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Abstract: 
The COVID-19 pandemic has prompted an unprecedented global effort to understand 

and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a 

comprehensive analysis of COVID-19 in Western New York, integrating individual 

patient-level genomic sequencing data with a spatially informed agent-based disease 

Susceptible-Exposed-Infectious-Removed (SEIR) computational model. The integration 

of genomic and spatial data enables a multi-faceted exploration of the factors 

influencing the transmission patterns of COVID-19, including population density, 

movement dynamics, and genetic variations in the viral genomes replicating in New 

York State (NYS). Our findings shed light on local dynamics of the pandemic, revealing 

potential hotspots of transmission. Additionally, the genomic analysis provides insights 

into the genetic heterogeneity of SARS-CoV-2 within a single lineage at a region-

specific level. This interdisciplinary approach, bridging genomics and spatial modeling, 

contributes to a more holistic understanding of COVID-19 dynamics. The results of this 

study have implications for future public health strategies, guiding targeted interventions 

and resource allocation to effectively control the spread of similar viruses in the Western 

New York region. 

 
Keywords: SARS-CoV-2, COVID-19, genomic profiling, spatial SEIR model, SARS-
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Introduction: 

The global impact of the COVID-19 pandemic has been profound, necessitating an 

unprecedented global response to understand, manage, and mitigate the spread of the 

SARS-CoV-2 virus (1, 2). The novel coronavirus has traversed borders and affected 

communities on a scale that demands comprehensive research and innovative 

strategies for public health management(3). Amidst this global challenge, a critical 

aspect that emerged is the importance of understanding and addressing local 

transmission dynamics(4). While the broader picture of the pandemic is crucial, the 

intricacies of how the virus spreads within specific localities is essential for effective 

public health interventions. Local transmission dynamics not only shape the trajectory of 

the pandemic but also influence the efficacy of control measures and resource 

allocation(5, 6). For this analysis, we have chosen to utilize the Western region of New 

York State, which is characterized by both metropolitan and rural communities with 

varying population densities. Here we sought to unravel the unique regional factors 

influencing COVID-19 transmission within these communities. 

To develop a comprehensive understanding of COVID-19 dynamics, we employ a 

dual approach that combines spatially informed SEIR models with detailed genomic 

analysis of SARS-CoV-2 lineages(7). SEIR models provide a dynamic framework for 

simulating disease spread based on population movements and epidemiological 

parameters. In these models, agents occupy various states, including Susceptible, 

Exposed, Infectious, and Recovered(8, 9). For our model, we first established regional 

commuter dynamics using state-wide traffic data, followed by more granular census-

tract estimations across different social networks (home, work, and school). Our 
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spatially aware modeling strategy allows us to simulate and analyze potential 

transmission patterns between distinct regions around New York State, accounting for 

local factors such as population density and commuter movement between neighboring 

regions(10).  

Concurrently, our study incorporates genomic sequencing analysis to investigate the 

diversity and evolution of SARS-CoV-2 lineages within New York State. By 

characterizing viral genetic variations at the individual patient level, we gain further 

insights into the heterogeneity of viral genomes at the sub-lineage level. Thus, the 

combination of SEIR models and genomic analysis not only enhances our ability to 

predict and understand the spread of COVID-19 but also provides a unique perspective 

on how viral genetic variations may contribute to regional differences in transmission 

dynamics. This integrative approach, bridging computational modeling and molecular 

epidemiology, offers a robust framework for unraveling the intricate interplay between 

population-level dynamics and viral evolution in the context of the ongoing pandemic. 

 
Results 
Statewide variation of major SARS-CoV-2 lineages over time 

To first establish whether there were broad regional differences in the SARS-

CoV-2 lineages circulating across NYS, we tracked reported caseloads by lineage and 

location in the Western New York and New York City areas over 2020, 2021, and 2022 

(Figure 1). We also included the Canadian providence of Ontario in our analysis due to 

the close proximity and large commuter population between the southern portion of 

Ontario (Niagara Falls, Ontario and Fort Erie, Ontario to Buffalo, New York and Niagara 

Falls, New York)(11). In 2020, we observe distinct lineages between the Province of 

Ontario and the rest of NYS (Figure 1A). All three regions were high in the B.1 lineage, 
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but by July 2020, deviation in lineages began to take shape, which is likely explained by 

the strong lock-down measures of the early pandemic. For instance, Ontario saw 

increased levels of B.1.1 and B.1.1.417, while WNY showed increased levels of B.1.2. 

and uniquely high levels of B.1.349. Furthermore, during August and September of 

2020, Western New York saw increased levels of B.1.349 as compared to Ontario and 

NYC (Figure 1A). Conversely, lineages B.1.1.434 was specific to New York City 

highlighting the distinct regional differences at opposite ends of NYS (Figure 1A).   

