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Abstract 

On a retrospective cohort of 1,082 FFPE breast tumors, we demonstrated the analytical validity 
of a test using multiplexed RNA-FISH-guided laser capture microdissection (LCM) coupled with 
RNA-sequencing (mFISHseq), which showed 93% accuracy compared to immunohistochemistry. 
The combination of these technologies makes strides in i) precisely assessing tumor 
heterogeneity, ii) obtaining pure tumor samples using LCM to ensure accurate biomarker 
expression and multigene testing, and iii) providing thorough and granular data from whole 
transcriptome profiling. We also constructed a 293-gene intrinsic subtype classifier that 
performed equivalent to the research based PAM50 and AIMS classifiers. By combining three 
molecular classifiers for consensus subtyping, mFISHseq alleviated single sample discordance, 
provided near perfect concordance with other classifiers (κ > 0.85), and reclassified 30% of 
samples into different subtypes with prognostic implications. We also use a consensus 
approach to combine information from 4 multigene prognostic classifiers and clinical risk to 
characterize high, low, and ultra-low risk patients that relapse early (< 5 years), late (> 10 
years), and rarely, respectively. Lastly, to identify potential patient subpopulations that may be 
responsive to treatments like antibody drug-conjugates (ADC), we curated a list of 92 genes and 
110 gene signatures to interrogate their association with molecular subtype and overall 
survival. Many genes and gene signatures related to ADC processing (e.g., antigen/payload 
targets, endocytosis, and lysosome activity) were independent predictors of overall survival in 
multivariate Cox regression models, thus highlighting potential ADC treatment-responsive 
subgroups. To test this hypothesis, we constructed a unique 19-feature classifier using 
multivariate logistic regression with elastic net that predicted response to trastuzumab 
emtansine (T-DM1; AUC = 0.96) better than either ERBB2 mRNA or Her2 IHC alone in the T-
DM1 arm of the I-SPY2 trial. This test was deployed in a research-use only format on 26 patients 
and revealed clinical insights into patient selection for novel therapies like ADCs and 
immunotherapies and de-escalation of adjuvant chemotherapy. 
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Introduction 

Breast cancer (BCa) is a heterogeneous disease with distinct biology leading to differences in 
response to various treatment modalities and clinical outcomes 1. The discovery of molecularly 
distinct subgroups of BCa, i.e., luminal A, luminal B, HER2-overexpressing, basal-like, and 
normal-like, based on gene expression profiles using microarrays 2–4, has fundamentally 
changed our understanding of BCa biology and paved the way for a union between genomic 
and clinical classification of BCa subtypes. These intrinsic molecular subgroups markedly differ 
in terms of prognosis, response to therapy, and clinical outcomes. Within this new framework, 
various commercially available multigene assays have emerged that can provide important 
diagnostic, predictive, and prognostic insights to inform them about appropriate treatments 5,6.  

Assignment of an individual tumor to any subtype (or prognostic risk group), however, shows 
only moderate reproducibility depending on the array platform used, the tumor composition, 
gene signature list, and gene expression thresholds 7–10. Most multigene tests only provide 
prognostic and predictive information for ER+/HER2– BCa patients, but not for the more 
aggressive HER2+ and TNBC subtypes, thus are limited to providing information about who may 
or may not benefit from chemotherapy in addition to endocrine therapy. 11. Current diagnostic 
tools are also limited in selecting patients that are likely to respond to novel therapeutics such 
as antibody-drug conjugates (ADCs). The pivotal trials for the ADCs, trasztuzumab deruxtecan 
(Enhertu) and sacituzumab govitecan (Trodelvy), revealed efficacy in patients that even 
expressed low to negative levels of their antigen targets when assessed using 
immunohistochemistry (IHC). This has spurred interest in new tools that can quantify biomarker 
expression at broad dynamic range and can better stratify individual with low or no expression 
of an ADC target (e.g., Her2 low). Given their complex mechanisms of action that include not 
only the antigen target, but also internal processing of the ADC and targeting of the cytotoxic 
payload, effective patient selection may require assessing multiple biomarkers that are tailored 
towards the ADC construct. 

Multigene assays are largely based on bulk processing or crude macrodissection to enrich for 
tumor content, thus losing the spatial context, which results in limited info about the tumor 
microenvironment and also may introduce erroneous gene expression from non-tumor 
elements present in the bulk-processed specimen 12. Indeed, tumor heterogeneity, whether it is 
histological, biomarker, or genetic, occurs both spatially and temporally and may contribute to 
diagnostic inconsistencies and inappropriate treatment 13. Various tools aiming to combine 
gene expression data with spatial information have recently been developed 14. These emerging 
spatial biology tools show immense potential in understanding complex BCa biology. Their cost, 
throughput, evolving chemistry and platforms, and suboptimal trade-off between plexity and 
resolution pose challenges for their utilization in clinical diagnostics and therapeutic decision 
making. Thus, laser capture microdissection remains a powerful tool that can ensure tumor 
purity and can be scaled for clinical diagnostics. 

Here, we sought to retrospectively validate the utility of mFISHseq, a diagnostic tool that 
integrates multiplexed fluorescent in situ hybridization (FISH) to assess tumor heterogeneity 
and guide laser capture microdissection and RNA sequencing. We demonstrate three key 
features of this approach, including 1) its analytical validity by assessing concordance to gold-
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standard immunohistochemistry results; 2) a consensus subtyping and prognostic risk approach 
that mitigates the limitations of individual multigene tools; and 3) leveraging transcriptome 
profiling of individual gene and gene signature expression to provide clinical insights into 
prognosis and response to treatments such as ADCs. 

Results 
 
Study design and cohorts 

We conducted the retrospective clinical validation of mFISHseq, a diagnostic tool that uses a 
multiplexed RNA-FISH panel consisting of estrogen (ESR1), progesterone (PGR), and HER2 
(ERBB2) receptors and Ki67 (MKI67) to characterize regions of interest that are subsequently 
captured by laser capture microdissection (mFISHseq). This facilitates the collection of spatially 
resolved, tumor-enriched samples from a single specimen that can be used for downstream total 
RNA sequencing (Figure 1a), providing a powerful tool to interrogate tumor heterogeneity and 
biology. We conducted this analysis on a cohort of 1,082 FFPE BCa samples with detailed 
clinicopathological information (Figure 1b, Extended Table 1). We first assessed its analytical 
validity by comparing results with the known biobank IHC status. Then we generated a consensus 
molecular subtyping approach by using a research based PAM50, Absolute Intrinsic Molecular 
Subtyping (AIMS), and our own subtyping scheme and investigated its performance in stratifying 
samples according to prognostic risk. Finally, we demonstrated its clinical potential by assessing 
the expression of genes and gene signatures with diagnostic, prognostic, and predictive value.  

Concordance with biobank immunohistochemistry status 
 
To assess the analytical validity of the mFISHseq assay, we compared the results from RNA-FISH 
and -SEQ to the ER, PR, HER2, and Ki67 IHC results reported by the biobanks. Both RNA-FISH 
and RNA-SEQ showed similar expression patterns compared to IHC for PR, ER, HER2, and Ki67 
(Supplementary Figure 1), especially at high expression levels, and recapitulated the expression 
patterns when divided into clinical molecular subtypes (Supplementary Figure 2). To determine 
appropriate threshold values for mFISHseq, we split our dataset into training and test cohorts 
(70:30) and constructed receiver operating characteristic (ROC) and precision-recall (PR) curves 
in comparison to the known IHC results, we observed that RNA-SEQ and IHC had excellent 
concordance with ROC and PR curves with all biomarkers having ROC and PR AUCs > 0.90, with 
the exception of the PR curves for ERBB2, which showed PR AUCs > 0.85 on both training and 
test data (Figure 1c, Supplementary Table 1). While RNA-FISH was primarily used to guide LCM, 
we used a digital pathology and machine learning pipeline (Extended Figure 1) to quantify 
fluorescent intensity within tumor cells and found very good concordance with the known 
biobank IHC results (ROC and PR curves ≥ 0.80 for all biomarkers; Supplementary Figure 3a-d), 
suggesting both orthogonal methodologies have diagnostic utility. Overall, these results are 
consistent with prior reports that have assessed the performance of RNA-FISH/-SEQ when 
compared with IHC 15,16 and thus support the analytical validity of the mFISHseq methodology in 
assessing classical IHC breast cancer biomarkers.  
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Cross-validation of RNA-FISH and RNA-SEQ  
 
Using two independent techniques to assess biomarker expression allows cross-validation of 
the results from each technique, consequently mitigating false negatives/positives that arise by 
using a single method. Both techniques show mild to very strong correlations for the detection 
of each biomarker, with ESR1 (r=.75) having the strongest correlation followed by PGR (r=.66), 
MKI67 (r=.61), and ERBB2 (r=.41) (Supplementary Figure 4a-d). The lower correlation for ERBB2 
is driven by the large number of ERBB2 negative samples (4:1 negative to positive ratio) since 
the correlation between RNA-FISH and RNA-SEQ was expectedly poor for negative samples 
(r=.17) whereas the positive samples were very strongly correlated (r=.69). According to a Bland 
Altman analysis on normalized Z-scores, both techniques showed good agreement and low bias 
according to 95% agreement intervals with most bias occurring when targets were expressed at 
low levels (Supplementary Figure 4e-h).  
 
Benchmarking of mFISHseq molecular subtypes with IHC surrogates, AIMS, and PAM50. 
 
To identify gene signatures that can effectively classify breast cancer specimens into the four 
intrinsic molecular subtypes, we conducted differential gene expression analyses using DeSeq2 
and the Wilcoxon rank-sum test 17, a nonparametric approach that better controls the false 
discovery rate (FDR) when analyzing large sample sizes. With these differentially expressed 
genes (Extended Table 2), we generated a list of 293 genes (see Supplementary Dataset 1 and 
Supplementary Methods) and applied semi-supervised consensus clustering to determine how 
these samples clustered according to the original biobank subtype designation (Figure 2a). The 
top 5 upregulated and downregulated genes (log2 fold change >2, and Wilcoxon FDR < 0.05) for 
each subtype comparison can broadly be segregated into genes involved in luminal pathways 
(ESR1, GATA3, CA12, THSD4), genes coamplified with ERBB2 (i.e., Her2 amplicon - ERBB2, GRB7, 
PGAP3, and MIEN1), basal epithelial markers (KRT16, KRT81, and SOX10), and proliferation 
markers (S100 genes)(Supplementary Figure 5a). As a benchmark for RNA-based gene 
expression signatures, we also called PAM50 subtypes and Absolute Intrinsic Molecular 
Subtyping (AIMS) using Genefu 18 as well as TNBCtype 19 to classify Lehmann’s six and four TNBC 
subtypes 20,21. 
 
Each multigene subtyping method classified fewer luminal A samples and more Her2 and basal-
like samples relative to the IHC surrogate subtypes. When comparing multigene classifiers, 
AIMS had the most luminal A, Her2, and normal samples and least basal-like samples. The 
mFISHseq and PAM50 subtyping approaches had the most luminal B and basal-like samples, 
and PAM50 classified the fewest luminal A samples (Supplementary Figure 5b). While all 
subtyping methods showed similar overall survival curves (Supplementary Figure 5c), there was 
only moderate concordance between each multigene classifier and the IHC surrogate subtype 
at the single sample level (Cohen’s kappa (κ): mFISHseq=0.567, PAM50=0.539, AIMS=0.519; 
Supplementary Figure 5c), with the luminal B subtype showing only fair agreement (κ range = 
0.36-0.384), while the basal-like/TNBC subtypes had substantial agreement (κ range = 0.638-
0.704). In contrast to prior reports 7,8, we found substantial concordance between multigene 
approaches with MDX293 vs PAM50 showing the highest concordance (κ=0.748). For all 
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comparisons between multigene classifiers, the luminal B subtype again showed the lowest 
agreement (κ range = 0.631-0.683) followed by luminal A (κ range = 0.668-0.722), Her2 (κ range 
= 0.773-0. 837), and basal-like with the best agreement (κ range = 0.891-0.968).  
 
For samples that showed high levels of discordance between multigene subtyping methods and 
IHC surrogate subtypes (i.e., at least 2-3 classifiers providing discordant results), we observed 
clinically relevant differences in survival (Supplementary Figure 5e). IHC surrogate luminal A 
samples that had discordant results showed poorer survival than samples that were classified 
as luminal A by all multigene classifiers (Supplementary Figure 5e; top panel). In contrast, IHC 
surrogate luminal B samples that had discordant results by two classifiers had longer survival 
than samples that were classified as luminal B by all multigene classifiers (Supplementary 
Figure 5e; middle-top panel). While discordant Her2 samples showed comparable survival to 
concordant Her2 samples (i.e., those classified as Her2 by all approaches; Supplementary 
Figure 5e; middle-bottom panel), discordant TNBC samples interestingly showed even poorer 
survival than concordant TNBC samples (Supplementary Figure 5e; bottom panel). In general, 
discordant samples, relative to concordant samples, showed evidence of instability as 
demonstrated by lower correlations to PAM50 centroids. The correlations to the PAM50 
centroid were higher for samples where all four classifiers (IHC surrogate, mFISHSeq, AIMS, and 
PAM50) agreed on the classification and progressively decreased for discordant samples where 
one, two, or all three classifiers disagreed on the subtype classification (Supplementary Figure 
5f). 
 
