Title: The genetic basis of hydrocephalus: genes, pathways, mechanisms, and global impact

Authors: Andrew T. Hale,^{1*} Hunter Boudreau,¹ Rishi Devulapalli,² Phan Q. Duy,³ Travis J. Atchley,¹ Michael C. Dewan,⁴ Mubeen Goolam,⁵ Graham Fieggen,^{5,6} Heather L. Spader,³ Anastasia A. Smith,⁷ Jeffrey P. Blount,⁷ James M. Johnston,⁷ Brandon G. Rocque,⁷ Curtis J. Rozzelle,⁷ Zechen Chong,⁸ Jennifer M. Strahle,⁹ Steven J. Schiff,¹⁰ Kristopher T. Kahle¹¹

Affiliations: ¹Department of Neurosurgery, University of Alabama at Birmingham, Birmingham AL. ²Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL. ³Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA. ⁴Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, TN. ⁵Neuroscience Institute, University of Cape Town, Cape Town, South Africa. ⁶Division of Pediatric Neurosurgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa. ⁷Division of Pediatric Neurosurgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, AL. ⁸Heflin Center for Genomics, University of Alabama at Birmingham, Birmingham, AL. ⁹Division of Pediatric Neurosurgery, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, MO. ¹⁰Department of Neurosurgery, Yale University School of Medicine, New Haven, CT. ¹¹Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA. *To whom correspondence should be addressed.

Corresponding Author:

Andrew T. Hale, MD, PhD Department of Neurosurgery University of Alabama at Birmingham FOT Suite 1060, 1720 2nd Ave Birmingham, AL 35294 Email: <u>andrewthale@uabmc.edu</u>

Abstract

Hydrocephalus (HC) is a heterogenous disease characterized by alterations in cerebrospinal fluid (CSF) dynamics that may cause increased intracranial pressure. HC is a component of a wide array of genetic syndromes as well as a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.), highlighting the phenotypic heterogeneity of the disease. Surgical treatments include ventricular shunting and endoscopic third ventriculostomy with or without choroid plexus cauterization, both of which are prone to failure, and no effective pharmacologic treatments for HC have been developed. Thus, there is an urgent need to understand the genetic architecture and molecular pathogenesis of HC. Without this knowledge, the development of preventive, diagnostic, and therapeutic measures is impeded. However, the genetics of HC is extraordinarily complex, based on studies of varying size, scope, and rigor. This review serves to provide a comprehensive overview of genes, pathways, mechanisms, and global impact of genetics contributing to all etiologies of HC in humans.

Introduction

Hydrocephalus (HC) is characterized by aberrant cerebrospinal fluid (CSF) dynamics (with or without ventricular dilation) that can lead to increased intracranial pressure. When left untreated, HC may be fatal and cause severe impairment in neurodevelopment. While classical theories of CSF posited that CSF is produced predominantly in the lateral ventricles via the choroid plexus and flows through the foramina of Monroe, third ventricle, cerebral aqueduct, and the fourth ventricle where it is disseminated through the central canal of the spinal cord and the subarachnoid space to be reabsorbed by arachnoid granulations [2], this model is no longer considered dogmatic [3]. Anatomical disruption of CSF flow and/or CSF pulsatility may result in a buildup of CSF to be classified as obstructive or non-communicating HC. However, HC can be communicating (i.e., no obvious anatomical blockade of absorption or obstruction), the result from increased production of CSF in response to injury, impaired absorption from the subarachnoid space, or result from defects in cortical development. These insults, in turn, may lead to ventricular dilation, among other potential and highly debated pathophysiologic mechanisms. Importantly, the global burden of HC is high [4], with significant morbidity and mortality regardless of treatment [5]. However, the genetic and mechanistic basis of HC remains poorly understood, largely due to the genetic complexity and phenotypic heterogeneity of the disease as well as cost of large-scale human genetics studies.

HC is a component of a wide-array of genetic syndromes [6], a secondary consequence of brain injury (intraventricular hemorrhage (IVH), infection, etc.) [7; 8], and a component of many central nervous system congenital abnormalities (i.e., neural tube defects, Chiari malformation, etc.) with a number of comorbid phenotypes including epilepsy and autism, among others. HC is a highly polygenic disease [9; 10; 11], with genes of varying functions and mechanisms conferring risk to the disease. The current treatments for HC are surgical interventions such as insertion of a ventricular (-peritoneal, atrial, etc.) shunt or endoscopic third ventriculostomy (ETV), which may be combined with choroid plexus cauterization (CPC) [7; 12]. While many studies have evaluated the efficacy and cost of these procedures [13], long-term morbidity of HC remains high and both treatments are prone to failure [14; 15]. Furthermore, while clinical trials have attempted pharmacological strategies to treat HC [16], no pharmacological treatment has been successful. A more sophisticated and detailed understanding the genetic architecture and molecular pathogenesis of HC may lead to development of targeted pharmacologic treatments.

While numerous studies have aimed to identify causative genetic mechanisms leading to HC, largely based on isolated human case studies and murine models [6], critical limitations include cost, patient/family recruitment, number of patients (small by population-genetics' standards), individual variant validation (typically *de novo* mutations), and very important species differences between model-organisms and human disease. Proposed pathophysiological mechanisms of HC include impaired development of the neural stem cell niche [17; 18; 19; 20; 21], abnormal ciliated ependymal cells [22; 23; 24], disruption of the ventricular zone [25; 26], and primary alterations in CSF absorption and/or secretion [27; 28]. However, our understanding of these mechanisms is derived from varied model systems, which do not always accurately

recapitulate the genetic and pathophysiological basis of human HC. Furthermore, there is increasing evidence that germline genetic variation contributes to risk of HC [6; 9; 11; 29]; however, most cases of HC remain genetically undefined and clinical genetic testing is rarely performed.

Elucidation of the genetic architecture of both shared and etiology-specific forms of HC may uncover pathophysiological mechanisms and correlate genetic risk factors with clinical and surgical outcomes, with the potential to directly influence surgical counseling and clinical management. While many genes have been implicated in the pathogenesis of HC in humans, the study designs, approaches, and levels of evidence identifying and validating these genetic findings vary greatly. Uncovering the genetic basis of HC relies on many factors, but most importantly on the clinical phenotype in question because HC rarely occurs in isolation. Comorbid phenotypes (neural tube defects, primary structural brain disorders, epilepsy, cognitive delay, etc.), and antecedent injuries – IVH and/or infection (meningitis, intracranial abscess, and/or sepsis), alone and in concert, confound most classical approaches to understanding genetic disease. Advancing our understanding of HC genetics, therefore, will necessitate understanding the extent to which co-occurring phenotypes are present and integration of multiple molecular and genetic data. Furthermore, elucidation of human-specific molecular mechanisms necessitates study in human tissue representative of the diverse populations HC affects. Here we summarize genetic studies of HC in humans and offer suggestions for advancing the field forward.

Methods:

Search Criteria

The US National Library of Medicine PubMed database and the Online Mendelian Inheritance in Man (OMIM) were queried for English-language studies using Title/Abstract, MeSH headings, key words, and genetic descriptors relevant to genetic causes of HC and ventriculomegaly. The OMIM database was used as an additional adjunct database as well. Our search terms are included below. Duplicates identified across multiple databases were identified. We strictly adhered to PRISMA guidelines [30].

Our PubMed search included following: (HC[Title/Abstract]) OR syntax the (Ventriculomegaly[Title/Abstract]); ((HC[MeSH Major Topic]) OR (Ventriculomegaly[MeSH Major Topic])) AND ("mendelian" OR "de novo" OR "functional genomics" OR "whole exome sequencing" OR "wholegenome sequencing" OR "genotyping" OR "genotype" OR "microarray" OR "genome-wide association study" OR "genome wide association study" OR "GWAS" OR "transcriptome wide association study" OR "transcriptome-wide association study" OR "TWAS" OR "gene expression" OR "copy number variation" OR "insertion" OR "deletion" OR "mosaic" OR "mosaicism" OR "genetic variation" OR "consanguineous" OR "consanguinity" OR "autosomal recessive" OR "autosomal dominant" OR "x-linked recessive" OR "x-linked dominant" OR "inherited" OR "inheritance" OR "non-coding" OR "coding" OR "co-expression" OR "germline" OR "linkage" OR "linkage disequilibrium" OR "genetic counseling" OR "syndrome" OR "syndromic" OR "genetic testing" OR "aqueductal stenosis" OR "obstructive HC" OR "acquired HC" OR "congenital HC" OR "proteomics" OR "proteomic" OR "metabolomic" OR "metabolomics" OR "methylation" OR "mutation" OR "genetic deficiency" OR "gain of function" OR "gain-of-function" OR "loss of function" OR "loss-of-function" OR "molecular"[Title/Abstract]).

We next queried the Online Mendelian Inheritance in Man (OMIM) database [31] using the search terms: "HC" or "ventriculomegaly" to identify genetic disease of which HC is a component. The search returned 671 entries which were manually reviewed. Duplicates within the OMIM database were excluded (n=95). The resulting search query resulted in 3,709 studies.

Inclusion and Exclusion Criteria

Records (n=3,709) from the above search were initially evaluated via abstract and screened for exclusion criteria: 1) Records published before 1970; 2) no genetic data of any kind; 3) no HC diagnosis; or 4) animal subjects. A total of 2,652 studies were excluded. Full text screening of the remaining papers (n=1,057) was then screened for inclusion criteria. The second round of screening was carried out by full text review (n=1,057). The same exclusion criteria were applied, while inclusion criteria were implemented: 1) Records published after 1970; 2) pediatric cohort (0-18 years of age); 3) primary genetic analysis; 4) confirmed diagnosis of human HC; and 5) human subjects. The final records were assessed for eligibility and records unavailable in English were excluded (n=2). The final studies included (n=332) were then evaluated for the methodology and type of genetic analysis performed. The papers included in our study (n=332) were then subject to secondary analyses to assess for 1) change in number of publications over time; 2) geographic and ethnic associations of congenital HC; 3) size of study; 4) central nervous system and non-central nervous system phenotypic associations. Figures were created using BioRender.

Author Affiliation and Subject Country of Origin

Authors' institutional affiliation was obtained via PubMed's "Affiliations" tab within the respective research articles PubMed webpage. Authors were then cross-referenced via Google search to increase validity of institutional affiliation at the time the study was performed. Articles were individually queried for the country of origin of patients with HC. If not explicitly stated, it was assumed that the patients were from the same country as the senior author's affiliation. The total number of cases were tallied and tabulated on a world map using OpenStreetMap.

Results

HC in humans can be caused by or is secondary to several factors including structural brain disorders, cilia abnormalities, brain tumors resulting in CSF obstruction requiring CSF diversion, neural tube defects, prematurity and germinal matrix fragility, neonatal systemic and CNS infections, intracranial hemorrhage, evolutionary selection pressures, and 'genetic' anomalies, classically thought as Mendelian disorders (**Figure 1**). Thus, we conducted a systematic review of human genetic studies of HC to quantify and summarize the current state of genetic contributions to HC of various etiologies (**Figure 2**). However,

genetic susceptibility confers risk to all these preceding factors as well as to HC directly. Thus, understanding the pleiotropic effect of genes on both risk factors and development of HC is needed and requires highly detailed phenomics analysis [33]. Here, we summarize all genetic studies of *human* HC, including discussion of animal models of HC only as corroborating findings of genes and pathways identified in humans where there is a reasonable degree of evolutionary conservation. We believe this is essential as regulation of CSF and brain development is highly divergent across evolution, necessitating clarification and specificity of how genetics plays a role in human disease. Categories are defined *a priori* based on either phenotypic, molecular, or known genetic classifications. While many forms of HC can reasonably be classified into multiple categories, we attempt to simplify the groupings below.

Hydrocephalus secondary to Aqueductal Stenosis (AS)

Human genetics studies of HC secondary to aqueductal stenosis (AS) are summarized in **Table 1**. Fifteen unique gene mutations on 11 chromosomes inherited in both X-linked and autosomal patterns underlying HC secondary to AS have been identified. These genes include protocadherin 9 (*PCDH9*), immunoglobulin superfamily containing leucine rich repeat 2 (*ISLR2*), ATPase Na+/K+ transporting subunit alpha 3 (*ATP1A3*), L1 cell adhesion molecule (*L1CAM*), FA complementation group C (*FAC*), fibroblast growth factor receptor 3 (*FGFR3*), solute carrier family 12 member 6 (*SLC12A6*), crumbs cell polarity complex component 2 (*CRB2*), Bardet-Biedl syndrome 7 (*BBS7*), podocin gene (*NPHS2*), multiple PDZ domain crumbs cell polarity complex component (*MPDZ*), laminin subunit beta 1 (*LAMB1*), alpha glucosidase (*GAA*), A-Disintegrin and Metalloproteinase with Thrombospondin motifs like 2 (*ADAMTSL2*), collagen type IV alpha 2 chain (*COL4A2*). A duplication in the Xp22.33 region and deletions of the long arm of chromosome 9, 12q22-q23.1, mutation in SRY-box transcription factor 2 (*SOX2*) gene, and mutation in the solute carrier family 12-member 7 (*SLC12A7*) gene were also identified.

Understanding the function of these genes may confer a mechanistic and phenotypic understanding of HC secondary to AS. For example, some patients with AS will display abnormal brainstem development leading to near complete obliteration of the aqueduct, whereas other children may display relatively normal anatomy associated with a web obscuring CSF flow. Genetics factors contributing to AS include *ATP1A3*, which encodes an ATPase ion channel that has been associated with CNS development and ventricular dilatation when disrupted in zebrafish [34]. In addition, *SLC12A6* codes for the ion transporter KCC3 (K-Cl co transporter) that has been associated with AS among other phenotypes including peripheral neuropathy and agenesis of the corpus callosum in mice [35]. These ion channels are localized to the choroid plexus and are involved in neural stem cell development [36]. *ADAMTSL2*, encoding a glycoprotein, has been shown to interact with fibrillin 1 to enhance transforming growth factor- β (TGF β) and fibroblast function. Additionally, TGF β has been implicated in skeletal dysplasia and developmental dysfunction [37]. Thus, it is evident that genes with varying functions may contribute to AS and the diverse co-occurring phenotypes observed in these patients.

X-linked hydrocephalus

Genes contributing to X-linked HC include apoptosis inducing factor mitochondria associated 1 (*AIFM1*), adaptor related protein complex 1 subunit sigma 2 (*AP1S2*), EBP cholestenol delta-isomerase (*EBP*), FA complementation group B (*FANCB*), histone deacetylase 6 (*HDAC6*), OFD1 centriole and centriolar satellite protein (*OFD1*), OTU deubiquitinase 5 (*OTUD5*), coiled-coil domain containing 22 (*CCDC22*), and porcupine O-acyltransferase (*PORCN*). **Table 2** summarizes the genetic studies of X-linked HC in humans. *AIFM1* is involved in regulation of apoptosis [38]. In addition, *AP1S2* regulates endosomal protein trafficking and structural integrity [39]. HDAC6 has been shown to interact with Runx2, a transcription factor involved in osteoblast differentiation, and other HDACs exhibit high expression patterns in prehypertrophic chondrocytes, indicating their role in endochondral ossification and skeletal dysplasias [40]. OTUD5 mutations also impact transcriptional regulation with its inability to prevent HDAC degradation and maintain neural stem cell development [41]. OFD1 and PORCN mutations affect signaling pathways such as hedgehog signaling or wingless/integrated (Wnt) signaling [42; 43].

L1CAM associated hydrocephalus

Next, we discuss L1CAM associated HC, as this entity is well described and distinct phenotypically. Early linkage analysis studies of HC identified a mutation within the long arm of chromosome X, specifically Xq28. Further genomic analyses localized to a region between the gene loci of *DXS52* and *F8C*, within which L1 cell adhesion molecule (*L1CAM*) resides. The genetic understanding of X-linked HC has primarily been linked to genetic alterations at the *L1CAM* locus. *L1CAM* duplications include the 3' end of the open reading frame and exons 2-10. *L1CAM* insertions include exon 18 and the junction sequence between *L1CAM* and *AVPR2*. *L1CAM* deletions/microdeletions include exons 2, 5-8, 10, 11, 18, 19, 21-23, 26, intron 18, and whole gene deletion. *L1CAM* missense mutations include exons 1-16, 18, 20, 21, 24, 27, 28 and introns 2-4, 6-8, 10-15, 18, 21, 22, 24, and 26. *L1CAM* nonsense mutations include exons 1, 3, 8, 10-14, and 20-22. A silent mutation in Exon 8 of *L1CAM* has been associated with HC. A summary of all mutations across L1CAM can be found in **Figure 3** and **Table 3**. Mutations in L1CAM are also associated with MASA syndrome (characterized by mental retardation, aphasia, shuffling gait, and adducted thumb), and spastic paraplegia, highlighting the pleiotropic role of L1CAM in human disease.

Dandy Walker Malformation

Dandy Walker malformation is a cerebellar structural anomaly that can impede CSF flow but can also be related to primary brain developmental alterations and contribute to HC development. Missense mutations are found in forkhead box C1 (*FOXC1*), fukutin (*FKTN*), laminin subunit gamma 1 (*LAMC1*), sphingosine-1-phosphate phosphatase 2 (*SGPP2*), and exocyst complex component 3 like 2 (*EXOC3L2*). Nonsense mutations are found in FKTN, nidogen 1 (*NID1*), and potassium channel tetramerization domain containing 3 (*KCTD3*). SIL1 nucleotide exchange factor (*SIL1*) displayed a nonstop mutation and carnitine palmitoyltransferase 2 (*CPT2*) displayed a deletion-insertion variant. Additional mutations included Zic

family member 2 (*ZIC2*) and Zic family member 5 (*ZIC5*). Deletions were found in lysine methyltransferase 2D (*KMT2D*), chromosome 2 (2q36.1), chromosome 3 (3q25.1), chromosome 6 (6p24.1, 6p25.3), chromosome 7 (7p21.3), chromosome 8 (8q21), chromosome 12 (12q24), chromosome 13 (13q32), and chromosome 16 (16q21). The deletion of 8p21 resulted in the downregulation of fibroblast growth factor 17 (*FGF17*). Duplications were found in chromosome 6 (6p25.3), chromosome 7 (7p21.3), and chromosome 12 (12q24). In addition, EXOC3L2 regulates vesicular trafficking at synapses and cell polarity; a mutation within this gene locus can impact normal brain development [44]. *KCTD3* is also highly expressed in the brain and kidneys and regulates ion channels such as hyperpolarization activated cyclic nucleotide-gated channel 3 (HCN3) [45]. SIL1 is a glycoprotein that regulates protein trafficking into the ER and ATPase activity, suggesting a mutated implication in protein folding through development [46; 47]. A patient with a mutation in *CPT2*, an enzyme responsible for breaking down long chain fatty acids, suggests a role of metabolic enzymes in the genetic susceptibility of HC secondary to Dandy Walker malformation [48]. Thus, Dandy Walker malformation related HC may be caused by a wide variety of genes involved in many biological processes. These data are summarized in **Table 4**.

Ciliopathy

Genes involved in cilia function that are associated with HC are summarized in Table 5. Primary cilia dysfunction has been demonstrated to play a role in HC with numerous Mendelian 'ciliopathies' resulting in HC. Missense mutations were observed in Meckel-Gruber syndrome gene (MKS3), MKS transition zone complex subunit 1 (MKS1), intraflagellar transport 43 (IFT43), WD repeat domain 35 (IFT121), coiled-coil and C2 domain containing 2A (CC2D2A), transmembrane protein 216 (TMEM216), PKHD1 ciliary IPT domain containing fibrocystin/polyductin (PKHD1), intestinal cell kinase (ICK), exon 14 of KIAA0586, exons 4 and 13 of centrosomal protein 83 (CEP83), exons 6, 11, 12, 20, 23, 24, 28, 29, 32, and 36 of SET binding factor 2 (SBF2), exon 9 of zinc finger E-box binding homeobox 1 (ZEB1), and exon 5 of G protein subunit alpha i2 (GNAI2). Nonsense mutations were identified in CC2D2A, IFT121, forkhead box J1 (FOXJ1), exon 2 of KIAA0586, exon 3 of centrosomal protein 55 (CEP55), exons 3, 4, 7, and 13 of CEP83, and exon 11 of SBF2. Deletions and duplications resulting in frameshift mutations were found in CC2D2A, MKS3, MKS1, dynein axonemal intermediate chain 2 (DNAI2), IFT121, FOXJ1, exon 5 and 17 of CEP83, and exon 4 of ZEB1. Exon 2 was deleted in WD repeat-containing protein 16 (WDR16). Additional mutations were found in WD repeat domain 93 (WDR93). Loss of MKS3 and MKS1 are associated with ciliary shortening and dysfunction, suggesting a role in primary ciliary development. TMEM216 also contributes to ciliary development through apical polarization and formation and may result in Joubert, Meckel and related syndromes [49]. IFT43 and IFT121 maintain cilium organization and regulate intraflagellar transport in interaction with the IFT-A complex [50]. In addition, CEP83 also interacts with IFT proteins and guides vesicular docking ciliogenesis [51]. One patient was identified with a mutation in DNA/2, a component of the outer dynein arm complex (ODA), which is involved in cilia motility [52]. ZEB1, SBF2, and GNAI2 are involved in other signaling pathways previously identified in association with HC [53].