Next, we were interested in surveying the changing lineage distributions following 

introduction of major variants of concern to the U.S. Our data suggests that the 

introduction of Alpha (B.1.1.7) largely replaced the regional differences across NYS, 

though interestingly did not become dominant in Ontario, and was largely replaced by 

Delta-based lineages AY.74 by June 2021 (Figure 1B). More heterogeneity is seen 

following introduction of Delta and its various offshoots (B.1.617.2, AY.103, AY.25 and 

so forth) (Figure 1C).  These results taken together suggest that early in the pandemic, 

there were distinct, regionally dependent lineages circulating in NYS and these 

differences were maintained throughout the pandemic, even after introduction of 

primary variants of concern (Alpha and Delta) at the beginning of 2021. This finding 

highlights the value of regionally based sequencing efforts for tracking SARS-CoV-2. 

Encouraged by our ability to detect regional differences between broad 

geographic areas, we next sought to analyze the lineage distributions across 10 

different economic development regions (EDR) in NYS (Figure 2A). Spanning 2020 – 

2022, reported and sequencing viral genomes available in the GISAID database were 

accessed, and analyzed using rank-correlation coefficient analysis. For each EDR, we 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.03.23299353doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.03.23299353
http://creativecommons.org/licenses/by/4.0/


correlated the relative rankings to all other EDR, as well as OCA. In 2020, we observed 

a negative correlation between OCA to all regions in NYS (Figure 2B). Conversely, 

there were higher correlations between the Mohawk Valley, Central New York, Finger 

Lakes, and North Country regions, as well as between downstate Mid-Hudson, NYC, 

and Long Island regions (Figure 2B). In 2021, following decreased lockdown 

restrictions, the correlation between lineages circulating increased between the majority 

of NYS EDRs, though OCA was still displaying unique distributions (Figure 2C). Finally, 

by 2022 we saw a dramatic normalization of the lineages circulating across all EDRs, 

including OCA (Figure 2D). It is important to note however, that the number of viral 

genomes sequenced decreased rapidly in the latter half of 2022, resulting in sparse 

coverage for several EDRs including Mohawk Valley, North Country, and Long Island 

which may explain slightly correlations to other EDRs.  

 
Spatial and Temporal Modelling of SARS-CoV-2 Nucleotide polymorphisms 
 Based on our findings that there were strong regional relationships on the spread 

of SARS-CoV-2 lineages across New York State, we next sought to quantify whether 

we could detect nucleotide level differences in samples belonging to the same variant-

of-concern lineage within a single-county in Western New York. As a proof-of-principal 

analysis, we first evaluated Alpha (B.1.1.7). B.1.1.7 was first introduced in NYS in early 

December, likely because of air travel between the United Kingdom and one of the New 

York City Airports(12). Our results indicate that there were additional cases introduced 

in WNY, however analysis of case numbers per county indicate that B.1.1.7 primarily 

spread up the Hudson valley and across NYS over a six-month period (Figure 3A). We 

posited that the B.1.1.7 detected in Erie County then was likely due to multiple 
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introductions, thus there may be distinct nucleotide polymorphisms. To test this, we 

evaluated 200 B.1.1.7 samples collected in Erie County, New York, between March 

2021 and May 2021, and assessed the similarities between viral genomes (Figure 3B). 

We found that there were several distinct patterns of mutations present in B.1.1.7, 

lending support to our theory regarding multiple introductions of B.1.1.7 in Erie County 

(Figure 3C). 

 Encouraged by the analysis of B.1.1.7, we next theorized that there would exist 

larger mutational differences within a lineage between major metropolitan regions. We 

next selected Omicron BA.2.12.1 for in depth analysis due to its high virulence and 

immune evasion potential, as well as robust sample counts across NYS (Figure 4A)(13, 

14). Unlike in the case of B.1.1.7, we saw earlier introduction of BA.2.12.1 to Monroe 

County and Onondaga Counties, where it quickly spread and became dominant in the 

Central and Western portion of NYS (Figure 4A). Intriguingly, phylogenetic analysis of 

