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Abstract 23 

Magnetic resonance imaging (MRI) measurements are routinely collected during the treatment 24 

of high-grade gliomas (HGGs) to characterize tumor boundaries and guide surgical tumor 25 

resection. Using spatially matched MRI and transcriptomics we discovered HGG tumor biology 26 

captured by MRI measurements. We strategically overlaid the spatially matched omics 27 

characterizations onto a pre-existing transcriptional map of glioblastoma multiforme (GBM) to 28 

enhance the robustness of our analyses. We discovered that T1+C measurements, designed to 29 

capture vasculature and blood brain barrier (BBB) breakdown and subsequent contrast 30 

extravasation, also indirectly reveal immune cell infiltration. The disruption of the vasculature 31 

and BBB within the tumor creates a permissive infiltrative environment that enables the 32 

transmigration of anti-inflammatory macrophages into tumors. These relationships were 33 

validated through histology and enrichment of genes associated with immune cell transmigration 34 

and proliferation. Additionally, T2-weighted (T2W) and mean diffusivity (MD) measurements 35 

were associated with angiogenesis and validated using histology and enrichment of genes 36 

involved in neovascularization. Furthermore, we establish an unbiased approach for identifying 37 

additional linkages between MRI measurements and tumor biology in future studies, particularly 38 

with the integration of novel MRI techniques. Lastly, we illustrated how noninvasive MRI can be 39 

used to map HGG biology spatially across a tumor, and this provides a platform to develop 40 

diagnostics, prognostics, or treatment efficacy biomarkers to improve patient outcomes. 41 
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Introduction 44 

Conventional magnetic resonance imaging (MRI) is a cornerstone for noninvasively diagnosing 45 

and devising treatment strategies for deadly high-grade glioma (HGG) tumors. Currently, MRI is 46 

primarily used to establish tumor boundaries that are readily observed as regions where the 47 

blood-brain-barrier (BBB) has been disrupted allowing for MRI contrast extravasation into the 48 

tumor interstitial space (1). Accurately delineating tumor boundaries is crucial for determining 49 

tumor burden, which translates clinically to the extent of surgical resection (2). The ubiquitous 50 

use of MRI in the clinical management of HGG tumors, coupled with the development of new 51 

MRI techniques, demands further study to elucidate the biological phenomena captured by 52 

imaging HGG tumors. 53 

MRI measurements from HGG tumors have also been linked to tumor heterogeneity (3, 4), 54 

tumor percentage (5), cellular density (6, 7), and found to be predictive in prognostic and 55 

recurrence models (8–10). Simultaneous imaging and molecular characterization provide a 56 

platform for linking noninvasive biophysical imaging patterns to their molecular underpinnings. 57 

Examples include associations with EGFR mutational status (11) and CD49 immune cell 58 

presence (12) onto three-dimensional representations of a tumor. We hypothesize that 59 

additional insights into tumor biology can be extracted from MRI through integration of imaging 60 

and molecular measurements. 61 

We conducted a system level integrative study to reveal the clinically relevant aspects of HGG 62 

tumor biology that can be captured through noninvasive MRI measurements. Establishing 63 

connections between MRI measurements and HGG tumor biology requires a spatially matched 64 

quantification of MRI alongside omics-scale molecular characterization. We generated a cohort 65 

of spatially matched MRI and transcriptomics characterized contrast enhancing (CE) HGG 66 

tumors (13). In the spatially matched cohort, we collected MRI measurements for T1-weighted 67 

contrast-enhanced (T1+C), T2-weighted (T2W), and two diffusion weighted imaging metrics:  68 

fractional anisotropy (FA), and mean diffusivity (MD). T1+C utilizes a contrast agent to identify 69 

areas of BBB disruption by registering where the contrast agent leaks out of vasculature into the 70 

surrounding tissue interstitia (14). T1+C is generally used as a surrogate for tumor presence 71 

and to define HGG tumor burden (14). T2W captures tissue water content with bright areas 72 

extending past the T1+C signal indicating vasogenic edema (14). An infiltrative tumor can 73 

extend into these regions of edema, and T2W is thus valuable alongside T1+C in guiding the 74 

extent of surgical resection (14). T1+C and T2W are commonly used to facilitate many aspects 75 

of HGG patient care, including initial diagnosis, treatment planning, and response assessment 76 

after first-line therapy. Advanced diffusion-based MRI techniques, such as FA and MD, have 77 

gained traction as essential complementary techniques in neuro-oncology. FA is a form of 78 

diffusion tensor imaging (DTI) that measures directionally dependent water diffusion (14). FA 79 

values measure perturbation from linear diffusion which is often used to characterize the risk for 80 

tumor infiltration of white matter tracts during pre-surgical mapping (15). MD is a form of 81 

diffusion-weighted imaging (DWI) that measures extracellular bulk water diffusion (14). MD has 82 

classically been used to measure water restriction related to cytotoxic edema and has been 83 

correlated with constrained diffusion due to cellular packing in neuro-oncology (16). Together, 84 

these MRI measurements quantify a wide range of biophysical phenomena that could potentially 85 

be used as noninvasive proxies for the underlying biology of HGG tumors. 86 
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Collecting spatially matched biopsies and MRI measurements from a tumor is a complex 87 

surgical undertaking, which leads to smaller cohort sizes. In this study, we boosted the signal in 88 

our analyses by overlaying the omics characterizations onto a previously constructed 89 

transcriptional map of glioblastoma multiforme (GBM). The gbmSYGNAL network was 90 

constructed using multi-omic profiles of 422 patient tumors from The Cancer Genome Atlas 91 

