presents, applies or discusses
a statistical inference method to analyse horizontally partitioned data". Then, the backward and forward snowballing
steps approaches were applied.

From the set of keywords found in the selected papers, a list of those relevant to HPSA but not directly associated
with any specific method was retained for the scoping review step. It is worth noting that, since the objective of
the scoping review is to identify statistical inference methods for horizontally partitioned data, keywords linked to
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method identifiers have to be excluded from the retained list to avoid pre-selection bias in the scoping review phase
of this project.

Selected keywords that were identified from the snowballing literature search are distributed algorithms, distributed
estimation, distributed inference, distributed learning, distributed regression, federated inference, federated estimation, federated
learning, privacy-protecting algorithm, privacy-preserving algorithm and aggregated inference.

2.1.2 Methodology pertaining to the scoping review

The scoping review’s methodological framework of Levac et al. [26] (see also [2]) was followed. The steps are
briefly described below. A detailed protocol is available in Appendix A.

Search strategy We conducted a comprehensive search across four bibliographic databases, namely (1) MEDLINE,
(2) Scopus, (3) MathSciNet, and (4) zbMATH, to encompass the interdisciplinary nature of the topic and identify
relevant research articles. Our research strategies were based on two key concepts: distributed data and statistical
inference. In addition to the keywords obtained from the snowballing step, we incorporated terms like confidence
interval to target articles focusing specifically on statistical inference. To ensure the inclusion of recent advancements,
our search was limited to papers published from 2000 onwards. This cutoff date was chosen to account for the
emergence of distributed data, the prevalence of massive datasets, and advancements in technology. It was set
conservatively to capture any early-developed methods and ensure comprehensive coverage of the topic.

Selection process After completing the primary research, a two-stage selection process was employed. Initially,
two authors (MPD, FCL) collaborated to screen all articles identified through the research strategy based on their
titles and abstracts. Subsequently, the full texts of the selected articles were independently reviewed by both authors
to finalize the selection process. This rigorous approach ensured a thorough evaluation of each article’s relevance
and eligibility for inclusion.

The primary inclusion criterion for the selection process was as follows: Presents a solution for conducting inferential
statistics on horizontally partitioned data. This criterion was utilized to ensure that the chosen articles specifically
addressed the methods associated with performing statistical inference on horizontally partitioned data.

The following exclusion criteria were derived directly from objective O1:
- Does not address inferential statistics, including confidence intervals, hypothesis testing, or asymptotic normality.
- Does not provide a methodological contribution.
- Presents a solution for encryption or secret-sharing.
To ensure the inclusion of validated approaches, the selection process only considered published papers that had
full-text availability in English or French. Discussion papers were excluded as they do not present novel methods or
approaches.

Exclusion was considered if any of the exclusion criteria were met or if any of the inclusion criteria were not met.
Finally, the references of each included article from the databases were assessed to identify any relevant articles

that may not have been captured during the initial screening due to specific keywords. This additional step in the
selection process was necessary given the broad range of vocabulary used to describe applicable approaches in our
context.

Data extraction and analysis plan Data extraction for the included articles was conducted by one author (MPD)
and followed a collectively developed data-charting form. Model type (parametric regression, semi-parametric regression,
non-parametric regression or not specific to regression) and number of communication from CC to nodes (0 or ≥ 1) were
among the data extracted. All methods from the included articles were subsequently classified according to their
specified characteristics, as outlined in the protocol. Additionally, as part of the analysis, we conducted a screening
of the general distributed approaches commonly employed across all specific methods.

2.2 Methodology related to objective O2
To achieve objective O2, three steps were taken. First, we identified methodological approaches from articles

included in the scoping review that enable parameter and confidence interval estimations from horizontally par-
titioned data within a standard GLM framework. Methods designed specifically for the particular cases of linear
or logistic regression were also reported but were not analyzed in detail. Second, we extracted workflows for each
approach to determine the information exchanged between data storage nodes and the CC. Third, we analyzed the
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mathematical assumptions necessary for parameter estimation and the consistency of confidence interval procedures.
We specifically reported the assumptions related to the distribution of node-specific covariates.

2.2.1 Identification of the approaches

To identify approaches that enabled the fitting of any GLM using horizontally partitioned data, two authors (FCL,
MPD) independently assessed all articles included in the scoping study. The reviewers specifically looked for articles
that discussed approaches applicable to the GLM class described in section 1.4, including likelihood-based methods,
M-estimation, and estimating equations. Additionally, we identified and reported articles that specifically focused
on regression settings for linear or logistic regression. However, unless the method described was considered easily
adaptable to the GLM framework, these articles were not retained for detailed analysis.

A method was selected if it provided an algorithm for fitting GLMs using horizontally partitioned data, aligning
with the characteristics outlined in section 1.4. In cases where an article presented asymptotic normality results for
the estimators but did not provide an estimator for the asymptotic variance-covariance matrix, the article was still
retained, and an estimator for the asymptotic variance was derived using the available calculated quantities.

Since the GLM framework in section 1.4 assumes no missing values, low dimensionality, and a small number
of nodes relative to the total sample size, any terms related to these specific conditions mentioned in an article’s
methodology were disregarded. Consequently, the calculations for confidence intervals were adjusted accordingly. If
an article solely focused on one of these aspects without contributing to the overall methodology, it was not included
in the final selection.

Methodological components regarding parameter estimation and confidence interval procedures were extracted
from the screened articles. Specifically, the focus was on understanding how parameters should be estimated within
a horizontally partitioned framework and how confidence intervals should be computed for these parameters. For
each article, the formulas related to quantities shared among the nodes and quantities calculated by the CC were
derived and analyzed. These formulas were examined within a workflow that indicated the necessary circulation of
information for the procedure to be executed.

Reported results The rationale behind each method that was deemed suitable for fitting GLMs was documented,
along with the corresponding reference to the paper included in the scoping study where the method was introduced
or discussed.

Articles that discussed approaches specifically applicable to the cases of linear or logistic regression were also
mentioned, but not elaborated on in detail.

2.3 Methodology related to objective O3
In most statistical settings with horizontally partitioned data, it is commonly assumed that the sample sizes of the

data nodes are equal and that the distribution of covariates is the same across all nodes. However, when the number
of nodes is fixed and relatively small compared to the sample sizes, it is possible to adapt a particular approach to
handle situations where the sample sizes and covariate distributions vary across nodes. This can be achieved by
combining the theoretical arguments presented in the original article of the method with the principles of asymptotic
statistics theory concerning maximum likelihood estimation.

To adapt a given approach for situations where sample sizes and covariate distributions differ across nodes, the
following steps were taken:

(1) The formulas for the relevant quantities were modified to emphasize the changes caused by this scenario. It
was ensured that the adapted quantities were equivalent to their counterparts presented in the original article
for an equal sample size setting.

(2) Using asymptotic theory, an asymptotic normality result was derived for the estimators of interest, assuming a
set of assumptions that accommodated potential variations in sample sizes and covariates sampling distribution
across nodes, while still enabling meaningful theoretical arguments.

(3) Formulas for the asymptotic variances were derived. Statistical theory on maximum likelihood estimation was
employed to obtain consistent estimators for asymptotic variances. The latter estimators were derived under
the constraint that they had to be calculated without requiring any additional communication round between
the CC and the nodes. Thus, throughout the adaptation process, the communication workflow remained
unchanged compared to the original method.
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These steps ensured the mathematical correctness of adapting the approaches to handle different sample sizes
and covariate distributions across nodes. Importantly, the adaptation maintained consistency with the original
method’s communication workflows.

Statistical estimates of interest A standard GLM typically includes one or two unknown parametric components.
The first are the β parameters, which are commonly assumed to be unknown. The second parameter is the nuisance
parameter ϕ, which can either be known (e.g., in logistic models) or unknown (e.g., in linear models). In practical
applications, when ϕ is unknown, its estimated value is often not the main focus, although the latter is necessary to
estimate the asymptotic variance of the β parameter estimates.

In the upcoming analysis, we will assume that the parameter ϕ is unknown and estimated using the recommended
approach in the selected methods. However, in the case where ϕ is known, the process becomes simpler. This
involves substituting the known value of ϕ and disregarding the estimation step. It is important to highlight that
estimating ϕ requires additional information to be shared between the nodes and the CC, but it does not necessitate
any extra communication round between them.

The estimation process for both the β parameters and the ϕ parameter are discussed. Additionally, we explained
how to compute an estimator for the asymptotic variance specifically for the estimator of β⋆. It is important to note
that the results presented below can be modified and extended to develop a similar procedure for estimating ϕ⋆.

Using these results, based on an estimator of β⋆, say β̂ and a formula for the estimator of the asymptotic variance-
covariance matrix involved in its associated asymptotic normality result, say Σ̂, Wald-type (1 − α) confidence
intervals can be computed for each component of β⋆ using the formula

[β̂]j ± z1−α/2

√
[Σ̂]jj/n for j ∈ {0, . . . , p + 1} .

Reported results For each approach considered, we presented the formulas necessary to compute the final estimates
of the β parameters and their corresponding confidence intervals. The presentation of these formulas was designed
to emphasize the communication workflow. Furthermore, a comprehensive algorithm was provided, outlining the
step-by-step process.

In addition, the asymptotic normality of the β parameter estimators was stated, accompanied by the formula for
the asymptotic variance and its consistent estimator. Detailed proofs for these results can be found in the Appendix
B.

3 Results

3.1 Results related to objective O1

3.1.1 Search outcomes from the scoping review

As presented in Figure 1, a total of 1407 articles were initially identified across all four databases after removing
duplicates. Subsequently, a majority of these articles (n=1274) were excluded based on the evaluation of titles and
abstracts, leaving 133 articles for eligibility assessment through full-text review. Following this assessment, 29 articles
were included from the databases. Additionally, by reviewing the references of the included articles, 12 more articles
were identified and added to the study.
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abstracts
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Figure 1: Article selection process for the scoping review. Detailed inclusion and exclusion criteria are described in
the text and in the protocol.

Among the additional 12 articles obtained through the assessment of references from included articles, it is
observed that most of them did not mention statistical inference or related terms in their abstracts (e.g., [14][15][41]).
Consequently, these articles were not captured in the initial database search results. Furthermore, some articles
directly referred to the specific method used without including any keywords related to horizontally partitioned
data in their abstracts or titles (e.g., [4][11]), which greatly reduced the chance of initially identifying them. However,
during the process of reviewing the references of included articles, all the relevant papers that were initially identified
through the snowballing strategy were eventually retrieved either through the search strategy or the selection process
based on the references of included articles.

3.1.2 Results of the scoping review

Each article included in the scoping review put forth one or multiple methodological approaches pertaining to
objective O1. Similarities are differences regarding the communication schemes involved and their background of
origin are summarized below.

First, all selected articles discuss one or more statistical procedures that operate on horizontally partitioned data
using one of the communication schemes depicted in Figures 2 to 5.
- In Workflow I, as shown in Figure 2, each node calculates summary statistics from its own samples, and the results
are sent to the CC. The CC combines the information provided by each node to produce the final estimates. This
communication approach is commonly referred to as a "one-shot" or "non-iterative" in the literature, although not
always consistently.
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- In Workflow II, as shown in Figure 3, multiple communication rounds are allowed between the CC and the data
storage nodes. This allows for iterative interactions between the nodes and the CC to refine the estimates.
- Some approaches fundamentally differ from the two previous workflows by assigning a different role to one of the
nodes, say node 1, compared to the others. These approaches operate using Workflow III as illustrated in Figure 4,
where node 1 follows a distinct communication pattern compared to the other nodes. In the papers included in the
scoping review that discuss these approaches, node 1 is invariably designated as the CC. However, in the context of
the current paper, their roles were distinguished. The additional step performed by the CC, which involves data
aggregation, can be particularly well-suited for privacy protection purposes in practice.
- The particular setting shown in Workflow IV in Figure 5 requires two back-and-forth communication exchanges
between each node and the CC at each iteration. This communication pattern distinguishes it from the other
workflows.

In light of the preceding discussion, from an operational standpoint, two categories of workflows emerge. On one
hand, there are workflows that do not necessitate any communication from the CC to the nodes, which are captured
in Workflow I. On the other hand, there are workflows that involve one or more communication exchanges from the
CC to the nodes, which are captured in Workflows II, III and IV.

... R

Figure 2: Workflow I.

... ... R

Figure 3: Workflow II.

... ... R

Figure 4: Workflow III.
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... ... R

...

Figure 5: Workflow IV.
In order to emphasize similarities among the methods presented in these articles and facilitate the identification of

methods suitable for specific purposes, a systematic classification is presented in Table 1. The articles are categorized
based on the type of models employed and the number of communications from the CC to the individual nodes.

Table 1: Classification of articles included in the scoping review.

Type of model 0 communication from CC to nodes ≥ 1 communication from CC to
nodes

Parametric regression Basiri, Ollila and Koivunen [5]; Bat-
tey et al. [6]; Fan, Guo and Wang
[17]; Guo, Sun and Jiang [19]; Chen
and Xie [11]; Lin and Xi [29]; Rosen-
blatt and Nadler [41]; Zhang, Duchi
and Wainwright [60]; Chang, Bu and
Long [9]; Wu et al. [56]; Hector and
Song [20]

Huang and Huo [21]; Jordan, Lee
and Yang [24]; Mozafari-Majd and
Koivunen [35][36]; Yue, Kontar and
Gómez [58]; Duan, Ning and Chen
[13]; Duan et al. [14]; Tong et al. [47];
Di, Wang and Lian [12]; Edmond-
son et al. [16]; Luo and Li [33]; Shu,
Young and Toh [44]

Semi-parametric regression Zhao, Cheng and Liu [61]; Park et al.
[38]

Luo, Sun and Zhou [32]; Duan et al.
[15]

Non-parametric regression Liu, Shang et Cheng [30]; Zhang et
al. [59]; Volgushev, Chao and Cheng
[51]

Wang et al. [52]

Not specific to regression Atta-Asiamah and Yuan [3];
Minsker [34]; Lin and Xi [28];
Bruce et al. [8]; Chen and Peng
[10]; Nezakati and Pircalabelu [37];
Banerjee, Durot and Sen [4]; Shi, Lu
and Song [43]; Wu et al. [55]

Lai, Hanning and Lee [25]

The majority of the methods were published within the methodological setting of Big or Massive data/Multi-
machine, while some were reported within the context of healthcare research. Within the Big or Massive data/Multi-
machine methodological setting, many methods involve an initial step of random data partitioning among multiple
machines. However, certain methods assume a scenario where data is already stored on separate machines, as
observed in [17] and [24]. Furthermore, it is worth noting that no articles published prior to 2010 were included,
aligning with our initial hypothesis regarding the identification of contemporary methodological settings. The
majority of the included articles (30 out of 41) were published after the year 2018.