2,737 samples from Erie County, Monroe County, Onondaga County, and Westchester 

County revealed distinct genomic groupings between the different geographically 

located regions (Figure 3B). Of the samples profiled, Monroe County demonstrates two 

distinct genomic profiles for BA.2.12.1, further supporting the notion that tracking 

lineages at the nucleotide level reveals distinct region-specific alterations that are 

otherwise hidden by broad lineage designations (Figure 3B, C). These results, taken 

with our analysis of Erie County B.1.1.7 suggests that localized testing of patient 

samples following by next-generation sequencing analysis provides nuanced 

distinctions at the genetic level that allows us to examine regional dependencies and 

relationships between the SARS-CoV-2 lineages circulating at various timepoints.  
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Establishing Broad Travel Patterns Using Transit Dataset 

To better understand the intricate dynamics of COVID-19 transmission in New 

York State, we sought to examine regional travel patterns, as population movement 

plays a pivotal role in the spread of infectious diseases. By elucidating the intersections 

of regional travel and disease transmission, we aim to establish patterns that contribute 

to region-to-region transmission.  

 To first establish a general model for large-scale population travel patterns, we 

leveraged NYS Thruway vehicle traffic data as a proxy to quantify travel behavior which 

may connect distinct regions across NYS (15). The main-line NYS Thruway spans 426 

miles and runs from the WNY region (exit 50) to NYC (exit 15) with extensions into the 

North Country EDR (Figure 5A).  Excluding commercial vehicles, we can detect distinct 

commuter corridors linking different EDRs. For example, the Capital District Region 

(Exits 23-26) show increased frequency of travel with the Mid-Hudson (Exits 16-21). 

(Figure 5B). Alternatively, exits 45 – 47 serve as a hub between the rest of the Western 

New York region (Exits 48 – 50) as well as increased travel with the rest of the Finger 

Lakes and Central New York (Figure 5B). Furthermore, specific entrance points, like exit 

50 show increased travel that span the length of the thruway, which represent travelers 

traverse the full extent of the NYS Thruway (Figure 5B). These commuter corridors 

were consistent with our lineage correlation analysis in 2020 where specific regions 

showed increased correlations in lineages circulating early in the pandemic (Figure 2B). 

Agent-based Disease Susceptible-Exposed-Infections-Removed (SEIR) Modelling 
 
 While the use of the NYS Thruway data was useful to establish broad regional 

travel dynamics, we next sought to create a more finely tuned model of population-level 
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movement dynamics within Western New York. To accomplish this task, we built an 

agent-based disease Susceptible-Exposed-Infectious-Removed (SEIR) computational 

model to simulate how one of the COVID-19 lineages spreads through space and time 

based on individual (agents) social networks in the Western New York Area (WNY). The 

purpose of the model is to demonstrate how commuter activity could lead to the 

diffusion of SARS-CoV-2 in WNY. To build the model 3 steps are involved: first the 

creation of a synthetic population and its corresponding social networks; second, we 

build an agent based SEIR model using the synthetic population and lastly, we analyze 

the simulation results.   

 As we are dealing with an agent-based model, we first initiated synthetic agents 

using the approaches previously reported by Crooks et al., 2019(16). To accomplish this 

initiation phase, we utilized datasets from the US Census for home and work locations 

and the U.S. Environmental Protection Agency (EPA) for school locations(17). Within 

the synthetic population, individuals have ages which we break into children (i.e., ages 

<18) and adults (i.e., ages >= 18). Our model assumes children of school age go to their 

closest schools or daycares or stay at home with their parents, while adults commute to 

work or stay at home. The work commute information for adults is consistent with the 

data from the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics 

(LEHD) Origin-Destination Employment Statistics (LODES). Full details of the synthetic 

population generation can be found in previous work by Jiang et, al (7).Then, we 

constructed social networks (i.e., home, work and education) based on the small-world 

networks principle(18), where the synthetic individuals are connected based on living in 

the same household and either working in the same workplace or attending the same 
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daycare/education institute. The rationale for these networks is that an individual might 

go to work, become exposed to COVID-19, and then go home and infect family 

members who in turn go to a school and infect students at school, propagating the viral 

infection through the network. Focusing on Erie County first, we established that two 

neighboring counties (Niagara and Monroe) saw the bulk of intra-county commuters 

(Figure 6A). Niagara country residents mainly commuted to Erie County (Figure 6B), 

while Monroe County served as a major hub for commuters to several different regions, 

including Erie County, Ontario County, Wayne County, and Niagara County (Figure 6C). 