 
Consensus subtyping improves concordance at the single sample level and mitigates 
misclassification. 
 
To further improve agreement at the sample level, we constructed a consensus intrinsic 
subtype by using a simple voting scheme for the three subtyping approaches (mFISHseq, 
PAM50, and AIMS) and found there were considerable differences between IHC surrogate and 
gene-expression based consensus subtypes that had prognostic implications. For IHC surrogate 
luminal A samples, 45% (193/432) showed discordance in one or more alternative classification 
schemes, resulting in 24% (102/432) of samples being reclassified as luminal B, which also 
showed poorer overall survival for node negative, but not node positive samples, relative to 
samples unanimously classified as luminal A by all subtyping methods (Figure 2b,c left panel). A 
small number of IHC luminal A samples (10/432 or 2%) were reclassified as either Her2 (n=2), 
basal-like (n=4), or normal-like (n=4); however, the numbers were too small to make 
conclusions regarding overall survival, The IHC surrogate luminal B subtypes showed high 
discordance with 62% (194/313) disagreeing with one or more classifiers. Around 15% (46/313) 
of samples were reclassified into the basal-like subtype and 21% (65/313) into the luminal A 
subtype by consensus subtyping and these patients had either poorer or more favorable 
survival, respectively, compared to samples unanimously classified as luminal B (Figure 2b,c 
middle-left panels). The 10% (32/313) of IHC luminal B samples reclassified as Her2 by 
consensus subtyping had similar survival to consensus luminal B samples (Figure 2b,c middle-
left panels). We observed the least discordance in the Her2 IHC surrogate samples where 27% 
(20/74) displayed disagreement among classifiers, resulting in reclassification of 19% (14/74) of 
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samples as the basal-like subtype, which did not differ in overall survival from consensus Her2 
samples (Figure 2b,c middle-right panels). Disagreement among classifiers occurred in 29% 
(53/181) of TNBC IHC surrogate samples, resulting in reclassification of 4% (7/181) of samples 
into luminal A and B and normal-like subtypes as well as 13% (23/181) of samples into the Her2 
subtype, and these reclassified samples showed more favorable and poorer survival, 
respectively, when compared to consensus basal-like samples (Figure 2b,c right panels).  
 
We next explored the samples that were classified uniquely by a single classifier to ascertain 
the degree of discordance and clinical implications at the single sample level. Each approach 
uniquely classified a portion of samples as luminal A that no other classifier agreed upon, and 
these samples uniquely classified by IHC surrogate (n=67), mFISHseq (n=15), AIMS (n=25), and 
PAM50 (n=2) showed poorer overall survival relative to the 239 samples classified as luminal A 
by all tools (LumA All; Supplementary Figure 6a). While LumA All samples were enriched in 
low/intermediate prognostic risk scores (assessed by research-based versions of OncotypeDX, 
GENE70, ROR-S, and clinical risk), the uniquely classified samples had high genomic and clinical 
risk (Supplementary Figure 6b), suggesting that each subtyping method is susceptible to 
misclassifying a portion of samples. These misclassified samples, however, were ‘rescued’ by 
taking the consensus of the three multigene classifiers with 83% (n=91/109) being reclassified 
as luminal B (Supplementary Figure 6b, bottom right panel). In contrast, samples that were 
uniquely classified as luminal B showed more favorable overall survival relative to samples 
classified as luminal B by all tools (LumB All), except for the IHC surrogate approach, which 
showed similar survival (Supplementary Figure 6c). The samples uniquely classified as luminal B 
by mFISHseq (n=29) and PAM50 (n=42) contained more samples with intermediate/low risk 
scores, relative to LumB All samples (Supplementary Figure 6d), and 97% (n=69/71) of these 
were reclassified as luminal A by consensus subtyping (Supplementary Figure 6d, bottom right 
panel). Notably, AIMS did not uniquely classify any luminal B samples. The samples classified as 
luminal B only by the IHC surrogate approach were reclassified by consensus subtyping into 
luminal A (n=29)/normal-like (n=6) subtypes and Her2 (n=24)/basal-like (n=46; Supplementary 
Figure 6d, bottom right panel), which showed either more favorable or poorer overall survival, 
respectively, relative to LumB All samples (Supplementary Figure 6c, inset). 
 
The samples classified as Her2 by only a single classifier showed disparate findings depending 
on the classifier (Supplementary Figure 6e,f). IHC surrogate Her2 samples (n=14) had 
equivalent overall survival relative to Her2 All samples (n=67), high genomic and clinical risk, 
and were unanimously reclassified as basal-like by consensus subtyping. AIMS Her2 samples 
(n=24) had poorer overall survival relative to Her2 All samples, high genomic and clinical risk, 
and nearly all samples were reclassified as either basal-like (n=15/24) or luminal B (n=8/24). 
The mFISHseq (n=9) and PAM50 (n=14) Her2 samples generally had more favorable survival and 
a subset of these samples (n=9) with low genomic (GENE70) and/or clinical risk were 
reclassified by consensus subtyping into predominantly luminal A (n=7/9) and had no events. 
 
TNBC and the similar basal-like samples showed the least amount of uniquely identified 
samples, with only 28 TNBC samples uniquely identified by IHC surrogate subtyping, and six 
basal samples uniquely classified by mFISHseq (n=2) and PAM50 (n=4), while AIMS did not 
independently classify any basal-like samples. While IHC surrogate only TNBC samples showed 
poorer overall survival compared to the 128 samples classified as TNBC/basal-like by all 
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methods (Basal-like All), the samples classified as basal-like by the multigene classifiers had 
better prognosis (Supplementary Figure 6g). Interestingly, IHC surrogate only TNBC samples 
could be stratified into 13 samples that had either low GENE70 genomic or clinical risk and 
showed favorable survival, while the other 15 samples had high risk and poor survival 
(Supplementary Figure 6g, inset, 6f). Consensus subtyping was also capable of stratifying the 
samples into clinically meaningful subgroups with 10/22 samples reclassified as Her2 or basal-
like dying, while only 1/5 samples reclassified as luminal A or B died (Supplementary Figure 6f). 
We also note that AIMS independently classified 34 samples as normal-like, while PAM50 
independently classified only 1 sample (12 samples were classified as normal-like by both 
classifiers), and these were reclassified by consensus subtyping to basal-like (n=18), luminal A 
(n=14), and Her2 (n=3), thus providing more clinically relevant subtyping (Supplementary 
Figure 7a,b). 
 
Consensus subtyping was able to reclassify 214 samples uniquely classified by the IHC surrogate 
methodology into intrinsic subtypes that better fit the survival data. Similarly, the samples that 
were uniquely classified by mFISHseq (n=55), AIMS (n=83), and PAM50 (n=63) were all 
reclassified by a consensus of the other two multigene classifiers, which yielded more 
reproducible assignment at the single sample level to the appropriate intrinsic subtype that 
matched the overall survival. Thus, consensus subtyping effectively mitigates one of the 
impediments to adopting molecular subtyping as a clinically useful tool, namely the 
irreproducibility of classifying single samples with a single approach. 
 
Overall, 30% (305/1013) of samples were reclassified from their IHC surrogate subtype into a 
different consensus subtype with luminal B samples being reclassified the most (48%, 149/313) 
followed by luminal A (26%, 112/432), TNBC (17%, 30/181), and Her2 samples (16%, 14/87; 
Figure 2d). Kaplan-Maier analysis showed that consensus subtypes have prognostic utility with 
5-year and 10-year overall survival rates of 94.4%, 84.3%, 76.3%, and 79.4% and 86.7%, 68.3%, 
66.8%, and 72.7% for luminal A, luminal B, Her2, and basal-like subtypes, respectively (Figure 
2e). Interestingly, a portion of IHC TNBC samples that were reclassified as Her2 clustered as the 
luminal androgen receptor subtype according to TNBCtype 19 and these samples had poorer 
survival than other Her2 and TNBC/basal-like samples with 5-year overall survival rates of only 
56.3% compared to 79.3% for consensus Her2 and TNBC/basal-like samples (Figure 2f). Given 
the discordance in molecular subtyping approaches we and others have observed, the 
consensus molecular subtyping scheme also alleviated misclassification at the single sample 
level, which resulted in better stratification of individuals into poor and favorable prognosis 
than any one subtyping scheme on its own. This improved concordance between the consensus 
subtypes and other multigene classifiers to near perfect agreement, even for more challenging 
luminal samples (Supplementary Figure 5d) 
 
 
Consensus prognostic risk categories alleviates discordance at the single-patient level 
and identifies patients with ultra-low risk. 
 
We also investigated the performance and concordance of several multigene prognostic risk 
assays since these tests can provide information on the effectiveness of adjuvant 
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chemotherapy in select ER+/Her2- patients with 0-3 positive lymph nodes. We compared 
clinical risk, as assessed using criteria in the MINDACT trial, to research-based versions of 
OncotypeDX, the PAM50 Risk of Recurrence by Sample (ROR-S), GENE70 (i.e., MammaPrint), 
and the Genomic Grade Index (GGI). This analysis was restricted to 567 patients that were 
ER+/Her2- by IHC and either node negative (pN0) or node positive (1-3 positive nodes, pN1), 
encompassing the indicated population of patients eligible for the commercial tests. Relative to 
clinical risk, all multigene assays classified fewer patients as high risk with OncotypeDX and GGI 
having the highest and lowest proportion of high-risk patients, respectively. GENE70 and GGI, 
which use a 2-category (high and low) risk assessment scale, classified more patients as low 
risk, relative to clinical risk, OncotypeDX, and ROR-S (Figure 3a). 
 
All risk classifiers had comparable prognostic utility with low- and high-risk patients showing 
favorable and poor progression-free survival (PFS), respectively (Figure 3b). Agreement 
between multigene classifiers and clinical risk was only fair (κ: GGI=0.367, GENE70=0.364, ROR-
S=0.343, OncotypeDX=0.288), while agreement among multigene classifiers was moderate to 
substantial (κ range: 0.431 - 0.724), with GENE70 and GGI showing the highest agreement and 
GENE70 and OncotypeDX having the lowest (Figure 3c). Since OncotypeDX and ROR-S use a 3-
category (high, intermediate, low) risk scale and patients classified as intermediate by these 
two classifiers showed only slight agreement (κ=0.112) we dichotomized the 3-categories into 2 
categories (high vs intermediate/low) improved concordance, especially among multigene 
classifiers (κ range: 0.653 - 0.796; Figure 3c). Only 39.2% of patients (n=222/567) were 
unanimously classified by all five approaches as either high (n=162) or low (n=60) risk leaving 
61.8% of patients (n=345) with a discordant result in at least one classifier. Within these 
discordant patients, another 27.5% of patients (n=156/567) were categorized as either high 
(n=52) or low (n=104) by four classifiers and 23.5% of patients (n=133/567) were categorized as 
either high (n=33) or low (n=100) by three classifiers. Thus, the five prognostic classifiers 
reached a majority consensus (i.e., at least 3 classifiers in agreement) to stratify 43.6% 
(n=247/567) and 47.1% (n=267/567) of patients into high and low risk, respectively.  
 
Notably, patients differed markedly in terms of outcome depending on the number of 
concordant classifiers for a particular risk category (Figure 3d). Patients with at least four 
classifiers in agreement for either high or low risk showed the poorest and best probability of 
PFS at 10 years (59.2 % for 4/5 classifiers - 65.1% for 5/5 classifiers in agreement for high-risk vs 
89.0% for 4/5 classifiers - 88.2% for 5/5 classifiers in agreement for low-risk; Figure 3d). When 
separating patients based on whether a majority (3 or more classifiers in agreement) or 
minority (1 or 2 classifiers in agreement) of the five classifiers predicted the same risk category, 
we observed that the minority group displayed PFS that was intermediate compared to the 
majority as well as patients classified unanimously as high or low risk (Figure 3e). Patients 
classified as high risk by the majority of classifiers had lower expression of PGR and higher 
MKI67 mRNA relative to patients classified as high risk by the minority of classifiers, while there 
was no difference in ESR1 expression (Figure 3f). Patients unanimously classified as high risk 
also had higher ERBB2 expression (e.g., ERBB2 low) relative to patients that were not classified 
as high risk by any classifier (Figure 3f).  
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Each classifier independently categorized a proportion of patients into high (n=120), 
intermediate (n=186), and low (n=65) risk while no other classifier agreed with these unique 
classifications (Supplementary Figure 8a). Clinical risk had the most unique classifications (n= 
118) followed by ROR-S (n=104), OncotypeDX (n=103), GGI (n=25), and GENE70 (n=21). 
Uniquely classified intermediate and high-risk patients had better progression free survival 
relative to patients classified as intermediate risk by both OncotypeDX and ROR-S and high risk 
by all classifiers, respectively (Supplementary Figure 8b). The better survival for the multigene 
assays was more evident when each classifier was combined because of the low patients per 
classifier (Supplementary Figure 8c). Patients independently categorized as low risk by GGI or 
GENE70 had poorer survival and those uniquely classified as low risk by Clinical risk were similar 
relative to patients classified as low risk by all classifiers (Supplementary Figure 8b,c). 
 