(TCGA) (17). The 5,194 genes in the gbmSYGNAL network are aggregated into 500 co-92 

regulated gene expression signatures (biclusters). Biclusters contain genes that were linked to 93 

pathways and biological processes through functional enrichment analysis. We then linked 94 

enriched pathways and biological processes to the hallmarks of cancer (17–20). The hallmarks 95 

of cancer describe clinically relevant oncogenic functions acquired by all cancer types and are 96 

especially relevant to HGGs (21). We aim to identify MRI proxies for HGG tumor biology by 97 

discovering which spatially matched MRI measurements are predictive of clinically relevant 98 

tumor biology encapsulated within biclusters.  99 
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Methods 100 

Patient recruitment and surgical biopsies 101 

Patient recruitment took place at both Barrow Neurological Institute (BNI) and Mayo Clinic in 102 

Arizona (MCA) through IRB approved protocols at each institution. Informed consent was 103 

obtained prior to enrollment. Patients recruited for these studies underwent preoperative 104 

stereotactic MRI for surgical resection and had a histologically confirmed diagnosis of high-105 

grade glioma (grade III or IV) and most of the patient tumors were IDH WT (25 IDH WT and 5 106 

IDH mutant) (13). Most of the patient tumors were primary tumors (n = 23) and a smaller subset 107 

were recurrent tumors (n = 7). Characteristics of the patients, tumors and biopsies can be found 108 

in Table S1. The smallest possible diameter craniotomies were used to minimize brain shift. An 109 

average of 4-5 biopsies were collected from contrast-enhancing (CE) tumor regions separated 110 

by at least one cm using stereotactic surgical resection guided by conventional preoperative 111 

MRI (T1+C and T2W) (13). Biopsy locations were recorded via screen capture to allow co-112 

registration of all MRI measurements.  113 

Conventional MRI to capture T1+C and T2W and general acquisition conditions 114 

Patients were imaged 24 hours before stereotactic surgery using a 3T MRI scanner (Sigma 115 

HDx; GE-Healthcare Waukesha Milwaukee; Ingenia, Philips Healthcare, Best, Netherlands; 116 

Magnetome Skyra; Siemens Healthcare, Erlangen Germany). Conventional MRI included 117 

standard pre- and post-contrast T1-weighted (T1, T1+C, respectively) and pre-contrast T2-118 

weighted (T2W) sequences as previously described (13). Briefly, T1 and T1+C images were 119 

acquired using inversion-recover prepped (IR-prepped) spoiled gradient recalled-echo (SPGR) 120 

(T1/TR/TE = 300/6.8/2.8 ms; matrix = 320 x 224; FOV = 26 cm; thickness = 2 mm). The 121 

gadolinium based contrast agent (GBCA) was gadobenate dimeglumine for patients recruited at 122 

BNI and gadobutrol for patients recruited at MCA. T2W images were acquired using fast-spin-123 

echo (FSE) (TR/TE = 5133/78 ms; matrix = 320 x 192; FOV = 26 cm; thickness = 2 mm). 124 

DTI was used to capture MD and FA 125 

DTI was performed using Spin-Echo Echo-planar imaging (EPI) [TR/TE 10,000/85.2 ms, matrix 126 

256 × 256; FOV 30 cm, 3 mm slice, 30 directions, ASSET, B = 0,1000]. The DTI DICOM files 127 

were converted into NIfTI format using MRIConvert 128 

(http://lcni.uoregon.edu/downloads/mriconvert). DTI parametric maps were calculated using FSL 129 

(22) to generate whole-brain maps of MD and FA (13, 23). 130 

Image co-registration 131 

Each MRI measurement was co-registered to the DTI B0 anatomical image volume using tools 132 

from ITK (24) and IB Suite (Imaging Biometrics, LLC) (13). This approach to co-registration 133 

minimizes potential distortion errors from resampling that can adversely affect DTI metrics. The 134 

co-registered data was resampled to an in-plane voxel resolution of ~1.17 mm (256 x 256 135 

matrix) and a slice thickness of 3 mm. 136 

Region of interest (ROI) generation and image feature extraction 137 

The stereotactic location recorded for each biopsy during surgery defined a spatially matched 138 

MRI ROI measuring 8 x 8 x 1 voxels (9.6 x 9.6 x 3 mm). A board-certified neuroradiologist 139 

(L.S.H.) visually inspected all ROIs to ensure accuracy and that each biopsy specimen was in a 140 
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CE region of the tumor (13). Biopsies near potential artifacts (e.g., the floor of the anterior skull 141 

base, middle cranial fossa superior to the mastoid air cells, or craniectomy plate/screws) or in 142 

locations expected to yield no tissue (e.g., resection cavity or central necrosis) were excluded 143 

from the study. The mean value was calculated from the voxels in each biopsy’s ROI for each 144 

MRI imaging technique, and these values were used for subsequent analyses linking MRI and 145 

transcriptomics. 146 

RNA-sequencing of image-localized biopsies  147 

RNA was extracted from flash frozen tissue, libraries were constructed using the Illumina 148 