The overall inter-connected regional commutes are summarized in Figure 6D. These 

results suggest that regional transfer of SARS-CoV-2 lineages is likely in the Western 

New York region due to high levels of daily commuter activity connecting these 

communities. 

 As proof-of-principle to see whether our hypothesis that commuter activity could 

lead to the diffusion of SARS-CoV-2 IN WNY, we next evaluated our (SEIR) model 

(Figure S1). We simulated the spread of the lineages for 50 days (i.e., 150-time steps) 

in the Western New York Area. To start the simulation, two agents from Erie County 

were selected as infected at the start of the simulation. To further analyze the simulation 

infections result from the agent-based SEIR model, other than reporting the SEIR 

dynamics, we integrated the results into census tract level and conducted a set of 

spatial-temporal analyses to demonstrate the diffusion of SARS-CoV-2 lead by 

commuters in WNY (Figure 7) (19). Within twenty days of introductions within Erie 

County, our model predicts that several census tracts over 50 kilometers away in 

Monroe County saw signs of infection (Figure 7B, H). After 30 days and 40 days, there 
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was wide-spread infection across most counties in the Western New York, Southern 

Tier, and Finger Lakes regions, with a gradient of diffusion around the original infected 

census tract (Figure 7C-J). Finally, by day 50 our model suggests that all regions in 

WNY would harbor cases of the lineage introduced into our model, with an increase in 

cases forming a corridor between Erie County to Monroe County (Figure 7E-I). These 

results are consistent with our hypothesis that there is strong regional 

interconnectedness that would fuel the spread from Erie and Monroe county 

metropolitan regions in a relatively short period of time, and this spread is likely driven 

by commuter dynamics. 

Discussion 
Regional Monitoring is Key to Understanding SARS-CoV-2 Evolution 
 
 In this study, we evaluated regional traffic and commuter patterns and their 

implications on the genetic diversity and spatial transmission of COVID-19 in New York 

State, and specifically within Western New York. Our analysis sought to integrate both 

statewide population movement data, with regionally specific agent-based modelling. 

We also establish that there are sub-lineage specific mutational patterns in patient 

sequencing data of SARS-CoV-2. It is our hope that analyses like these will contribute 

to policy makers’ decisions during future outbreaks and supports the need for continued 

local and regional monitoring of patient-level viral genomes. 

 New York State is made up of several dense urban metropolitan centers like New 

York City, the Capital Region, Utica and Syracuse, Rochester, and Buffalo, with nearly 

20 million people as of 2022(20). In between these dense urban centers, are rural 

communities that our analysis reveals serve as commuting hubs into neighboring 

counties. Focusing our analysis on the Western New York, our SEIR model suggests 
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the ability for SARS-CoV-2 to diffuse across these rural communities, leading to the 

transmission from one metropolitan region to another (Rochester, NY to Buffalo NY for 

instance). While our model did not incorporate vaccination rates, it is also important to 

note that the counties in between Erie and Monroe tend to have lower percentages of 

people who have completed the complete course of vaccinations, and also tend to be 

less likely to have the updated booster formulations(21). 

 Our genetic analysis of SARS-CoV-2 samples across NYS uncovered regionally 

specific differences in the genetic backgrounds within specific lineages. While significant 

resources were invested into regional sequencing hubs, a disproportionate amount of 

sequencing data was generated downstate in the New York City area as compared to 

more rural counties, like the Southern Tier and the North Country (Figure S2). Our 

analysis demonstrates that even within a single SARS-CoV-2 lineage (like B.1.1.7) 

there exists distinct genetic diversity that could lead to changes in transmission rates at 

the local level. Due to this, continued investment in infrastructure needed for regional 

monitoring across NYS should be considered by public policy makers and public health 

officials. 

 Despite the prevalence of SARS-CoV-2 infections, sample collection and 

sequencing of patient-derived samples have decreased since the height of the 

pandemic. The wide-spread availability of at-home diagnostic tools has reduced 

collection rates. Furthermore, many pandemic monitoring groups have adopted 

wastewater-based approaches(22, 23, 24). While wastewater serves as viable tools for 

measuring overall infection rates, and deconvolution techniques gives an indication of 

relative proportions of lineages, broad monitoring through wastewater introduces a gap 
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in data for localities without municipal treatment facilities, though recent analysis 

suggests the feasibility of the method for rural communities (25). Alternative methods, 

such as SEIR modelling used in this study could serve as potential surrogate strategies. 

In conclusion, our study sheds light on the intricate dynamics of the COVID-19 

pandemic within the Western region of New York State, emphasizing the importance of 

understanding local transmission dynamics alongside the broader global perspective. 