Given the discordance observed at the single-patient level for risk categorization, we 
constructed consensus prognostic risk categories by combining the results for all five classifiers 
into 3-risk categories: high risk (If ³3 prognostic classifiers agree on intermediate/high risk), low 
risk (If ³3 prognostic classifiers agree on low risk), and ultra-low risk (If all 5 prognostic 
classifiers agree on low risk and the patient is node negative (pN0) and PR+) as outlined in the 
decision tree in Supplementary Figure 8d. Consensus high risk patients (n=300)  showed poor 
outcomes (PFS and OS) with 49 relapses (distant and local) and 36 deaths within 5-years and 
another 24 relapses and 17 deaths from 5-10 years. Consensus low risk patients (n=214) had 
better outcomes with 13 relapses and 10 deaths within 5-years and another 10 relapses and 7 
deaths from 5-10 years. Consensus ultra-low risk patients (n=53) showed the best outcomes 
with 1 relapse and 0 deaths within 5-years and another 2 relapses and 1 death from 5-10 years 
(Figure 3g). When stratifying the consensus outcome groups based on treatment 
(Supplementary Figure 8e), we observed that high risk patients benefited most from 
chemoendocrine therapy, relative to endocrine or chemotherapy alone, while low/ultra-low 
patients did not benefit from chemoendocrine therapy, highlighted the clinical utility of our 
consensus prognostic risk categories in de-escalating overtreatment in low/ultra-low risk 
patients. 
 
 
Interrogation of genes and gene signatures to identify prognostic subgroups that may 
predict therapeutic response. 
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To investigate potential markers of prognosis and response to treatment, we curated a list of 92 
genes and 110 gene signatures and assessed their expression in our cohort (n=1013) in relation 
to BCa IHC surrogate subtype and overall survival (Supplementary Dataset 2). Supervised 
clustering of these signatures largely segregated samples into their respective molecular 
subtypes, although Her2 enriched samples formed a cluster with luminal B samples that 
contained amplified Her2 (assessed by ICH/FISH) or elevated ERBB2 expression (Figure 4a). 

A univariate Cox analysis on all samples, irrespective of IHC subtype, revealed the signatures 
associated with poor survival were the hypoxia/angiogenesis 
(Metabolic_sig_Trop2_TNBC_Survival, VEGF_Signature, Glycolysis_Signature, 
Hypoxia_Angiogenesis_Inflammatory_MDX), prognostic scores (PAM50 ROR-S, GENE70, 
OncotypeDX, and GGI), proliferation markers (AURKA, CCNB1, CCNE1, FOXM1, MKI67, TK1, 
PMID_17493263_proliferation, Module11_Prolif, and Proliferation_MDX), and DNA damage 
repair (RAD51, TK1), while signatures associated with favorable outcome included luminal (PGR, 
TAMR13_scores, MOTERA, Genefu_Luminal_index_Correlation_to_centroid_PAM50_LumA, 
and  GSEA_HALLMARK_ESTROGEN_RESPONSE_EARLY) and immune (Mast_cells; Extended 
Figure 2, Supplementary Dataset 3) pathways. The prognostic scores and some proliferation 
markers were also associated with poor survival in luminal A and B subtypes, but not Her2 or 
TNBC (Extended Figure 3, Supplementary Dataset 3). The hypoxia/angiogenesis signatures 
predicted poor survival in luminal B and TNBC, albeit in the latter the significance did not 
remain after FDR correction. Different immune signatures were prognostic for different 
subtypes. While dendritic cell and neutrophil signatures were associated with poor prognosis in 
luminal A and luminal B (not FDR corrected), signatures related to dendritic cells, 
monocytes/macrophages, and T and B cells were associated with a favorable prognosis in TNBC 
samples (not FDR corrected).  

Nearly all the significant signatures in the univariate analysis on all samples remained 
independent predictors of survival when including both tumor size (pT1 vs pT2-4) and node 
status (pN0 vs pN1-3) into multivariate Cox models (Supplementary Dataset 4), even when 
adjusting for multiple hypothesis testing. In contrast, analyzing the signatures at the subtype 
level yielded fewer independent predictors, especially when using FDR correction. We observed 
no independent predictors in luminal A, only a single predictor for Her2 
(BIOCARTA_DNAFRAGMENT_PATHWAY associated with favorable survival), and only two 
predictors of poor survival for TNBC (Module7_ERBB2_sig_ave_weighted and 
Pathologic_response_ER.Neg) when FDR correcting for multiple tests. The exception was 
luminal B where we observed additional independent predictors that were apparently 
confounded during the univariate analysis, including signatures related to luminal pathways 
(GSEA_HALLMARK_ESTROGEN_RESPONSE_EARLY, 
MOTERA_sig_ESR1_mutations_Cancer_Res_2021, ESR_PGR_ave, 
PMID_17493263_luminal_epithelial, and TAMR13_scores), immune function (Mast_cells), and 
microtubules (MTUS1) associated with favorable survival as well as signatures related to 
chemotherapy (HS_Red1, MAPs_Mitotic_kinases_neoadj_chemo118), cell cycle 
(cMET_FAK_CDK2_axis), and Her2 resistance (MUC4) associated with poor survival. There were 
also several ADC targets that were independent predictors of survival that were not significant 
in the univariate analysis (CEACAM5, MET, ERBB3). 
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ADC processing-related genes and gene signatures show subtype-specific expression and 
association with survival. 
 
We further characterized the expression of 20 targets of ADCs that are either approved or 
undergoing clinical trials and associated their expression with survival. Most ADC targets 
displayed high inter-individual variability, differential expression between healthy and invasive 
tumor tissue, and enrichment in a subtype-specific manner (Extended Figure 4). Moreover, in 
both univariate and multivariate analyses (Figure 4b,c), many ADC targets were associated with 
poor survival like CD276, FOLH1, NECTIN4, MET, FOLR1, MSLN, and CEACAM5 or favorable 
survival like SLC39A6 (multivariate only), TPBG, and STING1 (univariate only; Figure 4b). The 
ADC targets were also related to survival in a subtype specific manner and occasionally in 
opposite ways, which could have important implications for effective patient selection. For 
example, TACSTD2, the gene encoding the TROP2 protein, which is targeted by sacituzumab 
govitecan (and datopotamab deruxtecan in a phase 3 trial), was associated with favorable 
survival in luminal A but poor survival in TNBC. Likewise, expression of ERBB2 (the target of 
trastuzumab deruxtecan, trastuzumab emtansine, and many other ADCs in development), 
ERBB3 (the target of patritumab deruxtecan), and TPBG predicted favorable survival in luminal 
B samples but poor survival in TNBC (Figure 4b,c).  
 
Because the sensitivity and resistance to ADCs likely encompasses broad cellular targets and 
pathways involved in ADC processing, we also characterized the expression of genes and gene 
signatures related to receptor endocytosis, lysosomal function, payload targets (e.g., 
topoisomerases and microtubules, DNA damage repair), and resistance pathways (multi-drug 
resistance transporters and metabolizing enzymes). The overarching hypothesis is that 
combining these signatures may elucidate ADC-responsive patient subgroups that can be 
exploited for effective patient selection. The expression of these ADC processing related 
genes/gene signatures displayed marked variability across cases (Figure 4a), suggesting that 
individual variation in the cellular processes involved in the action of ADCs may predict 
response to these agents. Like the ADC targets, other components of ADC processing showed 
strong association with survival even in multivariate models (Supplementary Dataset 3,4). In a 
multivariate analysis of all samples, signatures related to drug resistance/membrane transport 
(ABCC1, GSEA_KEGG_ABC_TRANSPORTERS_M11911), endocytosis (ATG9A, FLOT2, 
Endocytic_uncoat, GSEA_GOBP_MEMBRANE_RAFT_ASSEMBLY, Endocytic_actin, 
Endocytic_coat), lysosome function (LAMP1, GSEA_KEGG_LYSOSOME_M11266, 
GSEA_LYSOSOME_M13845) and enzymatic cleavage (CTSB, Cathepsins), and topoisomerase 
inhibitors (PROM1, RAD51) were all independent predictors of poor survival (Supplementary 
Dataset 4). This supports the notion that patients could be stratified into subgroups based on 
the combination of ADC-relevant genes and gene signatures. 
 
We sought to investigate whether genes and gene signatures involved in ADC function could 
predict response to ADCs. Given that our retrospective validation cohort did not encompass 
patients treated with these agents, we conducted a re-analysis of the trastuzumab emtansine 
(T -DM1) arm of the I-SPY2 trial to test our hypothesis. We divided the dataset into a training 
and a test cohort (50:50) and conducted a univariate logistic regression on a panel of 70 pre-
specified ADC relevant genes and gene signatures. Our analyses found that various gene 
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signatures related to different steps of ADC processing (i.e., antigen, receptor internalization, 
lysosomal proteolysis, payload target, and drug metabolism) were predictive of pathologic 
complete response (pCR; Figure 4d). A multivariate logistic regression model using elastic net 
and 10-fold cross validation yielded a final 21-feature classifier (Figure 4e) that displayed 
superior predictive utility to ERBB2 alone (ROC AUC of 0.94 vs 0.87, Figure 4f). The dominant 
features in the signature predicting T-DM1 efficacy were found to be related to the target 
antigen (ERBB2), internalization of the ERBB2 receptor (FLOT1/FLOT2 ratio, RAB5A), lysosome 
function (GLB1, HTT), microtubule targets of the maytansine payload (TUBA1B, TUBA1C, 
TUBG1, TUBG2), and markers of resistance (e.g., the multidrug resistance transporter, ABCC3; 
Figure 4g). Altogether these data support the notion that genes and gene signatures that 
encompass ADC processing and activity can be used to predict response with higher accuracy 
than the antigen target alone. 
 
Unraveling the tumor biology of Her2-low 
 
The recent approval of the antibody drug conjugate trastuzumab deruxtecan (Enhertu) for 
treatment of individuals with low levels of Her2 in the advanced/metastatic setting has spurred 
lively debate on whether Her2 constitutes a unique biological entity22. Rather than assessing 
Her2 low in the context of IHC results, which are broadly acknowledged to poorly separate low 
levels of Her2 from the absence of Her2 23, we took an alternative approach and instead used 
RNA sequencing as the ground truth for ERBB2 expression levels. First, we separated the cohort 
into ESR1 positive and negative groups using a cutoff of 6.2 TPM (Supplementary Figure 9a), 
which resulted in 98.3% (674/686 samples) of samples also being IHC positive. In the ESR1 
negative group, 78.5% (259/330) samples were IHC negative, while the majority (53.5%) of IHC 
positive samples contained low ER expression. Then we stratified the samples in both ESR1 
groups by using the interquartile range of ERBB2 TPM (Supplementary Figure 9a), resulting in 
ERBB2 positive (above 75th percentile), ERBB2 low (25th-75th percentile), and ERBB2 negative 
(below 25th percentile).  
  
As shown in Extended Table 3, differential expression analysis of these ERRB2 expression 
subgroups revealed a minimal number of upregulated genes in ERBB2 low relative to ERBB2 
negative, with the ESR1 positive group showing the least upregulated genes (Supplementary 
Figure 9b). For the ESR1 positive subgroup, only two genes were found to be upregulated in 
ERBB2 low by both DeSeq2 and Wilcoxon, including CRISPLD1, a secretory protein that is part of 
the cysteine-rich secretory proteins (CAP) superfamily implicated in cancer and immunity, and 
the UGT2A3 pseudogene. Expanding the analysis to upregulated DEGs by either DeSeq2 or 
Wilcoxon revealed several upregulated genes, including KRT1, FLG, FLG2, and OLFM4, with 
shared common functions as structural components of skin, cell adhesion processes, and 
protein binding ability. In the ESR1 negative subgroup, twelve genes were found to be 
upregulated in ERBB2 low by both DeSeq2 and Wilcoxon. Most of these genes (KLK10, SLURP1, 
LINC02571, AARD, SERHL2, SYT8, TNNI2, and ANGPT1) were also found to be upregulated in the 
basal-like subtype relative to luminal and Her2 subtypes. Nevertheless, it is intriguing that the 
ERBB2 low subgroup displayed overexpression of this markers relative to ERBB2 negative, since 
the latter is more exemplary of a true basal-like phenotype. Notably ERBB2 was also 
upregulated in ERBB2 low and some other genes located at the 17q12 locus (i.e., Her2 
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amplicon) were upregulated in the DeSeq2 (PNMT) and Wilcoxon (GRB7, TBC1D3L) analyses. In 
contrast, to the handful of upregulated genes, ERBB2 low specimens, irrespective of ESR1 
status, showed broad downregulation of regulatory non-coding RNAs such as snoRNAs 
suggesting ERBB2 low may have altered ribosomal RNA (rRNA) processing and post-
transcriptional regulation (Supplementary Figure 9b, top right panels for ER positive and ER 
negative). 
  