PI3K-Akt-mTOR

Genes involved in PI3K-Akt-mTOR cell signaling pathway underlying HC are summarized in Table 6. Missense mutations were identified in ring finger protein 125 (RNF125), HECT and RLD domain containing E3 ubiquitin protein ligase family member 1 (HERC1), AKT serine/threonine kinase 3 (AKT3), mechanistic target of rapamycin kinase (mTOR), phosphatase and tensin homolog (PTEN), cyclin D2 (CCND2), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) (exon 18 and others), phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) (exon 13 and others), and platelet derived growth factor receptor beta (PDGFRB) (exon 12 and others). Deletions were observed in PIK3CA, and nonsense mutations were seen in PTEN. Deletions in chromosome 1 (1q42.3-q44) resulted in the deletion of AKT serine/threonine kinase 3 (AKT3). Additional genetic mutations implicated in this pathway included those in tripartite motif containing 71 (TRIM71), SWI/SNF related matrix associated, actin dependent regulator of chromatin (SMARCC1), forkhead box J1 (FOXJ1), formin 2 (FMN2), patched 1 (PTCH1), and FXYD domain containing ion transport regulator 2 (FXYD2). Multiple genes within the PI3K-AKT-MTOR pathway highlight convergence on molecular mechanisms conferring risk to HC. Murine models have demonstrated the role of *HERC1*, which codes for an E3 ubiquitin ligase, to affect Purkinje cell physiology and mTOR activity [54]. TRIM71 and SMARCC1 are expressed within the ventricles and epithelium of mice brains (determined via in situ hybridization) suggesting that a mutation within this gene locus can affect this region may lead to HC [9]. Mutations in FOXJ1 and FMN2 have been shown to alter neuroepithelial integrity and lead to HC in mice [55; 56]. Mice harboring mutations in PTCH1 also display defects in ependymal cell integrity [57]. Thus, mutations within many genes converging on PI3K-Akt-mTOR signaling have been widely implicated in HC pathophysiology.

Vesicle Regulation & Cell Adhesion

Table 7 details mutations in genes responsible for vesicle regulation and cell adhesion that contribute to the development of HC. Missense mutations were found in and glial fibrillary acidic protein (*GFAP*). Sorting nexin 10 (*SNX10*) displayed a nonsense mutation and clathrin heavy chain (*CLTC*) displayed a frameshift mutation. Additional mutations include ArfGAP with FG repeats 1 (*RAB*), multiple PDZ domain crumbs cell polarity complex component (*MPDZ*), beta 1,3-glucosyltransferase (*B3GALTL*), SEC24 homolog D, COPII coat complex component (*SEC24D*), and actin beta (*ACTB*).

GFAP is required for white-matter architectural development and myelination, perhaps accounting for the neurodevelopmental comorbidities frequently observed in patients with HC [58]. Mutations in the phosphoinositide binding domain of *SNX10* alters endosomal integrity, suggesting a potential pathogenic mechanism in vesicular trafficking [59]. Additionally, mutations in this gene locus can disrupt interactions between sorting nexins and the V-ATPase complex further contributing to vesicle dysfunction and ciliopathy [60]. *CLTC* contributes to the development of the vesicular coat, and a mutation within this gene locus may disrupt vesicle stability [61]. Mutations in *RAB27A* are associated with Griscelli syndrome, characterized by

albinism, hematological abnormalities, and organ malformation which can also present with HC [62]. SEC24 is also involved in intracellular trafficking by interacting with export signals from the endoplasmic reticulum and regulating cargo transport [63]. In addition, *MPDZ* is highly expressed in tight junctions suggesting that a mutation within this gene locus may disrupt alter tissue permeability [64]. Finally, *B3GALTL* interacts with the thrombospondin type 1 repeat (TSR) protein family which play varied roles in maintain and regulating cell-cell adhesion [65].

Glycosylation defects

Table 8 summarizes genes implicated in human HC associated with defects in glycosylation. Nonsense mutations were seen in protein O-mannose kinase (*POMK*), and protein O-mannosyltransferase 1 (*POMT1*). Loss of function mutations were identified in dystroglycan 1 (*DAG1*) and isoprenoid synthase domain containing gene (*ISPD*). Additional mutations included those in protein C, inactivator of coagulation factors Va and VIIIa (*PROC*), fukutin related protein (*FKRP*), protein O-mannosyltransferase 2 (*POMT2*), protein O-linked mannose N-acetylglucosaminyltransferase 1 (beta 1,2-) (*POMGNT1*), LARGE xylosyl and glucuronyltransferase 1 (*LARGE1*) and a translocation between chromosome 5 and 6, t(5;6) (q35;q21). In addition, *DAG1* codes for dystroglycan, a protein involved in extracellular matrix integrity and the genetic etiology of many neurological syndromes. Mutations in *DAG1* have been found to contribute to Walker-Warburg syndrome and other muscular dystrophy-dystroglycanopathies which can be associated with HC [66]. Dystroglycan may also be affected through defects in its glycosylation patterns. For instance, mutations in *POMK* have been shown to impair the glycosylation of a-dystroglycan affecting cytoskeleton stability [67]. Other genes contributing to dystroglycanopathies through glycosylation errors include *POMT1*, *POMT2*, *POMGNT1*, *FKRP*, *ISPD* and *LARGE1* [68].

Growth factor related signaling

Table 9 summarizes genetic mutations associated with growth factor related signaling dysfunction. Mutations were observed in fibroblast growth factor receptor 1 (*FGFR1*), fibroblast growth factor receptor 2 (*FGFR2*), fibroblast growth factor receptor 3 (*FGFR3*), ZPR1 zinc finger (*ZPR1*), and fibrillin 1 (*FBN1*). Specifically, exon 7 displayed a missense mutation in *FGFR2* and exon 64 displayed a mutation in *FBN1*. Mutations in *FGFR* play pleiotropic roles in numerous syndromes including Crouzon syndrome, Jackson-Weiss syndrome, Apert syndrome and Pfeiffer syndrome [69; 70; 71; 72]. These craniosynostoses have been associated with HC and *FGFR* mutations contributing to bony abnormalities, which may explain the venous and CSF outflow obstructions leading to this phenotype [73]. The FGFR mutations identified are predominantly gain of function mutations altering ligand binding and tyrosine kinase activity [74]. In addition, *ZPR1* contributes to cell proliferation and *FBN1* is associated with TGF beta signaling suggesting their mechanistic contributions to the HC phenotype seen in patients with these phenotypes [75].

Extracellular matrix defects

Table 10 highlights the genetic mutations contributing to extracellular matrix defects. Mutations were found in fukutin (*FKTN*), cartilage associated protein (*CRTAP*), collagen type VIII alpha 2 chain (*COL8A2*), collagen type III alpha 1 chain (*COL3A1*), collagen type IV alpha 1 chain (*COL4A1*), vascular cell adhesion molecule 1 (*VCAM1*), protein tyrosine phosphatase receptor type F (*PTPRF*), fibrillin 1 (*FBN1*), laminin subunit beta 1 (*LAMB1*), FRAS1 related extracellular matrix 1 (*FREM1*), and the plasminogen gene. *CRTAP* is involved in proline hydroxylation which ultimately contributes to collagen stability and functionality [76]. Mutations within the *CRTAP* gene locus can lead to Cole-Carpenter syndrome, which is associated with HC [76]. Other basement membrane proteins encoded by *COL8A2*, *COL3A1*, *COL4A1*, *VCAM1*, and *PTPRF* may alert the extracellular matrix and contribute to HC. For instance, a mutation in *COL3A1* affects its triple helix stability leading to degradation and further defects in the basement membrane [77]. *LAMB1* knockdown in zebrafish disrupted laminin integrity, a component of the basal lamina, leading to brain structural abnormalities [78], suggesting a potential pathogenic link to HC.

Neurogenesis and neural stem cell biology

Table 11 summaries gene mutations implicating neurogenesis. Mutations were identified in SRYbox transcription factor 9 (SOX9), solute carrier family 29 member 3 (SLC29A3), adhesion G proteincoupled receptor (ADGRG1), katanin interacting protein (KIAA0556), G protein signaling modulator 2 (GPSM2), tripartite motif containing 71 (TRIM71), SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1 (SMARCC1), patched 1 (PTCH1), FLVCR heme transporter 2 (FLVCR2), intestinal cell kinase (ICK), cystathionine beta-synthase (CBS), 5-methyltetrahydrofolatehomocysteine methyltransferase reductase (MTRR), interleukin 4 induced 1 (IL411), scribble planar cell polarity protein (SCRIB1), protein tyrosine kinase 7 (PTK7), frizzled class receptor 1 (FZD1), VANGL planar cell polarity protein 2 (VANGL2), dishevelled segment polarity protein (DVL2), transcription elongation factor B polypeptide 3B (TCEB3B), phospholipase C delta 4 (PLCD4), Ras associated domain family member 4 (RASSF4), phenylalanyl-tRNA synthetase 2, mitochondrial (FARS2), tubulin beta 3 class III (TUBB3), and discs large MAGUK scaffold protein 5 (DLG5). Frameshift mutations were seen in WD repeat domain 81 (WDR81), kinase D interacting substrate 220 (KIDINS220). Deletions were seen in chromosome 6 (6q25.3 and 6p25), chromosome 13 (13q), chromosome 16 (16p12.2), and chromosome 22 (22q11.2). The 6p25 deletion resulted in the deletion of forkhead box C1 (FOXC1), forkhead box F2 (FOXF2), and forkhead box Q1 (FOXQ1).

The heterogeneity of neurogenesis-associated HC suggests that numerous genes involved in development may confer susceptibility to this phenotype. *SOX9* knockdown in mice suggest a role in neural stem cell development and ependymal cell maintenance as a pathogenic mechanism that causes HC [79]. In addition, mutations in *ADGRG1* have been shown to impact cerebral cortex development and neuronal migration via the perturbation of the RhoA pathway [80]. In addition, *GPSM2* has been shown to alter neuroepithelial function through disruption of cellular orientation and planarity leading to aberrant brain

development [81]. Finally, mice lacking *KIDINS220* display attenuated responses to neurotrophic factors and have impaired development in multiple signaling pathways [82]. Understanding the genetic influence of neurogenesis may elucidate a better understanding of patient characteristics and poor outcomes in the HC phenotype.

Inherited cancer syndromes

Table 12 summarizes genes that contributed to tumor pathogenesis, and which result in the development of HC. Mutations are seen in NRAS proto-oncogene, GTPase (*NRAS*), von Hippel-Lindau tumor suppressor (*VHL*), patched 1 (*PTCH1*) and FA complementation group C (*FANCC*). Germline mutations are seen in phosphatase and tensin homolog (*PTEN*) and SUFU negative regulator of hedgehog signaling (*SUFU*). Deletions within chromosome 11 (11p13) and chromosome 9 (9q22.3 and 9q22-q31) were also identified. *NRAS* is an oncogene contributing to the development of congenital melanocytic nevi, a condition associated with HC [83]. Clinically relevant mutations in Von Hippau Lindau (*VHL*) affect protein expression and degradation where patients with or without a mass lesion (i.e., hemangioblastoma) develop HC [84]. Gorlin syndrome is disorder characterized with bony abnormalities and an increased risk for multiple CNS and non-CNS tumors. Previous studies have mapped this syndrome to deletions in the 9q22 locus which is consistent with the patients identified in this review with mutations specifically affecting *PTCH1* and *FANCC* genes [85; 86]. Finally, mutations in SUFU have also been associated with Gorlin syndrome [87; 88].

WNT signaling

WNT signal transduction is involved in numerous pathways regulating cell function and development. **Table 13** summarizes gene mutations identified in HC patients with this pathway. Numerous studies have reported gene mutations in coiled-coil and C2 domain containing 2A (*CC2D2A*) and coiled-coil domain containing 88C (*CCDC88C*). COACH syndrome is defined as cerebellar vermis hypoplasia, oligophrenia, ataxia, colobomas, and hepatic fibrosis [89]. This gene locus has been shown to interact with the WNT signaling pathway and is associated with centrosome stability [90]. In addition, *CCDC88C* is associated with the WNT signaling pathway through interaction with the Dishevelled protein [91]. The dishevelled protein contains a binding domain which interacts with a hook related protein transcribed from the *CCDC88C* locus [92]. WNT signaling plays numerous roles in cell communication and embryonic development, suggesting potential mechanisms contributing to HC [93].

Transcriptional, Post-Transcriptional, and Epigenetic Regulation

Table 14 summarizes mutations in genes that regulate transcription, post-transcriptional, and epigenetic processes. Missense mutations were seen in THO complex subunit 6 (*THOC6*) and *HYLS1*, genes involved in transcriptional regulation. Patients with loss of function mutations in FA complementation group L (*FANCL*) we identified. Additional mutations observed included interferon regulatory factory 6

(IRF6), small nucleolar RNA, C/D box 118 (SNORD118), nuclear factor I A (NFIA), SET binding protein 1 (SETBP1), SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1 (SMARCB1), maelstrom spermatogenic transposon (MAEL), a deletion in chromosome 5 (5q35.3), and 20q13.3 trisomy. Deletions in chromosome 1 (1q42.3-q44) resulted in the deletion of zinc finger and BTB domain containing 18 (ZBTB18) and heterogeneous nuclear ribonucleoprotein U (HNRNPU). THOC6 is a part the TREX complex responsible for mRNA export and is localized to the 5' cap of mRNA [94]. It has been associated with Beaulieu-Boycott-Innes syndrome, which is charactered by developmental delay and organ dysgenesis [95]. Patients identified in this review with Beaulieu-Boycott-Innes syndrome and THOC6 mutations have been shown to develop HC, suggesting a role for mRNA export regulation in association with HC phenotypes [96]. HYLS1 is associated with Hydrolethalus syndrome, a disorder characterized by HC and craniofacial abnormalities [97]. Expression analysis of this gene suggests a role in CNS development, where a HC associated mutation gene causes nuclear localization whereas the WT form is expressed in the cytoplasm [97]. SNORD118 is involved in regulation of ribosome biology and associated with the hydrocephalic phenotype of Labrune syndrome, characterized by leukoencephalopathy, intracranial cysts, and calcification [98]. While the function of SETBP1 remains largely unknown, mutations in this gene are associated with Schinzel-Giedion syndrome, characterized by facial abnormalities, intellectual disability, congenital malformations, and HC [99]. SMARCB1 is involved in chromatin remodeling to further enhance or repress transcription [100]. Finally, a transcriptome-wide association study (TWAS) and multi-omics study of HC identified maelstrom (MAEL), a gene that regulates transposons and epigenetic modifications, as an experiment-wide predictor of HC in the cortex [10; 101]. These studies identified transcriptional regulators and further emphasize the need to explore these mechanisms to understand the mechanistic associations with HC.

Ion Transport and Regulation

Table 15 summarizes gene mutations implicating ion transport. Mutations were seen in aquaporin 4 (*AQP4*) and FLVCR heme transporter 2 (*FLVCR2*). Mutations on chromosome 17 (17p13) implicated transient receptor potential cation channel subfamily V member 3 (*TRPV3*). Aquaporin 4 (*AQP4*) regulates water transport on ependymal cells and knockout of this gene in mice show disrupted gap junctions which alter the ependymal zone and CSF flow contributing to HC development [102; 103]. Mutations in the enhancer of *TMEM50b* alter expression of *TTF*, a direct transcriptional regulator of *AQP1*, have also been identified [101]. Mutations in *FLVCR2* are associated with Fowler's syndrome, a disorder characterized by HC and hydranencephaly [104]. This gene locus encodes a transmembrane protein involved in solute transport, suggesting that defects in chemiosmotic regulation contribute to HC development [105].

Normal Pressure Hydrocephalus

Normal pressure HC (NPH) is a form of communicating HC in which the progressive pressure of CSF is believed to result in in ventricular dilatation and further CSF accumulation. **Table 16** summarizes

the genes implicated in human studies of NPH. Scm like with four mbt domains 1 (*SFMBT1*) displayed an intron 2 deletion. Cilia and flagella associated protein 43 (*CFAP43*) was found to have a nonsense mutation. The gene locus contributing to the development of ETINPH, a disorder characterized with essential tremors and idiopathic NPH, was localized to 19q12-13.31 on chromosome 19. *SFMBT1* is highly expressed in ependymal cells and epithelial cells of the brain, suggesting that a mutation in this gene locus may contribute to the dysfunctional CSF circulation [106]. Furthermore, a binding site had been identified within intron 2 of this gene locus, suggesting that the deletion of this intron, as seen in our review, will impact function [107; 108]. Deletion of cell wall biogenesis 43 (*CWH43*) in humans has also been associated with NPH [109].

Metabolism

Table 17 indicates genes involved in metabolic pathways. Mutations were seen in cytochrome c oxidase subunit 6B1 (*COX6B1*), methylenetetrahydrofolate reductase (*MTHFR*), and sulfatase modifying factor 1 (*SUMF1*). Mutations in *COX6B1* have been shown to disrupt the electron transport chain suggesting that alterations in cellular energetics can contribute to HC [110] [111]. *SUMF1* encodes formylglycine generating enzyme (FGE) involved in modifying cysteine residues in the endoplasmic reticulum [112]. *MTHFR* regulates folate metabolism, and mutations within this gene locus have been identified in congenital HC patients providing rationale to explore metabolic genes and their association with pathology [113].

Cell Cycle & Cytoarchitecture

Table 18 displays genes involved in cell cycle regulation and cytoarchitecture. Mutations were seen in spindle apparatus coiled-coil protein 1 (*SPDL1*), tubulin alpha 3e (*TUBA3E*), nidogen 1 (*NID1*), tRNA splicing endonuclease subunit 15 (*TSEN15*), clathrin heavy chain linker domain containing 1 (*CLHC1*), TBC1 domain containing kinase (*TBCK*), xin actin binding repeat containing 1 (*XIRP1*), nucleoporin 107 (*NUP107*), erythrocyte membrane protein band 4.1 like 4A (*EPB41L4A*), protein phosphatase 2 regulatory subunit B delta (*PPP2R5D*), protein phosphatase 2 scaffold subunit Alpha (*PPP2R1A*), prolyl 4-hydroxylase subunit beta (*P4HB*), and crumbs cell polarity complex component 2 (*CRB2*). *SPDL1* has been shown to regulate mitotic checkpoints, and mutations arrested affected cells in metaphase [114]. *TUBA3E* maintains microtubule integrity by encoding for part of the microtubule heterodimer, alpha tubulin [115]. TSEN15 contributes to an endonuclease complex involved in tRNA splicing, and mutations affecting this gene locus can lead to defects in cell division [116]. *XIRP1* has been shown to maintain actin integrity and stability [117]. *P4HB* encodes an enzyme subunit involved in collagen formation, and mutations affecting this gene location are associated with reduced cytoarchitectural stability [118].

Lipid Structure and Regulation

Table 19 summarizes genes involved in lipid structure and regulation associated with HC in humans. Mutations were seen in bridge-like lipid transfer protein family member 1 (*KIAA1109*), and glucosylceramidase beta 1 (*GBA*). The *KIAA1109* ortholog in *Drosophila melanogaster* has shown to affect synaptic growth at the neuromuscular junction through modulation of phosphatidylinositol 4,5-bisphosphate (PIP²) [119]. *GBA* encodes for a lysosomal enzyme responsible for metabolizing glycolipids [120].

Genes of Unknown Function

Table 20 summarizes genes that are associated with HC pathology without a clear function. Additional variants include partial 1q trisomy, tetrasomy 5p, tetraploidy of chromosome 9, trisomy 9p, and chromosome 21 trisomy. Studies that have identified mutations in chromone 6 displayed microdeletions or mosaicism of monosomy. Deletions in chromosome 8 (8q12.2-q21.2) and chromosome 16 (16q) were also identified, and microduplications in chromosome 17 (17p13.1) have been reported. The vast genetic influence on HC emphasizes importance of exploring and understanding the factors that confer genetic risk to improve diagnostic and prognostic efficiency. Autosomal and sex chromosomal location of all genetic findings included in this review is summarized in **Figure 3**.

Global Burden of Genetic Hydrocephalus

We next aimed to quantify the country of origin for patients included in this review (**Figure 5**). Given the wide range of HC disease burden across the world [4], we aimed to determine if genetic studies of HC were similarly representative. What is clear is that for regions of the world where HC prevalence is highest (Africa, East Asia, etc.), there is an obvious lack of genetic studies of HC of any kind. For example, there is not a single study performed by authors in Sub-Saharan Africa (SSA) or including people from SSA. Given that African genomes are the most diverse and complex with generations of environmental pressures (including emerging pathogens) shaping the genome, understanding genetic risk factors in these populations is essential. While epidemiological estimates of the contribution of genetically linked forms of HC is not feasible at present, these data begin to highlight disparities in representation of genetic studies and the need for large-scale genetic studies of HC in diverse populations. These data also provide a reasonable estimate of the potential burden, although likely underestimated, contribution of genetic factors contributing to HC. It is our hope that this review highlights the diverse mechanisms underlying HC, the complex molecular pathways that may contribute to HC pathogenesis, and the need to greatly expand the representation of diverse peoples in HC genetics research.