The majority of articles address a setting where a CC exists external to the nodes, as exemplified by articles such
as [28], [51], and [58]. In contrast, as mentioned above, some articles designate one of the nodes to assume this central
role, as demonstrated in [9].

The methods identified through our search strategy share a common characteristic of utilizing a global model
that incorporates population-level parameters. In some cases, these parameters may also include node-specific
components to accommodate node-specific statistical heterogeneity in the outcome-predictors relationship, which
captures deviations from the population-level conditional probability distribution of the outcome given the predictors.

A few of the reported methods have the capability to yield results identical to those obtained if the individual
line data were pooled from all nodes, see e.g., [56] and [44].
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3.2 Results related to objective O2
Six approaches were selected as applicable to the standard GLM framework discussed in 1.4. They all assumed

that nodes had equal sample sizes and identical distributions for the covariates.

3.2.1 Simple averaging

One of the simplest methods for horizontally partitioned data analysis, often referred to as the "simple averaging
method" or the "divide-and-conquer" approach, has been extensively studied in the literature, see [60] and [41] which
were included in our scoping study. It operates through Workflow I in Figure 2. In this approach, node-level model
estimates are gathered and averaged at the CC to generate the final estimates.

In the context of GLM, each node is initially tasked with calculating the maximum likelihood estimator (MLE) of
the β⋆ and ϕ⋆ parameters using their respective data. Additionally, the Hessian matrix of the log-likelihood function
with respect to the β parameters must be computed for constructing Wald-type confidence intervals. The estimated
parameters and the computed Hessian matrix are then transmitted to the CC.

The final parameter estimates of β⋆ are obtained by averaging the node-specific estimates, while the local Hessians
and estimates of ϕ⋆ are utilized to compute an estimator for the asymptotic variance.

3.2.2 Single distributed Newton-Raphson updating

The single distributed Newton-Raphson updating method is an iterative procedure that includes an additional
communication round between the CC and the nodes, compared to the simple averaging method. It was originally
proposed as the "distributed one-step" method in [21], but here it is referred to by a different term to avoid any
confusion regarding communication complexity. This method operates using Workflow II, as depicted in Figure 3,
with T = 1 (where T represents the number of cycles in the iteration scheme). It enhances the simple averaging
estimators by incorporating a single distributed Newton-Raphson updating step.

In the context of GLM, each node first calculates the MLE of β⋆ and ϕ⋆, and transmits them to the CC. The
CC aggregates these estimates using averaging and sends the result back to the nodes. The nodes then compute
the gradient and the Hessian matrix of the log-likelihood function, evaluated at the received β⋆ and ϕ⋆ estimates.
Subsequently, the gradient and the Hessian matrix are sent back to the CC, which averages them and computes a
Newton-Raphson updating step based on the simple averaging estimates. An estimator for the asymptotic variance
can be calculated by utilizing the received Hessian matrices and the updated estimate of ϕ⋆.

3.2.3 Multiple distributed Newton-Raphson updatings

The multiple distributed Newton-Raphson updating method leverages the fact that, for standard GLMs, the
algorithm typically used to calculate the MLE of β⋆ and ϕ⋆ in a centralized pooled setting can be executed in a
distributed manner without any loss of information. This is possible because the algorithm relies on Newton-Raphson
updatings (or sometimes Fisher scoring updatings) that are expressed using two sums of node-specific summary
statistics, namely local gradients and local Hessian matrices of the log-likelihood function, evaluated at the β⋆ and
ϕ⋆ estimates from the previous iteration. A version of this method is proposed in [56] under the logistic regression
framework. It operates through Workflow II in Figure 3 for a general T ≥ 1.

3.2.4 Distributed estimating equation

The class of estimating equations estimators is vast and encompasses a broad range of statistical estimation
techniques, including likelihood-based approaches that rely on searching for critical points. The fundamental idea
behind estimating equations methods is to establish a system of equations that involve both the sample data and the
unknown model parameters. These equations are then solved to determine the parameter estimates. MLEs, which
are obtained by setting the gradient of the log-likelihood function with respect to the unknown parameters equal to
zero, belong to the class of estimating equations estimators.

The distributed estimating equations approach involves gathering summary statistics from nodes at the CC level,
enabling the reconstruction of the estimating equations, or more commonly, an approximation of them that would
have been obtained in a pooled centralized setting. This method is discussed in [29] and operates using Workflow I,
as depicted in Figure 2.

In the context of GLMs, the distributed estimating equations approach involves initially assigning each node the
task of computing and sending their local MLEs and the Hessian matrix of their local log-likelihood, evaluated at
those MLEs, to the CC. The CC utilizes these received quantities to reconstruct the global estimating equations or
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an approximation thereof. This reconstruction ultimately leads to an analytical solution for obtaining the resulting
estimates. Confidence intervals are computed using a combination of the Hessian matrices and the final estimator of
ϕ⋆.

It is important to note that when this approach is applied in the context of linear regression, it enables the
acquisition of β⋆ parameter estimates that are identical to those obtained in a pooled centralized setting.

3.2.5 Distributed estimation using a single gradient-enhanced log-likelihood

This method differs fundamentally from the ones discussed thus far, as it involves a distinct role for one particular
node in obtaining model parameter estimates. It operates using Workflow III, as depicted in Figure 4, and was
proposed in [24] under the name "Surrogate likelihood". This approach relies on an approximation of the global
likelihood by viewing it as an analytic function. It expands the global likelihood into an infinite series around an
initial guess β̂SGE,0 and replaces the higher-order derivatives (order ≥ 2) of the global likelihood with those of a
Taylor expansion of a node’s (e.g., node k = 1) local likelihood around the same value. By following this procedure,
the so-called surrogate likelihood can be solved using data from node k = 1 and aggregated gradients from nodes
k ∈ {2, . . . , K}.

In the context of GLM, the CC first collects the necessary information to compute initial estimates for the
parameters β⋆ and ϕ⋆. These initial estimates can be obtained through various approaches, such as a simple
averaging estimator or the MLEs computed using data from node 1. These initial estimates are then transmitted
to nodes k ∈ {2, . . . , K}. Each of these nodes calculates the gradient of the log-likelihood function, evaluated at
the received estimates, and sends it back to the CC. The CC averages these gradients and sends the result to node
1. Node 1 solves a gradient-enhanced log-likelihood using its own data and the received average gradient. The
resulting estimate is sent back to the CC as the final estimate. To compute confidence intervals, each node must send
the Hessian matrix of its local log-likelihood function, evaluated at the initial received estimate.

The steps related to estimation can be repeated multiple times.

3.2.6 Distributed estimation using multiple gradient-enhanced log-likelihoods

This method is in the spirit of the distributed estimation using a single gradient-enhanced log-likelihood approach
described above, except that all nodes have to solve a gradient-enhanced log-likelihood instead of only one of them.
Results pertaining to statistical inference are discussed in [17] under a penalized setting. A non-penalized version of
this method was introduced in [42] although the latter did not discuss confidence intervals or hypothesis testing, and
hence was not included in our scoping review. It operates through Workflow IV depicted in Figure 5.

3.3 Results related to objective O3

In what follows, let the log-likelihood of the data stored in node k (using D(k)) be denoted by

ℓ(k)(β, ϕ) =
1

n(k)

n(k)

∑
i=1

{
y(k)i h(β⊤x(k)i )− b{h(β⊤x(k)i )}

ϕ
+ c(y(k)i , ϕ)

}
.

Also, letD(k)(β) ∈ Rp+1 be such that

D(k)(β) =
1

n(k)

n(k)

∑
i=1

x(k)i h′(β⊤x(k)i )
[
y(k)i − b′{h(β⊤x(k)i )}

]
, (2)

and define the (p + 1)× (p + 1) matrix V (k)(β) as

V (k)(β) =
1

n(k)

n(k)

∑
i=1

x(k)i (x(k)i )⊤
(

h′(β⊤x(k)i )2 b′′{h(β⊤x(k)i )}

− h′′(β⊤x(k)i )[y(k)i − b′{h(β⊤x(k)i )}]
)

. (3)

Since D(k)(β) = ϕ∇βℓ
(k)(β, ϕ), then, solving the equation D(k)(β) = 0 yields the node-specific MLE of β,

denoted hereafter by β̂(k)
MLE. The matrix V (k)(β) is equal to −∇βD

(k)(β) and relates to Fisher information matrix
through the equation V (k)(β) = −ϕ∇2

βℓ
(k)(β, ϕ).
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Finally, set

E(k)(ϕ,β) =
1

n(k)

n(k)

∑
i=1

[
y(k)i h(β⊤x(k)i )− b{h(β⊤x(k)i )}

]
− ϕ2

n(k)

n(k)

∑
i=1

∂

∂ϕ
c(y(k)i , ϕ) , (4)

and

F(k)(ϕ) =
2ϕ

n(k)

n(k)

∑
i=1

∂

∂ϕ
c(y(k)i , ϕ) +

ϕ2

n(k)

n(k)

∑
i=1

∂2

∂ϕ2 c(y(k)i , ϕ) . (5)

Because E(k)(ϕ,β) = −ϕ2(∂/∂ϕ)ℓ(k)(β, ϕ), when ϕ is unknown, solving the equation E(k)(ϕ,β(k)
MLE) = 0 for ϕ

yields its node-specific MLE of ϕ⋆. We have F(k)(ϕ) = − ∂/∂ϕ E(k)(ϕ,β).

3.3.1 Simple averaging

The simple averaging method follows upon execution of Algorithm 1. First, each data node computes their local
maximum by solving successivelyD(k)(β) = 0 and E(k)(ϕ, β̂(k)

MLE) = 0. To compute the confidence intervals at the

CC level, the entries of the (p + 1)× (p + 1) matrix V (k)
MLE = V (k)(β̂

(k)
MLE) have to be computed from Formula (3) with

β = β̂
(k)
MLE. Then, the set

S(k)
0 =

{
β̂
(k)
MLE, ϕ̂

(k)
MLE,V (k)

MLE

}
(6)

is sent to the CC. The parameter estimates are then aggregated by the CC through averaging. Specifically, the CC
computes

β̂SA =
K

∑
k=1

w(k)β̂
(k)
MLE and ϕ̂SA =

K

∑
k=1

w(k)ϕ̂
(k)
MLE , (7)

where w(1), . . . , w(K) are weights (i.e., w(k) ≥ 0 and ∑K
k=1 w(k) = 1) used to combine each node’s contribution. Often,

weights can be taken proportional to local sample sizes, leading to the choice w(k) = n(k)/n.
Wald-type confidence intervals for β⋆ can be constructed based on the fact that the sequence

√
n(β̂SA − β⋆)

converges in distribution to a centred normal random variable with covariance matrix

ΣSA = ϕ⋆
K

∑
k=1

w(k)2

p(k)
T (k)
β⋆ , where T (k)

β⋆ = E{V (k)(β⋆)} .

See Appendix B.3.3. Since T (k)
β⋆ is consistently estimated by V (k)

MLE and ϕ⋆ by ϕ̂SA, and as p(k) can be estimated by

n(k)/n, it follows that a consistent estimator for ΣSA is given by

Σ̂SA = ϕ̂SA

K

∑
k=1

nw(k)2

n(k)
(V

(k)
MLE)

−1 .

The simple averaging final estimates are then given by

R =
{
β̂SA, Σ̂SA

}
.
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Algorithm 1: Simple averaging inference procedure

Input at the CC level: Weight w(1), . . . , w(K) attributed to each node’s contribution
Step required from each node k ∈ {1, . . . , K}:

Using data in D(k), compute the following quantities:
- MLE β̂(k)

MLE of β⋆ by solvingD(k)(β) = 0;

- MLE ϕ
(k)
MLE of ϕ⋆ by solving E(k)(ϕ,β(k)

MLE) = 0;

- V (k)
MLE = V (k)(β̂

(k)
MLE) using Formula (3) with β = β̂

(k)
MLE

Send to the CC: S(k)
0 = {β̂(k)

MLE, ϕ̂
(k)
MLE,V (k)

MLE}.
Step required from the CC:

Using the received sets of quantities S(1)
0 , . . . , S(K)

0 , calculate

- the simple averaging estimators β̂SA = ∑K
k=1 w(k)β̂

(k)
MLE and ϕ̂SA = ∑K

k=1 w(k)ϕ̂
(k)
MLE ;

- the estimator of the variance-covariance matrix Σ̂SA = ϕ̂SA ∑K
k=1

nw(k)2

n(k) (V
(k)

MLE)
−1.

Output from the CC:
Final estimates: R = {β̂SA, Σ̂SA}

3.3.2 Single distributed Newton-Raphson updating

The single distributed Newton-Raphson updating method follows upon execution of Algorithm 2 with T = 1.
First, the CC gathers summary statistics to compute the simple averaging estimators of β⋆ and ϕ⋆ without their
accompanying confidence interval. Hence, for k ∈ {1, . . . , K}, and with β̂(k)

MLE as above (6), node k sends to the CC
the quantities

S(k)
0 =

{
β̂
(k)
MLE, ϕ̂

(k)
MLE

}
, (8)

which uses them to compute β̂SA and ϕ̂SA using the formulas in (7).
For reasons of convenience that will become clear later, the notation β̂NR,0 and ϕ̂NR,0 will be utilized instead of

β̂SA and ϕ̂SA, respectively. In this notation, the set of values

C1 = {β̂NR,0, ϕ̂NR,0}

is broadcasted to data nodes, which are then tasked to compute and send back the quantities

S(k)
1 =

{
D

(k)
NR,1,V (k)

NR,1, E(k)
NR,1, F(k)

NR,1

}
,

where for any integer t ≥ 1, one defines

D
(k)
NR,t = D(k)(β̂NR,t−1)

V
(k)

NR,t = V (k)(β̂NR,t−1)

E(k)
NR,t = E(k)(ϕ̂NR,t−1, β̂NR,t−1)

F(k)
NR,t = F(k)(ϕ̂NR,t−1, β̂NR,t−1) . (9)

Upon receiving the S(k)
1 ’s from each node, the CC calculates the following weighted averages:

DNR,1 =
K

∑
k=1

w(k)D
(k)
NR,1 , V NR,1 =

K

∑
k=1

w(k)V
(k)

NR,1 ,

ENR,1 =
K

∑
k=1

w(k)E(k)
NR,1 , and FNR,1 =

K

∑
k=1

w(k)F(k)
NR,1 .