As expected, the genes that best differentiated ERRB2 positive samples from ERBB2 low and 
negative, irrespective of ESR1 status, were located along the core of the Her2 amplicon (i.e., 
ERBB2, PNMT, GRB7, TCAP, PGAP3, STARD3, MIEN1) and are frequently co-amplified with 
ERRB2. We explored the Her2 amplicon further and found ERRB2 low samples showed 
intermediate expression levels for many genes near the 17q12 locus when compared to either 
ERRB2 positive or negative samples, a finding that was consistent across ESR1 status 
(Supplementary Figure 9c). To see if expression of the Her2 amplicon could segregate ERBB2 
low from positive and negative samples, we calculated a Her2 amplicon module score and 
plotted each sample from highest to lowest score, which resulted in good separation of ERBB2 
positive, low, and negative samples (Supplementary Figure 9d). Altogether, these data suggest 
that ERBB2 expression, select differentially expressed genes, and Her2 amplicon signatures 
could be used as an aid to stratify tumors into ERBB2 positive, low, and negative, ultimately 
resolving the ambiguity of IHC for low Her2 expression. 
 
Laser capture microdissection (LCM) enables tumor-specific gene expression and 
accurate multigene profiling. 
 
Breast tumors display considerable intra-tumoral heterogeneity spanning histological, 
morphological/cellular, genetic, and molecular features, which has important implications for 
patient diagnosis, treatment, and prognosis. Particularly important for multi-gene assays (e.g., 
PAM50, OncotypeDX, etc.) is the tissue and cellular composition of the tumor because 
specimens with low tumor content (or tumor cellularity) can lead to spurious gene expression 
results. We found approximately 10.6% of tissues (n=115/1082) contained either histological 
(n=44/1082=4.3% for mixed histology and n=17/1082=1.7% for mixed invasive-DCIS/LCIS) or 
biomarker heterogeneity (n=16/1082=1.6% for all or none spatial expression and 
n=38/1082=3.8% high/low spatial expression; see Methods). To investigate the effects of tumor 
content and heterogeneity on gene expression, we selected a panel of 44 samples with variable 
tumor content and compared the transcriptome profiles of LCM with adjacent sections that did 
not undergo LCM (Figure 5a). LCM samples showed enrichment for each marker (PGR, ESR1, 
ERBB2, and MKI67), but only for samples that were classified as IHC-positive for the respective 
marker (Figure 5b). Genes that were classified as IHC-negative showed reduced expression 
when comparing LCM samples to matched undissected sections, except for ERBB2, which was 
either unaltered or enriched (Figure 5c). Interestingly, this observation may be related to the 
low levels of ERBB2/Her2 that may be present in specimens classified as Her2 negative (IHC 0) 
or Her2-low as defined by an IHC score of +1 or +2 without DNA amplification (for a review, see 
24–26). LCM, compared to no LCM, also resulted in a broader dynamic range for all markers 
(Figure 5d), presumably because more sequencing reads are distributed to transcripts derived 
from cancerous tissues rather than normal, healthy epithelial, connective, and adipose tissues. 
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In support of this, LCM enriched Cadherin-1 (CDH1) expression, a cell-type marker of breast 
glandular epithelial cells (i.e., tumor cell marker) and reduced the expression of Vimentin (VIM) 
and Platelet and Endothelial Cell Adhesion Molecule 1 (PECAM1), markers for fibroblasts and 
endothelial cells, respectively (Figure 5e). 
 
We further explored the impact of LCM on molecular subtyping and prognostic risk classifiers as 
many of these procedures rely on bulk processing or tumor content thresholds to ensure 
reliable results. Molecular subtyping was particularly susceptible to the presence of non-tumor 
tissue with 61% (25/41) of AIMS and 32% (13/41) of both mFISHseq and PAM50 samples 
switching molecular subtype when comparing paired LCM and no LCM samples. This also 
resulted in 41% (17/41) samples switching their consensus subtype (Figure 5f). Expectedly, the 
most common consensus subtype change was to the normal-like subtype (15/41) and then two 
samples changed from LumB to LumA and one sample from LumB to Her2 (Figure 5f). Bulk 
processing also influenced the prognostic classifiers to a lesser extent with 41% (17/41) of ROR-
S, 22% (9/41) of GGI, 15% (6/41) of GENE70, and 10% (4/41) of OncotypeDX samples switching 
prognostic risk groups. All samples that switched prognostic risk groups were classified as a 
lower risk group (e.g., high to intermediate or high to low), which could have profound 
implications for treatment since low-risk individuals may forego receiving potentially beneficial 
chemotherapy. For ROR-S, 12 patients (6 high and 6 intermediate risk by LCM) switched to the 
low prognostic risk group (Figure 5g) and these individuals would be incorrectly recommended 
to not receive chemotherapy. Overall, this highlights the importance of LCM in enriching tumor 
specific gene expression to provide accurate assessment of the four main breast cancer 
biomarkers and multigene testing. Methodologies, including commercial tests, that fail to 
adequately eliminate non-tumor elements may lead to erroneous gene expression, 
misclassification of patients, and dire consequences for prescribing inappropriate treatment 
regimens.  

Deployment of mFISHseq as a research-use only (RUO) test provides insights for tailored 
treatment 
 
To demonstrate the clinical utility of mFISHseq, we conducted a RUO version of the assay on 26 
patients. This version included our consensus subtyping and prognostic risk groups as well as 40 
genes and 28 gene signatures spanning multiple cancer-related pathways relevant for 
treatment and prognosis (Figure 6a), including 20 ADC antigen targets and 5 payload-related 
targets (Figure 6b,c). Genes and gene signatures were compared with either all patient samples 
from our retrospective clinical validation or patient samples restricted to the relevant IHC-
surrogate subtype to assign a percentile ranking score that was then categorized in tertiles 
(high, intermediate, low). These patients spanned neoadjuvant, adjuvant, and 
advanced/metastatic clinical settings and were representative of all molecular subtypes, 
especially basal-like/TNBC (Figure 6d). The most frequently recommended therapies by 
mFISHseq are dominated by more novel, targeted therapies such as ADCs, PARP inhibitors, and 
immunotherapies (Figure 6e). Below we outline several cases and a detailed report of each 
patient can be found at https://multiplex8.com/medical-professional (Note that the following 
patient ID numbers listed below do not reveal any identifying information and are not known to 
anyone outside of the authors of this manuscript). 
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Patient 1 had TNBC and received a taxane/carboplatin regimen in the neoadjuvant setting 
without effect leading to a mastectomy. The resected tumor was classified as invasive ductal 
carcinoma (pT3, G3, pN1) and ER/PR/HER2- with 60% Ki67. After surgery, the patient received 
capecitabine and then had a locoregional relapse. We conducted mFISHseq on the resected 
tumor and the histopathology revealed two distinct regions of the tumor that were 
characterized either with or without infiltrating lymphocytes. We dissected both regions 
(Sample A and B) and mFISHseq confirmed the IHC results (PGR/ESR1/ERBB2- and MKI67 high) 
and basal-like intrinsic subtype for both ROIs; however, the two regions differed in their TNBC 
subtypes with Sample A and B being classified as mesenchymal (M) and immunomodulatory 
(IM), respectively. To identify treatment predictive signatures that were common between the 
two ROIs, we investigated a tailored list of genes and gene signatures relevant for metastatic 
TNBC, revealing that both ROIs contained high scores for an 
angiogenesis/hypoxia/inflammation signature that may predict response to bevacizumab 
(Avastin) as well as high expression for TACSTD2 and TOP1 (i.e., antigen and payload targets for 
sacituzumab govitecan (Trodelvy). This provided two viable treatment options in the first and 
second lines for metastatic TNBC. Notably, this evidence concurred with follow up data from 
this patient went into complete remission following bevacizumab treatment. 
 
Another two patients, Patient 15 and Patient 19, received T-DM1, thus allowing us to test our T-
DM1_pred signature. Patient 15 is a 46-50-year-old female with invasive ductal carcinoma 
(pT1c, G2) that was ER/PR/HER2+ with high Ki67. She received doxorubicin/cyclophosphamide 
plus docetaxel followed by dual Her-2 blockade with trastuzumab/pertuzumab as neoadjuvant 
treatment but had disease progression prior to surgery. Currently, she is receiving adjuvant T-
DM1 and awaiting follow-up. Patient 19 is a 70-75-year-old female with invasive ductal 
carcinoma (pT4b, G2, node positive) that was ER+/PR-/HER2+ (IHC 2+ with positive 
amplification by DNA-FISH) with 15% Ki67. She received T-DM1 in the metastatic setting and is 
currently in stable condition. For Patient 15, mFISHseq agreed with IHC for all markers, 
classified the sample as luminal B, and showed high expression of ERBB2 and ERBB2-signatures 
(Her2 amplicon_MDX and Module7_ERBB2), low-high expression of Her2 resistance markers, 
and a moderate T-DM1_pred score (score = 0.29; 57th percentile) that was above the threshold 
for predicting response to T-DM1. Patient 19 had two heterogeneous ROIs based on high 
(Sample A) and low (Sample B) ERBB2 expression that were dissected with mFISHseq. The 
mFISHseq results for both ROIs agreed with IHC results, except for Sample B, which was 
classified as ERBB2 low and had lower ERBB2-signatures (Her2 amplicon_MDX and 
Module7_ERBB2). Similarly, only Sample A had a T-DM1_pred score (score = 0.03; 48th 
percentile) that was above the threshold for predicting response to T-DM1. This anecdotal 
evidence is supported by the stable disease of this patient following T-DM1 treatment in the 
metastatic setting.  
 
Patient 3 is a female patient with TNBC in the adjuvant setting who has received standard-of-
care chemotherapy (AC, doxorubicin + cyclophosphamide). The mFISHseq test classified this 
patient as ESR1/PGR/ERBB2-/MKI67+, basal-like consensus subtype, and IM TNBC subtype, 
which was also supported by high levels of immune-related genes (PDCD1, CD274, CTLA4) and 
gene signatures (e.g., Chemokine12, Dendritic_cells, etc.). This suggests treatment with 
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immune checkpoint inhibitors like pembrolizumab (Keytruda) or atezolizumab (Tecentriq) may 
be beneficial in addition to standard chemotherapy. This patient also had high levels of 
TACSTD2 and TOP1, the antigen and payload targets for the anti-Trop-2 ADC, sacituzumab 
govitecan (Trodelvy). This highlights the potential of mFISHseq to predict potentially beneficial 
therapies in subsequent treatment lines, which may save valuable time in selecting new 
treatments after a patient becomes refractory. 
 
As noted earlier, the consensus prognostic categories of mFISHseq may have utility in 
identifying patients with low (ultra-low) risk who can safely forego adjuvant chemotherapy and 
this potential is demonstrated in the report for Patient 23. This female patient (age 46-50) has a 
clinically low risk invasive ductal carcinoma (pT1b, G2, pN0) that is ER/PR+, Her2- (low, 2+), and 
15% Ki67. In addition to agreeing with the IHC results and classifying the patient as luminal A, 
mFISHseq found low risk classifications in four multiparameter tests (OncotypeDX, GENE70, 
ROR-S, and GGI) and clinical risk, suggesting this patient is classified as ultra-low and can be 
spared at least potentially toxic chemotherapy without having a detrimental outcome. 
 
Overall, the RUO version of mFISHseq (called Multiplex8+) provided unique insights for each 
patient that could identify potential treatments (including subsequent lines of therapy) and 
helped to explain why prior treatments performed poorly. Like our retrospective study, there 
was exceptional concordance between IHC results and mFISHseq with agreement in 93% 
(n=87/94) of cases for all four biomarkers, with Her2 IHC and ERBB2 mFISHseq showing perfect 
agreement. All discordant results were observed for PGR (n=3) and ESR1 (n=4). In two patients 
(#7 and #12), both ER and PR were in gray zone areas for IHC (i.e., ER/PR low ≤10%) and 
mFISHseq classified them as negative. Notably, both patients were classified as basal-like by 
consensus molecular subtyping, mesenchymal (M) TNBC subtype, and had high expression of 
cancer hallmark pathways like proliferation, immune, and/or angiogenesis suggesting the 
mFISHseq results reflected the underlying tumor biology better than the IHC markers. 
 