TruSeq v2 RNAseq kit, and paired-end reads were sequenced on an Illumina HiSeq 4000 149 

sequencer. FASTQ files were aligned to the human transcriptome (GRCh38.p37) using STAR, 150 

read counts were compiled using htseq-count, and batch effect was corrected using ComBat-151 

seq as previously described (13). Tumor purity was computed for all 75 samples with whole 152 

exome sequencing (WES) as previously described (13). 153 

Revising biclusters for use with RNA-seq data 154 

The first principal component corrected for sign (eigengenes) for each gbmSYGNAL bicluster 155 

was computed from the 75 CE MRI samples with RNA-seq, tumor purity, and MRI 156 

measurements (17, 25). Mixed effects models (MEMs) from the statsmodels package (26) were 157 

used to associate each bicluster eigengene with the expression of each constituent gene across 158 

the 75 samples, using patient ID, tumor purity and IDH mutational status as random effects, and 159 

patient ID was used to account for repeated samples collected from the same patient tumor. 160 

Genes with a positive beta value (β > 0) and significant association (p-value ≤ 0.05) with the 161 

eigengene were included in the revised bicluster gene set definitions. Revised biclusters with at 162 

least five genes and an eigengene with a first principal component (PC1) variance explained ≥ 163 

0.3 were included in subsequent analyses. 164 

Associating biclusters with MRI measurements 165 

Revised bicluster eigengenes were tested for association with MRI measurements across the 166 

75 samples using a MEM with patient ID, tumor purity, and IDH mutational status as random 167 

effects, and patient ID was used to account for repeated samples collected from the same 168 

patient tumor. Significant eigengene-MRI relationships were defined by a p-value ≤ 0.05. 169 

Linking MRI measurements to the hallmarks of cancer through gbmSYGNAL 170 

In the construction of gbmSYGNAL, biclusters were associated with GO biological process 171 

(GO:BP) terms and then linked to the hallmarks of cancer using semantic similarity (17). 172 

Significant linkage to the hallmarks of cancer was defined as a significant MRI association with 173 

the bicluster eigengene and a Jiang-Conrath semantic similarity score ≥ 0.7 to a hallmark of 174 

cancer. For each MRI measurement, hypergeometric enrichment analysis was used to test the 175 

significance of the overlap between MRI and hallmarks of cancer associated biclusters (17). 176 

Significant enrichment was defined by a BH-adjusted p-value ≤ 0.05 and an overlap > 0. 177 

Linking MRI measurements to patient survival through gbmSYGNAL 178 

In constructing gbmSYGNAL, biclusters were linked to patient survival using Cox proportional 179 

hazards regression with patient age as a covariate and replicated in at least one of three 180 

independent validation cohorts used in Plaisier et al., 2016 (17). This study defined a significant 181 
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linkage between a bicluster and patient survival based on a p-value ≤ 0.05 and the hazard ratio 182 

in the same direction in all four cohorts (17). For each MRI measurement, hypergeometric 183 

enrichment analysis was used to test the significance of the enrichment between MRI and 184 

patient survival associated biclusters (17). Significant enrichment was defined by a BH-adjusted 185 

p-value ≤ 0.05 and an overlap > 0. 186 

Clinical and molecular data for the TCGA GBM cohort 187 
The Pan-Cancer Atlas consortium contains standardized, normalized, batch-corrected, and 188 
platform-corrected multi-omics data for 11,080 participant tumors (27). This work used 422 189 
complete multi-omic GBM patient tumor profiles to validate findings from MRI data. The TCGA 190 
GBM cohort microarrays were used for RNA expression (n = 422). TCGA aliquot barcodes 191 
flagged as "do not use" or excluded by pathology review from the Pan-Cancer Atlas Consortium 192 
were removed from the study. Overall survival (status and time to an event) for patients in the 193 
cohort were obtained from Liu et al. 2018 (28). 194 

Associating tumor infiltrating lymphocytes (TILs) to revised bicluster eigengenes in 195 

TCGA 196 

Histologically determined quantification of TILs was available for 124 TCGA GBM tumors, where 197 

a value of 0 indicated TIL absence and values of 1 or 2 indicated TIL presence (29). For each 198 

revised bicluster eigengene, a t-test was performed comparing bicluster expression to TIL status 199 

(present vs. absent) across all 124 TCGA patients. Significant associations were determined by 200 

a BH-adjusted p-value ≤ 0.05. Hypergeometric enrichment analysis was used to test for 201 

enrichment between TIL and MRI associated biclusters, where significant enrichment was 202 

defined by a BH-adjusted p-value ≤ 0.05 and an overlap > 0. 203 

Deconvoluting immune cell abundance estimates 204 

The CIBERSORTx deconvolution method was used to estimate immune cell abundance from 205 

bulk gene expression data (30). The MRI and TCGA cohorts were run through CIBERSORTx to 206 

estimate immune cell abundance using the LM22 signature matrix (30). Batch correction and 207 

quantile normalization were disabled, the relative run mode was selected, and 500 permutations 208 

were performed. Results were restricted to include T-cells (CD8+, CD4+ memory resting, and 209 

follicular helper), NK cells (resting and activated), and macrophages/microglia (non-activated, 210 

pro-inflammatory, and anti-inflammatory) to remain consistent with the infiltrating immune cell 211 

types previously identified in GBM tumors (31–34). 212 

Associating immune cell estimates to revised bicluster eigengenes 213 

Deconvoluted immune cell fraction estimates were compared to bicluster eigengenes. Pearson 214 

correlations were used to test for associations between deconvoluted immune cell fractions for 215 

the TCGA cohort, because each patient corresponded to a single sample (27). Associations in 216 

the MRI cohort were computed using a MEM with patient ID, tumor purity, and IDH mutational 217 

status as random effects, where patient ID was used to account for repeated samples collected 218 

from the same patient tumor. Significant associations were identified for both the MRI and 219 