This enables the CC to execute Newton-Raphson updates from β̂NR,0 and ϕ̂NR,0, respectively:

β̂NR,1 = β̂NR,0 + V
−1
NR,1DNR,1

and ϕ̂NR,1 = ϕ̂NR,0 + F−1
NR,1ENR,1 . (10)
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It is shown in Appendix B.3.4 that
√

n(β̂NR,1 − β⋆)
D−→ N

(
0, ΣNR

)
where ΣNR =

( K

∑
k=1

w(k)T (k)
β⋆

)−1{
ϕ⋆

K

∑
k=1

w(k)2

p(k)
T (k)

β⋆

}( K

∑
k=1

w(k)T (k)
β⋆

)−1
.

Since T (k)
β⋆ is consistently estimated by V (k)

NR,1 and ϕ⋆ by ϕ̂NR,1, and as p(k) can be estimated by n(k)/n, it follows
that a consistent estimator for ΣNR is given by

Σ̂NR =
( K

∑
k=1

w(k)V
(k)

NR,1

)−1{
ϕ̂NR,1

K

∑
k=1

nw(k)2

n(k)
V

(k)
NR,1

}( K

∑
k=1

w(k)V
(k)

NR,1

)−1

=
(
V NR,1

)−1{
ϕ̂NR,1

K

∑
k=1

nw(k)2

n(k)
V

(k)
NR,1

}(
V NR,1

)−1
.

The method’s final estimates are then given by

R =
{
β̂NR,1, Σ̂NR

}
.

3.3.3 Multiple distributed Newton-Raphson updatings

The multiple distributed Newton-Raphson updatings method follows upon execution of Algorithm 2 with T > 1.
The first communication cycle follows the same procedure as described above for the single distributed Newton-

Raphson updating method. It involves distributively computing a simple-averaging estimator and then performing
a Newton-Raphson iteration starting from this estimator. The Newton descent is calculated as described in Equation
(10).

Formally, the algorithm begins with each data node k sending the set of quantities S(k)
0 as described in Equation

(8) to the CC. Next, the CC calculates the simple averaging estimators using Formula (7), and uses them to initialize
β̂NR, Step=0 = β̂SA and ϕ̂NR, Step=0 = ϕ̂SA.

The following steps are then repeated for a certain number of iterations. At iteration t, starting from t = 1, the CC
broadcasts the values Ct = (β̂NR,t−1, ϕ̂NR,t−1) to the data nodes. The data nodes compute the quantitiesD(k)

NR,t, V
(k)

NR,t,

E(k)
NR,t, and F(k)

NR,t as defined in Equation (9), and send them back to the CC.
The CC then utilizes these quantities to perform a Newton update. Specifically, it calculates β̂NR,t = β̂NR,t−1 +

V −1
NR,tDNR,t and ϕ̂NR,t = ϕ̂NR,t−1 + ENR,t/FNR,t.

If the iterative cycle is repeated until convergence, the resulting estimates of β⋆ are equivalent to the maximum
likelihood estimators derived from pooled data. This is because, in GLMs, for maximum likelihood estimators, if
both the pooled and distributed algorithms are initialized with the same values for β̂NR, Step=0 and ϕ̂NR, Step=0, then
at each subsequent iteration, the distributed Newton update computed by the CC will be identical to the update
obtained in a pooled setting.

For the method to yield consistent estimates, it is not necessary to initialize it with simple averaging estimators.
However, using simple averaging estimators as initialization may speed up convergence, particularly in large sample
sizes, since these estimators are

√
n-consistent.

Let β̂NR,t denote the estimator obtained at convergence. Since it is (nearly) equal to the pooled MLE of β⋆, we can
deduce from Appendix B.3.2 that

√
n(β̂NR,t − β⋆)

D−→ N
(
0, ΣNR

)
where ΣNR =

( K

∑
k=1

w(k)T (k)
β⋆

)−1{
ϕ⋆

K

∑
k=1

w(k)2

p(k)
T (k)

β⋆

}( K

∑
k=1

w(k)T (k)
β⋆

)−1
. (11)

Following the same reasoning used earlier for the single distributed Newton-Raphson update method, we can
consistently estimate the variance-covariance matrix as

Σ̂NR =
(
V NR,t

)−1{
ϕ̂NR,t

K

∑
k=1

nw(k)2

n(k)
V

(k)
NR,t

}(
V NR,t

)−1
.
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Algorithm 2: Distributed Newton-Raphson updatings algorithm

Input at the CC level: Weight w(1), . . . , w(K) attributed to each node’s contribution
Step required from each node k ∈ {1, . . . , K}:

Using data in D(k), compute
- β̂(k)

MLE by solvingD(k)(β) = 0;

- ϕ
(k)
MLE by solving E(k)(ϕ, β̂(k)

MLE) = 0;

Send to the CC: S(k)
0 = {β̂(k)

MLE, ϕ
(k)
MLE}.

Step required from the CC:
Using the received quantities S(1)

0 , . . . , S(K)
0 :

- Calculate β̂SA = ∑K
k=1 w(k)β̂

(k)
MLE and ϕ̂SA = ∑K

k=1 w(k)ϕ
(k)
MLE;

- Initialize β̂NR,t=0 = β̂SA and ϕ̂NR,t=0 = ϕ̂SA.
Execute for t = 1, . . . , T:

Step required from the CC:
Broadcast to nodes: Ct = {β̂NR,t−1, ϕ̂NR,t−1}

Step required from each node k ∈ {1, . . . , K}:
Using data in D(k) and quantities in Ct, compute:
- D(k)

NR,t using Formula (2) with β = β̂NR,t−1;

- V (k)
NR,t using Formula (3) with β = β̂NR,t−1;

- E(k)
NR,t using Formula (4) with ϕ = ϕ̂NR,t−1 and β = β̂NR,t−1;

- F(k)
NR,t using Formula (5) with ϕ = ϕ̂NR,t−1 and β = β̂NR,t−1.

Send to the CC: S(k)
t = {D(k)

NR,t,V
(k)

NR,t, E(k)
NR,t, F(k)

NR,t}.
Step required from the CC:

Using the quantities in S(k)
t , compute

- DNR,t = ∑K
k=1 w(k)D

(k)
NR,t

- V NR,t = ∑K
k=1 w(k)V

(k)
NR,t

- ENR,t = ∑K
k=1 w(k)E(k)

NR,t

- FNR,t = ∑K
k=1 w(k)F(k)

NR,t
Using, β̂NR,t−1, ϕ̂NR,t−1 and the aggregated quantities, update previous parameter estimates
- β̂NR,t = β̂NR,t−1 + V

−1
NR,tDNR,t

- ϕ̂NR,t = ϕ̂NR,t +
ENR,t
FNR,t

Step required from the CC:

Compute Σ̂NR =
(
V NR,t

)−1{
ϕ̂NR,t

K

∑
k=1

nw(k)2

n(k)
V

(k)
NR,t

}(
V NR,t

)−1
.

Output from the CC:
Estimates R = {β̂NR,t, Σ̂NR}
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3.3.4 Distributed estimating equation

The distributed estimating equation algorithm follows upon execution of Algorithm 3. First, each node is
responsible for computing the MLEs β̂(k)

MLE and ϕ̂
(k)
MLE of β⋆ and ϕ⋆, respectively, using its own data. These estimators,

along with the hessian matrix V (k)
MLE = V (k)(β̂

(k)
MLE) and F(k)

MLE = F(k)(ϕ̂
(k)
MLE, are then sent to the CC. The set

S(k)
0 =

{
β̂
(k)
MLE, ϕ̂

(k)
MLE,V (k)

MLE, F(k)
MLE

}
(12)

is transmitted to the CC. The CC calculates the weighted average of the Hessians and the F(k)
MLE values as follows:

V EE =
K

∑
k=1

w(k)V
(k)

MLE and FEE =
K

∑
k=1

w(k)F(k)
MLE . (13)

The parameter estimates can then be calculated as

β̂EE = V
−1
EE

K

∑
k=1

w(k)V
(k)

MLEβ̂
(k)
MLE ϕ̂EE = F−1

EE

K

∑
k=1

w(k)F(k)
MLEϕ̂

(k)
MLE . (14)

It is shown in Appendix B.3.6 that
√

n(β̂EE − β⋆) converges in distribution to a centred normal random variable
with variance-covariance matrix given by

ΣEE =
( K

∑
k=1

w(k)T (k)
β⋆

)−1{
ϕ⋆

K

∑
k=1

w(k)2

p(k)
T (k)

β⋆

}( K

∑
k=1

w(k)T (k)
β⋆

)−1

which is equal to ΣNR. It can be consistently estimated by

Σ̂EE =
(
V EE

)−1
{

ϕ̂EE

K

∑
k=1

nw(k)2

n(k)
V

(k)
MLE

}(
V EE

)−1
.

Algorithm 3: Distributed estimating equations inference procedure

Input at the CC level: Weight w(1), . . . , w(K) attributed to each node’s contribution
Step required from each node k ∈ {1, . . . , K}:

Using data in D(k), compute the following quantities:
- MLE β̂(k)

MLE of β⋆ by solvingD(k)(β) = 0;

- MLE ϕ
(k)
MLE of ϕ⋆ by solving E(k)(ϕ,β(k)

MLE) = 0;

- V (k)
MLE = V (k)(β̂

(k)
MLE) using Formula (3) with β = β̂

(k)
MLE;

- F(k)
MLE = F(k)(ϕ̂

(k)
MLE) using Formula (5) with ϕ = ϕ̂

(k)
MLE.

Send to the CC: S(k)
0 = {β̂(k)

MLE, ϕ̂
(k)
MLE,V (k)

MLE, F(k)
MLE}.

Step required from the CC:
Using the received sets of quantities S(1)

0 , . . . , S(K)
0 , calculate

- Aggregated quantities V EE = ∑K
k=1 w(k)V̂

(k)
MLE and FEE = ∑K

k=1 w(k)F(k)
MLE

- EE estimators β̂EE = V
−1
EE ∑K

k=1 w(k)V
(k)

MLEβ̂
(k)
MLE and ϕ̂EE = F−1

EE ∑K
k=1 w(k)F(k)

MLEϕ̂
(k)
MLE;

- the variance-covariance matrix Σ̂EE =
(
V EE

)−1{
ϕ̂EE

K

∑
k=1

nw(k)2

n(k)
V

(k)
MLE

}(
V EE

)−1
.

Output from the CC:
Estimates R = {β̂EE, Σ̂EE}
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3.3.5 Distributed estimation using a single gradient-enhanced log-likelihood

This method operates through Algorithm 4. First, the necessary information is collected by the CC to compute the
initial estimates of β and ϕ, denoted as β̂SGE,0 and ϕ̂SGE,0. In what follows, we assume these estimates are obtained
using the simple averaging estimators calculated through Algorithm 1.

Subsequently, the CC broadcasts C1,1 = {β̂SGE,0, ϕ̂SGE,0} to node k ∈ {2, . . . , K}. Each node is then requested to
compute and transmit back the following quantities:

S(k)
1,1 =

{
D

(k)
SGE,1,V (k)

SGE,1, E(k)
SGE,1

}
,

withD(k)
SGE,1 = D(k)(β̂SGE,0), V

(k)
SGE,1 = V (k)(β̂SGE,0) and E(k)

SGE,1 = E(k)(ϕ̂SGE,0, β̂SGE,0).
The CC aggregates theD(k)’s and the E(k)’s using averaging by calculating

DSGE,1 =
K

∑
k=2

w(k)D
(k)
SGE,1 and ESGE,1 =

K

∑
k=2

w(k)E(k)
SGE,1 .

The V (k)’s are momentarily stored and will be used later to compute the estimator for the asymptotic variance-
covariance matrix of the final estimator of β⋆. The quantities

C2,1 =
{
DSGE,1, ESGE,1

}
are then sent to node k = 1. Node k = 1 computes the global average of theD(k)’s by adding its own counterpart,
i.e., it first computes

DSGE,1 = DSGE,1 + w(1)D
(1)
SGE,1 , and ESGE,1 = ESGE,1 + w(1)E(1)

SGE,1 ,

and then solves the surrogate likelihood function. Formally, it finds successively the values β̂(1)
SGE,1 and ϕ̂

(1)
SGE,1 that

solve

D(1)(β) +DSGE,1 −D
(1)
SGE,1 = 0

and E(1)(ϕ, β̂SGE,1) + ESGE,1 − E(1)
SGE,1 = 0 .

The results are sent back to the CC, along with V (1)
SGE,1, yielding

S(1)
2,1 = {β̂SGE,1, ϕ̂SGE,1,V (1)

SGE,1}.