 

Discussion 
 
The mFISHseq test utilizes two orthogonal methods, RNA-FISH and RNA-SEQ, to characterize 
breast tumor biology. Simultaneously visualizing gene expression of the four main breast cancer 
biomarkers in a multiplexed and multicolor RNA-FISH reaction allows users to identify ROIs 
based on cellular phenotypes and tumor heterogeneity and then precisely capture these ROIs 
using LCM for downstream spatially resolved transcriptomics. Total RNA sequencing facilitates 
transcriptome-wide expression profiling to classify the molecular subtype of breast cancer and 
quantify predictive and prognostic gene signatures. 
 
In this retrospective validation cohort of 1,082 FFPE breast cancer specimens, mFISHseq 
showed high concordance with biomarkers assessed by IHC, a finding that is consistent with 
other reports 27,28 and highlights the analytical validity of the assay; however, the concordance 
varied depending on biomarker IHC expression level. This is consistent with reports showing 
that IHC concordance among pathologists in these low ranges is poor due to the limitations of 
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IHC (pre-analytical factors, variable antibody specificity/sensitivity, subjective quantification, 
etc.). For example, a recent study showed that a group of 18 pathologists had only 26% 
concordance between HER2 specimens containing H-scores of 0 and +1, which could result in 
misclassification of patients and consequently eligibility for the new anti-HER2 drug conjugate 
trastuzumab deruxtecan (Enhertu) 23. Thus, novel quantitative assays that can accurately define 
Her2 expression are critical to identify patients eligible for emerging anti-Her2 drug conjugates.  
 
Many researchers have approached this challenge by exploring biological and 
clinicopathological differences of Her2-low tumors albeit with disparate results. To address this, 
we surmised that RNA sequencing expression data of ERBB2 may provide a more suitable 
ground truth compared to IHC, which is known to suffer from poor concordance when 
classifying Her2-low (IHC +1/+2 unamplified by DNA ISH) and negative (IHC 0) specimens 23. 
Therefore, we used our RNA sequencing data to stratify ERBB2 expression in respect to ER 
status and conducted robust differential expression analyses using two approaches to mitigate 
false positive results. Few upregulated genes were observed in ERBB2 low, relative to ERBB2 
negative. In contrast, downregulation of genes accounted for most of the differences between 
ERBB2 low and negative, with ERBB2-low samples showing reduced expression of a broad panel 
of snoRNAs and other regulatory RNAs, irrespective of ER status. This is a novel finding with 
important implications for Her2-low given the broad regulatory roles of snoRNA in processing 
of rRNA and post-transcriptional regulation together with evidence of their dysregulation in 
breast cancer 29–32. This suggests that rather than being a distinct biological subtype akin to 
luminal A/B, Her2-enriched, and basal-like/TNBC, Her2-low specimens are mainly characterized 
by subtle changes in rRNA processing and post-transcriptional regulatory programs on top of 
their main molecular background (e.g., luminal vs basal). We also demonstrate several novel 
approaches to quantify Her2 in low expression ranges by using RNA expression assays like RNA-
FISH and RNA-seq to characterize ERBB2 levels as well as genes located near the 17q12 Her2 
amplicon locus. These approaches could supplement current IHC diagnostics to provide 
additional information about Her2 expression in gray zone cases. 
 
Although molecular subtyping can provide clinically relevant information, several reports have 
documented problems with discordance at the single-sample level 7,8, which has often been 
attributed to research based versions of the test as well as differences in data processing. 
However, in the OPTIMA study, the Prosigna, Blueprint, and MammaTyper test showed marked 
disagreement in 40.7% of patients resulting in only moderate concordance between each test 
(κ range = 0.39-0.55), despite each test being conducted by the respective vendors 9. The 
discordance and irreproducibility have impeded widespread adoption of multigene subtyping 
tests in clinical practice even though there is broad acknowledgment of their potential to yield 
clinical insights. Our findings echoed these reports as we observed only moderate concordance 
between three multigene classifiers and the IHC surrogate subtypes as well as substantial 
concordance among the three multigene classifiers, with the most and least discordance in 
luminal A/B subtypes and in basal-like/Her2 subtypes, respectively. Each multigene subtyping 
tool uniquely classified a subset of samples that no other classifier agreed with, and these 
samples generally showed evidence of misclassification in survival, subtype stability, and 
prognostic risk. Our consensus subtyping, based on a simple voting scheme of the three 
multigene classifiers (mFISHseq, AIMS, and PAM50) effectively alleviated this misclassification 
by reclassifying approximately 30% of these samples into subtypes that better corresponded to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 6, 2023. ; https://doi.org/10.1101/2023.12.05.23299341doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.05.23299341
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

their overall survival and prognostic risk. Thus, consensus subtyping resolves the propensity for 
individual molecular subtyping classifiers to assign subtypes to single samples with 
unacceptable levels of discordance.  
 
Several groups have attempted to address the discordance among multiparameter tests at the 
single sample level usually be addressing methodological challenges such as composition of a 
reference/training set and data normalization/processing 33–36. One approach constructed a 
consensus training set of samples that were unanimously subtyped by multiple classifiers and 
then used this to train additional single-sample predictors that then showed near perfect 
concordance (median κ>0.8) 37. Notably, they also demonstrate that changes in the gene list 
have a greater influence on intra- and inter-predictor concordance than the training set and 
type of predictor. This finding supports our consensus subtyping approach that leverages total 
RNA transcriptomics to simultaneously derive subtype predictions by combining several 
multigene classifiers and consequently several different gene lists. Thus, consensus subtyping 
addresses the main culprit for discordance, which is the use of disparate gene lists to derive a 
categorical subtype that may have subtle biological differences based on the assay and gene list 
used. This critical point is elaborated on in a recent perspective where Schettini, Prat, and 
colleagues argue that the construct of a molecular subtype is not necessarily interchangeable, 
since each multiparameter assay interrogates different biomarkers with distinct methodologies 
38.  
 
Like consensus subtyping, we found that combining information from 5 different prognostic 
classifiers into a consensus prognostic classification system of high, low, and ultra-low risk 
groups provided more accurate results for cases with discordance in at least one classifier. 
Moreover, the ultra-low risk patients (i.e., those with agreement in all 5 classifiers with node 
negative and PR+ status) had excellent PFS and OS out to 15 years. With this consensus 
prognostic classification system, high risk individuals showed the poorest OS and more relapses 
within 5 and 10 years and benefitted the most from chemoendocrine therapy. Low risk patients 
had better OS, more relapses after 10 years, and showed no benefit from chemotherapy in 
addition to endocrine therapy. Notably, many of these patients received only 5 years of 
endocrine therapy and may constitute a group of patients that could benefit from extended 
endocrine therapy for 10 years. The ultra-low risk group contained about 10% of patients that 
had low probability of relapse and excellent survival. This group may overlap with ultra-low risk 
categories identified by other studies, which is roughly 10-25% of all patients depending on 
screening and may represent a group of patients with indolent tumors that need only surgery 
and no adjuvant systemic therapy at all. 
 
The substantial inter-predictor concordance we observed without consensus subtyping was 
interestingly higher than prior reports 7–10. One potential explanation for this higher 
concordance is the use of laser capture microdissection to precisely capture tumor-enriched 
samples for downstream RNA-SEQ. Most other studies use bulk specimen processing (or 
microdissection), which not only loses the spatial information about biomarker expression but 
may introduce erroneous gene expression from healthy stroma/epithelia, ductal/lobular 
carcinoma in situ, and other non-tumor tissue, which can lead to RNA-based gene expression 
profiling tests to misclassify breast cancer samples into molecular subtypes and prognostic risk 
groups 8,39–43. For example, the “normal-like” subtype is simply a byproduct of insufficient tumor 
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content/cellularity. Similarly, the six TNBC subtypes 21 were refined to four when LCM was used 
to demonstrate that the immunomodulatory and mesenchymal stem-like subtypes result from 
elevated infiltrating lymphocytes and tumor-associated mesenchymal cells, respectively 20. In 
our comparison of paired sections that underwent LCM or bulk processing, we found that bulk 
processing resulted in substantial changes in gene expression and assignment to molecular 
subtypes and prognostic risk groups, which generally resulted in downscaling to less aggressive 
subtypes (e.g., normal-like) and risk groups. This has important implications for treatment as 
some patients, especially those in gray zones (e.g., bordering high/low risk thresholds) may be 
misclassified and consequently inappropriately treated. This stresses the importance of 
incorporating laser capture microdissection into the mFISHseq workflow to minimize 
contamination from non-tumor elements and obtain spatially defined, tumor-enriched cell 
populations, ultimately facilitating precise and accurate biomarker quantification and 
multiparameter testing.  
 
Recent evidence from the clinical trials for the recently approved ADCs, trastuzumab 
deruxtecan (Enhertu) 22 and sacituzumab govitecan (Trodelvy) 44,45, suggest that protein 
expression of the antigen target is insufficient to predict treatment response, highlighting in 
unmet need to identify novel biomarkers that can stratify patients into those most likely to 
response. In this study, we conduct one of the most comprehensive analyses of ADC targets 
and ADC processing-related genes and gene signatures by characterizing their expression 
patterns and association with survival in over 1000 patient samples. The results portray unique 
subtype-specific expression patterns that may be relevant for stratifying patients into ADC-
responsive subgroups. We validated this hypothesis using data from the trastuzumab 
emtansine arm of the I-SPY2 trial, where we identified a gene signature containing 19 features 
related to the ADC target (ERBB2), receptor endocytosis, lysosome function, and microtubule 
targets of the maytansine payload. Moreover, this signature outperformed ERBB2 expression 
alone in a multivariate logistic regression, thus supporting the notion that combining ADC 
processing features into a predictive model has clinical utility for patient selection. Notably, 
both ERBB2 mRNA and our T-DM1_pred had substantially more predictive utility than Her2 IHC, 
since 42.3% of patients (n=22/52) did not responds despite being Her2 IHC positive. An 
important next step will be to validate this signature as a prespecified, qualified biomarker in a 
larger external cohort. Overall, these data create a foundation and roadmap for identifying 
subgroups of patients that are more likely to respond to an ADC, and each signature can be 
tailored to key features of the ADC like antigen and payload target (topoisomerase, 
microtubule, or DNA), cleavable (enzyme or acid labile) or noncleavable (lysosome processing) 
linker, and mechanisms of resistance (ABC transporters, glucuronidation enzymes). 
 
A limitation of the current study is the retrospective design, which is susceptible to confounding 
and biases introduced by patient selection, misclassification, and recall. We attempted to 
mitigate this limitation prior to initiating the study through the following measures: 1) drafting 
a study protocol with a sample size/power analysis and prespecified data collection and 
statistical analysis plan; and 2) sourcing archived tissues from reputable biobanks (Biobank Graz 
and PATH Biobank) according to BRISQ guidelines. During the study, we also mitigated technical 
errors and other biases that could arise by processing many batches of samples by 1) pseudo 
randomizing and stratifying batches to ensure proportional representation of IHC surrogate 
subtypes in each batch; 2) ensuring research personnel were blind to specimen clinical 
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information; and 3) implementing batch processing controls (ERCC spike-in and positive 
controls) for RNA-SEQ library preparation. These measures together with the excellent 
analytical validity relative to IHC and transcriptomic findings that are congruent with prior work 
(e.g., molecular subtyping and gene signature) and supported by outcome data further 
highlight the robustness and veracity of the results. 
 
In this retrospective validation of mFISHseq on a cohort of 1,082 breast tumors, we provide 
analytical validity that mFISHseq can be used with high confidence to assess the expression of 
the four main breast cancer biomarkers currently used in IHC testing. Both methods can be 
used to cross-validate one another to mitigate false positives/negatives due to preanalytical 
and technical factors, and consequently making strides to correctly classify equivocal cases. By 
using laser-capture microdissection to collect spatially defined, tumor-enriched samples, 
mFISHseq provides tumor-specific gene expression that can be used to derive insights about 
the tumor microenvironment, molecular subtype, and tumor biology that may predict 
treatment response and outcome. We further demonstrated this clinical utility on 26 patients 
who received an RUO version of the test, which we named Multiplex8+ (patient reports are 
located at www.multiplex8.com (in the medical professional section). 
 