TCGA cohorts with a BH-adjusted p-value ≤ 0.05. 220 

Isolating hallmark-specific GOBP terms 221 

For each MRI measurement, the genes from significantly associated revised biclusters were 222 

aggregated into two gene lists:  one for positively associated revised biclusters, and a second 223 
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for negatively associated revised biclusters. Genes were removed if they were members of two 224 

biclusters that had opposite beta value signs with the same MRI measurement (3 genes were 225 

removed in total). Functional enrichment analysis was performed on each gene list using the 226 

enrichr module from the gseapy package (35). Significant GO:BP terms were identified with a 227 

BH-adjusted p-value ≤ 0.05 and an overlap ratio of ≥ 0.1. Each GO:BP term was individually 228 

tested for significant semantic similarity with the hallmark(s) of cancer. Hallmark-specific GO:BP 229 

terms were identified with a Jiang-Conrath semantic similarity score ≥ 0.7. For each MRI 230 

measurement, GO:BP terms significantly associated with both the MRI measurement and the 231 

hallmark of cancer (‘Self sufficiency in growth signals,’ ‘Insensitivity to antigrowth signals,’ or 232 

‘Tissue invasion and metastasis’) were isolated for further study. 233 

Associating vessel markup percentage to revised bicluster eigengenes in TCGA 234 

Histologically determined percentages of vessel markup were available for 79 TCGA GBM 235 

tumors (36). A Pearson correlation was performed comparing each bicluster eigengene to 236 

vessel markup percentage. Significant associations were determined by a p-value ≤ 0.01. 237 

Hypergeometric enrichment analysis was used to test for enrichment between vessel and MRI 238 

associated biclusters, where significant enrichment was defined by a BH-adjusted p-value ≤ 239 

0.05 and an overlap > 0. 240 

Calculating percentiles for MRI signal, bicluster expression, and gene expression 241 

MRI measurements (T1+C), revised bicluster eigengenes (PITA-14, Targetscan-269, and 242 

Targetscan-541), and transcript levels (CD163) were normalized to scale between 0 and 1 243 

across six MRI samples from patient BNI152 with RNA-seq, tumor purity, and MRI 244 

measurements.  245 
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Results 246 

Cohorts of HGG tumors 247 

We collected 75 spatially matched biopsies and MRI measurements from 30 HGG patient 248 

tumors (the MRI cohort, Figure 1A, Table S1). All 75 biopsies were characterized by RNA-seq 249 

and exome-seq to discover transcriptional signatures and tumor purity describing the underlying 250 

composition and molecular changes in each biopsy (13). An average of two and a half image 251 

localized biopsies (one to six biopsies) were collected from CE tumor regions separated by at 252 

least one cm, and average tumor purity, i.e., abundance of tumor cells in the biopsy, was 63% ± 253 

20%. We accounted for the repeated sampling from the same tumor and tumor purity by 254 

incorporating them into our statistical tests. 255 

The 30 tumors characterized in the MRI cohort cannot capture the full intertumoral 256 

heterogeneity observed between HGG tumors (37). We addressed this gap by incorporating the 257 

TCGA GBM cohort, which extensively profiled the transcriptomes of 422 patient tumors (17, 27). 258 

Previously we constructed the gbmSYGNAL network (17) to discover co-regulated gene 259 

expression signatures, or biclusters, that encapsulate the fundamental biological processes 260 

inherent to GBM tumors (i.e., hallmarks of cancer (18, 19)) (Figure 1A). We leverage the 261 

biology encapsulated by the 500 biclusters from gbmSYGNAL to enhance the depth and scope 262 

of our analyses with the MRI cohort. We also used the histological characterization of the TCGA 263 

GBM cohort to validate associations with immune cell infiltration (29) and angiogenesis (36). 264 

The integration of these two complementary cohorts culminates in a powerful platform for 265 

uncovering the HGG tumor biology captured by MRI measurements. 266 

Revising gbmSYGNAL biclusters for use with RNA-seq data 267 

Technological differences between RNA-seq (MRI cohort) and microarray (TCGA cohort) are 268 

known to cause discrepancies in gene expression for some genes (38, 39). These 269 

discrepancies led to a lack of positive correlation for a minority of genes within the bicluster 270 

eigengenes of the MRI cohort (Figure S1A), which can impact downstream analyses. As a 271 

countermeasure, we devised a series of filters designed to eliminate genes exhibiting 272 

inconsistent expression patterns between platforms. This intervention was designed to ensure 273 

that the bicluster eigengene remains a robust representation of its constituent gene variance 274 

(Figures S1A-D). The implementation of the filters yielded a discernible impact:  the exclusion 275 

of 1,926 genes (out of 5,194) and 33 biclusters (out of 500) from further analyses (Table S2). 276 

For the remaining 467 biclusters there was a reduction in the average number of genes per 277 

bicluster from 36 ± 11 to 25 ± 8. Importantly, the filters did not significantly alter the number of 278 

biclusters associated with each MRI measurement. The filters improved the results of 279 

downstream functional enrichment analyses (Figures S1E-S1F). In summary, the bicluster 280 

revision process removed genes marginally co-expressed in RNA-seq to improve bicluster 281 

coherence and bolstered the signal strength for subsequent functional enrichment analyses. 282 

Linking MRI measurements to the hallmarks of cancer 283 

Our primary goal in these studies was to link MRI measurements to the underlying biology of 284 

HGG tumors. We first associated MRI measurements to revised bicluster eigengene expression 285 

using a MEM that corrects for tumor purity, repeated sampling from the same patient tumor, and 286 

IDH mutational status (MRI → bicluster; Figure 1A). Our data showed positive associations 287 
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between all MRI measurements and the expression of at least 12 biclusters (Figure 1B, Table 288 