If simple averaging estimators for β̂SGE,0 and ϕ̂SGE,0 are chosen, then
√

n(β̂SGE,1 − β⋆) converges in distribution
to a mean-zero multivariate normal random variable with variance-covariance matrix given by

ΣSGE,1 =ϕ⋆(T (1)
β⋆ )

−1
{ K

∑
k=1

w(k)2

p(k)
(A

(k)
β⋆ )

⊤T (k)
β⋆ A

(k)
β⋆

}
(T (1)

β⋆ )
−1

where A
(k)
β⋆ =

√
p(k)Ip+1 +

(
T (1)

β⋆ − T β⋆

)
(T (k)

β⋆ )
−1 ,

with Ip+1 the p + 1 square identity matrix and T β⋆ = ∑K
k=1 w(k)T (k)

β⋆ . See Appendix B.3.7. The latter can be
consistently estimated by

Σ̂SGE,1 =ϕ̂SGE,1(V
(1)

SGE,1)
−1
{ K

∑
k=1

w(k)2
n

n(k)
(Â

(k)
SGE,1)

⊤V
(k)

SGE,1Â
(k)
SGE,1

}
(V

(1)
SGE,1)

−1 ,

where

Â
(k)
SGE,1 =

√
n(k)

n
Ip+1 + {V (1)

SGE,1 − T̂ β⋆}(V (k)
SGE,1)

−1

with T̂ β⋆ = ∑K
k=1 w(k)V

(k)
SGE,1.
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Remark 1. In the paper [24], where the method described above was originally proposed, the authors discuss a version in which
the latter process is repeated multiple times. Their version assumes that the data is uniformly and randomly split across nodes.
Under this assumption, the resulting estimator of β⋆ is asymptotically equivalent to the pooled estimator, regardless of the
number of iterations executed. This equivalence occurs because when the predictors’ distribution is the same across nodes and
the node sample sizes are equal, then T (k)

β⋆ ≡ Tβ⋆ and p(k) ≡ 1/K. By choosing w(k) = 1/K, it follows that A(k)
β⋆ = Ip+1,

resulting in the following expression for ΣSGE,1:

ΣSGE,1 =ϕ⋆(T β⋆)−1 .

The variance-covariance matrix above is also the same as that of the simple averaging estimator in the setting of equal sample
sizes and even predictor distributions. Consequently, at each iteration, the probability distribution of the resulting estimator
remains unchanged. However, in a more general setting where predictor distributions and sample sizes vary across nodes, these
cancellations no longer occur. Therefore, in this case, the probability distribution of the obtained estimator changes after each
iteration, and tracking these changes falls beyond the scope of objective 3, see Appendix B.3.7. Hence, the current presentation
focused on the case where only one iteration is executed.
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Algorithm 4: Inference procedure based on the distributed estimation using a single gradient-enhanced
log-likelihood method

Input at the CC level: Weight w(1), . . . , w(K) attributed to each node’s contribution
Step required from each node k ∈ {1, . . . , K}:

Using data in D(k), compute the following quantities:
- MLE β̂(k)

MLE of β⋆ by solvingD(k)(β) = 0;

- MLE ϕ
(k)
MLE of ϕ⋆ by solving E(k)(ϕ,β(k)

MLE) = 0;

Send to the CC: S(k)
0 = {β̂(k)

MLE, ϕ̂
(k)
MLE}.

Step required from the CC:
Using the received sets of quantities S(1)

0 , . . . , S(K)
0 , calculate

- simple averaging estimators β̂SA = ∑K
k=1 w(k)β̂

(k)
MLE and ϕ̂SA = ∑K

k=1 w(k)ϕ̂
(k)
MLE

- Initialize β̂SGE,0 = β̂SA and ϕ̂SGE,0 = ϕ̂SA.
Broadcast to nodes: C1,1 = {β̂SGE,0, ϕ̂SGE,0}.

Step required from nodes k ∈ {2, . . . , K}:
Using data in D(k), compute the following quantities:
- D(k)

SGE,1 = D(k)(β̂SGE,0) using Formula (2) with β = β̂SGE,0;

- V (k)
SGE,1 = V (k)(β̂SGE,0) using Formula (3) with β = β̂SGE,0;

- E(k)
SGE,1 = E(k)(ϕ̂SGE,0, β̂SGE,0) using Formula (4) with (ϕ,β) = (ϕ̂SGE,0, β̂SGE,0).

Send to the CC: S(k)
1,1 = {D(k)

SGE,1,V (k)
SGE,1, E(k)

SGE,1}
Step required from the CC:

Using the received sets of quantities S(2)
1,1 , . . . , S(K)

1,1 , calculate

- DSGE,1 = ∑K
k=2 w(k)D

(k)
SGE,1

- ESGE,1 = ∑K
k=2 w(k)E(k)

SGE,1
Broadcast to node k = 1: C2,1 = {DSGE,1, ESGE,1}.

Step required from node k = 1:
Using data in D(1), calculate
- D(1)

SGE,1 = D(1)(β̂SGE,0) using Formula (2) with β = β̂SGE,0;

- V (1)
SGE,1 = V (1)(β̂SGE,0) using Formula (3) with β = β̂SGE,0;

- E(1)
SGE,1 = E(1)(ϕ̂SGE,0, β̂SGE,0) using Formula (4) with (ϕ,β) = (ϕ̂SGE,0, β̂SGE,0);

- DSGE,1 = DSGE,1 + w(1)D
(1)
SGE,1;

- ESGE,1 = ESGE,1 + w(1)E(1)
SGE,1;

- β̂SGE,1 that solvesD(1)(β) +DSGE,1 −D
(1)
SGE,1 = 0;

- ϕ̂SGE,1 that solves E(1)(ϕ, β̂SGE,1) + ESGE,1 − E(1)
SGE,1 = 0.

Send to the CC: S(1)
2,1 = {β̂SGE,1, ϕ̂SGE,1,V (1)

SGE,1}
Step required from the CC:

Compute

- Â(k)
SGE,1 = w(k)Ip+1 +

{
V

(1)
SGE,1 −

(
∑K

k′=1 w(k′)V
(k′)

SGE,1
)}

(V
(k)

SGE,1)
−1 for k ∈ {1, . . . , K}

- Σ̂SGE,1 = ϕ̂SGE,1(V
(1)

SGE,1)
−1
{ K

∑
k=1

n
n(k)

(Â
(k)
SGE,1)

⊤V
(k)

SGE,1Â
(k)
SGE,1

}
(V

(1)
SGE,1)

−1

Output from the CC:
Parameter estimates R = {β̂SGE,1, Σ̂SGE,1}
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3.3.6 Distributed estimation using multiple gradient-enhanced log-likelihood

This method operates through Algorithm 5. First, the CC collects the necessary information to compute the initial
estimates, denoted as β̂MGE,0 and ϕ̂MGE,0. In this case, we assume that these estimates are obtained using the simple
averaging estimators calculated through Algorithm 1.

Subsequently, the CC broadcasts C1,1 = {β̂MGE,0, ϕ̂MGE,0} to each node, which is then requested to compute and
transmit back the following quantities:

S(k)
1,1 =

{
D

(k)
MGE,1,V (k)

MGE,1, E(k)
MGE,1

}
.

Here,D(k)
MGE,1 = D(k)(β̂MGE,0), V

(k)
MGE,1 = V (k)(β̂MGE,0) and E(k)

MGE,1 = E(k)(ϕ̂MGE,0, β̂MGE,0).
The CC aggregates theD(k)’s and the E(k)’s using averaging by calculating

DMGE,1 =
K

∑
k=1

w(k)D
(k)
MGE,1 and EMGE,1 =

K

∑
k=1

w(k)E(k)
MGE,1 .

The CC then broadcasts C2,1 = {DMGE,1, EMGE,1} to each node, which are then tasked to solve the surrogate

likelihood function. Formally, they find successively the value β̂(k)
MGE,1 and ϕ̂

(k)
MGE,1 that solves

D(k)(β) +DMGE,1 −D
(k)
MGE,1 = 0

E(k)(ϕ, β̂(k)
MGE,1) + EMGE,1 − E(k)

MGE,1 = 0

Each node then transmits their set of local surrogate likelihood estimators to the CC:

S(k)
2,1 = {β̂(k)

MGE,1, ϕ̂
(k)
MGE,1}.

Using the received sets of quantities S(1)
2,1 , . . . , S(K)

2,1 , the CC aggregates them through averaging using the following
formulas:

β̂MGE,1 =
K

∑
k=1

w(k)β̂
(k)
MGE,1 and ϕ̂MGE,1 =

K

∑
k=1

w(k)ϕ̂
(k)
MGE,1 .

It is shown in Appendix B.3.8 that
√

n(β̂MGE,1 − β⋆) converges in distribution to a multivariate normal random
variable with mean 0 and a variance-covariance matrix given by:

ΣMGE,1 =ϕ⋆
K

∑
k=1

w(k)2

p(k)

[√
p(k)Uβ⋆T (k)

β⋆ +
(
Ip+1 −Uβ⋆T β⋆

)]
×
[√

p(k)Uβ⋆ +
(
Ip+1 −Uβ⋆T β⋆

)
(T (k)

β⋆ )
−1
]

,

where Uβ⋆ = ∑K
k=1 w(k)(T (k)

β⋆ )−1. The latter can be consistently estimated with

Σ̂MGE,1 = ϕ̂MGE,1

K

∑
k=1

nw(k)2

n(k)

[√n(k)

n
Ûβ⋆V (k)

MGE,1 +
(
Ip+1 − Ûβ⋆ T̂ β⋆

)]

×
[√n(k)

n
Ûβ⋆ +

(
Ip+1 − Ûβ⋆ T̂ β⋆

)
(V (k)

MGE,1)
−1
]

,

where T̂ β⋆ = ∑K
k=1 w(k)V

(k)
MGE,1 and Ûβ⋆ = ∑K

k=1 w(k)(V
(k)

MGE,1)
−1.
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Algorithm 5: Inference procedure based on the distributed estimation using multiple gradient-enhanced
log-likelihood method

Input at the CC level: Weight w(1), . . . , w(K) attributed to each node’s contribution
Step required from each node k ∈ {1, . . . , K}:

Using data in D(k), compute the following quantities:
- MLE β̂(k)

MLE of β⋆ by solvingD(k)(β) = 0;

- MLE ϕ
(k)
MLE of ϕ⋆ by solving E(k)(ϕ,β(k)

MLE) = 0;

Send to the CC: S(k)
0 = {β̂(k)

MLE, ϕ̂
(k)
MLE}.

Step required from the CC:
Using the received sets of quantities S(1)

0 , . . . , S(K)
0 , calculate

- simple averaging estimators β̂SA = ∑K
k=1 w(k)β̂

(k)
MLE and ϕ̂SA = ∑K

k=1 w(k)ϕ̂
(k)
MLE

- Initialize β̂MGE,0 = β̂SA and ϕ̂MGE,0 = ϕ̂SA.
Broadcast to nodes: C1,1 = {β̂MGE,0, ϕ̂MGE,0}.

Step required from each node k ∈ {1, . . . , K}:
Using data in D(k), compute the following quantities:
- D(k)

MGE,1 = D(k)(β̂MGE,0) using Formula (2) with β = β̂MGE,0;

- V (k)
MGE,1 = V (k)(β̂MGE,0) using Formula (3) with β = β̂MGE,0;

- E(k)
MGE,1 = E(k)(ϕ̂MGE,0, β̂MGE,0) using Formula (4) with (ϕ,β) = (ϕ̂MGE,0, β̂MGE,0).

Send to the CC: S(k)
1,1 = {D(k)

MGE,1,V (k)
MGE,1, E(k)

MGE,1}
Step required from the CC:

Using the received sets of quantities S(1)
1,1 , . . . , S(K)

1,1 , calculate

- DMGE,1 = ∑K
k=1 w(k)D

(k)
MGE,1

- EMGE,1 = ∑K
k=1 w(k)E(k)

MGE,1
Broadcast to nodes: C2,1 = {DMGE,1, EMGE,1}.

Step required from each node k ∈ {1, . . . , K}:
Using data in D(k), calculate
- β̂(k)

MGE,1 that solvesD(k)(β) +DMGE,1 −D
(k)
MGE,1 = 0

- ϕ̂
(k)
MGE,1 that solves E(k)(ϕ, β̂MGE,1) + EMGE,1 − E(k)

MGE,1 = 0

Send to the CC: S(k)
2,1 = {β̂(k)

MGE,1, ϕ̂
(k)
MGE,1}

Step required from the CC:
Compute
- β̂MGE,1 = ∑K

k=1 w(k)β̂
(k)
MGE,1

- ϕ̂MGE,1 = ∑K
k=1 w(k)ϕ̂

(k)
MGE,1

- T̂ β⋆ = ∑K
k=1 w(k)V

(k)
MGE,1

- Ûβ⋆ = ∑K
k=1 w(k)(V

(k)
MGE,1)

−1

- Σ̂MGE,1 = ϕ̂MGE,1 ∑K
k=1

nw(k)2

n(k)

[
(Ûβ⋆V (k)

MGE,1 +
(
Ip+1 − Ûβ⋆ T̂ β⋆

)]
×
[
(Ûβ⋆ +

(
Ip+1 − Ûβ⋆ T̂ β⋆

)
(V (k)

MGE,1)
−1
]

Output from the CC:
Parameter estimates R = {β̂MGE,1, Σ̂MGE,1}

3.3.7 Summary of quantities exchanged for the adapted methods

The following table presents a summary of the quantities exchanged between the nodes and the CC in both
directions. Table 2 demonstrates that the quantities involved in exchanges from the nodes to the CC consist of
parameter estimates, gradients (D(k) vectors), Hessians (V (k) matrices), as well as real numbers (E(k) and F(k)). On
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the other hand, the quantities shared from the CC to the nodes primarily consist of parameter estimates. Notably,
Methods 5 and 6 differentiate themselves by requiring the sharing of aggregated gradient vectors and Hessian
matrices as well.

Table 2: Quantities shared in each adapted method’s communication workflow

Method Exchanged quantities from nodes to CC Exchanged quantities
from CC to nodes

S(k)
0 S(k)

t , t ≥ 1 Ct

1. Simple averaging β̂
(k)
MLE ; ϕ̂

(k)
MLE ; V (k)

MLE - -

2. Single distributed
Newton-Raphson updat-
ing

β̂
(k)
MLE ; ϕ̂

(k)
MLE D

(k)
NR,1 ; V

(k)
NR,1 ; E(k)

NR,1 ;

F(k)
NR,1

β̂NR,0 ; ϕ̂NR,0

3. Multiple distributed
Newton-Raphson updat-
ings (with T Newton-
Raphson updatings)

β̂
(k)
MLE ; ϕ̂

(k)
MLE D

(k)
NR,t ; V (k)

NR,t ; E(k)
NR,t ; F(k)

NR,t β̂NR,t−1 ; ϕ̂NR,t−1

4. Distributed estimating
equations

β̂
(k)
MLE ; ϕ̂

(k)
MLE ; V (k)

MLE ; F(k)
MLE - -

5. Distributed single
gradient-enhanced log-
likelihood

β̂
(k)
MLE ; ϕ̂

(k)
MLE

Nodes 2 to K:
D

(k)
SGE,1 ; V (k)

SGE,1 ;E(k)
SGE,1

Node 1:
β̂SGE,1 ; ϕ̂SGE,1 ; V (1)

SGE,1

β̂SGE,0 ; ϕ̂SGE,0
To node 1 only:
DSGE,1 ; ESGE,1

6. Distributed multi-
ple gradient-enhanced log-
likelihood

β̂
(k)
MLE ; ϕ̂

(k)
MLE D

(k)
MGE,1 ; V (k)

MGE,1 ; E(k)
MGE,1 ;

β̂
(k)
MGE,1 ; ϕ̂

(k)
MGE,1

β̂MGE,0 ; ϕ̂MGE,0 ; DMGE,1 ;
EMGE,1

3.3.8 Comparison of adapted methods

Table 3 compares the main adapted HPSA methods on the quantities shared between the CC and nodes and the
operational complexity of the procedures.