Discussion

HC is a complex, heterogenous condition that can be a component of a wide range of genetic conditions and can be caused by a variety of preceding environmental factors. Because HC is a component of many syndromes with a wide range of concomitant phenotypes, understanding the genetic pleiotropism of contributing genes is important for delineating the pathophysiologic basis of the disease. This review

provides a broad overview of the associations between genetic mechanisms underlying HC. The variability in phenotypes observed, methodology used to uncover genetic information, and wide range of validation of genetic findings highlights the major challenges in the field. While many studies are descriptive, a wide range of hypotheses are generated based on implicated genes and potential mechanisms. Specifically, many studies implicate alterations in neurogenesis and primary brain development, as opposed to direct alterations in CSF regulation, as potential pathophysiologic mechanisms. Overall, as genomic technologies become more ubiquitous in clinical practice and more patients undergo unbiased genomic sequencing, our understanding of HC will improve. However, there are several limitations and points to consider as this field evolves.

An ongoing challenge in human genetics is proving causality of implicated genetic findings. Classical validation technique requires reproducing the implicated mutation (if evolutionarily conserved) in a model organism such as a mouse or rat. However, the physiologic regulation of CSF and mechanisms underlying brain development are markedly different in these model organisms and often do not recapitulate human disease. Many genes underlying HC are associated with other phenotypes, and it may not be possible to identify a secondary causative genetic factor that unmasks the phenotype. Since this approach relies on the gene product being evolutionarily conserved, identification of human-specific disease mechanisms is impaired. Alternative approaches to determining the relationship of a gene variant to a HC phenotype include structural biologic modeling of presumed deleterious mutations; however, this approach does not consider physiological and phenotypic heterogeneity. Similarly, these approaches often rely on protein expression in prokaryotic systems, limiting interpretation of post-translational modifications and other physiologic contributors to protein function.

Based on the significant co-occurrence of traits affecting other organ systems, it is likely that genes associated with HC display significant pleiotropy. A simplistic model of monogenic contributions to HC is unlikely to capture the genetic etiology of most cases. Even among monogenic contributions to HC, there is significant phenotypic and genetic variability (i.e., L1CAM). As quantitative genetic methodology improves to identify polygenic contributors to disease, we suspect that a much larger proportion of cases will have polygenic contributions. Because HC is a heterogenous disease, accrual of large numbers of 'homogenous' cases are needed to accurately quantify reproductible genetic associations.

The variability in genomic technology used to determine potential genetic contributions to HC is significant. Agnostic methods such as genome wide association studies (GWAS), transcriptome-wide association studies (TWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have been used, but are limited by cost, sample size, and technical expertise involved in analysis. In contrast, targeted sequencing approaches rely on hypothesis-driven identification of implicated genetic loci introducing significant experimental bias.

Our review highlights that most genetic studies of HC are performed in countries where disease burden, paradoxically, is amongst the lowest in the world. This reflects disproportionately low resources for genetic studies in low- and middle-income countries. For example, Sub Saharan Africa the most genetically

diverse and complex region in the world, where the burden of HC is also the highest, yet there are no genetic studies of HC of any kind in these populations. Although the burden of HC is largely the result of infections, the genetic contributors to infection susceptibility are largely uncharacterized in these populations. Evolutionary selection pressures have been differentially shaped by exposure to infectious pathogens, geographic shifts of ancestral peoples, and population isolation. Therefore, understanding genetic factors specific to these populations is paramount to improve secondary prevention and moving towards non-surgical treatment options.

Advances in genetic technology and interpretation coupled with decreased costs will garner a new era of precision medicine that can be applied in the clinic. The extent to which genetic information may guide treatment in HC has not been fully realized. As more patients are rigorously studied using complementary and convergent genomic approaches coupled with long-term clinical outcomes, we may be able to incorporate genetic information into clinical care. Owing to the genetic architecture of HC highlighted here and across many studies, we anticipate that creation of polygenic risk scores (PRS) may be the most clinically meaningful and practical for disease prognostication and understanding comorbid disease risks.

Conclusions

HC is a phenotypically and genetically complex disease. While the literature describing the genetic causes of HC is vast, this comprehensive review highlights opportunities for further mechanistic study and disparities in ancestral representation. The varying rigor with which genetic studies are conducted highlights the challenge of determining causality of implicated genomic alterations, inadequacies of current model systems, and the need for human-specific molecular validation studies. What is clear is that our genetic understanding of HC is incomplete and our understanding of pleiotropy of implicated HC genes requires further maturation. This study represents the first large-scale systematic literature review of the genetic basis of HC in humans and highlights many areas ripe for future investigation.

References

- [1] P. Missori, S. Paolini, and A. Currà, From congenital to idiopathic adult hydrocephalus: a historical research. Brain 133 (2010) 1836-49.
- [2] A.H. Khasawneh, R.J. Garling, and C.A. Harris, Cerebrospinal fluid circulation: What do we know and how do we know it? Brain Circ 4 (2018) 14-18.
- [3] T.J. Atchley, B. Vukic, M. Vukic, and B.C. Walters, Review of Cerebrospinal Fluid Physiology and Dynamics: A Call for Medical Education Reform. Neurosurgery 91 (2022) 1-7.
- [4] M.C. Dewan, A. Rattani, R. Mekary, L.J. Glancz, I. Yunusa, R.E. Baticulon, G. Fieggen, J.C. Wellons, K.B. Park, and B.C. Warf, Global hydrocephalus epidemiology and incidence: systematic review and meta-analysis. J Neurosurg (2018) 1-15.
- [5] M. Gmeiner, H. Wagner, C. Zacherl, P. Polanski, C. Auer, W.J. van Ouwerkerk, and K. Holl, Long-term mortality rates in pediatric hydrocephalus-a retrospective single-center study. Childs Nerv Syst 33 (2017) 101-109.
- [6] M. Kousi, and N. Katsanis, The Genetic Basis of Hydrocephalus. Annual review of neuroscience 39 (2016) 409-35.
- [7] K.T. Kahle, A.V. Kulkarni, D.D. Limbrick, Jr., and B.C. Warf, Hydrocephalus in children. Lancet 387 (2016) 788-99.
- [8] L.D. Tomycz, A.T. Hale, and T.M. George, Emerging Insights and New Perspectives on the Nature of Hydrocephalus. Pediatr Neurosurg 52 (2017) 361-368.
- [9] C.G. Furey, J. Choi, S.C. Jin, X. Zeng, A.T. Timberlake, C. Nelson-Williams, M.S. Mansuri, Q. Lu, D. Duran, S. Panchagnula, A. Allocco, J.K. Karimy, A. Khanna, J.R. Gaillard, T. DeSpenza, P. Antwi, E. Loring, W.E. Butler, E.R. Smith, B.C. Warf, J.M. Strahle, D.D. Limbrick, P.B. Storm, G. Heuer, E.M. Jackson, B.J. Iskandar, J.M. Johnston, I. Tikhonova, C. Castaldi, F. López-Giráldez, R.D. Bjornson, J.R. Knight, K. Bilguvar, S. Mane, S.L. Alper, S. Haider, B. Guclu, Y. Bayri, Y. Sahin, M.L.J. Apuzzo, C.C. Duncan, M.L. DiLuna, M. Günel, R.P. Lifton, and K.T. Kahle, De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 99 (2018) 302-314.e4.
- [10] A.T. Hale, L. Bastarache, D.M. Morales, J.C. Wellons, 3rd, D.D. Limbrick, Jr., and E.R. Gamazon, Multi-omic analysis elucidates the genetic basis of hydrocephalus. Cell Rep 35 (2021) 109085.
- [11] S.C. Jin, W. Dong, A.J. Kundishora, S. Panchagnula, A. Moreno-De-Luca, C.G. Furey, A.A. Allocco, R.L. Walker, C. Nelson-Williams, H. Smith, A. Dunbar, S. Conine, Q. Lu, X. Zeng, M.C. Sierant, J.R. Knight, W. Sullivan, P.Q. Duy, T. DeSpenza, B.C. Reeves, J.K. Karimy, A. Marlier, C. Castaldi, I.R. Tikhonova, B. Li, H.P. Peña, J.R. Broach, E.M. Kabachelor, P. Ssenyonga, C. Hehnly, L. Ge, B. Keren, A.T. Timberlake, J. Goto, F.T. Mangano, J.M. Johnston, W.E. Butler, B.C. Warf, E.R. Smith, S.J. Schiff, D.D. Limbrick, Jr., G. Heuer, E.M. Jackson, B.J. Iskandar, S. Mane, S. Haider, B. Guclu, Y. Bayri, Y. Sahin, C.C. Duncan, M.L.J. Apuzzo, M.L. DiLuna, E.J. Hoffman, N. Sestan, L.R. Ment, S.L. Alper, K. Bilguvar, D.H. Geschwind, M. Günel, R.P. Lifton, and K.T. Kahle, Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat Med 26 (2020) 1754-1765.
- [12] A.V. Kulkarni, S.J. Schiff, E. Mbabazi-Kabachelor, J. Mugamba, P. Ssenyonga, R. Donnelly, J. Levenbach, V. Monga, M. Peterson, M. MacDonald, V. Cherukuri, and B.C. Warf, Endoscopic Treatment versus Shunting for Infant Hydrocephalus in Uganda. N Engl J Med 377 (2017) 2456-2464.
- [13] J. Lim, A.R. Tang, C. Liles, A.A. Hysong, A.T. Hale, C.M. Bonfield, R.P. Naftel, J.C. Wellons, and C.N. Shannon, The cost of hydrocephalus: a cost-effectiveness model for evaluating surgical techniques. (2018) 1.
- [14] A.T. Hale, J. Riva-Cambrin, J.C. Wellons, E.M. Jackson, J.R.W. Kestle, R.P. Naftel, T.C. Hankinson, and C.N. Shannon, Machine learning predicts risk of cerebrospinal fluid shunt failure in children: a study from the hydrocephalus clinical research network. Childs Nerv Syst 37 (2021) 1485-1494.
- [15] A.T. Hale, A.N. Stanton, S. Zhao, F. Haji, S.R. Gannon, A. Arynchyna, J.C. Wellons, B.G. Rocque, and R.P. Naftel, Predictors of endoscopic third ventriculostomy ostomy status in patients who experience failure of endoscopic third ventriculostomy with choroid plexus cauterization. J Neurosurg Pediatr 24 (2019) 41-46.

- [16] A. Whitelaw, C.R. Kennedy, and L.P. Brion, Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. The Cochrane database of systematic reviews (2001) Cd002270.
- [17] C.G. Furey, J. Choi, S.C. Jin, X. Zeng, A.T. Timberlake, C. Nelson-Williams, M.S. Mansuri, Q. Lu, D. Duran, S. Panchagnula, A. Allocco, J.K. Karimy, A. Khanna, J.R. Gaillard, T. DeSpenza, P. Antwi, E. Loring, W.E. Butler, E.R. Smith, B.C. Warf, J.M. Strahle, D.D. Limbrick, P.B. Storm, G. Heuer, E.M. Jackson, B.J. Iskandar, J.M. Johnston, I. Tikhonova, C. Castaldi, F. Lopez-Giraldez, R.D. Bjornson, J.R. Knight, K. Bilguvar, S. Mane, S.L. Alper, S. Haider, B. Guclu, Y. Bayri, Y. Sahin, M.L.J. Apuzzo, C.C. Duncan, M.L. DiLuna, M. Gunel, R.P. Lifton, and K.T. Kahle, De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron (2018).
- [18] M.K. Lehtinen, C.S. Bjornsson, S.M. Dymecki, R.J. Gilbertson, D.M. Holtzman, and E.S. Monuki, The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci 33 (2013) 17553-9.
- [19] M.K. Lehtinen, and C.A. Walsh, Neurogenesis at the brain-cerebrospinal fluid interface. Annual review of cell and developmental biology 27 (2011) 653-79.
- [20] M.K. Lehtinen, M.W. Zappaterra, X. Chen, Y.J. Yang, A.D. Hill, M. Lun, T. Maynard, D. Gonzalez, S. Kim, P. Ye, A.J. D'Ercole, E.T. Wong, A.S. LaMantia, and C.A. Walsh, The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69 (2011) 893-905.
- [21] C.S. Carter, T.W. Vogel, Q. Zhang, S. Seo, R.E. Swiderski, T.O. Moninger, M.D. Cassell, D.R. Thedens, K.M. Keppler-Noreuil, P. Nopoulos, D.Y. Nishimura, C.C. Searby, K. Bugge, and V.C. Sheffield, Abnormal development of NG2+PDGFR-alpha+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat Med 18 (2012) 1797-804.
- [22] M. Takagishi, M. Sawada, S. Ohata, N. Asai, A. Enomoto, K. Takahashi, L. Weng, K. Ushida, H. Ara, S. Matsui, K. Kaibuchi, K. Sawamoto, and M. Takahashi, Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus. Cell Rep 20 (2017) 960-972.
- [23] G.R. Wilson, H.X. Wang, G.F. Egan, P.J. Robinson, M.B. Delatycki, M.K. O'Bryan, and P.J. Lockhart, Deletion of the Parkin co-regulated gene causes defects in ependymal ciliary motility and hydrocephalus in the quakingviable mutant mouse. Human molecular genetics 19 (2010) 1593-602.
- [24] C. Wodarczyk, I. Rowe, M. Chiaravalli, M. Pema, F. Qian, and A. Boletta, A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus. PloS one 4 (2009) e7137.
- [25] L. Castaneyra-Ruiz, D.M. Morales, J.P. McAllister, S.L. Brody, A.M. Isaacs, J.M. Strahle, S.M. Dahiya, and D.D. Limbrick, Blood Exposure Causes Ventricular Zone Disruption and Glial Activation In Vitro. Journal of neuropathology and experimental neurology 77 (2018) 803-813.
- [26] J.P. McAllister, M.M. Guerra, L.C. Ruiz, A.J. Jimenez, D. Dominguez-Pinos, D. Sival, W. den Dunnen, D.M. Morales, R.E. Schmidt, E.M. Rodriguez, and D.D. Limbrick, Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage. Journal of neuropathology and experimental neurology 76 (2017) 358-375.
- [27] J.K. Karimy, J. Zhang, D.B. Kurland, B.C. Theriault, D. Duran, J.A. Stokum, C.G. Furey, X. Zhou, M.S. Mansuri, J. Montejo, A. Vera, M.L. DiLuna, E. Delpire, S.L. Alper, M. Gunel, V. Gerzanich, R. Medzhitov, J.M. Simard, and K.T. Kahle, Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23 (2017) 997-1003.
- [28] M.P. Lun, E.S. Monuki, and M.K. Lehtinen, Development and functions of the choroid plexuscerebrospinal fluid system. Nat Rev Neurosci 16 (2015) 445-57.
- [29] J. Zhang, M.A. Williams, and D. Rigamonti, Genetics of human hydrocephalus. Journal of neurology 253 (2006) 1255-66.
- [30] M.J. Page, J.E. McKenzie, P.M. Bossuyt, I. Boutron, T.C. Hoffmann, C.D. Mulrow, L. Shamseer, J.M. Tetzlaff, E.A. Akl, S.E. Brennan, R. Chou, J. Glanville, J.M. Grimshaw, A. Hróbjartsson, M.M. Lalu, T. Li, E.W. Loder, E. Mayo-Wilson, S. McDonald, L.A. McGuinness, L.A. Stewart, J. Thomas, A.C. Tricco, V.A. Welch, P. Whiting, and D. Moher, The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372 (2021) n71.

- [31] A. Hamosh, A.F. Scott, J.S. Amberger, C.A. Bocchini, and V.A. McKusick, Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic acids research 33 (2005) D514-D517.
- [32] A.T. Hale, S.R. Gannon, S. Zhao, M.C. Dewan, R. Bhatia, M. Bezzerides, A.N. Stanton, R.P. Naftel, C.N. Shannon, S. Pruthi, and J.C. Wellons, Graft dural closure is associated with a reduction in CSF leak and hydrocephalus in pediatric patients undergoing posterior fossa brain tumor resection. J Neurosurg Pediatr (2019) 1-7.
- [33] T.H. Andrew, Z. Dan, L.S. Rebecca, B. Lisa, W. Liuyang, S.Z. Sandra, J.S. Steven, C.K. Dennis, and R.G. Eric, The genetic architecture of human infectious diseases and pathogen-induced cellular phenotypes. medRxiv (2021) 2020.07.19.20157404.
- [34] C. Doğanli, H.C. Beck, A.B. Ribera, C. Oxvig, and K. Lykke-Hartmann, α3Na+/K+-ATPase deficiency causes brain ventricle dilation and abrupt embryonic motility in zebrafish. The Journal of biological chemistry 288 (2013) 8862-74.
- [35] H.C. Howard, D.B. Mount, D. Rochefort, N. Byun, N. Dupré, J. Lu, X. Fan, L. Song, J.B. Rivière, C. Prévost, J. Horst, A. Simonati, B. Lemcke, R. Welch, R. England, F.Q. Zhan, A. Mercado, W.B. Siesser, A.L. George, Jr., M.P. McDonald, J.P. Bouchard, J. Mathieu, E. Delpire, and G.A. Rouleau, The K-CI cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat Genet 32 (2002) 384-92.
- [36] S.C. Jin, C.G. Furey, X. Zeng, A. Allocco, C. Nelson-Williams, W. Dong, J.K. Karimy, K. Wang, S. Ma, and E. Delpire, SLC12A ion transporter mutations in sporadic and familial human congenital hydrocephalus. Molecular genetics & genomic medicine 7 (2019) e892.
- [37] C. Le Goff, F. Morice-Picard, N. Dagoneau, L.W. Wang, C. Perrot, Y.J. Crow, F. Bauer, E. Flori, C. Prost-Squarcioni, and D. Krakow, ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-β bioavailability regulation. Nature genetics 40 (2008) 1119-1123.
- [38] I. Berger, Z. Ben-Neriah, T. Dor-Wolman, A. Shaag, A. Saada, S. Zenvirt, A. Raas-Rothschild, M. Nadjari, K.H. Kaestner, and O. Elpeleg, Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing. Mol Genet Metab 104 (2011) 517-20.
- [39] Y. Saillour, G. Zanni, V. Des Portes, D. Heron, L. Guibaud, M.T. Iba-Zizen, J.L. Pedespan, K. Poirier, L. Castelnau, C. Julien, C. Franconnet, D. Bonthron, M.E. Porteous, J. Chelly, and T. Bienvenu, Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia. Journal of medical genetics 44 (2007) 739-44.
- [40] J.J. Westendorf, S.K. Zaidi, J.E. Cascino, R. Kahler, A.J. van Wijnen, J.B. Lian, M. Yoshida, G.S. Stein, and X. Li, Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol Cell Biol 22 (2002) 7982-92.
- [41] D.B. Beck, M.A. Basar, A.J. Asmar, J.J. Thompson, H. Oda, D.T. Uehara, K. Saida, S. Pajusalu, I. Talvik, P. D'Souza, J. Bodurtha, W. Mu, K.W. Barañano, N. Miyake, R. Wang, M. Kempers, T. Tamada, Y. Nishimura, S. Okada, T. Kosho, R. Dale, A. Mitra, E. Macnamara, N. Matsumoto, J. Inazawa, M. Walkiewicz, K. Õunap, C.J. Tifft, I. Aksentijevich, D.L. Kastner, P.P. Rocha, and A. Werner, Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation. Sci Adv 7 (2021).
- [42] T. Peters, R. Perrier, and R.M. Haber, Focal dermal hypoplasia: report of a case with myelomeningocele, Arnold-Chiari malformation and hydrocephalus with a review of neurologic manifestations of Goltz syndrome. Pediatr Dermatol 31 (2014) 220-4.
- [43] Y.W. Zhang, H.B. Qu, N. Long, X.Y. Leng, Y.Q. Liu, and Y. Yang, A rare mutant of OFD1 gene responsible for Joubert syndrome with significant phenotype variation. Mol Genet Genomics 296 (2021) 33-40.
- [44] K.K. Grindstaff, C. Yeaman, N. Anandasabapathy, S.C. Hsu, E. Rodriguez-Boulan, R.H. Scheller, and W.J. Nelson, Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93 (1998) 731-40.
- [45] X. Cao-Ehlker, X. Zong, V. Hammelmann, C. Gruner, S. Fenske, S. Michalakis, C. Wahl-Schott, and M. Biel, Up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 3 (HCN3) by specific interaction with K+ channel tetramerization domain-containing protein 3 (KCTD3). The Journal of biological chemistry 288 (2013) 7580-7589.