S3). Fewer negative associations were discovered that linked MRI measurements to the 289 

expression of biclusters (Figure 1B, Table S3). 290 

Next, we integrated MRI associated biclusters to hallmarks of cancer using relationships 291 

previously defined in the gbmSYGNAL network (bicluster → hallmark(s) of cancer; Figure 1A) 292 

(17). Using the transitive property, we linked MRI measurements to the hallmarks of cancer with 293 

biclusters as the intermediaries (i.e., MRI → bicluster and bicluster → hallmarks of cancer, 294 

therefore MRI → hallmarks of cancer). The biclusters positively associated with MRI were 295 

significantly enriched with biclusters associated with seven hallmarks of cancer (BH-adjusted p-296 

value < 0.05, Figure 1C, Table S3). The biclusters positively associated with T1+C were 297 

significantly enriched with biclusters associated with the immune-related hallmarks ‘Evading 298 

immune detection’ and ‘Tumor promoting inflammation,’ as well as the growth-related hallmarks 299 

‘Insensitivity to antigrowth signals’ and ‘Self sufficiency in growth signals.’ Biclusters positively 300 

associated with MD and T2W were significantly enriched with ‘Sustained angiogenesis’ and 301 

‘Tissue invasion & metastasis’ associated biclusters. Biclusters positively associated with T2W 302 

also had a significant enrichment with ‘Evading apoptosis’ hallmark associated biclusters. These 303 

results suggest that the MRI measurements (T1+C, MD, and T2W) might be used as 304 

noninvasive surrogates for seven hallmarks of cancer. 305 

We also tested for enrichment between MRI and patient survival associated biclusters (Figure 306 

1D, Table S3) (17). Biclusters positively associated with T1+C were significantly enriched with 307 

biclusters that predicted shorter patient survival (BH-adjusted p-value = 4.1 x 10-13). This 308 

observation is consistent with other studies that have recognized T1+C as a prognostic tool for 309 

HGG (9, 40). 310 

T1+C is associated with increased tumor infiltrating lymphocytes 311 

The strongest association we observed in this study linked T1+C to biclusters enriched with the 312 

immune hallmarks of cancer (Figure 1C). We validated the association between T1+C and the 313 

immune hallmarks by testing whether the biclusters positively associated with T1+C were 314 

significantly enriched with biclusters associated with histologically-determined TILs in the TCGA 315 

cohort (29). We found that 151 of the 467 revised biclusters were significantly positively 316 

associated with TILs (T-statistic > 0; BH-adjusted p-value ≤ 0.05; Table S4). There was a highly 317 

significant enrichment between the TILs and T1+C associated biclusters (overlap = 125; BH-318 

adjusted p-value = 1.1 x 10-12; Figures 2A-D). This striking overlap of TIL and T1+C associated 319 

biclusters supports that T1+C could be used as a proxy for tumor immune cell infiltration. 320 

T1+C is associated with deconvoluted signatures of immune cell types 321 

We then sought to identify the specific immune cell types infiltrating HGG tumors by examining 322 

associations between biclusters positively linked to T1+C and estimates of immune cell 323 

abundance. We focused our studies on the infiltrating immune cell types observed in HGG 324 

tumors (31–34), which included T-cells (CD8+, CD4+ memory resting, and follicular helper), NK 325 

cells (resting and activated), and macrophages/microglia (non-activated, pro-inflammatory, and 326 

anti-inflammatory). The choice of these cell types was confirmed by the observation that both T-327 

cells and macrophages/microglia were the most abundant immune cell types in the estimates 328 

for the MRI and TCGA cohorts (Figures S2A-C). 329 
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Next, we tested for associations between the eigengenes from biclusters positively associated 330 

with T1+C and tumor-level estimates for the abundance of each immune subset (Figures 2E-G; 331 

Table S5). Associations between biclusters positively associated with T1+C and infiltrating 332 

immune cell estimates were considered significant if they replicated across the two 333 

independently collected MRI and TCGA cohorts. No consistent trends were observed for the T-334 

cells between the two datasets (Figures 2E & 2H). We did detect a significant positive 335 

relationship between biclusters positively associated with T1+C and resting NK cells (β-value 336 

and correlation coefficient < 0; BH-adjusted p-value ≤ 0.05; Figures 2F & 2I). The most striking 337 

trend we observed was a strong positive relationship between biclusters positively associated 338 

with T1+C and anti-inflammatory macrophages/microglia (β-value and correlation coefficient > 339 

0; BH-adjusted p-value ≤ 0.05, Figures 2G & 2J). The increased infiltration of anti-inflammatory 340 

macrophages/microglia is strongly supported by literature reporting that these cells typically 341 

comprise a substantial fraction of HGG tumor bulk (31–34). A separate study also identified an 342 

increase of bone marrow-derived macrophages/microglia in the CE core of HGG tumors where 343 

T1+C signal is elevated, further supporting the link between T1+C and the presence of 344 

macrophages/microglia (41). Collectively, these findings provide strong evidence that elevated 345 

T1+C levels are linked to an increased presence of anti-inflammatory macrophages/microglia 346 

within the tumor microenvironment. 347 

Leaky vasculature and BBB breakdown leads to influx of contrast agent and immune 348 

cells 349 

Our analyses showed evidence for a relationship between T1+C signal and tumor immune cell 350 

infiltration, but the underlying biophysical mechanism driving this association still needs to be 351 

explained. The biophysics of T1+C signal is based on the intravenous injection of a GBCA that 352 

is used for both enhancement of vasculature and to visualize HGG tumor burden (14). As HGG 353 

tumors grow, they crush the surrounding tissue and actively secrete enzymes that collectively 354 

lead to a loss in integrity of both the vasculature and BBB at various regions around the tumor 355 