Methods 1 and 4 require only one communication from the data nodes to the CC and no communication back
from the CC to the nodes. These so-called one-shot methods have the lowest operational complexity. Method 4
requires the additional quantity F(k)

MLE to be transmitted from each node to the CC.
Methods 2 and 3 perform Newton-Raphson updates using some initial estimator as a basis, usually the simple

averaging estimator. While Method 2 requires this initial estimator to be
√

n-consistent, if T is large enough, any
initial value will work for Method 3 (although convergence may be slower). Both methods requireD(k),V (k), E(k)

and F(k) to be evaluated and sent to the CC T times, with T = 1 for Method 2. Compared to Method 1, Method 2
requires the additional quantitiesD(k), E(k) and F(k), and Method 3 further requires these quantities to be evaluated
and communicated multiple times.

Method 5 relies on an approximation of the log-likelihood function. It requires an initial estimator, usually the
simple averaging estimator. This approach treats node 1 differently, making it solve the surrogate log-likelihood
using aggregates from the other nodes and its own data. The CC sends the initial estimator to each node, then
requires them to evaluate D(k),V (k) and E(k) and send the result back to the CC once. It averages the results and
then communicates them to node 1, which solves the surrogate log-likelihood and sends its results back to the CC.

Method 6 applies Method 5 to every node, making each node solve the surrogate log-likelihood function with its
own data before averaging the resulting local estimators.
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Table 3: Comparison of adapted methods

Method
Information shared Number of communications Workflow

From nodes to CC From CC to nodes From nodes to CC From CC to nodes

1. Simple averag-
ing

Local parameter
estimates;
Hessian matrix
of log-likelihood
(with respect to β

only)

None 1 0 I in Figure 2

2. Single dis-
tributed Newton-
Raphson updating

Local parameter
estimates;
Gradient and
Hessian of log-
likelihood

Simple averag-
ing aggregated
estimates of
parameters

2 1 II in Figure 3 with
T = 1

3. Multiple
distributed
Newton-Raphson
updatings (with T
Newton-Raphson
updatings)

Local parameter
estimates;
T × Gradient
and Hessian of
log-likelihood

Simple averag-
ing aggregated
estimates of
parameters;
(T − 1)× Newton-
updated parame-
ter estimates

T + 1 T II in Figure 3 with
T > 1

4. Distributed esti-
mating equations

Local parameter
estimates;
Hessian of log-
likelihood

None 1 0 I in Figure 2 with
T = 1

5. Distributed
single gradient-
enhanced log-
likelihood

From all nodes:
Local parameter
estimates; Hessian
of log-likelihood
(with respect to β

only)
From nodes 2 to
K: Gradient of log-
likelihood;
From node 1 only:
Gradient-
enhanced pa-
rameter estimates

To all nodes:
Simple averag-
ing aggregated
estimates of
parameters;
To node 1 only:
Average of local
gradients and Hes-
sians

All nodes:
2

Nodes 2 to K:
1
Node 1:
2

III in Figure 4 with
T = 1

6. Distributed
multiple gradient-
enhanced log-
likelihood

Local parameter
estimates;
Gradient of
log-likelihood;
Hessian of log-
likelihood (with
respect to β only);
Gradient-
enhanced pa-
rameter estimates

Simple averag-
ing aggregated
estimates of
parameters;
Average of local
gradients and Hes-
sians

3 2 IV in Figure 5 with
T = 1
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4 Discussion

4.1 Summary of Findings
The first objective (O1) of this study aimed to identify and map the methodological approaches used and

developed in the literature regarding HPSA. To achieve this, we conducted a scoping review, which included 41
articles following our protocol. These articles were categorized based on the types of models and communication
schemes involved, as presented in Table 1. The analysis revealed that the majority of methods included in the scoping
review focused on methodological settings associated with massive data. The communication schemes of these
methods were demonstrated through Workflows I, II, III and IV.

The second objective (O2) of this study aimed to describe the approaches that can be employed for basic GLM
regression analyses and identify the distributional assumptions they require. To accomplish this, we identified
six approaches that could be classified within Workflows I-IV. However, a limitation of these methods is that they
assume identical node sample sizes and node covariate distributions. This assumption reduces their suitability in
settings commonly encountered in healthcare research, where data collecting nodes are prone to generating different
covariate distributions.

The third objective (O3) of this study was to present methods that relaxed these assumptions by adapting the
approaches identified in O2 to the unequal sample sizes and non-identical covariate sample distribution setting.
Additionally, we compared these methods in terms of the information shared and operational complexity. This
involved adapting the quantities and estimators described in the original articles and deriving new asymptotic results
with relaxed assumptions. We proposed a unified framework for inference procedures utilizing these methods. The
framework encompasses both estimation and the construction of confidence intervals, providing detailed steps for
both the data nodes and the CC.

4.2 Challenges and Opportunities
Work pertaining to O1 illustrated why it is so challenging for researchers and data custodians alike to find

information regarding HPSA. While the HPSA literature is very recent (all included articles were published in 2010
or later), the literature is non-homogeneous, and it has not come to a consensus on nomenclature. No universal
terminology exists, and different terms are used in the different fields developing and applying HPSA methods.
Many specific methods introduced in applied contexts are special cases of more general methods which may or may
not be cited. These characteristics make finding useful and efficient keywords arduous. This required adapting our
research strategy.

This difficulty is compounded by the fact that statistical inference is not the main focus of most of the HPSA
literature. The majority of published work is in the prediction, learning and optimization contexts. As a result,
method assumptions are rarely discussed. This can be a problem when adapting these methods for inference.
Furthermore, the methodological setting is often assumed to be in the massive data context where data is randomly
distributed between nodes. This allows the authors to make strong assumptions on node sample sizes and covariate
distributions which may be unrealistic in the confidential data complex where different data sources. These methods
cannot be used directly for inference using confidential health data. While some work remains to be done when the
structure of association between the covariate and the outcome is heterogeneous between nodes, we adapted widely
used methods for when the distribution of covariate and sample sizes between nodes are not identical.

Table 1 illustrates how the majority of HPSA methods are focused on parametric models. Some work has also been
done for semi-parametric and non-parametric regression, and some methods are introduced outside of the regression
framework (although they can also be applied to regression). Many methods do not require communication of
quantities from the CC to the data nodes: they only require one transmission from the nodes to the CC. Given the
lack of awareness around HPSA, starting by implementing lower operational complexity methods while providing
useful results offers a promising path.

The methods can be implemented "manually" (e.g. via email exchanges), but platforms enabling semi-automated
distributed fittings of statistical models have been proposed in the literature (e.g. [7]). On the other hand, explicit
descriptions of their algorithms and the quantities exchanged are not always easily accessible and this complicates
the evaluation of the tools by data custodians and researchers.

This is especially important since it is essential to clarify here that operating an HPSA algorithm does NOT ensure
confidentiality in and of itself.

For example, it is known that sharing sample moments can compromise confidentiality. It can be shown that a
set of n observations is uniquely determined by its first n sample moments [40]. This could prove problematic for
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methods that rely on sharing the first few moments of each node’s sample, especially if number of observations is
low, as the sample could be partially reconstructed by the CC.

The results presented here contribute to this objective by clarifying the workflows and quantities exchanged by
each method. Nevertheless, further analysis of the confidentiality preserved by HPSA methods is needed to fully
understand the risk associated with the sharing of summary statistics, especially as more rounds of communication
between the CC and data nodes are completed. The framework of differential privacy (DP) has been used to
guarantee the preservation of confidentiality in a few HPSA methods, but a wider application of DP to existing and
popular methods has yet to be explored.
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A Detailed protocol for the scoping review

A.1 Research question
1. What are the existing methods that allow to conduct statistical inference procedures from a horizontally

distributed dataset?

• Regarding: Methods for different statistical models; Methods for various settings in terms of information shared;
Methods for different needs in terms of precision of estimates.

2. What are the characteristics of these methods to proceed to a systematic categorisation?

• Regarding: Type of algorithm; Settings for nodes and coordinating centre; Capacity to reach exact estimates from
data pooling.

A.2 Methods
The scoping review will be conducted in accordance with the methodological framework from Levac et al. [26]

(based on Arksey and O’Malley [2]).

A.2.1 Key-words

The following keywords were identified from the snowballing literature search:
- distributed algorithms [15]
- distributed estimation [21]
- distributed inference [24]
- distributed learning [31]
- distributed regression [46] (not included in the scoping review final selection since no new estimation methods are
discussed).
- federated inference[57] (not included in the scoping review final selection since the paper was not published when
the scoping review search was launched)
- federated estimation [50] (not included in the scoping review final selection since the paper was not published when
the scoping review search was launched)
- federated learning [27] (not included in the scoping study review final selection the paper focuses solely on estimation,
i.e. no confidence interval computation strategies or hypothesis testing framework are discussed).
- privacy-protecting algorithm [38]
- privacy-preserving algorithm [14]
- aggregated inference [22] (not included in the scoping review final selection since no new estimation methods are
discussed).

The following keywords will be used to add conciseness to the topic of statistical inference, to avoid screening
machine-learning specific articles:
- Statistical inference
- Confidence interval
- Statistical estimation
- Hypothesis tests
- Significant coefficient, Significance of parameter

A.2.2 Research strategies

In collaboration with a specialist in documentary research at the Université de Sherbrooke, we have selected the
following abstract and citation databases: (1) Medline, (2) Scopus, (3) MathSciNet, and (4) zbMATH. The choice of
these databases was motivated by the interdisciplinary nature of the research question, which spans the fields of
statistics and health.

To develop comprehensive research strategies, we combined the previously mentioned keywords and worked
closely with the documentary research specialist.
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Limits and restrictions In order to strike a balance between sensitivity and specificity in our research, given the
interdisciplinary nature of the topic involving distributed data and statistical inference, we took several considerations
into account.

To ensure sensitivity, we opted for interdisciplinary databases that are known to cover a wide range of relevant
literature. These include Medline, Scopus, MathSciNet, and zbMATH. By selecting these databases, we aimed to
capture a comprehensive set of articles that encompass both statistical and health-related aspects.

On the other hand, to maintain specificity and avoid retrieving a large number of non-relevant articles, we
carefully selected keywords that were targeted and specific to our research question. Instead of relying solely on
thesauri and synonym search tools, we focused on the vocabulary commonly used in the literature through an
extensive overlook (snowballing) approach, particularly for the concept of distributed data. For the concept of
statistical inference, we chose synonyms that specifically capture studies centred around this topic.

Furthermore, to keep the scope of our research manageable and relevant to recent developments, we limited
our search to articles published since the year 2000. This restriction is justified by the emergence of distributed
data in recent years, driven by advancements in technology and the availability of massive datasets. By setting this
threshold, we aimed to capture any early-developed methods and approaches related to our research topic.

Overall, our research strategies were designed to strike a balance between sensitivity and specificity, ensuring
that we capture a comprehensive range of relevant articles while minimizing the inclusion of non-relevant ones.

Medline search querry

( ( AB ( ((("Privacy-preserving" OR "Privacy-protecting*" OR "federated" OR "Distributed" OR "aggregated
") N1 ("estimation*" OR "algorithm*" OR "inference" OR "analy*" OR "regression*" OR "model*" OR "
statistic*" OR "learning"))) OR TI ( ((("Privacy-preserving" OR "Privacy-protecting*" OR "federated"
OR "Distributed" OR "aggregated") N1 ("estimation*" OR "algorithm*" OR "inference" OR "analy*" OR "
regression*" OR "model*" OR "statistic*" OR "learning"))) ) OR SU ( ((("Privacy-preserving" OR "
Privacy-protecting*" OR "federated" OR "Distributed" OR "aggregated") N1 ("estimation*" OR "algorithm
*" OR "inference" OR "analy*" OR "regression*" OR "model*" OR "statistic*" OR "learning"))) )) AND (
TX ( ("statistical inference" OR "confidence interval*" OR "Statistical Estimat*" OR "hypothesis test
*" OR "significant coefficient*" OR "significant parameter*")) ) )

Scopus search querry

TITLE-ABS-KEY (("Privacy-preserving" OR "Privacy-protecting*" OR "federated" OR "Distributed" OR "
aggregated") W/1 ("estimation*" OR "algorithm*" OR "inference" OR "analy*" OR "regression*" OR "model
*" OR "statistic*" OR "learning") AND ("statistical inference" OR "confidence interval*" OR "
Statistical Estimat*" OR "hypothesis test*" OR "significant coefficient*" OR "significant parameter*"))

MathSciNet search querry

"Anywhere=("Privacy-preserving" OR "Privacy-protecting" OR "federated" OR "Distributed" OR "aggregated")
AND Anywhere=("estimation*" OR "algorithm*" OR "inference" OR "analy*" OR "regression*" OR "model*" OR
"statistic*" OR "learning") AND Anywhere=("statistical inference" OR "confidence interval*" OR "

Statistical Estimat*" OR "hypothesis test*" OR "significant coefficient*" OR "significant parameter*")
"

zbMATH search querry

( (ti:("Privacy-preserving" | "Privacy-protecting" | "federated" | "Distributed" | "aggregated") \& ti:("
estimation*" | "algorithm*" | "inference" | "analy*" | "regression*" | "model*" | "statistic*" | "
learning")) | (ut:("Privacy-preserving" | "Privacy-protecting" | "federated" | "Distributed" | "
aggregated") \& ut:("estimation*" | "algorithm*" | "inference" | "analy*" | "regression*" | "model*" |
"statistic*" | "learning")) ) \& any:("statistical inference" | "confidence interval*" | "Statistical
Estimat*" | "hypothesis test*" | "significant coefficient*" | "significant parameter*")

Grey literature As one of the exclusion criteria is to exclude all unpublished studies, no research was conducted
among grey literature.
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A.2.3 Selection process

After removing duplicate references, a manual review of the selected references obtained from the databases was
conducted to identify relevant articles that address the research question. In this study, a two-stage selection process
was employed to ensure a thorough and systematic approach.