- [46] K.T. Chung, Y. Shen, and L.M. Hendershot, BAP, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. The Journal of biological chemistry 277 (2002) 47557-63.
- [47] J.R. Tyson, and C.J. Stirling, LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. Embo j 19 (2000) 6440-52.
- [48] R. Yahyaoui, M.G. Espinosa, C. Gómez, A. Dayaldasani, I. Rueda, A. Roldán, M. Ugarte, G. Lastra, and V. Pérez, Neonatal carnitine palmitoyltransferase II deficiency associated with Dandy-Walker syndrome and sudden death. Mol Genet Metab 104 (2011) 414-6.
- [49] E.M. Valente, C.V. Logan, S. Mougou-Zerelli, J.H. Lee, J.L. Silhavy, F. Brancati, M. Iannicelli, L. Travaglini, S. Romani, and B. Illi, Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nature genetics 42 (2010) 619-625.
- [50] I. Duran, S.P. Taylor, W. Zhang, J. Martin, F. Qureshi, S.M. Jacques, R. Wallerstein, R.S. Lachman, D.A. Nickerson, and M. Bamshad, Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia. Cilia 6 (2017) 1-13.
- [51] K. Joo, C.G. Kim, M.-S. Lee, H.-Y. Moon, S.-H. Lee, M.J. Kim, H.-S. Kweon, W.-Y. Park, C.-H. Kim, and J.G. Gleeson, CCDC41 is required for ciliary vesicle docking to the mother centriole. Proceedings of the National Academy of Sciences 110 (2013) 5987-5992.
- [52] M.S. Rocca, G. Piatti, A. Michelucci, R. Guazzo, V. Bertini, C. Vinanzi, M.A. Caligo, A. Valetto, and C. Foresta, A novel genetic variant in DNAI2 detected by custom gene panel in a newborn with Primary Ciliary Dyskinesia: case report. BMC medical genetics 21 (2020) 1-6.
- [53] H.-F. Mei, X.-R. Dong, H.-Y. Chen, Y.-L. Lu, B.-B. Wu, H.-J. Wang, G.-Q. Cheng, L.-S. Wang, Y. Cao, and L. Yang, Genetic etiologies associated with infantile hydrocephalus in a Chinese infantile cohort. World Journal of Pediatrics 17 (2021) 305-316.
- [54] T. Mashimo, O. Hadjebi, F. Amair-Pinedo, T. Tsurumi, F. Langa, T. Serikawa, C. Sotelo, J.L. Guénet, and J.L. Rosa, Progressive Purkinje cell degeneration in tambaleante mutant mice is a consequence of a missense mutation in HERC1 E3 ubiquitin ligase. PLoS Genet 5 (2009) e1000784.
- [55] B.V. Jacquet, R. Salinas-Mondragon, H. Liang, B. Therit, J.D. Buie, M. Dykstra, K. Campbell, L.E. Ostrowski, S.L. Brody, and H.T. Ghashghaei, FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development 136 (2009) 4021-31.
- [56] G. Lian, A. Chenn, V. Ekuta, S. Kanaujia, and V. Sheen, Formin 2 Regulates Lysosomal Degradation of Wnt-Associated β-Catenin in Neural Progenitors. Cerebral cortex (New York, N.Y. : 1991) 29 (2019) 1938-1952.
- [57] C. Gavino, and S. Richard, Patched1 haploinsufficiency impairs ependymal cilia function of the quaking viable mice, leading to fatal hydrocephalus. Molecular and cellular neurosciences 47 (2011) 100-7.
- [58] W. Liedtke, W. Edelmann, P.L. Bieri, F.C. Chiu, N.J. Cowan, R. Kucherlapati, and C.S. Raine, GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17 (1996) 607-15.
- [59] B. Qin, M. He, X. Chen, and D. Pei, Sorting nexin 10 induces giant vacuoles in mammalian cells. The Journal of biological chemistry 281 (2006) 36891-6.
- [60] Y. Chen, B. Wu, L. Xu, H. Li, J. Xia, W. Yin, Z. Li, D. Shi, S. Li, S. Lin, X. Shu, and D. Pei, A SNX10/V-ATPase pathway regulates ciliogenesis in vitro and in vivo. Cell research 22 (2012) 333-45.
- [61] J. DeMari, C. Mroske, S. Tang, J. Nimeh, R. Miller, and R.R. Lebel, CLTC as a clinically novel gene associated with multiple malformations and developmental delay. Am J Med Genet A 170a (2016) 958-66.
- [62] M. Rajadhyax, G. Neti, Y. Crow, and A. Tyagi, Neurological presentation of Griscelli syndrome: obstructive hydrocephalus without haematological abnormalities or organomegaly. Brain & development 29 (2007) 247-50.
- [63] E.A. Miller, and R. Schekman, COPII a flexible vesicle formation system. Curr Opin Cell Biol 25 (2013) 420-7.
- [64] Y. Hamazaki, M. Itoh, H. Sasaki, M. Furuse, and S. Tsukita, Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. The Journal of biological chemistry 277 (2002) 455-61.

- [65] J.C. Adams, and R.P. Tucker, The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development. Dev Dyn 218 (2000) 280-99.
- [66] D.E. Michele, R. Barresi, M. Kanagawa, F. Saito, R.D. Cohn, J.S. Satz, J. Dollar, I. Nishino, R.I. Kelley, H. Somer, V. Straub, K.D. Mathews, S.A. Moore, and K.P. Campbell, Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418 (2002) 417-22.
- [67] A. von Renesse, M.V. Petkova, S. Lützkendorf, J. Heinemeyer, E. Gill, C. Hübner, A. von Moers, W. Stenzel, and M. Schuelke, POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. Journal of medical genetics 51 (2014) 275-82.
- [68] C. Godfrey, E. Clement, R. Mein, M. Brockington, J. Smith, B. Talim, V. Straub, S. Robb, R. Quinlivan, L. Feng, C. Jimenez-Mallebrera, E. Mercuri, A.Y. Manzur, M. Kinali, S. Torelli, S.C. Brown, C.A. Sewry, K. Bushby, H. Topaloglu, K. North, S. Abbs, and F. Muntoni, Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain 130 (2007) 2725-35.
- [69] E.W. Jabs, X. Li, A.F. Scott, G. Meyers, W. Chen, M. Eccles, J.I. Mao, L.R. Charnas, C.E. Jackson, and M. Jaye, Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet 8 (1994) 275-9.
- [70] E. Lajeunie, H.W. Ma, J. Bonaventure, A. Munnich, M. Le Merrer, and D. Renier, FGFR2 mutations in Pfeiffer syndrome. Nat Genet 9 (1995) 108.
- [71] W. Reardon, R.M. Winter, P. Rutland, L.J. Pulleyn, B.M. Jones, and S. Malcolm, Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet 8 (1994) 98-103.
- [72] A.O. Wilkie, S.F. Slaney, M. Oldridge, M.D. Poole, G.J. Ashworth, A.D. Hockley, R.D. Hayward, D.J. David, L.J. Pulleyn, P. Rutland, and et al., Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9 (1995) 165-72.
- [73] P.M. Rich, T.C. Cox, and R.D. Hayward, The jugular foramen in complex and syndromic craniosynostosis and its relationship to raised intracranial pressure. AJNR Am J Neuroradiol 24 (2003) 45-51.
- [74] S.H. Kan, N. Elanko, D. Johnson, L. Cornejo-Roldan, J. Cook, E.W. Reich, S. Tomkins, A. Verloes, S.R. Twigg, S. Rannan-Eliya, D.M. McDonald-McGinn, E.H. Zackai, S.A. Wall, M. Muenke, and A.O. Wilkie, Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am J Hum Genet 70 (2002) 472-86.
- [75] Y.A. Ito, A.C. Smith, K.D. Kernohan, I.A. Pena, A. Ahmed, L.M. McDonell, C. Beaulieu, D.E. Bulman, A. Smidt, S.L. Sawyer, D.A. Dyment, K.M. Boycott, and C.L. Clericuzio, A ZPR1 mutation is associated with a novel syndrome of growth restriction, distinct craniofacial features, alopecia, and hypoplastic kidneys. Clinical genetics 94 (2018) 303-312.
- [76] M. Balasubramanian, R.C. Pollitt, K.E. Chandler, M.Z. Mughal, M.J. Parker, A. Dalton, P. Arundel, A.C. Offiah, and N.J. Bishop, CRTAP mutation in a patient with Cole-Carpenter syndrome. Am J Med Genet A 167a (2015) 587-91.
- [77] H.Y. Kroes, G. Pals, and A.J. van Essen, Ehlers-Danlos syndrome type IV: unusual congenital anomalies in a mother and son with a COL3A1 mutation and a normal collagen III protein profile. Clinical genetics 63 (2003) 224-7.
- [78] J. Lee, and J.M. Gross, Laminin beta1 and gamma1 containing laminins are essential for basement membrane integrity in the zebrafish eye. Invest Ophthalmol Vis Sci 48 (2007) 2483-90.
- [79] C.E. Scott, S.L. Wynn, A. Sesay, C. Cruz, M. Cheung, M.V. Gomez Gaviro, S. Booth, B. Gao, K.S. Cheah, R. Lovell-Badge, and J. Briscoe, SOX9 induces and maintains neural stem cells. Nat Neurosci 13 (2010) 1181-9.
- [80] R. Luo, S.J. Jeong, Z. Jin, N. Strokes, S. Li, and X. Piao, G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108 (2011) 12925-30.
- [81] X. Morin, F. Jaouen, and P. Durbec, Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat Neurosci 10 (2007) 1440-8.
- [82] F. Cesca, A. Yabe, B. Spencer-Dene, J. Scholz-Starke, L. Medrihan, C.H. Maden, H. Gerhardt, I.R. Orriss, P. Baldelli, M. Al-Qatari, M. Koltzenburg, R.H. Adams, F. Benfenati, and G. Schiavo, Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems. Cell Death Differ 19 (2012) 194-208.

- [83] V.A. Kinsler, A.C. Thomas, M. Ishida, N.W. Bulstrode, S. Loughlin, S. Hing, J. Chalker, K. McKenzie, S. Abu-Amero, O. Slater, E. Chanudet, R. Palmer, D. Morrogh, P. Stanier, E. Healy, N.J. Sebire, and G.E. Moore, Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS. J Invest Dermatol 133 (2013) 2229-36.
- [84] J. Jagannathan, R.R. Lonser, R. Smith, H.L. DeVroom, and E.H. Oldfield, Surgical management of cerebellar hemangioblastomas in patients with von Hippel–Lindau disease. Journal of neurosurgery 108 (2008) 210-222.
- [85] S.C. Reichert, K. Zelley, K.E. Nichols, M. Eberhard, E.H. Zackai, and J. Martinez-Poyer, Diagnosis of 9q22.3 microdeletion syndrome in utero following identification of craniosynostosis, overgrowth, and skeletal anomalies. Am J Med Genet A 167a (2015) 862-5.
- [86] R. Shimkets, M.R. Gailani, V.M. Siu, T. Yang-Feng, C.L. Pressman, S. Levanat, A. Goldstein, M. Dean, and A.E. Bale, Molecular analysis of chromosome 9q deletions in two Gorlin syndrome patients. Am J Hum Genet 59 (1996) 417-22.
- [87] L. Pastorino, P. Ghiorzo, S. Nasti, L. Battistuzzi, R. Cusano, C. Marzocchi, M.L. Garrè, M. Clementi, and G.B. Scarrà, Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am J Med Genet A 149a (2009) 1539-43.
- [88] M.D. Taylor, L. Liu, C. Raffel, C.C. Hui, T.G. Mainprize, X. Zhang, R. Agatep, S. Chiappa, L. Gao, A. Lowrance, A. Hao, A.M. Goldstein, T. Stavrou, S.W. Scherer, W.T. Dura, B. Wainwright, J.A. Squire, J.T. Rutka, and D. Hogg, Mutations in SUFU predispose to medulloblastoma. Nat Genet 31 (2002) 306-10.
- [89] D. Doherty, M.A. Parisi, L.S. Finn, M. Gunay-Aygun, M. Al-Mateen, D. Bates, C. Clericuzio, H. Demir, M. Dorschner, A.J. van Essen, W.A. Gahl, M. Gentile, N.T. Gorden, A. Hikida, D. Knutzen, H. Ozyurek, I. Phelps, P. Rosenthal, A. Verloes, H. Weigand, P.F. Chance, W.B. Dobyns, and I.A. Glass, Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). Journal of medical genetics 47 (2010) 8-21.
- [90] G.D. Gupta, É. Coyaud, J. Gonçalves, B.A. Mojarad, Y. Liu, Q. Wu, L. Gheiratmand, D. Comartin, J.M. Tkach, S.W. Cheung, M. Bashkurov, M. Hasegan, J.D. Knight, Z.Y. Lin, M. Schueler, F. Hildebrandt, J. Moffat, A.C. Gingras, B. Raught, and L. Pelletier, A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell 163 (2015) 1484-99.
- [91] A.B. Ekici, D. Hilfinger, M. Jatzwauk, C.T. Thiel, D. Wenzel, I. Lorenz, E. Boltshauser, T.W. Goecke, G. Staatz, D.J. Morris-Rosendahl, H. Sticht, U. Hehr, A. Reis, and A. Rauch, Disturbed Wnt Signalling due to a Mutation in CCDC88C Causes an Autosomal Recessive Non-Syndromic Hydrocephalus with Medial Diverticulum. Molecular syndromology 1 (2010) 99-112.
- [92] A. Enomoto, J. Ping, and M. Takahashi, Girdin, a novel actin-binding protein, and its family of proteins possess versatile functions in the Akt and Wnt signaling pathways. Annals of the New York Academy of Sciences 1086 (2006) 169-84.
- [93] C.Y. Logan, and R. Nusse, The Wnt signaling pathway in development and disease. Annual review of cell and developmental biology 20 (2004) 781-810.
- [94] H. Cheng, K. Dufu, C.S. Lee, J.L. Hsu, A. Dias, and R. Reed, Human mRNA export machinery recruited to the 5' end of mRNA. Cell 127 (2006) 1389-400.
- [95] Q. Zhang, S. Chen, Z. Qin, H. Zheng, and X. Fan, The first reported case of Beaulieu-Boycott-Innes syndrome caused by two novel mutations in THOC6 gene in a Chinese infant. Medicine (Baltimore) 99 (2020) e19751.
- [96] F. Mattioli, B. Isidor, O. Abdul-Rahman, A. Gunter, L. Huang, R. Kumar, C. Beaulieu, J. Gecz, M. Innes, J.L. Mandel, and A. Piton, Clinical and functional characterization of recurrent missense variants implicated in THOC6-related intellectual disability. Human molecular genetics 28 (2019) 952-960.
- [97] L. Mee, H. Honkala, O. Kopra, J. Vesa, S. Finnilä, I. Visapää, T.K. Sang, G.R. Jackson, R. Salonen, M. Kestilä, and L. Peltonen, Hydrolethalus syndrome is caused by a missense mutation in a novel gene HYLS1. Human molecular genetics 14 (2005) 1475-88.
- [98] E.M. Jenkinson, M.P. Rodero, P.R. Kasher, C. Uggenti, A. Oojageer, L.C. Goosey, Y. Rose, C.J. Kershaw, J.E. Urquhart, S.G. Williams, S.S. Bhaskar, J. O'Sullivan, G.M. Baerlocher, M. Haubitz, G. Aubert, K.W. Barañano, A.J. Barnicoat, R. Battini, A. Berger, E.M. Blair, J.E. Brunstrom-Hernandez, J.A. Buckard, D.M. Cassiman, R. Caumes, D.M. Cordelli, L.M. De Waele, A.J. Fay, P. Ferreira, N.A. Fletcher, A.E. Fryer, H. Goel, C.A. Hemingway, M. Henneke, I. Hughes, R.J. Jefferson, R. Kumar, L. Lagae, P.G. Landrieu, C.M. Lourenço, T.J. Malpas, S.G. Mehta, I. Metz,

S. Naidu, K. Õunap, A. Panzer, P. Prabhakar, G. Quaghebeur, R. Schiffmann, E.H. Sherr, K.R. Sinnathuray, C. Soh, H.S. Stewart, J. Stone, H. Van Esch, C.E. Van Mol, A. Vanderver, E.L. Wakeling, A. Whitney, G.D. Pavitt, S. Griffiths-Jones, G.I. Rice, P. Revy, M.S. van der Knaap, J.H. Livingston, R.T. O'Keefe, and Y.J. Crow, Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nat Genet 48 (2016) 1185-92.

- [99] N. Hishimura, M. Watari, H. Ohata, N. Fuseya, S. Wakiguchi, T. Tokutomi, K. Okuhara, N. Takahashi, S. Iizuka, H. Yamamoto, T. Mishima, S. Fujieda, R. Kobayashi, K. Cho, Y. Kuroda, K. Kurosawa, and H. Tonoki, Genetic and prenatal findings in two Japanese patients with Schinzel-Giedion syndrome. Clin Case Rep 5 (2017) 5-8.
- [100] X. Wang, R.S. Lee, B.H. Alver, J.R. Haswell, S. Wang, J. Mieczkowski, Y. Drier, S.M. Gillespie, T.C. Archer, and J.N. Wu, SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nature genetics 49 (2017) 289-295.
- [101] G. Sienski, D. Dönertas, and J. Brennecke, Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151 (2012) 964-80.
- [102] M.D. Domínguez-Pinos, P. Páez, A.J. Jiménez, B. Weil, M.A. Arráez, J.M. Pérez-Fígares, and E.M. Rodríguez, Ependymal denudation and alterations of the subventricular zone occur in human fetuses with a moderate communicating hydrocephalus. Journal of neuropathology and experimental neurology 64 (2005) 595-604.
- [103] X. Li, H. Kong, W. Wu, M. Xiao, X. Sun, and G. Hu, Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience 162 (2009) 67-77.
- [104] E. Meyer, C. Ricketts, N.V. Morgan, M.R. Morris, S. Pasha, L.J. Tee, F. Rahman, A. Bazin, B. Bessières, P. Déchelotte, M.T. Yacoubi, M. Al-Adnani, T. Marton, D. Tannahill, R.C. Trembath, C. Fallet-Bianco, P. Cox, D. Williams, and E.R. Maher, Mutations in FLVCR2 are associated with proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (Fowler syndrome). Am J Hum Genet 86 (2010) 471-8.
- [105] S.S. Pao, I.T. Paulsen, and M.H. Saier, Jr., Major facilitator superfamily. Microbiology and molecular biology reviews : MMBR 62 (1998) 1-34.
- [106] T. Kato, H. Sato, M. Emi, T. Seino, S. Arawaka, C. Iseki, Y. Takahashi, M. Wada, and T. Kawanami, Segmental copy number loss of SFMBT1 gene in elderly individuals with ventriculomegaly: a community-based study. Intern Med 50 (2011) 297-303.
- [107] J.K. Kim, S.O. Huh, H. Choi, K.S. Lee, D. Shin, C. Lee, J.S. Nam, H. Kim, H. Chung, H.W. Lee, S.D. Park, and R.H. Seong, Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol Cell Biol 21 (2001) 7787-95.
- [108] H. Sato, Y. Takahashi, L. Kimihira, C. Iseki, H. Kato, Y. Suzuki, R. Igari, H. Sato, S. Koyama, S. Arawaka, T. Kawanami, M. Miyajima, N. Samejima, S. Sato, M. Kameda, S. Yamada, D. Kita, M. Kaijima, I. Date, Y. Sonoda, T. Kayama, N. Kuwana, H. Arai, and T. Kato, A Segmental Copy Number Loss of the SFMBT1 Gene Is a Genetic Risk for Shunt-Responsive, Idiopathic Normal Pressure Hydrocephalus (iNPH): A Case-Control Study. PloS one 11 (2016) e0166615.
- [109] H.W. Yang, S. Lee, D. Yang, H. Dai, Y. Zhang, L. Han, S. Zhao, S. Zhang, Y. Ma, M.F. Johnson, A.K. Rattray, T.A. Johnson, G. Wang, S. Zheng, R.S. Carroll, P.J. Park, and M.D. Johnson, Deletions in CWH43 cause idiopathic normal pressure hydrocephalus. EMBO Mol Med 13 (2021) e13249.
- [110] U.N. Abdulhag, D. Soiferman, O. Schueler-Furman, C. Miller, A. Shaag, O. Elpeleg, S. Edvardson, and A. Saada, Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. European journal of human genetics : EJHG 23 (2015) 159-64.
- [111] A.D. Sheftel, C. Wilbrecht, O. Stehling, B. Niggemeyer, H.P. Elsässer, U. Mühlenhoff, and R. Lill, The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol Biol Cell 23 (2012) 1157-66.
- [112] L. Schlotawa, E.C. Ennemann, K. Radhakrishnan, B. Schmidt, A. Chakrapani, H.J. Christen, H. Moser, B. Steinmann, T. Dierks, and J. Gärtner, SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency. European journal of human genetics : EJHG 19 (2011) 253-61.