 

Methods 
 
Study Design 
We conducted a retrospective clinical validation of our mFISHseq BCa diagnostic test using 
1,082 archived FFPE BCa samples collected from two European biobanks (Biobank Graz, PATH 
Biobank), one hospital (Malaga, Spain), and two commercial companies (AMS Bio and Precision 
for Medicine). Clinicopathological information associated with each sample (age, receptor 
histological status, tumor grade, therapy history, survival data, etc.) was accrued in 
collaboration with the biobanks and follows the Biospecimen Reporting for Improved Study 
Quality (BRISQ) criteria and used to perform association analyses with molecular data. Inclusion 
criteria for the study consisted of females with histologically confirmed invasive BCa, availability 
of anonymized data regarding pathological diagnosis (IHC status, TNM staging), therapy 
(hormone/targeted/chemo- or radiotherapy), and survival (progression-free survival, overall 
survival), as well as signed and dated informed consent. The only exclusion criteria were pre-
existing conditions or concurrent diagnosis of a cancer other than breast cancer or other 
disease that may influence the interpretation of the study results. The Ethics Committee of the 
Bratislava Self-Governing Region gave ethical approval for this work (Ref. No. 05320/2020/HF). 
In addition, the Ethics Commission of the Medical University of Graz on behalf of Biobank Graz 
gave ethical approval for this work (No. 34-354 ex 21/21, 1158-2022). 

Patient specimens were processed in batches (see Supplementary Methods) using a stratified 
randomization approach to ensure that each batch contains a representative sampling of the 
IHC-surrogate subtypes (i.e., luminal A, luminal B, HER2+, TNBC). Researchers who processed 
batches and conducted the data processing and analysis were blind to IHC biomarker status 
(e.g., ER, PR, HER2, and KI67) and other clinical information. 
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To assess the analytical validity of mFISHseq, the dataset was divided into a training and test set 
(70:30 split) using a stratified randomization approach to ensure similar proportions of positive 
and negative biomarkers (as defined by IHC) and sufficient patient outcomes. Other analyses 
like consensus subtyping and characterization of genes/gene signatures utilized the full dataset.  

Tissue processing and H&E staining 
 
We obtained at least eight 5 μm sections from FFPE BCa specimens using a Leica Histocore 
Multicut. Adjacent sections were collected in the following order: 1 section on a glass slide for 
H&E, 1 section on a functionalized PEN membrane slide for LCM, 1 section on a glass slide for 
RNA-FISH, and 1 section taken as a scroll and frozen at –20 °C for later RNA extraction and RNA 
sequencing (see Supplementary Methods). To ensure proper identification of invasive breast 
cancer, we stained one section using H&E, cover slipped, and then obtained a whole-slide scan. 
The resulting image was annotated by a trained researcher to identify the invasive breast 
cancer component for later microdissection. If necessary, a board-certified pathologist either 
annotated or reviewed challenging cases. Importantly, the H&E-stained section was adjacent to 
the PEN membrane slide used for laser capture microdissection to ensure comparable 
anatomical morphology between the slide that was annotated and the slide that was 
microdissected.  
 
Multiplexed RNA-FISH  

For RNA-FISH we used the Advanced Cell Diagnostics RNAscope™ Multiplex Fluorescent V2 
Assay to detect PGR, ESR1, ERBB2, and MKI67 according to the manufacturer’s instructions. 
These markers were detected using Akoya Opal 690, 620, 520, and 570 fluorophores, 
respectively. Visualization of these markers allowed us to capture the heterogeneity of the 
tumor tissue and isolate key regions of interest using LCM to obtain tumor-specific regions of 
interest, while eliminating otherwise healthy tissue, stroma, and adipose cells that may “mask” 
true gene expression differences. 

Whole-slide imaging, image annotation, and image analysis    

Following H&E staining and RNA-FISH, we used the Akoya Vectra Polaris to obtain brightfield 
and fluorescent whole slide scans (20x objective) that could be further analyzed and annotated 
for microdissection. The H&E whole slide scans were annotated by a trained researcher using 
the open-source program QuPath (https://qupath.github.io/). Annotations were color-coded to 
identify invasive breast cancer (segregated by histological subtype if more than one is present 
in a specimen), ductal carcinoma in situ (DCIS), and healthy/normal tissue. If necessary, a 
board-certified pathologist either annotated or reviewed challenging cases. The RNA-FISH 
whole slide scans were annotated by a trained researcher using Akoya’s Phenochart software 
(Vectra Polaris). The RNA-FISH annotation consisted of a qualitative overview of the intensity 
and distribution of fluorescent signals from ER, PR, HER2, and KI67. Based on the annotated 
H&E and RNA-FISH images, specific regions of interest were selected for LCM with an emphasis 
on regions that displayed the expression of biomarkers of interest (e.g., hotspots), areas 
identified as invasive by a trained researcher/pathologist, and the margins of invasive tumors. 
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Moreover, in the case of specimens that displayed histologic or biomarker expression 
heterogeneity in the form of different molecular expression patterns (e.g., ER/PR+ and HER2- 
regions versus ER/PR- and HER2+ regions) or histological subtypes (e.g., invasive ductal vs 
invasive lobular carcinoma) distinct regions of interest were annotated and separately 
subjected to LCM and downstream analyses (Supplementary Methods). 

For RNA-FISH image analysis, regions of interest that were dissected by laser capture 
microdissection were stamped on the digital whole slide scans for further processing of 
biomarker signals using Akoya’s InForm software (Supplementary figure 4). At least 1-3 
stamped regions, depending on the size of the area dissected by LCM, were analyzed (at 20x 
objective). The analysis consisted of the following steps: 1) spectral unmixing and 
autofluorescence isolation using a synthetic spectral library; 2) using machine learning 
algorithms to segment the tissue into different regions (tumor versus stroma) as well as to 
segment individual cells into nuclear and cytoplasmic components; and 3) scoring the 
expression of each biomarker. The average fluorescence intensity for each marker was assessed 
specifically in the tumor segment of the image and the researcher conducting the analysis was 
blinded to the known IHC results and the clinicopathological data. 

Laser capture microdissection  
 
We followed established protocols from Leica for conducting LCM in a manner that maintained 
RNA integrity. This included conducting a rapid, cresyl violet stain, limiting dissection times to 
under 1 hour per sample, and taking precautionary measures to ensure RNA integrity. Regions 
selected for dissection were identified by comparing the annotated H&E and RNA-FISH images 
with the adjacent cresyl violet stained section. We aimed to dissect approximately 10-20 mm2 
of tissue per sample to ensure an adequate amount of material for RNA extraction. For samples 
with less tumor area, we conducted LCM on multiple PEN membrane slides to obtain sufficient 
tissue. 
 
RNA isolation and quality control  

The Macherey Nagel NucleoSpin totalRNA FFPE XS kit was used for RNA isolation (see 
Supplementary Methods). After RNA isolation, RNA quantity was measured using the Qubit 
RNA HS (High Sensitivity) Assay Kit with a Qubit 4 Fluorometer and RNA quality using the 
Agilent High Sensitivity RNA ScreenTape with an Agilent 4150 TapeStation. The DV200 value of 
the sample (i.e., the percentage of fragments ≥ 200 bases in length) was calculated as 
recommended by Illumina. Samples with DV200 values > 15% were considered as viable samples 
for library preparation. 

RNA library preparation and sequencing  
 
We used the Takara SMARTer Stranded Total RNA-Seq Kit v3 - Pico Input Mammalian kit to 
prepare total RNA-SEQ libraries following the manufacturer’s instructions. To control for batch 
library preparation effects, we included a single natural positive control sample in each library 
preparation batch and a synthetic spike-in control in each sample (see Supplementary 
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Methods). Following library preparation, the quantity and fragment size range of the library 
were assessed using both the Qubit dsDNA HS kit (Qubit 4 Fluorometer) and the Agilent High 
Sensitivity DNA ScreenTape kit (Agilent 4150 TapeStation). Successfully prepared libraries 
contained sufficient library (≥ 4ng/μl) to pool on an Illumina NovaSeq 6000 sequencing 
instrument and fragment range spanning 200 – 1,000 bp, with a local maximum ~250 – 350 bp. 
Individual sequencing libraries were pooled and sequenced on an Illumina NovaSeq 6000 using 
SP, S1, S2, or S4 flow cells depending on pool size). Pooled libraries were spiked with 10% PhiX 
as recommended by both Illumina and Takara for low-complexity libraries sequenced on 
patterned flow cells. Paired-end sequencing (2 x 100 bp) was conducted with the aim of 
obtaining approximately 100 million reads per sample. The bioinformatics pipeline for RNA 
sequencing is described in Supplementary Methods). 

Statistical Methods 

All statistical tests were conducted using GraphPad Prism 9 and R studio packages. Unless 
otherwise stated, the level of significance was set at P < 0.05 for both adjusted (q-value) and 
unadjusted P-values. For determining the significance of continuous variables, paired or 
unpaired t-tests were used for normally distributed data for two groups, while linear mixed 
models or ANOVA were used for normal data for three or more groups. Non-normal data for 
two groups were analyzed using Mann-Whitney U tests (independent samples), while non-
normal data for three or more groups were analyzed using Kruskal-Wallis tests. Appropriate 
corrections for multiple comparisons were conducted using Tukey’s test (parametric), Dunn’s 
test (non-parametric), or Benjamini-Hochberg (or Benjamini, Krieger, and Yekutieli) FDR 
procedures (non-parametric) to adjust P values. ROC and precision-recall curves were 
constructed using either GraphPad Prism 9 or the R package pROC 1.3.1. Diagnostic 
performance metrics were calculated using the R package caret 6.0-94. 
 
Cohort descriptive statistics – Standard descriptive statistics (presented as either median or 
mean ± standard error of the mean (SEM)) were used to summarize sample characteristics (e.g., 
data for biospecimen information, demographics, pathological, therapy type, survival) for all 
specimens in the study and were segregated by source and IHC-surrogate subtype.  
 
RNA-FISH – For each RNA-FISH target (ESR1, PGR, ERBB2, MKI67), fluorescent intensity 
(normalized to exposure time and segregated into the cytoplasm, nucleus, and total cell) was 
assessed. Standard descriptive statistics and violin plots (presented as either Median or Mean ± 
SEM or interquartile range) were used to summarize results. To compare between RNA-FISH 
and known IHC results within individual specimens, continuous data (e.g., fluorescent 
intensity), were analyzed using Pearson correlations for continuous data (e.g., fluorescent 
intensity) and Spearman’s correlations for ordinal data.  
 
Survival / Outcome analyses – Kaplan-Meier analysis and/or Cox Proportional Hazard models 
were used to quantify associations made between specific dependent variables and/or genes 
and gene signature predictors with known clinical outcome data (overall survival, progression-
free survival). Both univariate and multivariate analyses with clinical parameters (tumor size 
and node status) were conducted using the R package survival (v3.5-7). 
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Main text figures 