(42–46). This leakiness allows GBCA out of the vasculature and across the BBB, where it 356 

generates a T1+C signal (Figure 2K). The genes from T1+C associated biclusters revealed the 357 

mechanisms for the breakdown of vasculature and BBB, and subsequent immune cell 358 

transmigration (Figure 2K). The biclusters included the angiogenic factors ANGPT2, FGFBP2, 359 

FGF20, and TNF that loosen the walls of vasculature and cell contacts of the BBB in brain 360 

metastases (43, 46). Physical crushing due to tumor growth in a confined space increases 361 

vasculature and BBB breakdown, allowing blood vessel contents to seep into the central 362 

nervous system (CNS) (45). The cell adhesion molecule VCAM1 mediates the adhesion of 363 

immune cells that, during extravasation, can lead to further loss of integrity for vasculature and 364 

the BBB (47, 48). These genes describe the mechanisms that disrupt the vasculature and BBB 365 

and allows GBCA to permeate into the tumor. These results corroborate the well-established 366 

mechanisms that generate the T1+C signal (14). 367 

The biclusters positively associated with T1+C also contain genes describing immune cell 368 

infiltration (Figure 2K). The VCAM1 pathway members CLDN5, CLDDN23, and PLCG2 work 369 

with VCAM1 to signal immune cell transmigration (48, 49). Consistent with our deconvolution 370 

results, CD163 indicates the presence of anti-inflammatory macrophages that have been 371 

polarized by IL10 and IL10RA (50, 51) and TREM2 suggests that microglia are also present 372 
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(52). Together, these macrophages and microglia constitute glioma-associated 373 

macrophages/microglia (GAMs). Additionally, markers CD2 and CD4 indicate that T-cells join 374 

anti-inflammatory macrophages as part of the invading immune cell population (53, 54). The co-375 

occurrence of immune infiltration and T1+C signal in our results indicate that peripheral immune 376 

cells are likely crossing into the tumor at the same leaky sites that permit GBCA leakage 377 

(Figure 2K). 378 

We observed that genes associated with vasculature and BBB breakdown and the 379 

transmigration of immune cells increase as T1+C signal increases. While the mechanism driving 380 

the elevation of T1+C signal due to vasculature and BBB breakdown is well-documented (42–381 

46), it's important to note that immune cell transmigration is a downstream consequence of 382 

vasculature and BBB breakdown. Meaning that T1+C does not directly quantify immune cell 383 

infiltration. Consequently, T1+C signal emerges as a valuable surrogate for vasculature and 384 

BBB breakdown and a meaningful albeit indirect indicator of immune cell infiltration within HGG 385 

tumors. 386 

T1+C is an indirect proxy for the proliferation of immune cells 387 

Genes that increased when T1+C signal intensified were also associated with proliferation-388 

related hallmarks of cancer (Figure 1C). The genes from the overlapping biclusters were 389 

strongly enriched with terms related to T-cell proliferation (Figures 3A-3C). This is consistent 390 

with the discovery of CD4+, CD8+, and follicular helper T-cell sub-population cell estimates in 391 

both the MRI and TCGA cohorts (Figure S2A). Other enriched pathways describe the process 392 

by which the T-cell antigen receptors begin the immune response through the tyrosine kinase 393 

signaling pathway (Figure 3B) to initiate the MAPK cascade and downstream ERK1/ERK2 and 394 

JNK pathways (Figure 3C) that result in proliferation (Figures 3A-3B) (55–57). The activation 395 

and proliferation of T-cells supports our original association between T1+C and infiltrating 396 

immune cells following vasculature and BBB breakdown. 397 

T1+C is an indirect proxy for invading immune cell populations 398 

Genes from the biclusters associated with ‘Tissue invasion & metastasis’ revealed a range of 399 

migration-related processes associated with increasing T1+C signal (Figures 4A-4C). These 400 

functions included immune cell migration, general migration processes, and coagulation 401 

(Figures 4A-4C). The immune-related migration functions split along distinct cell-type 402 

categories (Figure 4A), and the detection of monocytes (which include macrophages) and T-403 

cell migration replicates our association between T1+C and immune infiltration (Figure 2A-2J). 404 

The migration-specific functions support that these immune cell populations are actively 405 

infiltrating HGGs. 406 

Using T1+C as a proxy for immune infiltration within a tumor 407 

The heterogeneity of HGG tumors is a product of the varied anatomical constraints affecting 408 

each part of the tumor (e.g., proximity to vasculature, ventricles, skull, or white matter tracts), as 409 

well as the tumor microenvironment (e.g., overall cellular composition). We collected multiple 410 

samples from a tumor in the MRI cohort which allowed us to directly observe this heterogeneity 411 

at the molecular level through the RNA-seq and indirectly through our new noninvasive MRI 412 

proxies. The six biopsies from the tumor BNI152 are spatially arrayed throughout the CE parts 413 

of the tumor (Figure 5A & B). For each biopsy of patient BNI152’s tumor we show the average 414 
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T1+C signal from the voxels containing the biopsy, the expression of three T1+C associated 415 

bicluster eigengenes, and the expression of a GAM marker gene CD163 (Figure 5C & D). The 416 

concordance between T1+C signal and the molecular data demonstrates how T1+C can be 417 

used to spatially map tumor immune cell infiltration (Figure 5D & E) that could be used to assist 418 

diagnosis, prognosis, or to assess the effect of immunotherapy on HGG tumors. 419 