To ensure consistency and minimize bias, all reviewers involved in the selection process met before the com-
mencement of the first stage of selection. This initial meeting aimed to establish a shared understanding of the
inclusion criteria and research objectives. By aligning their interpretations and definitions of the inclusion criteria,
the reviewers ensured a consistent approach throughout the selection process.

During the selection process, there has been a midpoint meeting among the reviewers after the completion of the
first stage of selection. This meeting served as an opportunity to discuss any questions, challenges, or uncertainties
that may have arisen during the initial selection. By addressing these issues collectively, the reviewers maintained
consistency and addressed discrepancies in their evaluations.

Finally, at the end of the second stage of selection, the reviewers had a final meeting. This meeting allowed for
a comprehensive discussion of the selected references and ensured that the final set of included articles met the
predefined criteria and effectively addressed the research question.

By conducting regular meetings throughout the selection process and discussing the inclusion criteria, the
reviewers aimed to maintain consistency, minimize subjectivity, and enhance the reliability of the article selection.

A.2.4 Stages of the selection

Selection 1: Titles and Abstracts All titles and abstracts of the references identified through the research strategy
were evaluated by a single author (MPD or FCL). Since this step involved a single reviewer, references that were
clearly unrelated to the research question or did not meet the inclusion criteria were automatically excluded from
further consideration.

The evaluation process conducted by the single author aimed to swiftly discard references that were obviously
irrelevant to the research question. This initial screening helped streamline the subsequent stages of the selection
process by removing references that did not align with the study’s objectives or criteria.

Selection 2: Full text The full texts of the references selected in the first stage were reviewed by two authors (MPD
and FCL). In instances where there were differing opinions between the two initial reviewers, they engaged in
discussions to reach a consensus. To ensure impartiality and a final resolution, a third author (JFE) conducted a third
review, overseeing the process and making the ultimate decision in cases where disagreements persisted.

Additional strategy The list of references from all the included articles after the selection process was carefully
assessed to identify any additional articles that may not have been captured during the initial screening due to
specific keywords. This step aimed to ensure a comprehensive approach by exploring the reference lists of the
included articles for relevant references that might have been missed in the initial search.

Through this approach, the review aimed to minimize the possibility of excluding relevant studies and to provide
a comprehensive and robust synthesis of the available literature on the subject matter.

Inclusion criteria The following criteria were utilized to guide the selection process. Exclusion was considered for
a reference if it met at least one of the exclusion criteria, or if it failed to meet at least one of the inclusion criteria.
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Table 4: Inclusion and Exclusion criteria
Criteria Topic Inclusion criteria Exclusion criteria

1. Horizontally distributed data This paper/study presents a solu-
tion for performing inferential statis-
tics on horizontally distributed data.
Examples of papers that would not meet
the criteria: the method is presented
on vertically distributed data, or the
method is presented on horizontally dis-
tributed studies instead of distributed
data.

-

2. Inferential statistics - The paper/study does not specif-
ically address inferential statistics
(Confidence intervals, Hypothesis
testing or Asymptotic normality re-
sult).
e.g., the focus is not on estimation
and/or confidence intervals and/or hy-
pothesis testing.

3. Methodological contribution - The paper/study does not provide
a new methodological contribution.
e.g., the study is solely an application
of a previously developed and presented
method.

4. Discussion paper - The article is a discussion paper.

5. Published Study - The paper/study has not been pub-
lished.

6. Encryption - The paper/study presents a solution
for encryption or secret-sharing.

7. Language - The full-text is not available in En-
glish or French.

A.2.5 Data-charting

A data-charting form was collaboratively developed to facilitate the extraction of relevant information from the
selected studies. The extraction process was conducted manually, with two authors (MPD and FCL) independently
extracting data from the first five studies. Subsequently, the authors convened to verify the adequacy of the process
and ensure consistency in data extraction. The remaining studies were then divided between the two authors for
data extraction.

During the data extraction phase, specific information pertaining to the research questions was identified and
recorded. To account for any uncertainties or variables requiring additional review, a "To be determined" modality
was included for each extracted variable. This modality serves as a reminder for a second author to review and
validate the extracted data, ensuring accuracy and reliability.
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Table 5: Data extraction.
Variable collected Modalities

1. Model type Parametric regression; Semi-Parametric regression;
Non-parametric regression; Not specific to regression;
To be determined

2. Methodological setting Big or Massive/Multi-machines setting; Healthcare;
Other; To be determined

3. Communication from coordinating centre to nodes Yes; No; To be determined

4. Equal to the pooled solution Yes; No; Many types are discussed; To be determined

5. GLM GLM not addressed; Only linear regression is ad-
dressed; Only logistic regression is addressed; GLM
are addressed (linear regression and logistic regression,
and/or others); To be determined

6. Type of coordinating centre External to the nodes; One of the nodes; Both are dis-
cussed; Not mentionned; To be determined

7. Specific method Name of the method as presented

B Mathematical derivations pertaining to Objective 3

B.1 Notations used in the Appendix
Recall that in the current setting, there are n individuals horizontally partitioned across K data storage nodes.

Each node’s dataset is D(k) = {z(k)i = (x(k)1i , . . . , x(k)pi , y(k)i )⊤}n(k)

i=1 , where 1 ≤ k ≤ K and z(k)i represents measurements

on the ith individual at node k: y(k)i ∈ R denotes their response variable and [x(k)1i , . . . , x(k)pi ]
⊤ ∈ Rp denotes their

covariate vector. n(k) is the total sample size at node k. The combined datasets D(1), . . . ,D(K) make up the whole
dataset without any duplicated individuals such that ∑K

k=1 n(k) = n.
The current GLM framework assumes that there exists unknown parameters β⋆ ∈ Rp+1 ∈ R and ϕ⋆ > 0,

and known model-specific functions b, c, g, h such that with x(k)i = [x(k)0i , x(k)1i , . . . , x(k)pi ]
⊤ and x(k)0i = 1, we have

y(k)i | x(k)i ∼ f (·; x(k)i ,β⋆, ϕ⋆), where for any β = [β0, β1, . . . , βp]⊤ ∈ Rp+1 and ϕ,

f (y; x(k)i ,β, ϕ) = exp

[
yh(β⊤x(k)i )− b

{
h(β⊤x(k)i )

}
ϕ

+ c(y, ϕ)

]
,

where b is such that b′
{

h(β⊤x(k)i )
}
= E(y(k)i ) = g(−1)(β⊤xk

i ), with b′(x) = ∂b(x)/∂x.
We also recall the definition ofD(k)(β) ∈ Rp+1 at page 13:

D(k)(β) =
1

n(k)

n(k)

∑
i=1

x(k)i h′(β⊤x(k)i )
[
y(k)i − b′{h(β⊤x(k)i )}

]
,

as well as the one of V (k)(β) at page 13:

V (k)(β) =
1

n(k)

n(k)

∑
i=1

x(k)i (x(k)i )⊤
[

h′(β⊤x(k)i )2 b′′{h(β⊤x(k)i )}

− h′′(β⊤x(k)i )(y(k)i − b′{h(β⊤x(k)i )}
]

.

Finally, let us reiterate the definitions of E(k) in equation (4) and F(k) in equation (5), which are expressed as follows:

E(k)(ϕ,β) =
1

n(k)

n(k)

∑
i=1

[
y(k)i h(β⊤x(k)i )− b{h(β⊤x(k)i )}

]
− ϕ2

n(k)

n(k)

∑
i=1

∂

∂ϕ
c(y(k)i , ϕ) .
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and

F(k)(ϕ,β) =
2ϕ

n(k)

n(k)

∑
i=1

∂

∂ϕ
c(y(k)i , ϕ) +

ϕ2

n(k)

n(k)

∑
i=1

∂2

∂ϕ2 c(y(k)i , ϕ) .

B.2 General estimation in a pooled centralized setting

The likelihood of the full dataset D = ∪K
i=1D(k), in a setting where the likelihood contribution of each node would

be given by the set of weights {w(k)}K
k=1, is given by

K

∑
k=1

w(k)ℓ(k)(β, ϕ) =
K

∑
k=1

w(k)
n(k)

∑
i=1

[
y(k)i h(β⊤x(k)i )− b

{
h(β⊤x(k)i )

}
ϕ

+ c(y(k)i , ϕ)

]
. (15)

Pooled maximum likelihood estimates of β⋆ and ϕ⋆ are found by calculating a set of values (β̂Pooled, ϕ̂Pooled)
that maximizes (15). This is usually done in two steps. In a first step, equating the gradient with respect to the β
parameters to 0 yields a set of equations that are independent of ϕ which, in our framework, are given by

K

∑
k=1

w(k)D(k)(β) = 0 .

As g(−1) is often non-linear, iterative methods are necessary to solve the latter equations. When a solution exists
and is unique (this is the case under general conditions [53]), the resulting estimator β̂Pooled is called the maximum
likelihood estimator.

In a second step, using β̂Pooled, a maximum likelihood estimator of ϕ⋆ can be obtained by solving

K

∑
k=1

w(k)E(k)(ϕ, β̂Pooled) = 0 . (16)

The above equations can be further reduced when b′{h(β⊤x(k)i )} = g(−1)(β⊤x(k)i ), which happens when g is
canonical, since in this case, h(x) ≡ x.

When ϕ⋆ is unknown, it can be estimated by differentiating the log-likelihood at (β̂Pooled, ϕ) with respect to ϕ
and equating it to 0. Indeed, since the likelihood equations of β do not involve ϕ, it always holds that

max
β,ϕ

ℓ(β, ϕ,D) = max
ϕ

ℓ(β̂Pooled, ϕ,D) .

Proceeding in this way yields the following equation for a maximum likelihood estimator of ϕ to satisfy:

K

∑
k=1

w(k)

n(k)

n(k)

∑
i=1

(
y(k)i h{(β̂Pooled)

⊤x(k)i )} − b
[
h{β̂Pooled)

⊤x(k)i }
])

= ϕ2
K

∑
k=1

w(k)

n(k)

n(k)

∑
i=1

∂

∂ϕ
c(y(k)i , ϕ) .

B.3 Calculations related to unequal sample sizes and uneven between-nodes covariate distri-
butions

The theoretical validity of each algorithm presented in section 3.3 relies on two main components:
1. An asymptotic normality result for the estimator of the β parameters involved;
2. The consistency, i.e., convergence in probability to the true value, of the estimator for the asymptotic variance-
covariance matrix involved in the aforementioned asymptotic normality result. This, in turn, depends on the
consistency of the estimator of ϕ when the latter is unknown.
Since the current paper is already quite extensive, we will provide theoretical arguments for the asymptotic normality
result only, as it is arguably the most interesting from a theoretical perspective. The proof of consistency of the
variance-covariance matrix is a lengthy and technical exercise that can be accomplished using our arguments in
combination with standard M-estimation theorems, which can be found, for example, in [48], chapter 5.
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B.3.1 Conditions used to establish asymptotic normality results

The following conditions will be used. For ℓ ∈ {0, 1, 2, 3}, let

hℓ(x) =
∂ℓ

∂xℓ
h(x) (b′ ◦ h)ℓ(x) =

∂ℓ

∂xℓ
(b′ ◦ h)(x) (b′′ ◦ h)ℓ(x) =

∂ℓ

∂xℓ
(b′′ ◦ h)(x) .

Also, in what follows, for any vector a ∈ Rp+1, one defines ∥a∥∞ = max1≤j≤p+1 |[a]j| and ∥a∥1 = ∑
p+1
j=1 |[a]j|.

Conditions C
(C1) For k ∈ {1, . . . , K}, n(k)/n → p(k) > 0 as n → ∞, and K ≥ 2 is finite;
(C2) b and h are three times continuously differentiable;
(C3) For k ∈ {1, . . . , K}, {[x(k)i1 , . . . , x(k)ip ]⊤}n(k)

i=1 is a set of i.i.d. random vectors with finite sixth marginal moments,

i.e., E
{
|x(k)i |6j

}
< ∞, and E

{
|y(k)i |4

}
< ∞. Further, T (k)

β⋆ is positive definite, where

[T (k)
β⋆ ]jl = E

[
x(k)ij x(k)il h′

{
(β⋆)⊤x(k)i

}2 b′′
(

h{(β⋆)⊤x(k)i }
)]

. (17)

(C4) The β-parameter space Θ ⊂ Rp+1 considered for the search of β⋆ is compact, and β⋆ lies in the interior of Θ.
Further, one has E{D(k)(β)} = 0 if and only if β = β⋆.

(C5) For ℓ ∈ {0, 1, 2, 3}, E
{

Υ4
ℓ(x

(k)
i )
}
< ∞, where Υℓ(x) = supβ∈Θ |hℓ(β⊤x)|. Moreover, for ℓ ∈ {0, 1}, E

{
Υ̃4
ℓ(x

(k)
i )
}
<

∞ and E
{

Υ4
ℓ(x

(k)
i )
}
< ∞, where Υ̃ℓ(x) = supβ∈Θ |(b′ ◦ h)ℓ(β⊤x)| and Υℓ(x) = supβ∈Θ |(b′′ ◦ h)ℓ(β⊤x)|.

Assumption (C1) states that each data node has a non-negligible proportion of the data. Assumption (C2) imposes
a smoothness condition on the known quantities involved in the definition of the GLM, enabling the use of standard
theoretical arguments to derive the asymptotic normality of the estimated coefficients. It is not restrictive. The
assumption (C3) that the within-node predictor distribution is the same across all individuals is made to simplify the
arguments and to make them more concise. It could be relaxed in various ways, for example, by assuming equal first
and second-order moments of relevant quantities instead of the entire distribution.