The integration of spatially informed SEIR models and detailed genomic analysis of 

SARS-CoV-2 lineages provides a comprehensive approach to unraveling the factors 

influencing transmission patterns. Our analysis of statewide SARS-CoV-2 lineages over 

time reveals distinct regional differences, especially early in the pandemic. Furthermore, 

our investigation into single nucleotide polymorphisms within specific VOC lineages at 

the county level underscores the need for nuanced regional monitoring, exposing 

localized genomic alterations obscured by broad lineage designations. The 

establishment of broad travel patterns using transit datasets, and the application of 

SEIR models demonstrate the interconnectedness of populations and the potential for 

disease spread across geographic regions. Our findings underscore the significance of 

regional monitoring, genetic diversity analysis, and spatial modeling in informing public 

health strategies. As the pandemic evolves, this integrative analysis offers valuable 

insights for policymakers and health officials to implement targeted interventions, 

allocate resources efficiently and effectively, and adapt strategies to the evolving 

landscape of COVID-19. 

 
Materials and Methods: 
SARS-CoV-2 Patient Sequencing Data and Regional Analysis 
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 SARS-CoV-2 viral genomes were accessed and download from them GISAID 

database for the years 2020-2022, and filtered to New York, United States and Ontario, 

Canada(26, 27). The date of collection, county, and lineages provided in the GISAID 

metadata text files were aggregated using the R programming language, and 

subsequently plotted using the packages ggplot2 (28), lubridate (29), and tidyverse. For 

the complete GISAID dataset for the spatial analysis of Ontario and New York State, 

GISAID EPI_SET ID EPI_SET_231204fx 10.55876/gis8.231204fx. For the B.1.1.7 

analysis, GISAID EPI_SET ID EPI_SET_231204bh 10.55876/gis8.231204bh. For the 

BA.2.12.1 analysis, the GISAID EPI_SET ID is EPI_SET_231204dh 

10.55876/gis8.231204dh. 

 

SARS-CoV-2 Economic Development Region Rank-Correlation Coefficients 

GISAID metadata from 2020 – 2022 were downloaded and filtered for New York 

State and Ontario Canada.  Location information was post-processed to group by 

economic development region. The metadata was then collapsed by Date Collection, 

EDR, and Summation for each Pango Lineage designation. Next, for each EDR we 

calculated the relative abundance ranking for each lineage and correlated each EDR 

against all other EDRs. The resulting similarity matrix was next visualized in R.  

  
 
Genomic Clustering and Phylogenetic Analysis using the Jaccard metric. 
 Variant profiles for each viral genome were compared to each other using the 

bedtools jaccard function (30). The jaccard statistic is a similarity coefficient that is 

defined as the size of the intersection divided by the size of the union of two sets (in this 

case the variant profiles for each sample being compared). The resulting similarity 
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matrix was used as input into the R pheatmap package for hierarchical clustering and 

annotated by the county of origin. For phylogenetic analysis, consensus genomes were 

aligned using the command line version of the MAFFT multiple sequencing alignment 

algorithm(31). The resulting alignment was then used as input into the FastTree 

algorithm, inferring maximum-likelihood phylogeny using the jukes-cantor distance 

model of nucleotide evolution, generating a newick formatted phylogenetic tree (32). For 

data visualizations, the R packages TreeIO(33), and ggtree(34), using the Pango 

lineage metadata as data overlays(35).  

NYS Thruway Datasets and Traffic Info 
 NYS Thruway data was accessed via the data.ny.gov browser(15). Data records 

for 2019 thruway usage were subset for class 2H and 2L (2-axle vehicles) which 

corresponds to most non-commercial passenger vehicles. Entries from the database not 

corresponding to the main-line thruway were also removed. Entrance and Exit points 

were aggregated over time and the subsequent contact matrix was plotted in R 

following log normalized z-scoring.  