Increased MD and T2W are associated with angiogenesis 420 

Increased MD and T2W signal were associated with increased expression of a bicluster linked 421 

to the ‘Sustained angiogenesis’ cancer hallmark (Figure 1C), suggesting that MD and T2W may 422 

be proxies for angiogenesis. The low-strength magnetic field in clinical MRI adeptly captures the 423 

swift flow of fluids commonly present in vasculature. Consequently, both MD, which directly 424 

assesses water movement (3, 58, 59), and T2W, which signifies fluid presence (14), effectively 425 

capture the presence of vasculature, which is typically the origin of angiogenesis. We validated 426 

this relationship using a histologically determined measurement of angiogenesis (percent 427 

angiogenesis) from the TCGA cohort (36) (Table S6). First, we determined that 15 revised 428 

biclusters were significantly correlated with histologically determined percent angiogenesis 429 

(correlation coefficient > 0; p-value ≤ 0.01). Expression of four MD and four T2W associated 430 

biclusters were significantly correlated with percent angiogenesis which was more than 431 

expected by chance alone (Figure 6A-D; MD enrichment p-value = 1.2 x 10-4; and T2W 432 

enrichment p-value = 4.6 x 10-5). The relationship between angiogenesis and MD and T2W is 433 

reinforced by the significant overlap with histologically determined angiogenesis. 434 

Further examination of the genes in the biclusters associated with MD and T2W revealed a wide 435 

range of biological processes that describe the progression of angiogenesis (Figure 6E). KDR, 436 

TIE1, and FLT1 are receptors for signals that initiate angiogenesis. ACVRL1 and ROBO4 are 437 

important receptors for the TGFβ and SLIT pathways, respectively, which promote cell growth 438 

and angiogenesis. PLXDC1 aids in capillary morphogenesis during the sprouting of new 439 

vessels. DLL4 and NOTCH4 regulate the growth of new vessels. PDGFRβ recruits pericytes to 440 

support the walls of new blood vessels. CD34, CDH5, ESAM, and MMRN1 indicate the 441 

presence of endothelial cells lining blood vessel walls. Finally, MYCT1 from the c-MYC pathway 442 

suggests a swift cell division process, ultimately contributing to the supply of cells necessary for 443 

vessel growth. In summary, there is significant histological and enriched angiogenic biology 444 

supporting MD and T2W being useful proxies for angiogenesis in HGG tumors. 445 

MD and T2W are proxies for cellular migration involved in angiogenesis 446 

There are also positive associations linking MD and T2W to the biclusters associated with the 447 

'Tissue invasion & metastasis' cancer hallmark (Figure 1C). The genes included in these 448 

‘Tissue invasion & metastasis’ associated biclusters were enriched with angiogenesis related 449 

migratory processes (Figure 4D). The significantly enriched functions include the movement of 450 

endothelial and smooth muscle cells, which are the main cell types in the vasculature (Figure 451 

4D). Cell migration involved in angiogenic wound healing and sprouting angiogenesis were also 452 

significantly enriched (Figure 4D). The formation of angiogenic sprouts requires the 453 

rearrangement and movement of endothelial and smooth muscle cells. These cell migratory 454 

functions are consistent with our findings that MD and T2W are linked to 'Sustained 455 

angiogenesis' and further support their value as proxies for angiogenesis in HGG tumors. 456 
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Discussion 457 

In these studies, we demonstrate that the systematic integration of image-localized biopsies 458 

with omics molecular profiles can reveal aspects of HGG tumor biology using noninvasive MRI 459 

measurements. Specifically, we provide evidence connecting T1+C signal to tumor immune 460 

infiltration and MD and T2W signals to angiogenesis. The T1+C MRI measurement directly 461 

captures the breakdown of vasculature and the BBB through the well-established leakage of 462 

contrast dye into the tumor. We also found that T1+C indirectly captures immune cell infiltration 463 

because the breakdown of vasculature and the BBB provides a permissive infiltrative 464 

environment. Moreover, our investigation revealed that MD and T2W effectively capture the 465 

intricate biological process of neovascularization. However, the molecular mechanism(s) 466 

responsible for generating the MRI signal in this context remains an area requiring further 467 

exploration. To fortify these connections between MRI measurements and tumor biology, we 468 

validated our findings using histology and by demonstrating the enrichment of well-established 469 

immune infiltration and angiogenesis pathways in associated gene expression signatures. 470 

Finally, we illustrated how noninvasive MRI can help understand HGG tumor biology spatially 471 

across a tumor, establishing a powerful tool for developing more accurate diagnostic, 472 

prognostic, and treatment efficacy biomarkers for HGG tumors. 473 

Increased signal from T1+C indicated the presence of anti-inflammatory GAMs, and resting NK 474 

cells (60). These results are consistent with prior studies showing that HGG tumors are 475 

immunosuppressive (61–63), and this trait is partially attributed to anti-inflammatory GAMs (61–476 

63). Future studies with spatially matched cohorts that unbiasedly quantify all immune cell types 477 

from HGG tumors directly using single-cell and spatial transcriptomics techniques will be able to 478 

better characterize the relative contributions of all immune cell types in areas of elevated T1+C 479 

signal. 480 

Recent studies have demonstrated the potential of MRI biomarkers for angiogenesis by linking 481 

survival benefits from anti-VEGF therapy to the apparent diffusion coefficient (ADC) (64, 65), 482 

which quantifies the same biophysical phenomenon as MD. Patients whose tumors had higher 483 