Figure 1. 
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Figure 1. Study design, workflow, and analytical validity. (a) The retrospective validation cohort 
consisted of 1,082 formalin-fixed paraffin-embedded (FFPE) breast cancer samples, which 
underwent multiplexed RNA-FISH-guided laser capture microdissection (LCM) coupled with RNA-
sequencing. Annotation of the tumor area on an H&E section and the biomarker expression 
derived from multiplexed RNA-FISH were used to select regions of interest (ROIs) for LCM from 
cresyl violet sections. These tumor-enriched samples were then sequenced to characterize gene 
expression signatures to provide diagnostic, prognostic, and predictive inferences from the 
cohort clinical data (Created with BioRender.com) (b) Clinicopathologic features of the 
retrospective cohort according to intrinsic molecular subtype. (c) Analytical validity of mFISHseq 
compared to immunohistochemical data as assessed by receiver operating characteristic (ROC) 
and precision-recall (PR) curves in 70:30 training and test datasets. (d) Individual biomarker 
thresholds defined in the training set and applied in the test set.  
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Figure 2.  
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Figure 2. Consensus subtyping yields intrinsic molecular subtypes associated with survival. (a) 
Gene expression heatmap depicting the 293 differentially expressed genes in 1013 breast 
breast cancer samples used for molecular subtyping. The metadata shown in phenobars above 
the gene expression heatmap includes (from top to bottom) biobank origin, clinical parameters, 
LCM or no LCM, subtyping approaches, prognostic signatures, and IHC and RNA-FISH results. 
(b,c) Overall survival according to consensus subtyping with respect to their clinical subtype 
according to the biobank IHC results and nodal status. (d) The Sankey diagram shows the 
clinical subtypes according to biobank IHC classification and the proportion of samples 
reclassified by mFISHseq consensus clustering. (e) Overall survival of consensus molecular 
subtypes. (f) Overall survival of the Her2 consensus molecular subtype samples classified as the 
luminal androgen receptor (LAR) TNBC subtype in relation. To other non-LAR Her2 and basal-
like consensus subtype samples. The vertical dashed line and annotated percentages denote 
probability of overall survival at 60 months. 
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Figure 3.  
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Figure 3: Consensus prognostic risk categories show clinically relevant differences in survival 
(a) Proportion of risk categories (high, intermediate, and low) among each of the five 
prognostic classifiers, including Clinical risk, OncotypeDX, Risk of Recurrence by Subtype (ROR-
S), GENE70, and Genomic Grade Index (GGI) on 567 ER+/HER2- with 0-3 positive lymph nodes. 
(b) Progression free survival (PFS) of each of the five prognostic classifiers. (c) Concordance of 
each classifier when comparing all risk categories (high, intermediate, and low; left table) or 
after consolidating into two categories (high and intermediate/low combined; right table). (d) 
Concordance of each classifier for high and low risk samples as illustrated by the number of 
concordant classifiers and (e) after consolidating into majority (agreement in ³3 prognostic 
classifiers) and minority (agreement in 1-2 prognostic classifiers) categories. (f) Distribution of 
mRNA expression for estrogen receptor (ESR1, yellow, left panel), progesterone receptor (PGR, 
green, left/middle panel), HER2 receptor (ERBB2, red, right/middle panel), and Ki67 marker of 
proliferation (MKI67, orange, right panel) in patients that were classified as high risk by a 
particular number of concordant classifiers (i.e., 1-5 concordant classifiers). (g) Kaplan Meier 
plots show PFS and overall survival (OS) for each consensus prognostic risk category (high, low, 
and ultra-low). 
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Figure 4.  
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Figure 4. Gene signatures associated with survival and prediction of treatment response. (a) 
Gene expression heatmap illustrating the expression of 92 genes and 110 gene signatures in 
respect to molecular subtype and clinical parameters. Univariate (b) and multivariate (c) Cox 
proportional hazards models (CPHM) on 20 ADC targets and their association with overall 
survival in all samples and stratified by subtype. (d) Univariate logistic regression analysis of 70 
genes/gene signatures and their association with pathologic complete response (pCR) in the T-
DM1 arm of the I-SPY2 trial. (e) The 19 genes/gene signatures selected in the multivariate 
logistic regression with elastic net modeling on the training dataset. Green bars denote 
signatures associated with pCR; red bars indicate signatures associated with no pCR. (f) 
Performance of two T-DM1_pred classifiers in the test set relative to ERBB2 alone. Univariate T-
DM1_pred is a single score derived from all 19 features, while multivariate T-DM1_pred 
includes all 19 features in a multivariate regression model. AUC = area under the curve. (e) 
Scatter plots showing the distribution of selected genes/gene signature scores of the T-
DM1_pred classifier in patient samples according to pCR.  
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Figure 5.  
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Figure 5. Comparison of laser capture microdissection with bulk processing on biomarker 
expression, molecular subtyping, and prognostic classifiers. (a) Photomicrographs depict 
examples of hematoxylin and eosin-stained resected tumor specimens with low, intermediate, 
or high tumor content represented in shaded annotations. Scale bars represents 2mm length. 
(b,c) Change in gene expression of PGR, ESR1, ERBB2, and MKI67 in specimens that were 
classified as IHC positive (b) or IHC negative (c). (d) Dot plots show the dynamic range of gene 
expression for each biomarker in LCM vs no LCM matched samples. Dotted lines represent the 
median. € Expression of cell-type specific markers in LCM vs no LCM samples containing either 
low, intermediate, or high tumor content. (f,g) Sankey diagrams illustrate change in mFISHseq 
consensus subtypes (f) and in PAM50 risk of recurrence by subtype (ROR-S) classification (g) for 
LCM samples and their paired undissected scrolls. 
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Figure 6.  

 

Figure 6. Deployment of mFISHseq as a research-use only test. (a) Table outlining the number 
of genes and gene signatures and their relevant drug targets/pathways that were used for 
clinical testing. (b,c) Expression of 20 ADC antigen targets (b) and targets relevant to payloads 
for topoisomerase and microtubule inhibitors (c) in 26 patients. (d) Proportion of 26 patients 
according to treatment setting (left bar), molecular subtype (middle bar), and TNBC subtype 
(right bar). (e) Frequency of therapies that were recommended as the top 3 according to 
expression of genes and gene signatures tailored to each of the 26 patients. 
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Extended Data 
 
Extended Figure 1. 
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Extended Figure 1. RNA-FISH image analysis pipeline using digital pathology/machine 
learning. Representative images depicting the RNA-FISH image analysis pipeline for tissue and 
cell segmentation. The tissue was stained for DAPI, ERBB2 (Opal520), MKI67 (Opal570), ESR1 
(Opal620), and PGR (Opal690) and scanned at 20x. (a) The image analysis workflow started with 
raw images of multiple merged fluorescent channels. (b) The same image was split into 
individual separate fluorescent channels - DAPI, Opal520, Opal570, Opal620, Opal690, and 
autofluorescence, according to the spectral library for each fluorescent probe, and the 
autofluorescence was isolated from the image. (c) Using a machine learning algorithm, the 
tissue was segmented based on the selected training regions (red = tumor; green = stroma) 
with the training considering the fluorescent signal intensity of DAPI, ERBB2, MKI67, ESR1, and 
PGR. (d) Then the trained algorithm was applied to the whole image. (e) Individual cells were 
identified by the shape and intensity of DAPI staining, (f) then segmented, and fluorescent 
intensity values were normalized to exposure time and obtained for both tumor and stroma. 
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Extended Figure 2. 
 

 
 
Extended Figure 2. Genes and gene signatures associated with overall survival in the entire 
cohort. Forest plot illustrating significant Hazard ratios (HR) obtained from univariate Cox 
Proportional Hazard (Cox-PH) analyses, using a continuous signature scoring method calculated 
for the whole dataset (n=1015). Actual numbers in each analysis are lower due to missing 
follow up data and are denoted in the figure. 
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Extended Figure 3.

 
 
Extended Figure 3. Gene signatures associated with overall survival in specific clinical 
subtypes. A Forest plot illustrating the significant Hazard ratios (HR) obtained from univariate 
Cox Proportional Hazard (Cox-PH) analyses, using categorical gene signature scoring method 
separately calculated for each biobank clinical subtype (n=1015). Actual numbers in each 
analysis are lower due to missing follow up data and are denoted in the figure. 
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Extended Figure 4. 
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Extended Figure 4. Expression of ADC targets in healthy versus invasive breast cancer tissue. 
Scatter dot plots illustrate the expression of ADC antigen targets assessed by RNA sequencing in 
healthy tissue, invasive breast cancer tissue, and individual clinical subtypes. *p < 0.05, **p < 
0.01 ***p < 0.001, ****p < 0.0001. 
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Extended Table 1. Cohort descriptive statistics 
 

 
1 One specimen classified as G2&G3 
2 Two specimens classified as G2&G3 
3 Two specimens classified as G4 

Characteristic Luminal A Luminal B Her2 TNBC 

Subtype sample # 432 313 87 181 

Biobank PATH GRAZ Mal + 
AMS PATH GRAZ Mal + 

AMS PATH GRAZ Mal + 
AMS PATH GRAZ Mal + 

AMS 

Sample # 205 
(47%) 

205 
(47%) 

22 
(5%) 

185 
(59%) 

125 
(40%) 

3 
(1%) 

61 
(70%) 

23 
(26%) 

3 
(3%) 

141 
(78%) 

37 
(20%) 

3 
(2%) 

Sex     

        Female  
205 
(100
%) 

202 
(99%) - 

185 
(100
%) 

121 
(97%) - 

61 
(100
%) 

23 
(100
%) 

- 
141 
(100
%) 

37 
(100
%) 

- 

        Male 0 
(0%) 

3 
(1%) - 0 

(0%) 
4 

(3%) - 0 
(0%) 

0 
(0%) - 0 

(0%) 
0 

(0%) - 

Median age at 
surgery (years) 62 57 62 62 59 62 62 52 62 57 52 52 

Menopausal status     

Premenopausal 35 
(17%) - - 42 

(23%) - - 7 
(11%) - - 29 

(21%) - - 

Perimenopausal 6 
(3%) - - 3 

(2%) - - 1 
(2%) - - 8 

(6%) - - 

Postmenopausal 159 
(78%) - - 137 

(74%) - - 43 
(70%) - - 93 

(66%) - - 

Unavailable 5 
(2%) - - 3 

(2%) - - 10 
(16%) - - 11 

(8%) - - 

Tumor size (T)     

pT1 128 
(62%) 

150 
(73%) 

7 
(32%) 

79 
(43%) 

71 
(56%) 

1 
(33%) 

26 
(43%) 

14 
(61%) 

1 
(33%) 

68 
(48%) 

22 
(59%) 

0 
(0%) 

pT2 69 
(34%) 

45(22
%) 

11 
(50%) 

94 
(51%) 

48 
(38%) 

1 
(33%) 

31 
(51%) 

8 
(35%) 

1 
(33%) 

65 
(46%) 

14 
(38%) 

2 
(67%) 

pT3 + pT4 8 
(4%) 

10 
(5%) 

4 
(18%) 

12 
(6%) 

6 
(5%) 

1 
(33%) 

4 
(7%) 

1 
(4%) 

1 
(33%) 

8 
(6%) 

1 
(3%) 

1 
(33%) 

Node status (N)     

pN0 98 
(48%) 

127 
(62%) 

5 
(23%) 

93 
(50%) 

70 
(56%) 

0 
(0%) 

30 
(49%) 

10 
(43%) 

0 
(0%) 

99 
(70%) 

28 
(76%) 

0 
(0%) 

pN1 88 
(43%) 

57 
(28%) 

11 
(50%) 

65 
(35%) 

36 
(29%) 

1 
(33%) 

21 
(34%) 

6 
(26%) 

0 
(0%) 

29 
(21%) 

8 
(22%) 

0 
(0%) 

pN2 13 
(6%) 

10 
(5%) 

4 
(18%) 

18 
(10%) 

10 
(8%) 

0 
(0%) 

4 
(7%) 

3 
(13%) 

2 
(67%) 

6 
(4%) 

0 
(0%) 

1 
(33%) 

pN3 6 
(3%) 

8 
(4%) 

1 
(5%) 

9 
(5%) 

8 
(6%) 

1 
(33%) 

5 
(8%) 

2 
(9%) 

0 
(0%) 

7 
(5%) 

1 
(3%) 

1 
(33%) 

Unavailable 0 
(0%) 

3 
(1%) 

1 
(5%) 

0 
(0%) 

1 
(1%) 

1 
(33%) 

1 
(2%) 

2 
(9%) 

1 
(33%) 

0 
(0%) 

0 
(0%) 

1 
(33%) 

Grade (G)     

G1 61 
(30%) 

60 
(29%) 

3 
(14%) 

1 
(1%) 

4 
(3%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

1 
(1%) 

1 
(3%) 

0 
(0%) 

G2 144 
(70%) 

1401 
(68%) 

10 
(45%) 

30 
(16%) 

312 
(25%) 

3 
(100
%) 

17 
(28%) 

3 
(13%) 

1 
(33%) 

32 
(23%) 

7 
(19%) 

1 
(33%) 

G3 0 
(0%) 

4 
(2%) 

9 
(41%) 

154 
(83%) 

89 
(71%) 

0 
(0%) 

44 
(72%) 

20 
(87%) 

2 
67%) 

108 
(77%) 

283 
(76%) 

2 
(67%) 
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Unavailable 0 
(0%) 

1 
(<1%) 

0 
(0%) 

0 
(0%) 

1 
(1%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

1 
(3%) 

0 
(0%) 

Lymphatic  
invasion (L)     

L0 137 
(67%) - 15 

(68%)  
105 

(57%) - 2 
(67%) 

31 
(51%) - 2 

(67%) 
99 

(70%) - 0 
(0%) 

L1 38 
(19%) - 6 

(27%)  
55 

(30%) - 0 
(0%) 

24 
(39%) - 0 

(0%) 
35 

(25%) - 2 
(67%) 

Unavailable 30 
(15%) - 1 

(5%) 
25 

(14%) - 1 
(33%) 

6 
(10%) - 1 

(33%) 
7 

(5%) - 1 
(33%) 

Residual tumor 
(PATH only)     

R0 
204 
(100
%) 

- 19 
(86%) 

180 
(97%) - 2 

(67%) 
60 

(98%) - 2 
(67%) 

138 
(98%) - 2 

(67%) 

R1 0 
(0%) - 2 

(9%) 
4 

(2%) - 0 
(0%) 

1 
(2%) - 0 

(0%) 
2 

(1%) - 0 
(0%) 

Unavailable 1 
(<1%) - 1 

(5%) 
1 

(1%) - 1 
(33%) 

0 
(0%) - 1 

(33%) 
1 

(1%) - 1 
(33%) 

Histopathological 
tumor types 

    

Invasive ductal 
carcinoma (IDC) 

142 
(69%) 

135 
(66%) 

17 
(77%) 

154 
(83%) 

103 
(82%) 

3 
(100
%) 

52 
(85%) 