- [113] M.N. Cizmeci, A.Z. Akelma, D. Kosehan, I. Kutukoglu, and F.M. Sonmez, Multiloculated hydrocephalus of intrauterine-onset: a case report of an unexpected MTHFR A1298C positive test result. Genet Couns 24 (2013) 265-71.
- [114] M. Barisic, B. Sohm, P. Mikolcevic, C. Wandke, V. Rauch, T. Ringer, M. Hess, G. Bonn, and S. Geley, Spindly/CCDC99 is required for efficient chromosome congression and mitotic checkpoint regulation. Mol Biol Cell 21 (2010) 1968-81.
- [115] V.K. Khodiyar, L.J. Maltais, B.J. Ruef, K.M. Sneddon, J.R. Smith, M. Shimoyama, F. Cabral, C. Dumontet, S.K. Dutcher, R.J. Harvey, L. Lafanechère, J.M. Murray, E. Nogales, D. Piquemal, F. Stanchi, S. Povey, and R.C. Lovering, A revised nomenclature for the human and rodent alpha-tubulin gene family. Genomics 90 (2007) 285-9.
- [116] S.V. Paushkin, M. Patel, B.S. Furia, S.W. Peltz, and C.R. Trotta, Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3' end formation. Cell 117 (2004) 311-21.
- [117] D. Pacholsky, P. Vakeel, M. Himmel, T. Löwe, T. Stradal, K. Rottner, D.O. Fürst, and P.F. van der Ven, Xin repeats define a novel actin-binding motif. J Cell Sci 117 (2004) 5257-68.
- [118] H.H. Qi, P.P. Ongusaha, J. Myllyharju, D. Cheng, O. Pakkanen, Y. Shi, S.W. Lee, J. Peng, and Y. Shi, Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455 (2008) 421-4.
- [119] T.M. Khuong, R.L. Habets, J.R. Slabbaert, and P. Verstreken, WASP is activated by phosphatidylinositol-4,5-bisphosphate to restrict synapse growth in a pathway parallel to bone morphogenetic protein signaling. Proc Natl Acad Sci U S A 107 (2010) 17379-84.
- [120] E. Beutler, Gaucher disease: new molecular approaches to diagnosis and treatment. Science (New York, N.Y.) 256 (1992) 794-9.
- [121] A.M. Alazami, S. Maddirevula, M.Z. Seidahmed, L.A. Albhlal, and F.S. Alkuraya, A novel ISLR2linked autosomal recessive syndrome of congenital hydrocephalus, arthrogryposis and abdominal distension. Human genetics 138 (2019) 105-107.
- [122] A.A. Allocco, S.C. Jin, P.Q. Duy, C.G. Furey, X. Zeng, W. Dong, C. Nelson-Williams, J.K. Karimy, T. DeSpenza, L.T. Hao, B. Reeves, S. Haider, M. Gunel, R.P. Lifton, and K.T. Kahle, Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3. Front Cell Neurosci 13 (2019) 425.
- [123] N. Chassaing, B. Gilbert-Dussardier, F. Nicot, V. Fermeaux, F. Encha-Razavi, M. Fiorenza, A. Toutain, and P. Calvas, Germinal mosaicism and familial recurrence of a SOX2 mutation with highly variable phenotypic expression extending from AEG syndrome to absence of ocular involvement. Am J Med Genet A 143a (2007) 289-91.
- [124] P.M. Cox, R.A. Gibson, N. Morgan, and L.A. Brueton, VACTERL with hydrocephalus in twins due to Fanconi anemia (FA): mutation in the FAC gene. American journal of medical genetics 68 (1997) 86-90.
- [125] B. De Keersmaecker, H. Van Esch, D. Van Schoubroeck, F. Claus, P. Moerman, and L. De Catte, Prenatal diagnosis of MPPH syndrome. Prenat Diagn 33 (2013) 292-5.
- [126] L.F. Escobar, A.K. Hiett, and A. Marnocha, Significant phenotypic variability of Muenke syndrome in identical twins. Am J Med Genet A 149a (2009) 1273-6.
- [127] I. Gomy, B. Heck, A.C. Santos, M.S. Figueiredo, C.E. Martinelli, Jr., M.P. Nogueira, and J.M. Pina-Neto, Two new Brazilian patients with Gómez-López-Hernández syndrome: reviewing the expanded phenotype with molecular insights. Am J Med Genet A 146a (2008) 649-57.
- [128] E. Isik, H. Onay, T. Atik, B. Akgun, O. Cogulu, and F. Ozkinay, Clinical and genetic features of L1 syndrome patients: Definition of two novel mutations. Clin Neurol Neurosurg 172 (2018) 20-23.
- [129] S.C. Jin, C.G. Furey, X. Zeng, A. Allocco, C. Nelson-Williams, W. Dong, J.K. Karimy, K. Wang, S. Ma, E. Delpire, and K.T. Kahle, SLC12A ion transporter mutations in sporadic and familial human congenital hydrocephalus. Molecular genetics & genomic medicine 7 (2019) e892.
- [130] M. Jouet, E. Feldman, J. Yates, D. Donnai, J. Paterson, D. Siggers, and S. Kenwrick, Refining the genetic location of the gene for X linked hydrocephalus within Xq28. Journal of medical genetics 30 (1993) 214-7.
- [131] M. Khattab, F. Xu, P. Li, and V. Bhandari, A de novo 3.54 Mb deletion of 17q22-q23.1 associated with hydrocephalus: a case report and review of literature. Am J Med Genet A 155a (2011) 3082-6.
- [132] R.E. Lamont, W.H. Tan, A.M. Innes, J.S. Parboosingh, D. Schneidman-Duhovny, A. Rajkovic, J. Pappas, P. Altschwager, S. DeWard, A. Fulton, K.J. Gray, M. Krall, L. Mehta, L.H. Rodan, D.N.

Saller, Jr., D. Steele, D. Stein, S.A. Yatsenko, F.P. Bernier, and A.M. Slavotinek, Expansion of phenotype and genotypic data in CRB2-related syndrome. European journal of human genetics : EJHG 24 (2016) 1436-44.

- [133] S. Lyonnet, A. Pelet, G. Royer, O. Delrieu, F. Serville, B. le Marec, A. Gruensteudel, R.A. Pfeiffer, M.L. Briard, C. Dubay, and et al., The gene for X-linked hydrocephalus maps to Xq28, distal to DXS52. Genomics 14 (1992) 508-10.
- [134] M.R. Maurya, R. Ravi, and S.A. Pungavkar, A case report of Arnold Chiari type 1 malformation in acromesomelic dwarf infant. Pan Afr Med J 38 (2021) 58.
- [135] P. Porayette, D. Fruitman, J.L. Lauzon, C. Le Goff, V. Cormier-Daire, S.P. Sanders, A. Pinto-Rojas, and A.R. Perez-Atayde, Novel mutations in geleophysic dysplasia type 1. Pediatr Dev Pathol 17 (2014) 209-16.
- [136] F. Serville, P. Benit, P. Saugier, M. Vibert, G. Royer, A. Pelet, M. Chery, A. Munnich, and S. Lyonnet, Prenatal exclusion of X-linked hydrocephalus-stenosis of the aqueduct of Sylvius sequence using closely linked DNA markers. Prenat Diagn 13 (1993) 435-9.
- [137] L. Strain, C.M. Gosden, D.J. Brock, and D.T. Bonthron, Genetic heterogeneity in X-linked hydrocephalus: linkage to markers within Xq27.3. Am J Hum Genet 54 (1994) 236-43.
- [138] A. Tzschach, U. Grasshoff, K. Schäferhoff, M. Bonin, A. Dufke, M. Wolff, K. Haas-Lude, A. Bevot, and O. Riess, Interstitial 9q34.11-q34.13 deletion in a patient with severe intellectual disability, hydrocephalus, and cleft lip/palate. Am J Med Genet A 158a (2012) 1709-12.
- [139] E. Verbeek, M.E. Meuwissen, F.W. Verheijen, P.P. Govaert, D.J. Licht, D.S. Kuo, C.J. Poulton, R. Schot, M.H. Lequin, J. Dudink, D.J. Halley, R.I. de Coo, J.C. den Hollander, R. Oegema, D.B. Gould, and G.M. Mancini, COL4A2 mutation associated with familial porencephaly and small-vessel disease. European journal of human genetics : EJHG 20 (2012) 844-51.
- [140] J.P. Vieira, P. Lopes, and R. Silva, Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. Journal of child neurology 27 (2012) 938-41.
- [141] A. Alhousseini, S. Zeineddine, A. Husseini, H. Baddah, H. Saker, S. Mody, S.A. Ibrahim, M. Thakur, E. Hernandez-Andrade, and R. Bahado-Singh, Familial Hydrocephalus and Dysgenesis of the Corpus Callosum Associated with Xp22.33 Duplication and Stenosis of the Aqueduct of Sylvius with X-Linked Recessive Inheritance Pattern. Gynecol Obstet Invest 84 (2019) 412-416.
- [142] A.H. Beggs, P.E. Neumann, K. Arahata, E. Arikawa, I. Nonaka, M.S. Anderson, and L.M. Kunkel, Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy. Proc Natl Acad Sci U S A 89 (1992) 623-7.
- [143] P. Cacciagli, J.P. Desvignes, N. Girard, M. Delepine, D. Zelenika, M. Lathrop, N. Lévy, D.H. Ledbetter, W.B. Dobyns, and L. Villard, AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). European journal of human genetics : EJHG 22 (2014) 363-8.
- [144] N. Chassaing, V. Siani, D. Carles, A.L. Delezoide, E.M. Alberti, J. Battin, J.F. Chateil, B. Gilbert-Dussardier, I. Coupry, B. Arveiler, R. Saura, and D. Lacombe, X-linked dominant chondrodysplasia with platyspondyly, distinctive brachydactyly, hydrocephaly, and microphthalmia. Am J Med Genet A 136a (2005) 307-12.
- [145] L.V. Furtado, P. Bayrak-Toydemir, B. Hulinsky, K. Damjanovich, J.C. Carey, and A.F. Rope, A novel X-linked multiple congenital anomaly syndrome associated with an EBP mutation. Am J Med Genet A 152a (2010) 2838-44.
- [146] S.T. Holden, J.J. Cox, I. Kesterton, N.S. Thomas, C. Carr, and C.G. Woods, Fanconi anaemia complementation group B presenting as X linked VACTERL with hydrocephalus syndrome. Journal of medical genetics 43 (2006) 750-4.
- [147] M. Jouet, A. Moncla, J. Paterson, C. McKeown, A. Fryer, N. Carpenter, E. Holmberg, C. Wadelius, and S. Kenwrick, New domains of neural cell-adhesion molecule L1 implicated in X-linked hydrocephalus and MASA syndrome. Am J Hum Genet 56 (1995) 1304-14.
- [148] L. Kaepernick, E. Legius, J. Higgins, and S. Kapur, Clinical aspects of the MASA syndrome in a large family, including expressing females. Clinical genetics 45 (1994) 181-5.
- [149] S. Kenwrick, V. Ionasescu, G. Ionasescu, C. Searby, A. King, M. Dubowitz, and K.E. Davies, Linkage studies of X-linked recessive spastic paraplegia using DNA probes. Human genetics 73 (1986) 264-6.

- [150] T.M. Ko, H.L. Hwa, L.H. Tseng, F.J. Hsieh, S.F. Huang, and T.Y. Lee, Prenatal diagnosis of Xlinked hydrocephalus in a Chinese family with four successive affected pregnancies. Prenat Diagn 14 (1994) 57-60.
- [151] M. Kolanczyk, P. Krawitz, J. Hecht, A. Hupalowska, M. Miaczynska, K. Marschner, C. Schlack, D. Emmerich, K. Kobus, U. Kornak, P.N. Robinson, B. Plecko, G. Grangl, S. Uhrig, S. Mundlos, and D. Horn, Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome. European journal of human genetics : EJHG 23 (2015) 720.
- [152] H.Y. Kroes, R.J. Nievelstein, P.G. Barth, P.G. Nikkels, C. Bergmann, R.H. Gooskens, G. Visser, H.K. van Amstel, and F.A. Beemer, Cerebral, cerebellar, and colobomatous anomalies in three related males: Sex-linked inheritance in a newly recognized syndrome with features overlapping with Joubert syndrome. Am J Med Genet A 135 (2005) 297-301.
- [153] E. Legius, L. Kaepernick, J.V. Higgins, and T.W. Glover, Fine mapping of X-linked clasped thumb and mental retardation (MASA syndrome) in Xq28. Clinical genetics 45 (1994) 165-8.
- [154] J. McCauley, N. Masand, R. McGowan, S. Rajagopalan, A. Hunter, J.L. Michaud, K. Gibson, J. Robertson, F. Vaz, S. Abbs, and S.T. Holden, X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations. Am J Med Genet A 155a (2011) 2370-80.
- [155] B. Mikat, C. Roll, D. Schindler, U. Gembruch, I. Klempert, K. Buiting, N.C. Bramswig, and D. Wieczorek, X-linked recessive VACTERL-H due to a mutation in FANCB in a preterm boy. Clin Dysmorphol 25 (2016) 73-6.
- [156] M. Rietschel, W. Friedl, S. Uhlhaas, M. Neugebauer, D. Heimann, and K. Zerres, MASA syndrome: clinical variability and linkage analysis. American journal of medical genetics 41 (1991) 10-4.
- [157] A. Rosenthal, M. Jouet, and S. Kenwrick, Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat Genet 2 (1992) 107-12.
- [158] C. Schrander-Stumpel, E. Legius, J.P. Fryns, and J.J. Cassiman, MASA syndrome: new clinical features and linkage analysis using DNA probes. Journal of medical genetics 27 (1990) 688-92.
- [159] F. Serville, S. Lyonnet, A. Pelet, M. Reynaud, C. Louail, A. Munnich, and M. Le Merrer, X-linked hydrocephalus: clinical heterogeneity at a single gene locus. European journal of pediatrics 151 (1992) 515-8.
- [160] V.L. Sheen, L. Basel-Vanagaite, J.R. Goodman, I.E. Scheffer, A. Bodell, V.S. Ganesh, R. Ravenscroft, R.S. Hill, T.J. Cherry, Y.Y. Shugart, J. Barkovich, R. Straussberg, and C.A. Walsh, Etiological heterogeneity of familial periventricular heterotopia and hydrocephalus. Brain & development 26 (2004) 326-34.
- [161] D. Simon, B. Laloo, M. Barillot, T. Barnetche, C. Blanchard, C. Rooryck, M. Marche, I. Burgelin, I. Coupry, N. Chassaing, B. Gilbert-Dussardier, D. Lacombe, C. Grosset, and B. Arveiler, A mutation in the 3'-UTR of the HDAC6 gene abolishing the post-transcriptional regulation mediated by hsa-miR-433 is linked to a new form of dominant X-linked chondrodysplasia. Human molecular genetics 19 (2010) 2015-27.
- [162] K. Tripolszki, E. Sasaki, R. Hotakainen, A.H. Kassim, C. Pereira, A. Rolfs, P. Bauer, W. Reardon, and A.M. Bertoli-Avella, An X-linked syndrome with severe neurodevelopmental delay, hydrocephalus, and early lethality caused by a missense variation in the OTUD5 gene. Clinical genetics 99 (2021) 303-308.
- [163] N. Watanabe, S. Tsutsumi, Y. Miyano, H. Sato, and S. Nagase, X-linked VACTERL-H caused by deletion of exon 3 in FANCB: A case report. Congenit Anom (Kyoto) 58 (2018) 171-172.
- [164] P.J. Willems, I. Dijkstra, B.J. Van der Auwera, L. Vits, P. Coucke, P. Raeymaekers, C. Van Broeckhoven, G.G. Consalez, S.B. Freeman, S.T. Warren, and et al., Assignment of X-linked hydrocephalus to Xq28 by linkage analysis. Genomics 8 (1990) 367-70.
- [165] P.J. Willems, L. Vits, P. Raeymaekers, J. Beuten, P. Coucke, J.J. Holden, C. Van Broeckhoven, S.T. Warren, M. Sagi, D. Robinson, and et al., Further localization of X-linked hydrocephalus in the chromosomal region Xq28. Am J Hum Genet 51 (1992) 307-15.
- [166] L. Bott, O. Boute, K. Mention, M. Vinchon, F. Boman, and F. Gottrand, Congenital idiopathic intestinal pseudo-obstruction and hydrocephalus with stenosis of the aqueduct of sylvius. Am J Med Genet A 130a (2004) 84-7.

- [167] C.M. Brewer, B.J. Fredericks, J.M. Pont, J.B. Stephenson, and J.L. Tolmie, X-linked hydrocephalus masquerading as spina bifida and destructive porencephaly in successive generations in one family. Dev Med Child Neurol 38 (1996) 632-6.
- [168] B.A. Chidsey, E.E. Baldwin, R. Toydemir, L. Ahles, H. Hanson, and D.A. Stevenson, L1CAM whole gene deletion in a child with L1 syndrome. Am J Med Genet A 164a (2014) 1555-8.
- [169] S. Claes, T. Aguirre, V. Simosa, T. Bustos, R. Lander, M. Piras, E. Legius, J.J. Cassiman, and P. Raeymaekers, Hydrocephalus and spastic paraplegia result from a donor splice site mutation (2872 + 1G to A) in the L1CAM gene in a Venezuelan pedigree. Hum Mutat Suppl 1 (1998) S240-1.
- [170] P. Coucke, L. Vits, G. Van Camp, F. Serville, S. Lyonnet, S. Kenwrick, A. Rosenthal, M. Wehnert, A. Munnich, and P.J. Willems, Identification of a 5' splice site mutation in intron 4 of the L1CAM gene in an X-linked hydrocephalus family. Human molecular genetics 3 (1994) 671-3.
- [171] Y.Z. Du, C. Dickerson, A.S. Aylsworth, and C.E. Schwartz, A silent mutation, C924T (G308G), in the L1CAM gene results in X linked hydrocephalus (HSAS). Journal of medical genetics 35 (1998) 456-62.
- [172] Y.Z. Du, A.K. Srivastava, and C.E. Schwartz, Multiple exon screening using restriction endonuclease fingerprinting (REF): detection of six novel mutations in the L1 cell adhesion molecule (L1CAM) gene. Hum Mutat 11 (1998) 222-30.
- [173] J.S. Du, L. Bason, H. Woffendin, E. Zackai, and S. Kenwrick, Somatic and germ line mosaicism and mutation origin for a mutation in the L1 gene in a family with X-linked hydrocephalus. American journal of medical genetics 75 (1998) 200-2.
- [174] R. Ferese, S. Zampatti, A.M. Griguoli, F. Fornai, E. Giardina, G. Barrano, V. Albano, R. Campopiano, S. Scala, G. Novelli, and S. Gambardella, A New Splicing Mutation in the L1CAM Gene Responsible for X-Linked Hydrocephalus (HSAS). Journal of molecular neuroscience : MN 59 (2016) 376-81.
- [175] R.M. Fernández, R. Núñez-Torres, L. García-Díaz, J.C. de Agustín, G. Antiñolo, and S. Borrego, Association of X-linked hydrocephalus and Hirschsprung disease: report of a new patient with a mutation in the L1CAM gene. Am J Med Genet A 158a (2012) 816-20.
- [176] U. Finckh, J. Schröder, B. Ressler, A. Veske, and A. Gal, Spectrum and detection rate of L1CAM mutations in isolated and familial cases with clinically suspected L1-disease. American journal of medical genetics 92 (2000) 40-6.
- [177] E. Fransen, C. Schrander-Stumpel, L. Vits, P. Coucke, G. Van Camp, and P.J. Willems, X-linked hydrocephalus and MASA syndrome present in one family are due to a single missense mutation in exon 28 of the L1CAM gene. Human molecular genetics 3 (1994) 2255-6.
- [178] N. Gigarel, N. Frydman, P. Burlet, V. Kerbrat, J. Steffann, R. Frydman, A. Munnich, and P.F. Ray, Single cell co-amplification of polymorphic markers for the indirect preimplantation genetic diagnosis of hemophilia A, X-linked adrenoleukodystrophy, X-linked hydrocephalus and incontinentia pigmenti loci on Xq28. Human genetics 114 (2004) 298-305.
- [179] W.D. Graf, D.E. Born, D.W. Shaw, J.R. Thomas, L.W. Holloway, and R.C. Michaelis, Diffusionweighted magnetic resonance imaging in boys with neural cell adhesion molecule L1 mutations and congenital hydrocephalus. Ann Neurol 47 (2000) 113-7.
- [180] L.C. Gregory, P. Shah, J.R.F. Sanner, M. Arancibia, J. Hurst, W.D. Jones, H. Spoudeas, P. Le Quesne Stabej, H.J. Williams, L.A. Ocaka, C. Loureiro, A. Martinez-Aguayo, and M.T. Dattani, Mutations in MAGEL2 and L1CAM Are Associated With Congenital Hypopituitarism and Arthrogryposis. J Clin Endocrinol Metab 104 (2019) 5737-5750.
- [181] P. Griseri, Y. Vos, R. Giorda, S. Gimelli, S. Beri, G. Santamaria, G. Mognato, R.M. Hofstra, G. Gimelli, and I. Ceccherini, Complex pathogenesis of Hirschsprung's disease in a patient with hydrocephalus, vesico-ureteral reflux and a balanced translocation t(3;17)(p12;q11). European journal of human genetics : EJHG 17 (2009) 483-90.
- [182] S.M. Gu, U. Orth, A. Veske, H. Enders, K. Klunder, M. Schlosser, W. Engel, E. Schwinger, and A. Gal, Five novel mutations in the L1CAM gene in families with X linked hydrocephalus. Journal of medical genetics 33 (1996) 103-6.
- [183] D. Guo, Y. Shi, W. Jian, Y. Fu, H. Yang, M. Guo, W. Yong, G. Chen, H. Deng, Y. Qin, W. Liao, and R. Yao, A novel nonsense mutation in the L1CAM gene responsible for X-linked congenital hydrocephalus. J Gene Med 22 (2020) e3180.