The compactness of Θ in Condition (C4) is used to establish thatD(k)(β) and V (k)(β) are uniformly consistent
across all possible values for β⋆, which is a commonly used assumption in maximum likelihood estimation. The
identification condition ensures that β⋆ is the unique value that maximizes the expectation of the node-specific
likelihood.

Assumption (C5) is a technical requirement to establish a uniform consistency result forD(k)(β) and V (k)(β).
It is satisfied when the first, second, and third-order derivatives of h and b are bounded, as long as E{∥x(k)i ∥1} <

∞. More generally, it imposes a condition on the tails of the distribution of the x(k)i ’s. For example, in Poisson

regression, where h(x) = x and b′(x) = ex, this assumption is satisfied if E(∥x(k)i ∥1eβ
⊤
MAXx(k)i ) < ∞, where βMAX =

supβ∈Θ∥β∥∞(1, . . . , 1)⊤. This condition holds, for example, when the x(k)i ’s are normally distributed or have compact
support.

B.3.2 Theory for the pooled centralized setting estimator

Proceeding as in the proof of Lemma 5 one can show that β̂Pooled = β⋆ + oP(1). From there, one has, in view of
Lemma 7, that

K

∑
k=1

w(k)D(k)(β⋆) =
K

∑
k=1

w(k){D(k)(β⋆)−D(k)(β̂Pooled)
}

= −
K

∑
k=1

w(k){V (k)(β⋆) + oP(1)
}
(β⋆ − β̂Pooled) .

Since V (k)(β⋆) = T (k)
β⋆ + oP(1) (see Lemma 7), and asD(k) is OP(n−1/2) (see Lemma 2), one obtains that

√
n(β̂Pooled − β⋆) =

{ K

∑
k=1

w(k)T (k)
β⋆

}−1 K

∑
k=1

w(k)
√

n
n(k)

{√
n(k)D(k)(β⋆)

}
+ oP(1) . (18)
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Lemma 2 implies
√

n(k)[D(k)(β⋆)− E{D(k)(β⋆)}] converges in distribution to a centred normal random variable
with covariance matrix ϕ⋆T (k)

β⋆ for each 1 ≤ k ≤ K. Since the D(k)’s are mutually independent, as K is finite, and

because n/n(k) → 1/p(k) as n → ∞, then, in view of the above equation, Slutsky’s theorem ensures that
√

n(β̂Pooled − β⋆) →N
(
0, ΣPooled

)
where ΣPooled = (T β⋆)−1{ϕ⋆

K

∑
k=1

w(k)2

p(k)
T (k)

β⋆

}
(T β⋆)−1 ,

with T β⋆ = ∑K
k=1 w(k)T (k)

β⋆ .

B.3.3 Theory for the adapted simple averaging estimator

Since ∑n(k)

k=1 w(k) = 1, then, using the definition of β̂SA, one has

√
n(β̂SA − β⋆) =

√
n

K

∑
k=1

w(k)(β̂
(k)
MLE − β⋆) =

K

∑
k=1

w(k)
√

n/n(k)
{√

n(k)(β̂
(k)
MLE − β⋆)

}
By Lemma 6, under Conditions (C1) to (C5), it holds as n → ∞ that, for all 1 ≤ k ≤ K,

√
n(k)(β̂

(k)
MLE − β⋆) converges

in distribution to a centred normal random variable with variance-covariance matrix given by ϕ⋆(T (k)
β⋆ )−1. Since the

D(k)’s are mutually independent, as K is finite, and because n/n(k) → 1/p(k) as n → ∞, then, in view of the above
equation, Slutsky’s theorem ensures that

√
n
(
β̂SA − β⋆

)
−→ N(0, ΣSA) , where ΣSA = ϕ⋆

K

∑
k=1

w(k)2

p(k)
(T (k)

β⋆ )−1 .

B.3.4 Theory for the adapted single distributed Newton-Raphson updating estimator

Let β̂SNR denote the single distributed Newton-Raphson updating estimator β̂NR,1 of β⋆. One has from (10) that

β̂SNR − β̂SA =
{ K

∑
k=1

w(k)V (k)(β̂SA)
}−1 K

∑
k=1

w(k)D(k)(β̂SA) .

Since β̂SA − β⋆ = OP(n−1/2),

D(k)(β̂SA)−D(k)(β⋆) = V (k)(β̂SA)(β
⋆ − β̂SA) + oP(n−1/2) . (19)

Hence,

β̂SNR − β̂SA =
{ K

∑
k=1

w(k)V (k)(β̂SA)
}−1 K

∑
k=1

w(k)D(k)(β⋆) + (β⋆ − β̂SA) + oP(n−1/2) .

One concludes by re-arranging terms in the preceding equation that

β̂SNR − β⋆ =
{ K

∑
k=1

w(k)V (k)(β̂SA)
}−1 K

∑
k=1

w(k)D(k)(β⋆) + oP(n−1/2) .

Since Lemma 7 ensures the relationship ∑K
k=1 w(k)V (k)(β̂SA) = ∑K

k=1 w(k)T (k)
β⋆ + oP(1), the right-hand side of the last

equation is asymptotically equivalent to the right-hand side of (18). Hence, one concludes that

√
n
(
β̂SNR − β⋆

)
−→ N (0, ΣPooled) ,

where ΣPooled is as above.
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B.3.5 Theory for the adapted multiple distributed Newton-Raphson updating estimator

Let β̂MNR denote the multiple distributed Newton-Raphson updatings estimator. When iterations are conducted
until convergence, the obtained estimator of β⋆ is equal to β̂Pooled. Hence,

√
n(β̂MNR − β⋆) →N

(
0, ΣPooled

)
.

B.3.6 Theory for the distributed estimating equations estimator

Let β̂EE denote the obtained distributed estimating equations estimator. Since it has been established above that
β̂
(k)
MLE − β⋆ = OP(n−1/2) one obtains from a multivariate Taylor expansion that it holds uniformly in k ∈ {1, . . . , K}

and as n → ∞ that

D(k)(β⋆) = D(k)(β⋆)−D(k)(β̂
(k)
MLE) = −V (k)

MLE(β
⋆ − β̂(k)

MLE) + oP(n−1/2) . (20)

Recalling the definitions of V EE and β̂EE from (13) and (14) we hence have

β̂EE = V
−1
EE

K

∑
k=1

w(k)V
(k)

MLEβ̂
(k)
MLE = β⋆ + V

−1
EE

K

∑
k=1

w(k)D(k)(β⋆) + oP(n−1/2)

= β⋆ +
{ K

∑
k=1

w(k)V (k)(β̂MLE)
}−1 K

∑
k=1

w(k)D(k)(β⋆) + oP(n−1/2)

= β⋆ +
{ K

∑
k=1

w(k)T (k)
β⋆ + oP(1)

}−1 K

∑
k=1

w(k)D(k)(β⋆) + oP(n−1/2) ,

where, to obtain the last line, we used the fact that Lemma 7 ensures V (k)(β̂MLE) = T (k)
β⋆ + oP(1). Rearranging

terms and considering
√

n(β̂EE − β⋆), the corresponding right-hand side is then asymptotically equivalent to the
right-hand side of (18), and one concludes

√
n(β̂EE − β⋆) →N

(
0, ΣPooled

)
.

B.3.7 Theory for the distributed estimation using a single gradient-enhanced log-likelihood

Let β̂SGE,1 to denote the surrogate likelihood estimator computed at node k = 1, and recall that β̂SGE,1 satisfies

D(1)(β̂SGE,1) +
K

∑
k=1

w(k)D(k)(β̂SA)−D(1)(β̂SA) = 0 .

As (β⋆ − β̂SA) = OP(n−1/2), and since Lemma 7 guarantees that V (k)(β̂SA) = T (k)
β⋆ + oP(1), one has from

Equation (19) that it holds for each k ∈ {1, . . . , K} that D(k)(β̂SA) = D(k)(β⋆) + T (k)
β⋆ (β⋆ − β̂SA) + oP(n−1/2).

Hence,

D(1)(β̂SGE,1)−D(1)(β⋆) +
K

∑
k=1

w(k)D(k)(β⋆) +
(
T β⋆ − T (1)

β⋆

)
(β⋆ − β̂SA) = oP(n−1/2) , (21)

where one recalls that T β⋆ = ∑K
k=1 w(k)T (k)

β⋆ .

Next, proceeding as in the proof of Lemma 5 one can show that β̂SGE,1 = β⋆ + oP(1). By Lemma 7, the latter

result ensures that V (1)(β̂SL) = T (1)
β⋆ + oP(1). In view of this result, combining the multivariate Taylor’s theorem, the

equality ∇βD
(k)(β) = −V (k)(β) and the fact that V (1)(β⋆) = T (1)

β⋆ + oP(1) yields the relationshipD(1)(β̂SGE,1) =

D(1)(β⋆)−{T (1)
β⋆ + oP(1)}(β̂SGE,1 −β⋆) and therefore β̂SGE,1 −β⋆ = −{T (1)

β⋆ + oP(1)}−1(D(1)(β̂SGE,1)−D(1)(β⋆)).
Moreover, in view of Lemma 6 one has

β̂SA − β⋆ =
K

∑
k=1

w(k)(β̂
(k)
MLE − β⋆) =

K

∑
k=1

w(k)√
p(k)

(T (k)
β⋆ )

−1D(k)(β⋆) + oP(n−1/2) . (22)
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Denoting by Ip+1 the p + 1 square identity matrix, one obtains by combining the derived expression for β̂SGE,1 −
β⋆ with (21) and (22) that

β̂SGE,1 − β⋆ = {T (1)
β⋆ + oP(1)}−1

K

∑
k=1

w(k)
[
Ip+1 +

1√
p(k)

(
T (1)

β⋆ − T β⋆

)
(T (k)

β⋆ )
−1
]
D(k)(β⋆) + oP(n−1/2) .

Since theD(k)’s are OP(n−1/2) (see Lemma 2), one deduces that

β̂SGE,1 − β⋆ = (T (1)
β⋆ )

−1
K

∑
k=1

w(k)
[
Ip+1 +

1√
p(k)

(
T (1)

β⋆ − T β⋆

)
(T (k)

β⋆ )
−1
]
D(k)(β⋆) + oP(n−1/2) . (23)

Therefore,
√

n(β̂SGE,1 −β⋆) converges in distribution to a mean 0 multivariate normal random variable with variance-
covariance matrix given by

ΣSGE,1 =ϕ⋆(T (1)
β⋆ )

−1
{ K

∑
k=1

w(k)2

p(k)
(A

(k)
β⋆ )

⊤T (k)
β⋆ A

(k)
β⋆

}
(T (1)

β⋆ )
−1

where A
(k)
β⋆ =

√
p(k)Ip+1 +

(
T (1)

β⋆ − T β⋆

)
(T (k)

β⋆ )
−1 .

If two iterations are executed, one first uses the fact that

D(1)(β̂SGE,2)−D(1)(β⋆) +
K

∑
k=1

w(k)D(k)(β⋆) +
(
T β⋆ − T (1)

β⋆

)
(β⋆ − β̂SL) = oP(n−1/2) . (24)

From the last equation, an application of the multivariate Taylor expansion combined with Lemma 2 and Lemma 7
ensures β̂SGE,2 = β⋆ + OP(n−1/2). Hence, one obtains that

β̂SGE,2 − β⋆

=
(
T (1)

β⋆

)−1(T (1)
β⋆ − T β⋆

)
(β̂

(1)
SL − β⋆) +

(
T (1)

β⋆

)−1
K

∑
k=1

w(k)D(k)(β⋆) + oP(n−1/2) . (25)

With S = (T (1)
β⋆ )−1 and U = T (1)

β⋆ − T β⋆ , the last equation expresses as

β̂SGE,2 − β⋆ = SU (β̂SGE,1 − β⋆) +S
K

∑
k=1

w(k)D(k)(β⋆) + oP(n−1/2) .

Since from (23) one has

β̂SGE,1 − β⋆ =
K

∑
k=1

w(k)
[
S +

1√
p(k)

SUS
]
D(k)(β⋆) + oP(n−1/2) .

it follows that

β̂SGE,2 − β⋆ =
K

∑
k=1

w(k)
[
S +SUS +

1√
p(k)

(SU )2S
]
D(k)(β⋆) + oP(n−1/2) .

Hence, in general, the asymptotic distribution of β̂SGE,2 − β⋆ does not match that of β̂SGE,1 − β⋆ in (23).

B.3.8 Theory for the distributed estimation using multiple gradient-enhanced log-likelihoods

Let β̂(k)
MGE,1 to denote the surrogate likelihood estimator computed at node k. Proceeding as we did in the last

section to derive (23), one can show that it holds for all k ∈ {1, . . . , K} that as n → ∞,

β̂
(k)
MGE,1 − β

⋆ = (T (k)
β⋆ )

−1
K

∑
k′=1

w(k′)
[
Ip+1 +

1√
p(k′)

(
T (k)

β⋆ − T β⋆

)
(T (k′)

β⋆ )
−1
]
D(k′)(β⋆) + oP(n−1/2)

=
K

∑
k′=1

w(k′)
[
(T (k)

β⋆ )
−1 +

1√
p(k′)

(
Ip+1 − (T (k)

β⋆ )
−1T β⋆

)
(T (k′)

β⋆ )
−1
]
D(k′)(β⋆) + oP(n−1/2)
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Therefore, letting Uβ⋆ = ∑K
k=1 w(k)(T (k)

β⋆ )−1, one obtains that

β̂MGE,1 − β⋆ =
K

∑
k=1

w(k)(β̂(k)
MGE,1 − β

⋆
)

=
K

∑
k=1

w(k)
[
Uβ⋆ +

1√
p(k)

(
Ip+1 −Uβ⋆T β⋆

)
(T (k)

β⋆ )
−1
]
D(k)(β⋆) + oP(n−1/2) .

Therefore,
√

n(β̂MGE,1 − β⋆) converges in distribution to a mean 0 multivariate normal random variable with
variance-covariance matrix given by

ΣMGE,1 =ϕ⋆
K

∑
k=1

w(k)2

p(k)

[√
p(k)Uβ⋆T (k)

β⋆ +
(
Ip+1 −Uβ⋆T β⋆

)]
×
[√

p(k)Uβ⋆ +
(
Ip+1 −Uβ⋆T β⋆

)
(T (k)

β⋆ )
−1
]

.