ADC levels showed nearly double the overall survival when treated with anti-VEGF compared to 484 

those with lower ADC levels. The MRI measurements from the anti-VEGF studies and our MRI 485 

cohort were taken prior to therapy. Our research offers evidence that ADC effectively quantifies 486 

angiogenesis, explaining its utility as a biomarker for predicting the response to anti-angiogenic 487 

therapy. This example showcases how our approach of linking MRI measurements to tumor 488 

biology can be used to inform clinical studies to develop noninvasive biomarkers. 489 

T1+C and T2W are commonly used to facilitate many aspects of HGG patient care, including 490 

initial diagnosis, treatment planning, and response assessment after first-line therapy. Our 491 

results enhance the utility of these commonly used MRI measurements by showing they predict 492 

HGG tumor biology. Our discovery that noninvasive MRI measurements are proxies for immune 493 

cell infiltration and angiogenesis lay the groundwork for capturing more HGG tumor biology. 494 

Future studies will incorporate new MRI measurement techniques and test their ability to 495 

capture novel aspects of HGG tumor biology. The long-term goal of this work will allow clinicians 496 

to noninvasively monitor HGG tumor biology, allowing them to improve diagnosis and prognosis, 497 

and respond to treatment in real time, so they can adjust treatment and improve patient survival. 498 
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Figure legends 746 

Figure 1. Associating MRI measurements with HGG tumor biology. (A) Biclusters from the 747 

gbmSYGNAL network were refined using RNA-seq data from the MRI cohort and were then 748 

used to associate MRI measurements and HGG tumor biology. (B) Number of biclusters 749 

associated with MRI measurements separated by positive and negative relationships with MRI 750 

signal. The Total column in yellow denotes number of biclusters associated with any MRI 751 

measurement, regardless of sign. (C) Number of biclusters associated with MRI and hallmarks 752 

of cancer separated by hallmark. Significant enrichment of MRI and hallmarks of cancer 753 

associated biclusters are denoted by a cyan outline. (D) Number of biclusters associated with 754 

MRI and patient survival separated by relationship with prognosis. Significant enrichment 755 

between MRI and patient survival associated biclusters are denoted by an orange outline. 756 

Figure 2. Validating the association of T1+C with infiltrating immune cells. Histologically 757 

determined TIL levels were tested for association with bicluster eigengene expression using a 758 

T-test for biclusters positively (A) and negatively (B) associated with MRI measurements. 759 

Significant associations with a bicluster are shown with darker red (A) or green (B) colors. 760 

Hypergeometric enrichment between TIL and positively (C) and negatively (D) MRI associated 761 

biclusters. “Pos. stat.” indicates a positive T-statistic and “Neg. stat.” indicates a negative T-762 

statistic. Boxes with a dashed line indicate zero overlapping biclusters (z.o.). Associations 763 

between infiltrating immune cell estimates and T1+C bicluster eigengenes for T-cells (E), NK 764 

cells (F), and macrophages/microglia (G) using a MEM for the MRI cohort (left y-axis) and using 765 

correlation for the TCGA cohort (right y-axis). Significantly associated biclusters from the MRI 766 

cohort are denoted by darker blue and from the TCGA cohort are denoted by darker red. 767 

Hypergeometric enrichment between biclusters positively associated with T1+C and biclusters 768 

associated with T-cells (H), NK cells (I), and macrophages/microglia (J). “Pos. assoc.” indicates 769 

a positive association and “Neg. assoc.” indicates an inverse association. “Pro-inflamm.” 770 

indicates pro-inflammatory macrophages/microglia and “Anti-inflamm.” indicates anti-771 

inflammatory macrophages/microglia. (K) Schematic of vasculature and BBB breakdown 772 

characteristic of HGG tumors. Green text represents the genes and functions included in T1+C 773 

biclusters. 774 

Figure 3. Proliferation-related biological processes enriched in imaging associated bicluster 775 

genes. Grouped by immune (A), growth (B), signaling (C), and vessel (D) related proliferation 776 

processes. 777 

Figure 4. Invasion-related biological processes enriched in imaging associated bicluster genes. 778 

Grouped by immune (A), general (B), blood (C), and vessel (D) related migration processes. 779 

Figure 5. MRI captures immune infiltration across tumor biopsies. (A) Biopsy locations (red) 780 

within the tumor (yellow). (B) Z-coordinate of the slice of the MRI capture for each sample. (C) 781 

T1+C MRI image slice showing the biopsy location of each sample. (D) Percentiles of MRI 782 

signal, bicluster expression, and gene expression related to immune infiltration for each sample. 783 

(E) Percentiles of MRI signal, bicluster expression, and gene expression related to immune 784 

infiltration for each sample overlaid onto tumor spatial locations. 785 
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Figure 6. MD and T2W are associated with angiogenesis. Correlation between angiogenesis 786 

percentage and biclusters positively (A) and negatively (B) associated with MRI measurements. 787 

Hypergeometric enrichment between biclusters associated with angiogenesis percentage and 788 

biclusters positively (C) and negatively (D) associated with each MRI measurement. “Pos. coef.” 789 

indicates a positive correlation and “Neg. coef.” indicates an inverse correlation. Boxes with a 790 

dashed line indicate zero overlapping biclusters (z.o.). (E) MD and T2W biclusters contain 791 

genes (purple) from sprouting angiogenesis.  792 
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Figures 793 
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Figure 2. 796 
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Figure 3.  799 
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Figure 4. 801 
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Figure 5. 803 
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Figure 6.  805 
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