- [184] C.A. Hübner, B. Utermann, S. Tinschert, G. Krüger, B. Ressler, C. Steglich, A. Schinzel, and A. Gal, Intronic mutations in the L1CAM gene may cause X-linked hydrocephalus by aberrant splicing. Hum Mutat 23 (2004) 526.
- [185] M. Jouet, and S. Kenwrick, Gene analysis of L1 neural cell adhesion molecule in prenatal diagnosis of hydrocephalus. Lancet 345 (1995) 161-2.
- [186] M. Jouet, L. Strain, D. Bonthron, and S. Kenwrick, Discordant segregation of Xq28 markers and a mutation in the L1 gene in a family with X linked hydrocephalus. Journal of medical genetics 33 (1996) 248-50.
- [187] Y. Kanemura, N. Okamoto, H. Sakamoto, T. Shofuda, H. Kamiguchi, and M. Yamasaki, Molecular mechanisms and neuroimaging criteria for severe L1 syndrome with X-linked hydrocephalus. J Neurosurg 105 (2006) 403-12.
- [188] W. Kong, X. Wang, J. Zhao, M. Kang, N. Xi, and S. Li, A new frameshift mutation in L1CAM producing X-linked hydrocephalus. Molecular genetics & genomic medicine 8 (2020) e1031.
- [189] M.C. Liebau, A. Gal, A. Superti-Furga, H. Omran, and M. Pohl, L1CAM mutation in a boy with hydrocephalus and duplex kidneys. Pediatr Nephrol 22 (2007) 1058-61.
- [190] D.D. Limbrick, Jr., B. Baksh, C.D. Morgan, G. Habiyaremye, J.P. McAllister, 2nd, T.E. Inder, D. Mercer, D.M. Holtzman, J. Strahle, M.J. Wallendorf, and D.M. Morales, Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PloS one 12 (2017) e0172353.
- [191] J.R. MacFarlane, J.S. Du, M.E. Pepys, S. Ramsden, D. Donnai, R. Charlton, C. Garrett, J. Tolmie, J.R. Yates, C. Berry, D. Goudie, A. Moncla, P. Lunt, S. Hodgson, M. Jouet, and S. Kenwrick, Nine novel L1 CAM mutations in families with X-linked hydrocephalus. Hum Mutat 9 (1997) 512-8.
- [192] R. Marín, M. Ley-Martos, G. Gutiérrez, F. Rodríguez-Sánchez, D. Arroyo, and F. Mora-López, Three cases with L1 syndrome and two novel mutations in the L1CAM gene. European journal of pediatrics 174 (2015) 1541-4.
- [193] M. Marx, S. Diestel, M. Bozon, L. Keglowich, N. Drouot, E. Bouché, T. Frebourg, M. Minz, P. Saugier-Veber, V. Castellani, and M.K. Schäfer, Pathomechanistic characterization of two exonic L1CAM variants located in trans in an obligate carrier of X-linked hydrocephalus. Neurogenetics 13 (2012) 49-59.
- [194] R.C. Michaelis, Y.Z. Du, and C.E. Schwartz, The site of a missense mutation in the extracellular Ig or FN domains of L1CAM influences infant mortality and the severity of X linked hydrocephalus. Journal of medical genetics 35 (1998) 901-4.
- [195] S. Nakakimura, F. Sasaki, T. Okada, A. Arisue, K. Cho, M. Yoshino, Y. Kanemura, M. Yamasaki, and S. Todo, Hirschsprung's disease, acrocallosal syndrome, and congenital hydrocephalus: report of 2 patients and literature review. J Pediatr Surg 43 (2008) E13-7.
- [196] N. Okamoto, Y. Wada, and M. Goto, Hydrocephalus and Hirschsprung's disease in a patient with a mutation of L1CAM. Journal of medical genetics 34 (1997) 670-1.
- [197] N. Okamoto, R. Del Maestro, R. Valero, E. Monros, P. Poo, Y. Kanemura, and M. Yamasaki, Hydrocephalus and Hirschsprung's disease with a mutation of L1CAM. J Hum Genet 49 (2004) 334-337.
- [198] M. Panayi, D. Gokhale, S. Mansour, and R. Elles, Prenatal diagnosis in a family with X-linked hydrocephalus. Prenat Diagn 25 (2005) 930-3.
- [199] M.A. Parisi, R.P. Kapur, I. Neilson, R.M. Hofstra, L.W. Holloway, R.C. Michaelis, and K.A. Leppig, Hydrocephalus and intestinal aganglionosis: is L1CAM a modifier gene in Hirschsprung disease? American journal of medical genetics 108 (2002) 51-6.
- [200] G. Pomili, G. Venti Donti, L. Alunni Carrozza, C. Ardisia, F. Servidio, R.M. Hofstra, G. Gilardi, and E. Donti, MASA syndrome: ultrasonographic evidence in a male fetus. Prenat Diagn 20 (2000) 1012-4.
- [201] M. Rehnberg, J. Jonasson, and C. Gunnarsson, Novel L1CAM splice site mutation in a young male with L1 syndrome. Am J Med Genet A 155a (2011) 439-41.
- [202] G. Rodríguez Criado, A. Pérez Aytés, F. Martínez, Y.J. Vos, E. Verlind, A. González-Meneses López, I. Gómez de Terreros Sánchez, and C. Schrander-Stumpel, X-linked hydrocephalus: another two families with an L1 mutation. Genet Couns 14 (2003) 57-65.
- [203] J.C. Ruiz, H. Cuppens, E. Legius, J.P. Fryns, T. Glover, P. Marynen, and J.J. Cassiman, Mutations in L1-CAM in two families with X linked complicated spastic paraplegia, MASA syndrome, and HSAS. Journal of medical genetics 32 (1995) 549-52.

- [204] P. Saugier-Veber, C. Martin, N. Le Meur, S. Lyonnet, A. Munnich, A. David, A. Hénocq, D. Héron, P. Jonveaux, S. Odent, S. Manouvrier, A. Moncla, N. Morichon, N. Philip, D. Satge, M. Tosi, and T. Frébourg, Identification of novel L1CAM mutations using fluorescence-assisted mismatch analysis. Hum Mutat 12 (1998) 259-66.
- [205] M.V. Senat, J.P. Bernard, A. Delezoide, P. Saugier-Veber, Y. Hillion, J. Roume, and Y. Ville, Prenatal diagnosis of hydrocephalus-stenosis of the aqueduct of Sylvius by ultrasound in the first trimester of pregnancy. Report of two cases. Prenat Diagn 21 (2001) 1129-32.
- [206] T. Serikawa, K. Nishiyama, J. Tohyama, R. Tazawa, K. Goto, Y. Kuriyama, K. Haino, Y. Kanemura, M. Yamasaki, K. Nakata, K. Takakuwa, and T. Enomoto, Prenatal molecular diagnosis of X-linked hydrocephalus via a silent C924T mutation in the L1CAM gene. Congenit Anom (Kyoto) 54 (2014) 243-5.
- [207] F. Silan, I. Ozdemir, and W. Lissens, A novel L1CAM mutation with L1 spectrum disorders. Prenat Diagn 25 (2005) 57-9.
- [208] R.C. Stowe, A.M. Lyons-Warren, and L. Emrick, Clinical Reasoning: Ventriculomegaly detected on 20-week anatomic fetal ultrasound. Neurology 91 (2018) e1265-e1268.
- [209] W. Sullivan, B.C. Reeves, P.Q. Duy, C. Nelson-Williams, W. Dong, S.C. Jin, and K.T. Kahle, Exome Sequencing as a Potential Diagnostic Adjunct in Sporadic Congenital Hydrocephalus. JAMA Pediatr 175 (2021) 310-313.
- [210] L. Sztriha, P. Frossard, R.M. Hofstra, E. Verlind, and M. Nork, Novel missense mutation in the L1 gene in a child with corpus callosum agenesis, retardation, adducted thumbs, spastic paraparesis, and hydrocephalus. Journal of child neurology 15 (2000) 239-43.
- [211] L. Sztriha, Y.J. Vos, E. Verlind, J. Johansen, and B. Berg, X-linked hydrocephalus: a novel missense mutation in the L1CAM gene. Pediatr Neurol 27 (2002) 293-6.
- [212] S. Takahashi, Y. Makita, N. Okamoto, A. Miyamoto, and J. Oki, L1CAM mutation in a Japanese family with X-linked hydrocephalus: a study for genetic counseling. Brain & development 19 (1997) 559-62.
- [213] T. Takechi, J. Tohyama, T. Kurashige, K. Maruta, K. Uyemura, T. Ohi, S. Matsukura, and N. Sakuragawa, A deletion of five nucleotides in the L1CAM gene in a Japanese family with X-linked hydrocephalus. Human genetics 97 (1996) 353-6.
- [214] T. Takenouchi, M. Nakazawa, Y. Kanemura, S. Shimozato, M. Yamasaki, T. Takahashi, and K. Kosaki, Hydrocephalus with Hirschsprung disease: severe end of X-linked hydrocephalus spectrum. Am J Med Genet A 158a (2012) 812-5.
- [215] D.H. Tegay, A.H. Lane, J. Roohi, and E. Hatchwell, Contiguous gene deletion involving L1CAM and AVPR2 causes X-linked hydrocephalus with nephrogenic diabetes insipidus. Am J Med Genet A 143a (2007) 594-8.
- [216] G. Van Camp, L. Vits, P. Coucke, S. Lyonnet, C. Schrander-Stumpel, J. Darby, J. Holden, A. Munnich, and P.J. Willems, A duplication in the L1CAM gene associated with X-linked hydrocephalus. Nat Genet 4 (1993) 421-5.
- [217] W.I. Verhagen, R.H. Bartels, E. Fransen, G. van Camp, W.O. Renier, and J.A. Grotenhuis, Familial congenital hydrocephalus and aqueduct stenosis with probably autosomal dominant inheritance and variable expression. J Neurol Sci 158 (1998) 101-5.
- [218] L. Vits, G. Van Camp, P. Coucke, E. Fransen, K. De Boulle, E. Reyniers, B. Korn, A. Poustka, G. Wilson, C. Schrander-Stumpel, and et al., MASA syndrome is due to mutations in the neural cell adhesion gene L1CAM. Nat Genet 7 (1994) 408-13.
- [219] Y.J. Vos, H.E. de Walle, K.K. Bos, J.A. Stegeman, A.M. Ten Berge, M. Bruining, M.C. van Maarle, M.W. Elting, N.S. den Hollander, B. Hamel, A.M. Fortuna, L.E. Sunde, I. Stolte-Dijkstra, C.T. Schrander-Stumpel, and R.M. Hofstra, Genotype-phenotype correlations in L1 syndrome: a guide for genetic counselling and mutation analysis. Journal of medical genetics 47 (2010) 169-75.
- [220] P.L. Wilson, B.B. Kattman, J.J. Mulvihill, S. Li, J. Wilkins, A.F. Wagner, and J.R. Goodman, Prenatal identification of a novel R937P L1CAM missense mutation. Genet Test Mol Biomarkers 13 (2009) 515-9.
- [221] B. Xie, J. Luo, Y. Lei, Q. Yang, M. Li, S. Yi, S. Luo, J. Wang, Z. Qin, Z. Yang, H. Wei, and X. Fan, Two novel pathogenic variants of L1CAM gene in two fetuses with isolated X-linked hydrocephaly: A case report. Mol Med Rep 18 (2018) 5760-5764.
- [222] M. Yamasaki, M. Nonaka, N. Suzumori, H. Nakamura, H. Fujita, A. Namba, Y. Kamei, T. Yamada, R.K. Pooh, M. Tanemura, N. Sudo, M. Nagasaka, E. Yoshioka, T. Shofuda, and Y. Kanemura,

Prenatal molecular diagnosis of a severe type of L1 syndrome (X-linked hydrocephalus). J Neurosurg Pediatr 8 (2011) 411-6.

- [223] K.A. Aldinger, O.J. Lehmann, L. Hudgins, V.V. Chizhikov, A.G. Bassuk, L.C. Ades, I.D. Krantz, W.B. Dobyns, and K.J. Millen, FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet 41 (2009) 1037-42.
- [224] V. Arora, S. Bijarnia-Mahay, S. Kulshreshtra, K. Singh, R.D. Puri, and I.C. Verma, Prenatal presentation of a rare genetic disorder: a clinical, autopsy and molecular correlation. Autops Case Rep 9 (2019) e2019124.
- [225] C.P. Chen, C.Y. Tzen, S.R. Chern, F.J. Tsai, C.Y. Hsu, C.C. Lee, M.S. Lee, C.W. Pan, and W. Wang, A 12 Mb deletion of 6p24.1-->pter in an 18-gestational-week fetus with orofacial clefting, the Dandy-Walker malformation and bilateral multicystic kidneys. European journal of medical genetics 52 (2009) 59-61.
- [226] B.W. Darbro, V.B. Mahajan, L. Gakhar, J.M. Skeie, E. Campbell, S. Wu, X. Bing, K.J. Millen, W.B. Dobyns, J.A. Kessler, A. Jalali, J. Cremer, A. Segre, J.R. Manak, K.A. Aldinger, S. Suzuki, N. Natsume, M. Ono, H.D. Hai, T. Viet le, S. Loddo, E.M. Valente, L. Bernardini, N. Ghonge, P.J. Ferguson, and A.G. Bassuk, Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles. Hum Mutat 34 (2013) 1075-9.
- [227] E.A. Faqeih, M. Almannai, M.M. Saleh, A.H. AlWadei, M.M. Samman, and F.S. Alkuraya, Phenotypic characterization of KCTD3-related developmental epileptic encephalopathy. Clinical genetics 93 (2018) 1081-1086.
- [228] N. Gai, C. Jiang, Y.Y. Zou, Y. Zheng, D.S. Liang, and L.Q. Wu, Novel SIL1 nonstop mutation in a Chinese consanguineous family with Marinesco-Sjögren syndrome and Dandy-Walker syndrome. Clinica chimica acta; international journal of clinical chemistry 458 (2016) 1-4.
- [229] W. Guo, Y. Zhao, S. Li, J. Wang, and X. Liu, Hypoglycemia and Dandy-Walker variant in a Kabuki syndrome patient: a case report. BMC medical genetics 21 (2020) 193.
- [230] A. Jalali, K.A. Aldinger, A. Chary, D.G. McLone, R.M. Bowman, L.C. Le, P. Jardine, R. Newbury-Ecob, A. Mallick, N. Jafari, E.J. Russell, J. Curran, P. Nguyen, K. Ouahchi, C. Lee, W.B. Dobyns, K.J. Millen, J.M. Pina-Neto, J.A. Kessler, and A.G. Bassuk, Linkage to chromosome 2q36.1 in autosomal dominant Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity. Human genetics 123 (2008) 237-45.
- [231] C. Liao, F. Fu, R. Li, X. Yang, Q. Xu, and D.Z. Li, Prenatal diagnosis and molecular characterization of a novel locus for Dandy-Walker malformation on chromosome 7p21.3. European journal of medical genetics 55 (2012) 472-5.
- [232] S. Linpeng, J. Liu, J. Pan, Y. Cao, Y. Teng, D. Liang, Z. Li, and L. Wu, Diagnosis of Joubert Syndrome 10 in a Fetus with Suspected Dandy-Walker Variant by WES: A Novel Splicing Mutation in OFD1. Biomed Res Int 2018 (2018) 4032543.
- [233] E.A. MacDonald, and J.J. Holden, Duplication 12q24----qter in an infant with Dandy-Walker syndrome. J Neurogenet 2 (1985) 123-9.
- [234] I. Mademont-Soler, C. Morales, L. Armengol, A. Soler, and A. Sánchez, Description of the smallest critical region for Dandy-Walker malformation in chromosome 13 in a girl with a cryptic deletion related to t(6;13)(q23;q32). Am J Med Genet A 152a (2010) 2308-12.
- [235] H. Matsukura, M. Nagamori, K. Miya, and T. Yorifuji, MODY3, renal cysts, and Dandy-Walker variants with a microdeletion spanning the HNF1A gene. Clin Nephrol 88 (2017) 162-166.
- [236] M. Mimaki, T. Shiihara, M. Watanabe, K. Hirakata, S. Sakazume, A. Ishiguro, K. Shimojima, T. Yamamoto, A. Oka, and M. Mizuguchi, Holoprosencephaly with cerebellar vermis hypoplasia in 13q deletion syndrome: Critical region for cerebellar dysgenesis within 13q32.2q34. Brain & development 37 (2015) 714-8.
- [237] A. Shalata, S. Lauhasurayotin, Z. Leibovitz, H. Li, D. Hebert, S. Dhanraj, Y. Hadid, M. Mahroum, J. Bajar, S. Egenburg, A. Arad, M. Shohat, S. Haddad, H. Bakry, H. Moshiri, S.W. Scherer, S. Tzur, and Y. Dror, Biallelic mutations in EXOC3L2 cause a novel syndrome that affects the brain, kidney and blood. Journal of medical genetics 56 (2019) 340-346.
- [238] T. Sudha, A.J. Dawson, A.N. Prasad, D. Konkin, G.W. de Groot, and C. Prasad, De novo interstitial long arm deletion of chromosome 3 with facial dysmorphism, Dandy-Walker variant malformation and hydrocephalus. Clin Dysmorphol 10 (2001) 193-6.

- [239] A. Traversa, S. Bernardo, A. Paiardini, A. Giovannetti, E. Marchionni, M.L. Genovesi, D. Guadagnolo, B. Torres, S. Paolacci, L. Bernardini, T. Mazza, M. Carella, V. Caputo, and A. Pizzuti, Prenatal whole exome sequencing detects a new homozygous fukutin (FKTN) mutation in a fetus with an ultrasound suspicion of familial Dandy-Walker malformation. Molecular genetics & genomic medicine 8 (2020) e1054.
- [240] M.S. Zaki, A. Masri, A. Gregor, J.G. Gleeson, and R.O. Rosti, Dandy-Walker malformation, genitourinary abnormalities, and intellectual disability in two families. Am J Med Genet A 167a (2015) 2503-2507.
- [241] G. Zanni, S. Barresi, L. Travaglini, L. Bernardini, T. Rizza, M.C. Digilio, E. Mercuri, S. Cianfarani, M. Valeriani, A. Ferraris, L. Da Sacco, A. Novelli, E.M. Valente, B. Dallapiccola, and E.S. Bertini, FGF17, a gene involved in cerebellar development, is downregulated in a patient with Dandy-Walker malformation carrying a de novo 8p deletion. Neurogenetics 12 (2011) 241-5.
- [242] C. Alby, K. Piquand, C. Huber, A. Megarbané, A. Ichkou, M. Legendre, F. Pelluard, F. Encha-Ravazi, G. Abi-Tayeh, B. Bessières, S. El Chehadeh-Djebbar, N. Laurent, L. Faivre, L. Sztriha, M. Zombor, H. Szabó, M. Failler, M. Garfa-Traore, C. Bole, P. Nitschké, M. Nizon, N. Elkhartoufi, F. Clerget-Darpoux, A. Munnich, S. Lyonnet, M. Vekemans, S. Saunier, V. Cormier-Daire, T. Attié-Bitach, and S. Thomas, Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome. Am J Hum Genet 97 (2015) 311-8.
- [243] M. al-Shroof, A.M. Karnik, A.A. Karnik, J. Longshore, N.A. Sliman, and F.A. Khan, Ciliary dyskinesia associated with hydrocephalus and mental retardation in a Jordanian family. Mayo Clin Proc 76 (2001) 1219-24.
- [244] R. Bachmann-Gagescu, G.E. Ishak, J.C. Dempsey, J. Adkins, D. O'Day, I.G. Phelps, M. Gunay-Aygun, A.D. Kline, K. Szczaluba, L. Martorell, A. Alswaid, S. Alrasheed, S. Pai, L. Izatt, A. Ronan, M.A. Parisi, H. Mefford, I. Glass, and D. Doherty, Genotype-phenotype correlation in CC2D2Arelated Joubert syndrome reveals an association with ventriculomegaly and seizures. Journal of medical genetics 49 (2012) 126-37.
- [245] M.L. Bondeson, K. Ericson, S. Gudmundsson, A. Ameur, F. Pontén, J. Wesström, C. Frykholm, and M. Wilbe, A nonsense mutation in CEP55 defines a new locus for a Meckel-like syndrome, an autosomal recessive lethal fetal ciliopathy. Clinical genetics 92 (2017) 510-516.
- [246] K.M. Boycott, J.S. Parboosingh, J.N. Scott, D.R. McLeod, C.R. Greenberg, T.M. Fujiwara, J.K. Mah, J. Midgley, A. Wade, F.P. Bernier, B.N. Chodirker, M. Bunge, and A.M. Innes, Meckel syndrome in the Hutterite population is actually a Joubert-related cerebello-oculo-renal syndrome. Am J Med Genet A 143a (2007) 1715-25.
- [247] H.R. Dawe, U.M. Smith, A.R. Cullinane, D. Gerrelli, P. Cox, J.L. Badano, S. Blair-Reid, N. Sriram, N. Katsanis, T. Attie-Bitach, S.C. Afford, A.J. Copp, D.A. Kelly, K. Gull, and C.A. Johnson, The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Human molecular genetics 16 (2007) 173-86.
- [248] I. Duran, S.P. Taylor, W. Zhang, J. Martin, F. Qureshi, S.M. Jacques, R. Wallerstein, R.S. Lachman, D.A. Nickerson, M. Bamshad, D.H. Cohn, and D. Krakow, Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia. Cilia 6 (2017) 7.
- [249] S. Edvardson, A. Shaag, S. Zenvirt, Y. Erlich, G.J. Hannon, A.L. Shanske, J.M. Gomori, J. Ekstein, and O. Elpeleg, Joubert syndrome 2 (JBTS2) in Ashkenazi Jews is associated with a TMEM216 mutation. Am J Hum Genet 86 (2010) 93-7.
- [250] M. Failler, H.Y. Gee, P. Krug, K. Joo, J. Halbritter, L. Belkacem, E. Filhol, J.D. Porath, D.A. Braun, M. Schueler, A. Frigo, O. Alibeu, C. Masson, K. Brochard, B. Hurault de Ligny, R. Novo, C. Pietrement, H. Kayserili, R. Salomon, M.C. Gubler, E.A. Otto, C. Antignac, J. Kim, A. Benmerah, F. Hildebrandt, and S. Saunier, Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am J Hum Genet 94 (2014) 905-14.
- [251] K. Kosaki, K. Ikeda, K. Miyakoshi, M. Ueno, R. Kosaki, D. Takahashi, M. Tanaka, C. Torikata, Y. Yoshimura, and T. Takahashi, Absent inner dynein arms in a fetus with familial hydrocephalussitus abnormality. Am J Med Genet A 129a (2004) 308-11.
- [252] H.F. Mei, X.R. Dong, H.Y. Chen, Y.L. Lu, B.B. Wu, H.J. Wang, G.Q. Cheng, L.S. Wang, Y. Cao, L. Yang, and W.H. Zhou, Genetic etiologies associated with infantile hydrocephalus in a Chinese infantile cohort. World J Pediatr 17 (2021) 305-316.