B.4 Auxiliary results
The following lemma transfers the conditions on the marginal moments imposed in (C3) into a condition on

E
{
∥x∥4

1
}

that is used in the proof of Lemma 2.

Lemma 1. Denote by x a p + 1 dimensional random vector such that E
{
[|x|]6j

}
< ∞ for all 1 ≤ j ≤ p + 1. Then

E
{
∥x∥4

1
}
< ∞.

Proof. Note first that for a multiindex α ∈ Np+1 such that ∥α∥1 = 4 we have essentially 5 possibilities for α: There is
one non-zero element [α]j1 = 4 at position j1, there are two non-zero elements [α]j1 and [α]j2 , j1 ̸= j2, in α where we
either have [α]j1 = 3 and [α]j2 = 1 or [α]j1 = [α]j2 = 2, there are three non-zero elements [α]j1 = 2, [α]j2 = [α]j3 = 1,
j1 ̸= j2 ̸= j3, in α, and lastly there are four non-zero elements [α]j1 = [α]j2 = [α]j3 = [α]j4 = 1 for j1 ̸= j2 ̸= j3 ̸= j4.
Concerning the expectation of |x|α for a random vector x we have by applying the (generalized) Hölder inequality
for the five cases that

E {|x|α} =



E
{
[|x|]4j1

}
,

E
{
[|x|]3j1 [|x|]j2

}
≤
√

E
{
[|x|]6j1

}√
E
{
[|x|]2j2

}
,

E
{
[|x|]2j1 [|x|]

2
j2

}
≤
√

E
{
[|x|]4j1

}√
E
{
[|x|]4j2

}
,

E
{
[|x|]2j1 [|x|]j2 [|x|]j3

}
≤ 3

√
E
{
[|x|]6j1

}
3

√
E
{
[|x|]3j2

}
3

√
E
{
[|x|]3j3

}
,

E
{
[|x|]j1 [|x|]j2 [|x|]j3 [|x|]j4

}
≤ 4

√
E
{
[|x|]4j1

}
4

√
E
{
[|x|]4j2

}
4

√
E
{
[|x|]4j3

}
4

√
E
{
[|x|]4j4

}
.

Given that E
{
[|x|]6j

}
< ∞ implies also E

{
[|x|]ℓj

}
< ∞ for 1 ≤ ℓ ≤ 5, we see that E {|x|α} < ∞ for every multiindex

αwith ∥α∥1 = 4. Applying the multinomial theorem to ∥x∥4
1 now shows that

E
{
∥x∥4

1

}
= E

 ∑
∥α∥1=4

(
4
α

)
|x|α

 = ∑
∥α∥1=4

(
4
α

)
E {|x|α} < ∞.

Lemma 2. Under Conditions (C2)–(C5), it holds that

sup
β∈Θ

|
√

n(k)[D(k)(β)− E{D(k)(β)}] = OP(1) (26)

for all k ∈ {1, . . . , K}.
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Proof. Let ψ(k)
i (β) ∈ Rp+1 such that ψ(k)

i (β) = x(k)i h′(β⊤x(k)i )
(
y(k)i − b′{h(β⊤x(k)i )}

)
. In this notation we have

(n(k))−1 ∑n(k)

i=1 ψ
(k)
i (β) = D(k)(β). For any β1,β2 ∈ Θ one has

ψ
(k)
i (β1)−ψ

(k)
i (β2) =x(k)i

{
h′(β⊤

1 x(k)i )− h′(β⊤
2 x(k)i )

} (
y(k)i − b′{h(β⊤

1 x(k)i )}
)

+ x(k)i h′(β⊤
2 x(k)i )

(
b′{h(β⊤

2 x(k)i )} − b′{h(β⊤
1 x(k)i )}

)
.

Hence, ∥∥∥ψ(k)
i (β1)−ψ

(k)
i (β2)

∥∥∥
∞
≤∥x(k)i ∥∞

∣∣∣h′(β⊤
1 x(k)i )− h′(β⊤

2 x(k)i )
∣∣∣ [|y(k)i |+ |b′{h(β⊤

1 x(k)i )}|
]

+ ∥x(k)i ∥∞|h′(β⊤
2 x(k)i )|

∣∣∣b′{h(β⊤
2 x(k)i )} − b′{h(β⊤

1 x(k)i )}
∣∣∣ .

Since by Condition (C2) h′ is differentiable, then, recalling the definition of Υℓ in Condition (C5), one deduces from
the mean-value theorem and the dual version of the Cauchy–Schwarz inequality |y⊤x| ≤ ∥y∥∞∥x∥1 that

|h′(β⊤
1 x(k)i )− h′(β⊤

2 x(k)i )| ≤ Υ2(x
(k)
i )∥β1 − β2∥∞∥x(k)i ∥1 .

Recalling the definition of Υ̃ℓ in Condition (C5) one similarly has

|b′{h(β⊤
2 x(k)i )} − b′{h(β⊤

1 x(k)i )| ≤ Υ̃1(x
(k)
i )∥β1 − β2∥∞∥x(k)i ∥1 .

As one also has |h′(β⊤
2 x(k)i )| ≤ Υ1(x

(k)
i ) and |b′{h(β⊤

1 x(k)i )}| ≤ Υ̃0(x
(k)
i ), the above equations imply with ∥x(k)i ∥∞ ≤

∥x(k)i ∥1 that ∥∥∥ψ(k)
i (β1)−ψ

(k)
i (β2)

∥∥∥
∞
≤ ∥β1 − β2∥∞m(y(k)i , x(k)i ) ,

where we set

m(y(k)i , x(k)i ) = ∥x(k)i ∥2
1

(
Υ2(x

(k)
i )

(
|y(k)i |+ Υ̃0(x

(k)
i )
)
+ Υ1(x

(k)
i )Υ̃1(x

(k)
i )
)

.

Using first the Hölder and then twice the Minkowski (triangle) inequality we now have

E
{

m(y(k)i , x(k)i )
}
≤
√

E
{
∥x(k)i ∥4

1

}√
E
{(

Υ2(x
(k)
i )

(
|y(k)i |+ Υ̃0(x

(k)
i )
)
+ Υ1(x

(k)
i )Υ̃1(x

(k)
i )
)2
}

≤
√

E
{
∥x(k)i ∥4

1

}(√
E
{(

Υ2(x
(k)
i )

(
|y(k)i |+ Υ̃0(x

(k)
i )
))2

}

+

√
E
{(

Υ1(x
(k)
i )Υ̃1(x

(k)
i )
)2
})

≤
√

E
{
∥x(k)i ∥4

1

}(√
E
{(

Υ2(x
(k)
i )|y(k)i |

)2
}

+

√
E
{(

Υ2(x
(k)
i )Υ̃0(x

(k)
i )
)2
}
+

√
E
{(

Υ1(x
(k)
i )Υ̃1(x

(k)
i )
)2
})

.

Concerning the individual terms in the parentheses we have by the (generalized) Hölder’s inequality with 1/2 =
1/4 + 1/4 that √

E
{(

Υ2(x
(k)
i )|y(k)i |

)2
}

≤ 4

√
E
{(

Υ2(x
(k)
i )
)4
}

4

√
E
{(

|y(k)i |
)4
}

,√
E
{(

Υ2(x
(k)
i )Υ̃0(x

(k)
i )
)2
}

≤ 4

√
E
{(

Υ2(x
(k)
i )
)4
}

4

√
E
{(

Υ̃0(x
(k)
i )
)4
}

,√
E
{(

Υ1(x
(k)
i )Υ̃1(x

(k)
i )
)2
}

≤ 4

√
E
{(

Υ1(x
(k)
i )
)4
}

4

√
E
{(

Υ̃1(x
(k)
i )
)4
}

.
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Given these estimates we then have

E
{

m(y(k)i , x(k)i )
}
≤
√

E
{
∥x(k)i ∥4

1

}(
4

√
E
{

Υ4
2(x

(k)
i )
}(

4

√
E
{
|y(k)i |4

}
+ 4

√
E
{

Υ̃4
0(x

(k)
i )
})

+ 4

√
E
{

Υ4
1(x

(k)
i )
}

4

√
E
{

Υ̃4
1(x

(k)
i )
})

.

In view of the last equation, Condition (C5) in combination with Condition (C3) and Lemma 1 ensures E{m(y(k)i , x(k)i )} =
O(1). Given that the arguments so far are build on the ∥ · ∥∞ norm, conditions (C3) and (C4) now show that each
component

[ψ
(k)
i (β)]j = [x(k)i ]jh′(β⊤x(k)i )

(
y(k)i − b′{h(β⊤x(k)i )}

)
of ψ(k)

i (β) has the property

E
{
|[ψ(k)

i (β1)]j − [ψ
(k)
i (β2)]j|

}
≤ E

{
m(y(k)i , x(k)i )

}
< ∞.

This allows to apply Theorem 19.5 in [48] (see example 19.7) to conclude that each component in bounded in
probability. Combining this with [49, Lemma 1.4.3] shows that the same is true when considering all components in
ψ

(k)
i (β) simultaneously. This finally shows that (26) holds.

Lemma 3. Under Conditions (C2)–(C5), it holds as n → ∞ that
√

n(k)D(k)(β⋆) converges in distribution to a centred normal
random variable with covariance matrix ϕ⋆T (k)

β⋆ .

Proof. To prove the Lemma we use the Cramèr-Wold device. That is, we show that, for any constant a ∈ Rp+1, the
random variable

√
n(k)a⊤D(k)(β⋆) converges in distribution to a centred normal random variable, with variance

ϕ⋆a⊤T (k)
β⋆ a. To do this, first note that as E(y(k)i | x(k)i ) = b′[h{(β⋆)⊤x(k)i }], we have E{a⊤D(k)(β⋆)} = 0 and

var
{√

n(k)a⊤D(k)(β⋆)
}
=

1
n(k)

n(k)

∑
i=1

E
{
(a⊤x(k)i )2 h′(β⊤x(k)i )2 var(y(k)i | x(k)i )

}
= ϕ⋆E

{
(a⊤x(k)1 )2 h′(β⊤x(k)1 )2b′′[h{(β⋆)⊤x(k)1 }]

}
= ϕ⋆a⊤

[
E
{

x(k)1 (x(k)1 )⊤ h′(β⊤x(k)1 )2b′′[h{(β⋆)⊤x(k)1 }]
}]

a

= ϕ⋆a⊤T (k)
β⋆ a .

To obtain the second line, we used the fact that var(y(k)i | x(k)i ) = ϕ⋆b′′[h{(β⋆)⊤x(k)i }] and the assumption that the

x(k)i ’s are i.i.d. for a given k. For the third line, we used the equality (a⊤x(k)1 )2 = a⊤x(k)1 (x(k)1 )⊤a.

As the (y(k)i , x(k)i )’s are i.i.d. random variables, it follows
√

n(k)a⊤D(k)(β⋆) is itself a sum of i.i.d. random
variables, with mean 0 and finite (constant) variance. Therefore, an application of the Lindeberg-Lévy central limit
theorem ensures that

√
n(k)a⊤D(k)(β⋆) converges in law to a centred normal distribution with variance ϕ⋆a⊤T (k)

β⋆ a.
An application of Cramér-Wold theorem concludes the proof of the Lemma.

The Lemma below can be proven using similar arguments, so their proofs are omitted.

Lemma 4. Under Conditions (C1) to (C5), it holds as n → ∞ that

sup
β∈Θ

|
√

n(k)[V (k)(β)− E{V (k)(β)}] = OP(1) (27)

for all k ∈ {1, . . . , K}.
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The next lemma establishes the consistency of β̂(k)
MLE.

Lemma 5. Under Conditions (C1) to (C5), it holds as n → ∞ that β̂(k)
MLE = β⋆ + oP(1) for all 1 ≤ k ≤ K.

Proof. To prove the Lemma, the goal is the apply Theorem 5.9 in [48] with θ ≡ β, Ψn ≡ D(k) and Ψ ≡ ED(k). To do
this, it is required to verify that (1) it holds as n → ∞ that

sup
β∈Θ

∣∣∣D(k)(β)− E{D(k)(β)}
∣∣∣ = oP(1) for all k ∈ {1, . . . , K},

and (2) that for every ϵ > 0, infβ:∥β−β⋆∥>ϵ∥E{D(k)(β)}∥ > 0 = ∥E{D(k)(β⋆)}∥.
That (1) holds follows from the fact that under the Lemma’s condition, Lemma 2 applies. That (2) holds follows

from the fact that under Condition (C2) the mapping β → E{D(k)(β)} is continuous, and that under Condition (C4)
one has E{D(k)(β)} = 0 if and only if β = β⋆. Hence, Theorem 5.9 applies, thereby ensuring that β̂(k)

MLE = β⋆ + oP(1).
The fact that it holds for all 1 ≤ k ≤ K follows from the fact that under Condition (C1) K is finite.

The last three Lemmas ensure the following result.

Lemma 6. Under Conditions (C1) to (C5), it holds as n → ∞ that, for all 1 ≤ k ≤ K,√
n(k)(β̂

(k)
MLE − β⋆) =

√
n(k)(T (k)

β⋆ )
−1D(k)(β⋆) + oP(1) .

Consequently,
√

n(k)(β̂
(k)
MLE − β⋆) converges in distribution to a centred normal random variable with variance-covariance

matrix given by ϕ⋆(T (k)
β⋆ )−1.

Proof. See Theorem 5.21 in [48].

Lemma 7. Under Conditions (C1) to (C5), it holds as n → ∞ that, for all 1 ≤ k ≤ K, and any β̂ such that β̂ = β⋆ + oP(1),

V (k)(β̂) = T (k)
β⋆ + oP(1) .

Proof. Let Ψ(β) = E{V (k)(β)}. Lemma 4 implies that

V (k)(β̂) = Ψ(β̂) + oP(1) .

Since it is assumed that β̂ = β⋆ + oP(1), and as Ψ(β⋆) = T (k)
β⋆ , the result follows from the continuous mapping

theorem.
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