 
Spatial SEIR Model: 

The synthetic population and its social networks are taken as input parameters to 

initialize the agents of the model. Other parameters related to the lineages (e.g., R0, 

incubation and recovery period) are also used for the initialization of heterogenous 

agents, specifically the model assumes a basic reproductive number (i.e., R0) as 3, 7 to 

14 days for the incubation period and 4 to 14 for the recovery period(19, 36). Then, 

SEIR statuses are integrated into the agents to represent their health status. In this 

model, a time step represents eight hours, where one day is divided into 3 time periods, 

which are characterized as being home (i.e., either sleeping or getting up), at work (i.e., 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.03.23299353doi: medRxiv preprint 

https://doi.org/10.1101/2023.12.03.23299353
http://creativecommons.org/licenses/by/4.0/


at work or educational site) and at home (i.e., back at home from work or educational 

site). The agents interact (i.e., spread the disease or get infected) through their social 

networks in each time step. In this model, we consider agents who have a work social 

network as commuters. When these agents are at work, agents will only interact with 

agents in their work (or school) social network. While agents are at home, they only 

interact with members from the same household social network, if there is one 

commuter in the household, the rest of the members of the household have the 

potential to be infected by the commuter.  The model has been programmed to track the 

overall SEIR dynamics each day (i.e., every 3-time steps). Other than that, the model 

generates a dataset comprising infectious agents’ information every 10 days (i.e., 30-

time steps) during the simulation. 

Supplemental Information 

GISAID Identification Numbers for all lineages utilized in this study are in Supplemental 
Table 1. 
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Data Availability Statement: 

The agent based SEIR model is shared along with the synthetic population, its 
social networks at https://figshare.com/projects/SEIR_Western_NY/187872. We do so 
to allow others to replicate our results and to extend the model as they see fit.  

 
Figures Legends: 
 
Figure 1. Lineage Distribution of SARS-CoV-2 Across Geographic Regions. 
Lineage distributions by percentage of total cases within region per month across 
Ontario, Canada, Western New York, and New York City. (A) 2020 percentages by 
month (March – December) (B) 2021 percentages by month (January - December) (C) 
2022 (January – December)  
 
Figure 2. Geographic Economic Development Regions and Lineage Correlations. 
(A) New York State county grouping into EDR regions. Not shown OCA. (B) EDR Rank-
Correlation Coefficient matrix for 2020. (C) EDR Rank-Correlation Coefficient matrix for 
2021. (D) EDR Rank-Correlation Coefficient matrix for 2022. All correlations using 
Pearson correlation coefficient. 
 
Figure 3. Genetic and Spatial-Temporal Distribution of Alpha B.1.1.7. (A) 
Geographic introduction and organization of B.1.1.7 lineage from December 2020 to 
August 2021, by percentage of SARS-CoV-2 circulating in each county per month. N/A 
represents counties with no B.1.1.7 cases sequenced. (B) Hierarchical clustering of 
Jaccard distance estimations between variant profiles of 200 Erie Count B.1.1.7 
samples. (C) Single base-pair mutational profiles for select B.1.1.7 samples within Erie 
County.  
 
Figure 4. Phylogenetic and Spatial-Temporal Distribution of Omicron BA.2.12.17. 
(A) Geographic introduction and organization of BA.2.12.1 lineage from February 2022 
to November 2022, by percentage of SARS-CoV-2 circulating in each county per month. 
N/A represents counties with no BA.2.12.1 cases sequenced. (B) Phylogenetic 
clustering of jukes-cantor distance estimations between consensus sequences of 2,737 
samples. (C) Single base-pair mutational profiles for select B.1.1.7 samples within Erie 
County.  
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Figure 5. NYS Broad Travel Patterns using Traffic Data. (A)Schematic of NYS 
Thruway Entrance and Exit points. Black dots represent each toll booth. Numbered exits 
are subset for visual clarity and regional significance. (B) Log Normalized entrance and 
exit contact matrix across NYS Thruway. Higher values indicate increased frequency of 
travel.  
 
Figure 6. Commuter Behavior Dynamics in WNY. Estimated commuter populations 
originating in a specific country. (A) Commuter behavior with Erie County origins. (B) 
Commuter behavior from Niagara County origin. (C) Commuter behavior from Monroe 
County origin. (D) Composite Commuter behavior network. 
 
Figure 7. Spatially Resolved SEIR Modelling of WNY. Timelapse of infection case 
number and by percentage over 50 days, organized by NYS census tract. (A, B, C, D, 
E, F) Number of total cases since D0 introduction. (G, H, I, J, K, L) Percentage of the 
census block having been infected with COVID-19 since D0 introduction.  
 
Figure S1. SEIR Model Schematic. Detailed schematic of the SEIR model including 
general parameter and synthetic population parameter sets, as well as model 
initialization and function.  
 
Figure S2. Viral Genomes Sequenced by EDR Reveal Disproportionate 
Sequencing across NYS. January 2020 to January 2022 total number of viral samples 
sequenced, organized by EDR, normalized per 100,000 residents.  
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