- [253] M.M. Nabhan, H. Abdelaziz, Y. Xu, R. El Sayed, M. Santibanez-Koref, N.A. Soliman, and J.A. Sayer, Case Report: Whole-exome analysis of a child with polycystic kidney disease and ventriculomegaly. Genet Mol Res 14 (2015) 3618-24.
- [254] M.M. Oud, C. Bonnard, D.A. Mans, U. Altunoglu, S. Tohari, A.Y.J. Ng, A. Eskin, H. Lee, C.A. Rupar, N.P. de Wagenaar, K.M. Wu, P. Lahiry, G.J. Pazour, S.F. Nelson, R.A. Hegele, R. Roepman, H. Kayserili, B. Venkatesh, V.M. Siu, B. Reversade, and H.H. Arts, A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome. Cilia 5 (2016) 8.
- [255] M.S. Rocca, G. Piatti, A. Michelucci, R. Guazzo, V. Bertíni, C. Vinanzi, M.A. Caligo, A. Valetto, and C. Foresta, A novel genetic variant in DNAI2 detected by custom gene panel in a newborn with Primary Ciliary Dyskinesia: case report. BMC medical genetics 21 (2020) 220.
- [256] J. Wallmeier, D. Frank, A. Shoemark, T. Nöthe-Menchen, S. Cindric, H. Olbrich, N.T. Loges, I. Aprea, G.W. Dougherty, P. Pennekamp, T. Kaiser, H.M. Mitchison, C. Hogg, S.B. Carr, M.A. Zariwala, T. Ferkol, M.W. Leigh, S.D. Davis, J. Atkinson, S.K. Dutcher, M.R. Knowles, H. Thiele, J. Altmüller, H. Krenz, M. Wöste, A. Brentrup, F. Ahrens, C. Vogelberg, D.J. Morris-Rosendahl, and H. Omran, De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry. Am J Hum Genet 105 (2019) 1030-1039.
- [257] G. Cappuccio, L. Ugga, E. Parrini, A. D'Amico, and N. Brunetti-Pierri, Severe presentation and complex brain malformations in an individual carrying a CCND2 variant. Molecular genetics & genomic medicine 7 (2019) e708.
- [258] A. Maguolo, F. Antoniazzi, A. Spano, E. Fiorini, R. Gaudino, M. Mauro, G. Cantalupo, P. Biban, S. Maitz, and P. Cavarzere, Clinical pitfalls in the diagnosis of segmental overgrowth syndromes: a child with the c.2740G > A mutation in PIK3CA gene. Ital J Pediatr 44 (2018) 110.
- [259] I. Maini, E. Farnetti, S.G. Caraffi, I. Ivanovski, M.L. De Bernardi, C. Gelmini, M. Pollazzon, S. Rosato, S. Laurie, L. Matalonga, C. Baldo, and L. Garavelli, A Novel CCND2 Mutation in a Previously Reported Case of Megalencephaly and Perisylvian Polymicrogyria with Postaxial Polydactyly and Hydrocephalus. Neuropediatrics 49 (2018) 222-224.
- [260] J.H. McDermott, N. Hickson, I. Banerjee, P.G. Murray, D. Ram, K. Metcalfe, J. Clayton-Smith, and S. Douzgou, Hypoglycaemia represents a clinically significant manifestation of PIK3CA- and CCND2-associated segmental overgrowth. Clinical genetics 93 (2018) 687-692.
- [261] G.M. Mirzaa, V. Conti, A.E. Timms, C.D. Smyser, S. Ahmed, M. Carter, S. Barnett, R.B. Hufnagel, A. Goldstein, Y. Narumi-Kishimoto, C. Olds, S. Collins, K. Johnston, J.F. Deleuze, P. Nitschké, K. Friend, C. Harris, A. Goetsch, B. Martin, E.A. Boyle, E. Parrini, D. Mei, L. Tattini, A. Slavotinek, E. Blair, C. Barnett, J. Shendure, J. Chelly, W.B. Dobyns, and R. Guerrini, Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study. The Lancet. Neurology 14 (2015) 1182-95.
- [262] G.M. Mirzaa, J.B. Rivière, and W.B. Dobyns, Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet C Semin Med Genet 163c (2013) 122-30.
- [263] O. Ortega-Recalde, O.I. Beltrán, J.M. Gálvez, A. Palma-Montero, C.M. Restrepo, H.E. Mateus, and P. Laissue, Biallelic HERC1 mutations in a syndromic form of overgrowth and intellectual disability. Clinical genetics 88 (2015) e1-3.
- [264] A. Poduri, G.D. Evrony, X. Cai, P.C. Elhosary, R. Beroukhim, M.K. Lehtinen, L.B. Hills, E.L. Heinzen, A. Hill, R.S. Hill, B.J. Barry, B.F. Bourgeois, J.J. Riviello, A.J. Barkovich, P.M. Black, K.L. Ligon, and C.A. Walsh, Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74 (2012) 41-8.
- [265] J.B. Rivière, G.M. Mirzaa, B.J. O'Roak, M. Beddaoui, D. Alcantara, R.L. Conway, J. St-Onge, J.A. Schwartzentruber, K.W. Gripp, S.M. Nikkel, T. Worthylake, C.T. Sullivan, T.R. Ward, H.E. Butler, N.A. Kramer, B. Albrecht, C.M. Armour, L. Armstrong, O. Caluseriu, C. Cytrynbaum, B.A. Drolet, A.M. Innes, J.L. Lauzon, A.E. Lin, G.M. Mancini, W.S. Meschino, J.D. Reggin, A.K. Saggar, T. Lerman-Sagie, G. Uyanik, R. Weksberg, B. Zirn, C.L. Beaulieu, J. Majewski, D.E. Bulman, M. O'Driscoll, J. Shendure, J.M. Graham, Jr., K.M. Boycott, and W.B. Dobyns, De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 44 (2012) 934-40.
- [266] T. Sameshima, N. Morisada, T. Egawa, M. Kugo, and K. Iijima, MPPH syndrome with aortic coarctation and macrosomia due to CCND2 mutations. Pediatrics international : official journal of the Japan Pediatric Society 62 (2020) 115-117.

- [267] R. Szalai, B.I. Melegh, A. Till, R. Ripszam, G. Csabi, A. Acharya, I. Schrauwen, S.M. Leal, S. Komoly, G. Kosztolanyi, and K. Hadzsiev, Maternal mosaicism underlies the inheritance of a rare germline AKT3 variant which is responsible for megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome in two Roma half-siblings. Exp Mol Pathol 115 (2020) 104471.
- [268] W.J. Tapper, N. Foulds, N.C. Cross, P. Aranaz, J. Score, C. Hidalgo-Curtis, D.O. Robinson, J. Gibson, S. Ennis, I.K. Temple, and A. Collins, Megalencephaly syndromes: exome pipeline strategies for detecting low-level mosaic mutations. PloS one 9 (2014) e86940.
- [269] J. Tenorio, A. Mansilla, M. Valencia, V. Martínez-Glez, V. Romanelli, P. Arias, N. Castrejón, F. Poletta, E. Guillén-Navarro, G. Gordo, E. Mansilla, F. García-Santiago, I. González-Casado, E. Vallespín, M. Palomares, M.A. Mori, F. Santos-Simarro, S. García-Miñaur, L. Fernández, R. Mena, S. Benito-Sanz, Á. del Pozo, J.C. Silla, K. Ibañez, E. López-Granados, A. Martín-Trujillo, D. Montaner, K.E. Heath, Á. Campos-Barros, J. Dopazo, J. Nevado, D. Monk, V.L. Ruiz-Pérez, and P. Lapunzina, A new overgrowth syndrome is due to mutations in RNF125. Hum Mutat 35 (2014) 1436-41.
- [270] G. Terrone, N. Voisin, A. Abdullah Alfaiz, G. Cappuccio, G. Vitiello, N. Guex, A. D'Amico, A. James Barkovich, N. Brunetti-Pierri, E. Del Giudice, and A. Reymond, De novo PIK3R2 variant causes polymicrogyria, corpus callosum hyperplasia and focal cortical dysplasia. European journal of human genetics : EJHG 24 (2016) 1359-62.
- [271] Y.A. Zarate, L. Boccuto, S. Srikanth, R. Pauly, E. Ocal, T. Balmakund, K. Hinkle, V. Stefans, G.B. Schaefer, and R.T. Collins, 2nd, Constitutive activation of the PI3K-AKT pathway and cardiovascular abnormalities in an individual with Kosaki overgrowth syndrome. Am J Med Genet A 179 (2019) 1047-1052.
- [272] M.S. Al-Dosari, M. Al-Owain, M. Tulbah, W. Kurdi, N. Adly, A. Al-Hemidan, T.A. Masoodi, B. Albash, and F.S. Alkuraya, Mutation in MPDZ causes severe congenital hydrocephalus. Journal of medical genetics 50 (2013) 54-8.
- [273] N.K. Al-Jezawi, A.M. Al-Shamsi, J. Suleiman, S. Ben-Salem, A. John, R. Vijayan, B.R. Ali, and L. Al-Gazali, Compound heterozygous variants in the multiple PDZ domain protein (MPDZ) cause a case of mild non-progressive communicating hydrocephalus. BMC medical genetics 19 (2018) 34.
- [274] A. Mégarbané, A. Pangrazio, A. Villa, E. Chouery, J. Maarawi, S. Sabbagh, G. Lefranc, and C. Sobacchi, Homozygous stop mutation in the SNX10 gene in a consanguineous Iraqi boy with osteopetrosis and corpus callosum hypoplasia. European journal of medical genetics 56 (2013) 32-5.
- [275] L.M. Reis, R.C. Tyler, O. Abdul-Rahman, P. Trapane, R. Wallerstein, D. Broome, J. Hoffman, A. Khan, C. Paradiso, N. Ron, A. Bergner, and E.V. Semina, Mutation analysis of B3GALTL in Peters Plus syndrome. Am J Med Genet A 146a (2008) 2603-10.
- [276] D. Rodriguez, F. Gauthier, E. Bertini, M. Bugiani, M. Brenner, S. N'Guyen, C. Goizet, A. Gelot, R. Surtees, J.M. Pedespan, X. Hernandorena, M. Troncoso, G. Uziel, A. Messing, G. Ponsot, D. Pham-Dinh, A. Dautigny, and O. Boespflug-Tanguy, Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. Am J Hum Genet 69 (2001) 1134-40.
- [277] T. Sakakibara, Y. Takahashi, K. Fukuda, T. Inoue, T. Kurosawa, T. Nishikubo, M. Shima, T. Taoka, N. Aida, S. Tsujino, N. Kanazawa, and A. Yoshioka, A case of infantile Alexander disease diagnosed by magnetic resonance imaging and genetic analysis. Brain & development 29 (2007) 525-8.
- [278] P. Saugier-Veber, F. Marguet, F. Lecoquierre, H. Adle-Biassette, F. Guimiot, S. Cipriani, S. Patrier, M. Brasseur-Daudruy, A. Goldenberg, V. Layet, Y. Capri, M. Gérard, T. Frébourg, and A. Laquerrière, Hydrocephalus due to multiple ependymal malformations is caused by mutations in the MPDZ gene. Acta neuropathologica communications 5 (2017) 36.
- [279] S. Takeyari, T. Kubota, K. Miyata, K. Yamamoto, H. Nakayama, K. Yamamoto, Y. Ohata, T. Kitaoka, K. Yanagi, T. Kaname, and K. Ozono, Japanese patient with Cole-carpenter syndrome with compound heterozygous variants of SEC24D. Am J Med Genet A 176 (2018) 2882-2886.
- [280] M.S. van der Knaap, G.S. Salomons, R. Li, E. Franzoni, L.G. Gutiérrez-Solana, L.M. Smit, R. Robinson, C.D. Ferrie, B. Cree, A. Reddy, N. Thomas, B. Banwell, F. Barkhof, C. Jakobs, A. Johnson, A. Messing, and M. Brenner, Unusual variants of Alexander's disease. Ann Neurol 57 (2005) 327-38.

- [281] K. Zhang, E. Cox, S. Strom, Z.L. Xu, A. Disilvestro, and K. Usrey, Prenatal presentation and diagnosis of Baraitser-Winter syndrome using exome sequencing. Am J Med Genet A 182 (2020) 2124-2128.
- [282] D. Beltran-Valero de Bernabé, T. Voit, C. Longman, A. Steinbrecher, V. Straub, Y. Yuva, R. Herrmann, J. Sperner, C. Korenke, C. Diesen, W.B. Dobyns, H.G. Brunner, H. van Bokhoven, M. Brockington, and F. Muntoni, Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. Journal of medical genetics 41 (2004) e61.
- [283] D. Beltrán-Valero de Bernabé, S. Currier, A. Steinbrecher, J. Celli, E. van Beusekom, B. van der Zwaag, H. Kayserili, L. Merlini, D. Chitayat, W.B. Dobyns, B. Cormand, A.E. Lehesjoki, J. Cruces, T. Voit, C.A. Walsh, H. van Bokhoven, and H.G. Brunner, Mutations in the Omannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71 (2002) 1033-43.
- [284] R. Biancheri, E. Bertini, A. Falace, M. Pedemonte, A. Rossi, A. D'Amico, S. Scapolan, L. Bergamino, S. Petrini, D. Cassandrini, P. Broda, M. Manfredi, F. Zara, F.M. Santorelli, C. Minetti, and C. Bruno, POMGnT1 mutations in congenital muscular dystrophy: genotype-phenotype correlation and expanded clinical spectrum. Archives of neurology 63 (2006) 1491-5.
- [285] C. Bouchet, M. Gonzales, S. Vuillaumier-Barrot, L. Devisme, C. Lebizec, E. Alanio, A. Bazin, B. Bessières-Grattagliano, N. Bigi, P. Blanchet, D. Bonneau, M. Bonnières, D. Carles, S. Delahaye, C. Fallet-Bianco, D. Figarella-Branger, D. Gaillard, B. Gasser, F. Guimiot, M. Joubert, N. Laurent, A. Liprandi, P. Loget, P. Marcorelles, J. Martinovic, F. Menez, S. Patrier, F. Pelluard-Nehmé, M.J. Perez, C. Rouleau-Dubois, S. Triau, A. Laquerrière, F. Encha-Razavi, and N. Seta, Molecular heterogeneity in fetal forms of type II lissencephaly. Hum Mutat 28 (2007) 1020-7.
- [286] B. Cormand, H. Pihko, M. Bayés, L. Valanne, P. Santavuori, B. Talim, R. Gershoni-Baruch, A. Ahmad, H. van Bokhoven, H.G. Brunner, T. Voit, H. Topaloglu, W.B. Dobyns, and A.E. Lehesjoki, Clinical and genetic distinction between Walker-Warburg syndrome and muscle-eye-brain disease. Neurology 56 (2001) 1059-69.
- [287] S.C. Currier, C.K. Lee, B.S. Chang, A.L. Bodell, G.S. Pai, L. Job, L.G. Lagae, L.I. Al-Gazali, W.M. Eyaid, G. Enns, W.B. Dobyns, and C.A. Walsh, Mutations in POMT1 are found in a minority of patients with Walker-Warburg syndrome. Am J Med Genet A 133a (2005) 53-7.
- [288] T. Geis, T. Rödl, H. Topaloğlu, B. Balci-Hayta, S. Hinreiner, W. Müller-Felber, B. Schoser, Y. Mehraein, A. Hübner, B. Zirn, M. Hoopmann, H. Reutter, D. Mowat, G. Schuierer, U. Schara, U. Hehr, and H. Kölbel, Clinical long-time course, novel mutations and genotype-phenotype correlation in a cohort of 27 families with POMT1-related disorders. Orphanet J Rare Dis 14 (2019) 179.
- [289] U. Hehr, G. Uyanik, C. Gross, M.C. Walter, A. Bohring, M. Cohen, B. Oehl-Jaschkowitz, L.M. Bird, G.M. Shamdeen, U. Bogdahn, G. Schuierer, H. Topaloglu, L. Aigner, H. Lochmüller, and J. Winkler, Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease. Neurogenetics 8 (2007) 279-88.
- [290] M. Ichiyama, S. Ohga, M. Ochiai, K. Fukushima, M. Ishimura, M. Torio, M. Urata, T. Hotta, D. Kang, and T. Hara, Fetal hydrocephalus and neonatal stroke as the first presentation of protein C deficiency. Brain & development 38 (2016) 253-6.
- [291] H. Kano, K. Kobayashi, R. Herrmann, M. Tachikawa, H. Manya, I. Nishino, I. Nonaka, V. Straub, B. Talim, T. Voit, H. Topaloglu, T. Endo, H. Yoshikawa, and T. Toda, Deficiency of alpha-dystroglycan in muscle-eye-brain disease. Biochem Biophys Res Commun 291 (2002) 1283-6.
- [292] N. Karadeniz, A. Zenciroğlu, Y.K. Gürer, N. Senbil, Y. Karadeniz, and H. Topalŏlu, De novo translocation t(5;6)(q35;q21) in an infant with Walker-Warburg syndrome. American journal of medical genetics 109 (2002) 67-9.
- [293] E. Preiksaitiene, N. Voisin, L. Gueneau, E. Benušienė, N. Krasovskaja, E.M. Blažytė, L. Ambrozaitytė, T. Rančelis, A. Reymond, and V. Kučinskas, Pathogenic homozygous variant in POMK gene is the cause of prenatally detected severe ventriculomegaly in two Lithuanian families. Am J Med Genet A 182 (2020) 536-542.
- [294] J. van Reeuwijk, M. Janssen, C. van den Elzen, D. Beltran-Valero de Bernabé, P. Sabatelli, L. Merlini, M. Boon, H. Scheffer, M. Brockington, F. Muntoni, M.A. Huynen, A. Verrips, C.A. Walsh, P.G. Barth, H.G. Brunner, and H. van Bokhoven, POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. Journal of medical genetics 42 (2005) 907-12.