21 
(91%) 

3 
(100
%) 

125 
(89%) 

26 
(70%) 

3 
(100
%) 

IDC mixed 3 
(1%) 

10 
(5%) 

2 
(9%) 

10 
(5%) 

3 
(2%) 

0 
(0%) 

6 
(10%) 

0 
(0%) 

0 
(0%) 

7 
(5%) 

2 
(5%) 

0 
(0%) 

Invasive lobular 
carcinoma (ILC) 

38 
(19%) 

42 
(20%) 

3 
(14%) 

16 
(9%) 

14 
(11%) 

0 
(0%) 

1 
(2%) 

1 
(4%) 

0 
(0%) 

1 
(1%) 

1 
(3%) 

0 
(0%) 

ILC mixed 4 
(2%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Metaplastic 
carcinoma 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

3 
(2%) 

5 
(14%) 

0 
(0%) 

Mucinous 
carcinoma 

9 
(4%) 

8 
(4%) 

0 
(0%) 

1 
(1%) 

2 
(2%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

Other rare 
histopathological 
subtypes 

8 
(4%) 

9 
(4%) 

0 
(0%) 

4 
(2%) 

3 
(2%) 

0 
(0%) 

2 
(3%) 

0 
(0%) 

0 
(0%) 

5 
(4%) 

2 
(5%) 

0 
(0%) 

Unavailable 1 
(<1%) 

1 
(<1%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

0 
(0%) 

1 
(4%) 

0 
(0%) 

0 
(0%) 

1 
(3%) 

0 
(0%) 

Estrogen receptor 
positive (%) 

205 
(100
%) 

- - 
185 
(100
%) 

- - 0 
(0%) - - 0 

(0%) - - 

IRS 0 0 
(0%) - - 0 

(0%) - - 41 
(67%) - - 97 

(69%) - - 

IRS 1-2 1 
(<1%) - - 23 

(12%) - - 2 
(3%) - - 4 

(3%) - - 

IRS 3-4 4 
(2%) - - 20 

(11%) - - 0 
(0%) - - 0 

(0%) - - 

IRS 6-8 27 
(13%) - - 25 

(14%) - - 0 
(0%) - - 0 

(0%) - - 

IRS 9 18 
(9%) - - 20 

(11%) - - 0 
(0%) - - 0 

(0%) - - 

IRS 12 155 
(76%) - - 95 

(51%) - - 0 
(0%) - - 0 

(0%) - - 

Unavailable 0 
(0%) - - 2 

(1%) - - 18 
(30%) - - 40 

(28%) - - 

Progesterone 
receptor positive (%) 

181 
(88%) - - 130 

(70%) - - 0 
(0%) - - 0 

(0%) - - 

IRS 0 20 
(10%) - - 43 

(23%) - - 43 
(70%) - - 97 

(69%) - - 
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IRS 1-2 12 
(6%) - - 29 

(16%) - - 0 
(0%) - - 5 

(4%) - - 

IRS 3-4 24 
(12%) - - 23 

(12%) - - 0 
(0%) - - 0 

(0%) - - 

IRS 6-8 37 
(18%) - - 34 

(18%) - - 0 
(0%) - - 0 

(0%) - - 

IRS 9 34 
(17%) - - 21 

(11%) - - 0 
(0%) - - 0 

(0%) - - 

IRS 12 78 
(38%) - - 33 

(18%) - - 0 
(0%) - - 0 

(0%) - - 

Unavailable 0 
(0%) - - 2 

(1%) - - 18 
(30%) - - 39 

(28%) - - 

HER2 positive  0 
(0%) - 

- 

51 
(28%) - - 

61 
(100
%) 

- - 0 
(0%) - - 

HER2 0 104 
(51%) - - 65 

(35%) - - 0 
(0%) - - 105 

(74%) - - 

HER2 1+ 90 
(44%) - - 58 

(31%) - - 0 
(0%) - - 32 

(23%) - - 

HER2 2+ Neg. 10 
(5%) - - 8 

(4%) - - 0 
(0%) - - 1 

(1%) - - 

HER2 2+ Pos. 0 
(0%) - - 8 

(4%) - - 5 
(8%) - - 0 

(0%) - - 

HER2 3+ 0 
(0%) - - 40 

(22%) - - 53 
(87%) - - 0 

(0%) - - 

Unavailable 1 
(<1%) - - 6 

(3%) - - 3 
(5%) - - 3 

(2%) - - 

KI67 positive     

≤5% 13 
(6%) 

46 
(22%) - 1 

(1%) 
3 

(2%) - 0 
(0%) 

0 
(0%) - 1 

(1%) 
0 

(0%) - 

>5 to <30% 63 
(31%) 

108 
(52%) - 22 

(12%) 
19 

(15%) - 1 
(2%) 

2 
(9%) - 3 

(2%) 
2 

(5%) - 

≥30% 3 
(1%) 

0 
(0%) - 35 

(19%) 
70 

(56%) - 4 
(7%) 

11 
(48%) - 21 

(15%) 
22 

(59%) - 

Unavailable 126 
(61%) 

51 
(25%) - 127 

(69%) 
33 

(26%) - 56 
(92%) 

10 
(43%) - 116 

(82%) 
13 

(35%) - 

Treatment type      

Chemotherapy     

Yes 51 
(25%) 

41 
(20%) - 136 

(74%) 
73 

(58%) - 54 
(89%) 

19 
(83%) - 125 

(89%) 
35 

(95%) - 

No 152 
(74%) 

164 
(80%) - 48 

(26%) 
52 

(41%) - 5 
(8%) 

4 
(17%) - 14 

(10%) 
2 

(5%) - 

Unavailable 2 
(1%) 

0 
(0%) - 1 

(1%) 
0 

(0%) - 2 
(3%) 

0 
(0%) - 2 

(1%) 
0 

(0%) - 

Anti-hormonal 
therapy 

    

Yes 194 
(95%) 

100 
(49%) - 163 

(88%) 
61 

(48%) - 10 
(16%) 

0 
(0%) - 9 

(6%) 
0 

(0%) - 

No 9 
(4%) 

106 
(51%) - 21 

(11%) 
65 

(52%) - 49 
(80%) 

23 
(100
%) 

- 131 
(93%) 

37 
(100
%) 

- 

Unavailable 2 
(1%) 

0 
(0%) - 1 

(1%) 
0 

(0%) - 2 
(3%) 

0 
(0%) - 1 

(1%) 
0 

(0%) - 

AI inhibitor therapy     

Yes 129 
(63%) 

101 
(49%) - 123 

(66%) 
54 

(43%) - 9 
(15%) 

0 
(0%) - 5 

(4%) 
0 

(0%) - 
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No 72 
(35%) 

104 
(51%) - 59 

(32%) 
71 

(57%) - 52 
(85%) 

23 
(100
%) 

- 136 
(96%) 

37 
(100
%) 

- 

Unavailable 4 
(2%) 

0 
(0%) - 3 

(2%) 
0 

(0%) - 0 
(0%) 

0 
(0%) - 0 

(0%) 
0 

(0%) - 

Anti-Her2 therapy     

Yes 0 
(0%) 

0 
(0%) - 42 

(23%) 
20 

(16%) - 50 
(82%) 

22 
(96%) - 1 

(1%) 
0 

(0%) - 

No 203 
(99%) 

205 
(100
%) 

- 140 
(76%) 

105 
(83%) - 9 

(15%) 
1 

(4%) - 139 
(99%) 

37 
(100
%) 

- 

Unavailable 2 
(1%) 

0 
(0%) - 3 

(2%) 
0 

(0%) - 2 
(3%) 

0 
(0%) - 1 

(1%) 
0 

(0%) - 

Radiotherapy     

IORT 6 
(3%) 

0 
(0%) - 2 

(1%) 
0 

(0%) - 0 
(0%) 

0 
(0%) - 1 

(1%) 
0 

(0%) - 

N 18 
(9%) 

40 
(19%) - 14 

(8%) 
21 

(17%) - 4 
(7%) 

5 
(22%) - 15 

(11%) 
5 

(14%) - 

Y 147 
(72%) 

165 
(80%) - 131 

(71%) 
104 

(83%) - 51 
(84%) 

18 
(78%) - 114 

(81%) 
32 

(86%) - 

Y + IORT 31 
(15%) 

0 
(0%) - 37 

(20%) 
0 

(0%) - 5 
(8%) 

0 
(0%) - 10 

(7%) 
0 

(0%) - 

Unavailable 3 
(1%) 

0 
(0%) - 1 

(1%) 
0 

(0%) - 1 
(2%) 

0 
(0%) - 1 

(1%) 
0 

(0%) - 

Metastasis     

Yes 8 
(4%) 

35 
(17%) - 12 

(6%) 
41 

(33%) - 3 
(5%) 

7 
(30%) - 18 5 - 

No 173 
(84%) 

170 
(83%) - 120 

(65%) 
84 

(67%) - 48 
(79%) 

16 
(70%) - 93 32 - 

Unavailable/Lost 
to follow-up 

24 
(12%) 

0 
(0%) - 53 

(29%) 
0 

(0%) - 10 
(16%) 

0 
(0%) - 30 0 

(0%) - 

Progression free 
survival (Median)  

70 
mont

hs 

90 
mont

hs 
- 

64.5 
mont

hs 

94 
mont

hs 
- 

98.5 
mont

hs 

89 
mont

hs 
- 

84.5 
mont

hs 

123 
mont

hs 
- 

Unavailable/Lost 
to follow-up 

8 
(4%) 

1 
(<1%) - 23 

(12%) 
2 

(2%) - 3 
(5%) 

0 
(0%) - 19 0 

(0%) - 

Overall survival 
(Median) 

72 
mont

hs 

97 
mont

hs 
- 

66 
mont

hs 

103 
mont

hs 
- 

102 
mont

hs 

101 
mont

hs 
- 

85.5 
mont

hs 

123 
mont

hs 
- 

Unavailable/Lost 
to follow-up 

11 
(5%) 

0 
(0%) - 22 

(12%) 
0 

(0%) - 1 
(2%) 

0 
(0%) - 15 0 

(0%) - 

Deceased     

Yes 40 
(20%) 

25 
(12%) - 61 

(33%) 
19 

(15%) - 17 
(28%) 

6 
(26%) - 50 

(35%) 
3 

(8%) - 

No 165 
(80%) 

0 
(0%) - 124 

(67%) 
0 

(0%) - 44 
(72%) 

0 
(0%) - 91 

(65%) 
0 

(0%) - 

Unavailable 0 
(0%) 

180 
(88%) - 0 

(0%) 
106 

(85%) - 0 
(0%) 

17 
(74%) - 0 

(0%) 
34 

(92%) - 
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Extended Table 2. Overview of differential gene expression analysis among molecular subtypes 

Groups  DESeq2 (LFC shrinkage)  Wilcoxon rank-sum test  Intersection  

Her2onl vs TNBC  
Downregulated  
Upregulated  

1138  
590  

 548  

1372  
704  
668  

1006  
523  
483  

Her2onl vs LumA  
Downregulated  
Upregulated  

3636  
1188  
2448  

4784  
1312  
3472 

3364  
1094  
2270  

Her2onl vs LumB  
Downregulated  
Upregulated  

1577  
621  

 956  

2181  
734  
1447  

1338  
547 
791  

LumA vs TNBC  
Downregulated  
Upregulated  

4950  
3330  
1620  

5568  
3902  
1666  

4661  
3149  
1512  

LumB vs TNBC  
Downregulated  
Upregulated  

2635  
1564 
1071  

2954  
1785  
1169  

2356  
1360  
996  

LumA vs LumB  
Downregulated  
Upregulated  

746  
621  
125  

802  
686  
116  

525  
443  
82  

 
 

Extended Table 3. Overview of differential gene expression analysis among ERBB2 positive, low, and 
negative samples stratified by ESR1 status. 

 Groups  DESeq2 (LFC 
shrinkage)  

Wilcoxon rank-
sum test  Intersection  

ERneg 

Her2low vs HER2neg  
Downregulated  
Upregulated  

851  
785 

 66 

682 
601 
81 

330  
318  
12  

Her2low vs HER2pos 
Downregulated  
Upregulated  

1051 
240 
811 

1999 
868 
1131 

727  
207  
520  

Her2neg vs HER2pos 
Downregulated  
Upregulated  

2427 
412 

 2015 

2310 
923 
1387 

1073  
355  
718 

ERpos 

Her2low vs HER2neg  
Downregulated  
Upregulated  

5436   
5428 
8 

4779 
4759  
20 

3180  
3178  
2  

Her2low vs HER2pos 
Downregulated  
Upregulated  

131 
62 

    69  

141  
85 
56 

37  
29  
8  

Her2neg vs HER2pos 
Downregulated  
Upregulated  

7497  
84  
7413 

603 
76  
527 

396 
48 
348 
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