- [295] J. van Reeuwijk, S. Maugenre, C. van den Elzen, A. Verrips, E. Bertini, F. Muntoni, L. Merlini, H. Scheffer, H.G. Brunner, P. Guicheney, and H. van Bokhoven, The expanding phenotype of POMT1 mutations: from Walker-Warburg syndrome to congenital muscular dystrophy, microcephaly, and mental retardation. Hum Mutat 27 (2006) 453-9.
- [296] J. Van Reeuwijk, M.J. Olderode-Berends, C. Van den Elzen, O.F. Brouwer, T. Roscioli, M.G. Van Pampus, H. Scheffer, H.G. Brunner, H. Van Bokhoven, and F.A. Hol, A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum. Clinical genetics 78 (2010) 275-81.
- [297] M. Riemersma, H. Mandel, E. van Beusekom, I. Gazzoli, T. Roscioli, A. Eran, R. Gershoni-Baruch, M. Gershoni, S. Pietrokovski, L.E. Vissers, D.J. Lefeber, M.A. Willemsen, R.A. Wevers, and H. van Bokhoven, Absence of α- and β-dystroglycan is associated with Walker-Warburg syndrome. Neurology 84 (2015) 2177-82.
- [298] S. Saredi, A. Ardissone, A. Ruggieri, E. Mottarelli, L. Farina, R. Rinaldi, E. Silvestri, C. Gandioli, S. D'Arrigo, F. Salerno, L. Morandi, P. Grammatico, C. Pantaleoni, I. Moroni, and M. Mora, Novel POMGNT1 point mutations and intragenic rearrangements associated with muscle-eye-brain disease. J Neurol Sci 318 (2012) 45-50.
- [299] V.S. Vervoort, K.R. Holden, K.C. Ukadike, J.S. Collins, R.A. Saul, and A.K. Srivastava, POMGnT1 gene alterations in a family with neurological abnormalities. Ann Neurol 56 (2004) 143-8.
- [300] T. Willer, H. Lee, M. Lommel, T. Yoshida-Moriguchi, D.B. de Bernabe, D. Venzke, S. Cirak, H. Schachter, J. Vajsar, T. Voit, F. Muntoni, A.S. Loder, W.B. Dobyns, T.L. Winder, S. Strahl, K.D. Mathews, S.F. Nelson, S.A. Moore, and K.P. Campbell, ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet 44 (2012) 575-80.
- [301] U. Yis, G. Uyanik, S. Kurul, E. Dirik, E. Ozer, C. Gross, and U. Hehr, A case of Walker-Warburg syndrome resulting from a homozygous POMT1 mutation. European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society 11 (2007) 46-9.
- [302] A. Yoshida, K. Kobayashi, H. Manya, K. Taniguchi, H. Kano, M. Mizuno, T. Inazu, H. Mitsuhashi, S. Takahashi, M. Takeuchi, R. Herrmann, V. Straub, B. Talim, T. Voit, H. Topaloglu, T. Toda, and T. Endo, Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1 (2001) 717-24.
- [303] G.M. Abdel-Salam, L. Flores-Sarnat, M.O. El-Ruby, J. Parboosingh, P. Bridge, M.M. Eid, T.H. El-Badry, L. Effat, P. Curatolo, and S.A. Temtamy, Muenke syndrome with pigmentary disorder and probable hemimegalencephaly: An expansion of the phenotype. Am J Med Genet A 155a (2011) 207-14.
- [304] L. Arnaud-López, R. Fragoso, J. Mantilla-Capacho, and P. Barros-Núñez, Crouzon with acanthosis nigricans. Further delineation of the syndrome. Clinical genetics 72 (2007) 405-10.
- [305] C.P. Chen, S.R. Chern, J.C. Shih, W. Wang, L.F. Yeh, T.Y. Chang, and C.Y. Tzen, Prenatal diagnosis and genetic analysis of type I and type II thanatophoric dysplasia. Prenat Diagn 21 (2001) 89-95.
- [306] C.P. Chen, S.P. Lin, Y.N. Su, S.C. Chien, F.J. Tsai, and W. Wang, Craniosynostosis and congenital tracheal anomalies in an infant with Pfeiffer syndrome carrying the W290C FGFR2 mutation. Genet Couns 19 (2008) 165-72.
- [307] C.P. Chen, S.P. Lin, Y.P. Liu, S.R. Chern, S.W. Chen, S.T. Lai, and W. Wang, Pfeiffer syndrome with FGFR2 C342R mutation presenting extreme proptosis, craniosynostosis, hearing loss, ventriculomegaly, broad great toes and thumbs, maxillary hypoplasia, and laryngomalacia. Taiwan J Obstet Gynecol 56 (2017) 412-414.
- [308] R. Fonseca, M.A. Costa-Lima, V. Cosentino, and I.M. Orioli, Second case of Beare-Stevenson syndrome with an FGFR2 Ser372Cys mutation. Am J Med Genet A 146a (2008) 658-60.
- [309] A. González-Del Angel, B. Estandía-Ortega, M.A. Alcántara-Ortigoza, V. Martínez-Cruz, D.J. Gutiérrez-Tinajero, A. Rasmussen, and C.S. Gómez-González, Expansion of the variable expression of Muenke syndrome: Hydrocephalus without craniosynostosis. Am J Med Genet A 170 (2016) 3189-3196.
- [310] K.W. Gripp, C.A. Stolle, D.M. McDonald-McGinn, R.I. Markowitz, S.P. Bartlett, J.A. Katowitz, M. Muenke, and E.H. Zackai, Phenotype of the fibroblast growth factor receptor 2 Ser351Cys mutation: Pfeiffer syndrome type III. American journal of medical genetics 78 (1998) 356-60.

- [311] S. Gupta, A. Prasad, U. Sinha, R. Singh, and G. Gupta, Crouzon Syndrome in a Ten-week-old Infant: A Case Report. Saudi J Med Med Sci 8 (2020) 146-150.
- [312] E. Lajeunie, S. Heuertz, V. El Ghouzzi, J. Martinovic, D. Renier, M. Le Merrer, and J. Bonaventure, Mutation screening in patients with syndromic craniosynostoses indicates that a limited number of recurrent FGFR2 mutations accounts for severe forms of Pfeiffer syndrome. European journal of human genetics : EJHG 14 (2006) 289-98.
- [313] M. Priolo, M. Lerone, M. Baffico, M. Baldi, R. Ravazzolo, A. Cama, V. Capra, and M. Silengo, Pfeiffer syndrome type 2 associated with a single amino acid deletion in the FGFR2 gene. Clinical genetics 58 (2000) 81-3.
- [314] K.A. Przylepa, W. Paznekas, M. Zhang, M. Golabi, W. Bias, M.J. Bamshad, J.C. Carey, B.D. Hall, R. Stevenson, S. Orlow, M.M. Cohen, Jr., and E.W. Jabs, Fibroblast growth factor receptor 2 mutations in Beare-Stevenson cutis gyrata syndrome. Nat Genet 13 (1996) 492-4.
- [315] P. Rump, T.G. Letteboer, J.J. Gille, M.J. Torringa, W. Baerts, J.P. van Gestel, J.B. Verheij, and A.J. van Essen, Severe complications in a child with achondroplasia and two FGFR3 mutations on the same allele. Am J Med Genet A 140 (2006) 284-90.
- [316] P. Rutland, L.J. Pulleyn, W. Reardon, M. Baraitser, R. Hayward, B. Jones, S. Malcolm, R.M. Winter, M. Oldridge, S.F. Slaney, and et al., Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nat Genet 9 (1995) 173-6.
- [317] F. Schaefer, C. Anderson, B. Can, and B. Say, Novel mutation in the FGFR2 gene at the same codon as the Crouzon syndrome mutations in a severe Pfeiffer syndrome type 2 case. American journal of medical genetics 75 (1998) 252-5.
- [318] T. Takenouchi, M. Hida, Y. Sakamoto, C. Torii, R. Kosaki, T. Takahashi, and K. Kosaki, Severe congenital lipodystrophy and a progeroid appearance: Mutation in the penultimate exon of FBN1 causing a recognizable phenotype. Am J Med Genet A 161a (2013) 3057-62.
- [319] E. Çiftçi, E. Ince, N. Akar, Ü. Dogru, K. Tefs, and V. Schuster, Ligneous conjunctivitis, hydrocephalus, hydrocele, and pulmonary involvement in a child with homozygous type I plasminogen deficiency. European journal of pediatrics 162 (2003) 462-465.
- [320] B. Cormand, K. Avela, H. Pihko, P. Santavuori, B. Talim, H. Topaloglu, A. de la Chapelle, and A.E. Lehesjoki, Assignment of the muscle-eye-brain disease gene to 1p32-p34 by linkage analysis and homozygosity mapping. Am J Hum Genet 64 (1999) 126-35.
- [321] R.P. Cotarelo, M.C. Valero, B. Prados, A. Peña, L. Rodríguez, O. Fano, J.J. Marco, M.L. Martínez-Frías, and J. Cruces, Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg syndrome. Clinical genetics 73 (2008) 139-45.
- [322] D.B. de Bernabé, H. van Bokhoven, E. van Beusekom, W. Van den Akker, S. Kant, W.B. Dobyns, B. Cormand, S. Currier, B. Hamel, B. Talim, H. Topaloglu, and H.G. Brunner, A homozygous nonsense mutation in the fukutin gene causes a Walker-Warburg syndrome phenotype. Journal of medical genetics 40 (2003) 845-8.
- [323] D. Horn, and P.N. Robinson, Progeroid facial features and lipodystrophy associated with a novel splice site mutation in the final intron of the FBN1 gene. Am J Med Genet A 155a (2011) 721-4.
- [324] E. Kondo-Iida, K. Kobayashi, M. Watanabe, J. Sasaki, T. Kumagai, H. Koide, K. Saito, M. Osawa, Y. Nakamura, and T. Toda, Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Human molecular genetics 8 (1999) 2303-9.
- [325] F. Radmanesh, A.O. Caglayan, J.L. Silhavy, C. Yilmaz, V. Cantagrel, T. Omar, B. Rosti, H. Kaymakcalan, S. Gabriel, M. Li, N. Sestan, K. Bilguvar, W.B. Dobyns, M.S. Zaki, M. Gunel, and J.G. Gleeson, Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am J Hum Genet 92 (2013) 468-74.
- [326] K. Saito, M. Osawa, Z.P. Wang, K. Ikeya, Y. Fukuyama, E. Kondo-Iida, T. Toda, H. Ohashi, K. Kurosawa, S. Wakai, and K. Kaneko, Haplotype-phenotype correlation in Fukuyama congenital muscular dystrophy. American journal of medical genetics 92 (2000) 184-90.
- [327] D. Schott, C.E. Dempfle, P. Beck, A. Liermann, A. Mohr-Pennert, M. Goldner, P. Mehlem, H. Azuma, V. Schuster, A.M. Mingers, H.P. Schwarz, and M.D. Kramer, Therapy with a purified plasminogen concentrate in an infant with ligneous conjunctivitis and homozygous plasminogen deficiency. N Engl J Med 339 (1998) 1679-86.

- [328] V. Schuster, A.M. Mingers, S. Seidenspinner, Z. Nüssgens, T. Pukrop, and H.W. Kreth, Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis. Blood 90 (1997) 958-66.
- [329] V. Schuster, S. Seidenspinner, C. Müller, and A. Rempen, Prenatal diagnosis in a family with severe type I plasminogen deficiency, ligneous conjunctivitis and congenital hydrocephalus. Prenat Diagn 19 (1999) 483-7.
- [330] D. Tonduti, I. Dorboz, F. Renaldo, J. Masliah-Planchon, M. Elmaleh-Bergès, H. Dalens, D. Rodriguez, and O. Boespflug-Tanguy, Cystic leukoencephalopathy with cortical dysplasia related to LAMB1 mutations. Neurology 84 (2015) 2195-7.
- [331] M.S. van der Knaap, L.M. Smit, F. Barkhof, Y.A. Pijnenburg, S. Zweegman, H.W. Niessen, S. Imhof, and P. Heutink, Neonatal porencephaly and adult stroke related to mutations in collagen IV A1. Ann Neurol 59 (2006) 504-11.
- [332] Y.D. Yang, L.Y. Huang, J.M. Yan, J. Han, Y. Zhang, and D.Z. Li, Novel FREM1 mutations are associated with severe hydrocephalus and shortened limbs in a prenatal case. Eur J Obstet Gynecol Reprod Biol 215 (2017) 262-264.
- [333] P. Antwi, C.S. Hong, D. Duran, S.C. Jin, W. Dong, M. DiLuna, and K.T. Kahle, A novel association of campomelic dysplasia and hydrocephalus with an unbalanced chromosomal translocation upstream of SOX9. Cold Spring Harbor molecular case studies 4 (2018).
- [334] E. Avitan-Hersh, H. Mandel, M. Indelman, G. Bar-Joseph, A. Zlotogorski, and R. Bergman, A case of H syndrome showing immunophenotye similarities to Rosai-Dorfman disease. Am J Dermatopathol 33 (2011) 47-51.
- [335] E.S. Cauley, A. Hamed, I.N. Mohamed, M. Elseed, S. Martinez, A. Yahia, F. Abozar, R. Abubakr, M. Koko, L. Elsayed, X. Piao, M.A. Salih, and M.C. Manzini, Overlap of polymicrogyria, hydrocephalus, and Joubert syndrome in a family with novel truncating mutations in ADGRG1/GPR56 and KIAA0556. Neurogenetics 20 (2019) 91-98.
- [336] D.M. Christofolini, M. Yoshimoto, J.A. Squire, D. Brunoni, M.I. Melaragno, and G. Carvalheira, Hydrocephaly, penoscrotal transposition, and digital anomalies associated with de novo pseudodicentric rearranged chromosome 13 characterized by classical cytogenetic methods and mBAND analysis. Am J Med Genet A 140 (2006) 1321-5.
- [337] D. Doherty, A.E. Chudley, G. Coghlan, G.E. Ishak, A.M. Innes, E.G. Lemire, R.C. Rogers, A.A. Mhanni, I.G. Phelps, S.J. Jones, S.H. Zhan, A.P. Fejes, H. Shahin, M. Kanaan, H. Akay, M. Tekin, B. Triggs-Raine, and T. Zelinski, GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am J Hum Genet 90 (2012) 1088-93.
- [338] S. Forrester, M.J. Kovach, R.E. Smith, L. Rimer, M. Wesson, and V.E. Kimonis, Kousseff syndrome caused by deletion of chromosome 22q11-13. American journal of medical genetics 112 (2002) 338-42.
- [339] S. Grosso, M. Cioni, G. Garibaldi, L. Pucci, P. Galluzzi, R. Canapicchi, G. Morgese, and P. Balestri, De novo complete trisomy 5p: clinical and neuroradiological findings. American journal of medical genetics 112 (2002) 56-60.
- [340] V. Jacquemin, M. Antoine, S. Duerinckx, A. Massart, J. Desir, C. Perazzolo, M. Cassart, D. Thomas, V. Segers, S. Lecomte, M. Abramowicz, and I. Pirson, TrkA mediates effect of novel KIDINS220 mutation in human brain ventriculomegaly. Human molecular genetics 29 (2021) 3757-3764.
- [341] B.M. Kline-Fath, A.C. Merrow, Jr., M.A. Calvo-Garcia, U.D. Nagaraj, and H.M. Saal, Fowler syndrome and fetal MRI findings: a genetic disorder mimicking hydranencephaly/hydrocephalus. Pediatric radiology 48 (2018) 1032-1034.
- [342] K. Koenigstein, C. Gramsch, M. Kolodziej, B.A. Neubauer, A. Weber, S. Lechner, and A. Hahn, Chudley-McCullough Syndrome: Variable Clinical Picture in Twins with a Novel GPSM2 Mutation. Neuropediatrics 47 (2016) 197-201.
- [343] P. Lahiry, J. Wang, J.F. Robinson, J.P. Turowec, D.W. Litchfield, M.B. Lanktree, G.B. Gloor, E.G. Puffenberger, K.A. Strauss, M.B. Martens, D.A. Ramsay, C.A. Rupar, V. Siu, and R.A. Hegele, A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems. Am J Hum Genet 84 (2009) 134-47.
- [344] Y. Li, K.W. Choy, H.N. Xie, M. Chen, W.Y. He, Y.F. Gong, H.Y. Liu, Y.Q. Song, Y.X. Xian, X.F. Sun, and X.J. Chen, Congenital hydrocephalus and hemivertebrae associated with de novo partial monosomy 6q (6q25.3→qter). Balkan J Med Genet 18 (2015) 77-84.

- [345] K. Maclean, J. Smith, L. St Heaps, N. Chia, R. Williams, G.B. Peters, E. Onikul, T. McCrossin, O.J. Lehmann, and L.C. Adès, Axenfeld-Rieger malformation and distinctive facial features: Clues to a recognizable 6p25 microdeletion syndrome. Am J Med Genet A 132a (2005) 381-5.
- [346] I.L. Mero, H.H. Mørk, Y. Sheng, A. Blomhoff, G.L. Opheim, A. Erichsen, M.D. Vigeland, and K.K. Selmer, Homozygous KIDINS220 loss-of-function variants in fetuses with cerebral ventriculomegaly and limb contractures. Human molecular genetics 26 (2017) 3792-3796.
- [347] L. Pappa, M. Kals, P.A. Kivistik, A. Metspalu, A. Paal, and T. Nikopensius, Exome analysis in an Estonian multiplex family with neural tube defects-a case report. Childs Nerv Syst 33 (2017) 1575-1581.
- [348] Z. Powis, A.C. Chamberlin, C.L. Alamillo, S. Ceulemans, L.M. Bird, and S. Tang, Postmortem Diagnostic Exome Sequencing Identifies a De Novo TUBB3 Alteration in a Newborn With Prenatally Diagnosed Hydrocephalus and Suspected Walker-Warburg Syndrome. Pediatr Dev Pathol 21 (2018) 319-323.
- [349] B. Rai, and F. Sharif, Cervicomedullary spinal stenosis and ventriculomegaly in a child with developmental delay due to chromosome 16p12.1 microdeletion syndrome. Journal of child neurology 30 (2015) 394-6.
- [350] J. Su, W. Lu, M. Li, Q. Zhang, F. Chen, S. Yi, Q. Yang, S. Yi, X. Zhou, L. Huang, Y. Shen, J. Luo, and Z. Qin, Novel compound heterozygous frameshift variants in WDR81 associated with congenital hydrocephalus 3 with brain anomalies: First Chinese prenatal case confirms WDR81 involvement. Molecular genetics & genomic medicine 9 (2021) e1624.
- [351] Z. Yüksel, F. Vogel, A.M. Alhashem, T.S.A. Alanzi, B. Tabarki, K. Kampe, K.K. Kandaswamy, M. Werber, A.M. Bertoli-Avella, C. Beetz, A. Rolfs, and P. Bauer, A homozygous frameshift variant in an alternatively spliced exon of DLG5 causes hydrocephalus and renal dysplasia. Clinical genetics 95 (2019) 631-633.
- [352] H.A. Demir, A. Varan, E.G. Utine, D. Aktaş, B. Oğuz, D. Rama, and M. Büyükpamukçu, WAGR syndrome with tetralogy of Fallot and hydrocephalus. J Pediatr Hematol Oncol 33 (2011) e174-5.
- [353] K. Fukino, A. Teramoto, K. Adachi, H. Takahashi, and M. Emi, A family with hydrocephalus as a complication of cerebellar hemangioblastoma: identification of Pro157Leu mutation in the VHL gene. J Hum Genet 45 (2000) 47-51.
- [354] K. Kusakabe, S. Kohno, A. Inoue, T. Seno, S. Yonezawa, K. Moritani, Y. Mizuno, M. Kurata, R. Kitazawa, H. Tauchi, H. Watanabe, S. Iwata, J. Hirato, and T. Kunieda, Combined morphological, immunohistochemical and genetic analyses of medulloepithelioma in the posterior cranial fossa. Neuropathology : official journal of the Japanese Society of Neuropathology 38 (2018) 179-184.
- [355] W. Reardon, X.P. Zhou, and C. Eng, A novel germline mutation of the PTEN gene in a patient with macrocephaly, ventricular dilatation, and features of VATER association. Journal of medical genetics 38 (2001) 820-3.
- [356] A. Uguen, C. Laurent, L. Samaison, B. Boisselier, M. Talagas, S. Costa, J. Aziza, K. Mokhtari, C. Le Maréchal, and P. Marcorelles, Severe hydrocephalus caused by diffuse leptomeningeal and neurocutaneous melanocytosis of antenatal onset: a clinical, pathologic, and molecular study of 2 cases. Hum Pathol 46 (2015) 1189-96.
- [357] A. Drielsma, C. Jalas, N. Simonis, J. Désir, N. Simanovsky, I. Pirson, O. Elpeleg, M. Abramowicz, and S. Edvardson, Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. Journal of medical genetics 49 (2012) 708-12.
- [358] G. Ruggeri, A.E. Timms, C. Cheng, A. Weiss, P. Kollros, T. Chapman, H. Tully, and G.M. Mirzaa, Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus. Am J Med Genet A 176 (2018) 676-681.
- [359] M. Wallis, A. Baumer, W. Smaili, I.C. Jaouad, A. Sefiani, E. Jacobson, L. Bowyer, D. Mowat, and A. Rauch, Surprisingly good outcome in antenatal diagnosis of severe hydrocephalus related to CCDC88C deficiency. European journal of medical genetics 61 (2018) 189-196.
- [360] C.P. Chen, T.M. Ko, L.K. Wang, S.R. Chern, P.S. Wu, S.W. Chen, F.T. Wu, Y.Y. Chen, W.L. Chen, and W. Wang, Prenatal diagnosis and molecular cytogenetic characterization of a chromosome 1q42.3-q44 deletion in a fetus associated with ventriculomegaly on prenatal ultrasound. Taiwan J Obstet Gynecol 59 (2020) 598-603.
- [361] I.J. Diets, T. Prescott, N.L. Champaigne, G.M.S. Mancini, B. Krossnes, R. Frič, K. Kocsis, M.C.J. Jongmans, and T. Kleefstra, A recurrent de novo missense pathogenic variant in SMARCB1 causes severe intellectual disability and choroid plexus hyperplasia with resultant hydrocephalus.

> Genetics in medicine : official journal of the American College of Medical Genetics 21 (2019) 572-579.

- [362] Y. Negishi, F. Miya, A. Hattori, K. Mizuno, I. Hori, N. Ando, N. Okamoto, M. Kato, T. Tsunoda, M. Yamasaki, Y. Kanemura, K. Kosaki, and S. Saitoh, Truncating mutation in NFIA causes brain malformation and urinary tract defects. Hum Genome Var 2 (2015) 15007.
- [363] D. Nyboe, S. Kreiborg, M. Kirchhoff, and H.B. Hove, Familial craniosynostosis associated with a microdeletion involving the NFIA gene. Clin Dysmorphol 24 (2015) 109-12.
- [364] A. Shtaya, F. Elmslie, Y. Crow, and S. Hettige, Leukoencephalopathy, Intracranial Calcifications, Cysts, and SNORD118 Mutation (Labrune Syndrome) with Obstructive Hydrocephalus. World neurosurgery 125 (2019) 271-272.
- [365] A.J. Verkerk, R. Schot, L. van Waterschoot, H. Douben, P.J. Poddighe, M.H. Lequin, L.S. de Vries, P. Terhal, J.M. Hahnemann, I.F. de Coo, M.C. de Wit, L.S. Wafelman, L. Garavelli, W.B. Dobyns, P.J. Van der Spek, A. de Klein, and G.M. Mancini, Unbalanced der(5)t(5;20) translocation associated with megalencephaly, perisylvian polymicrogyria, polydactyly and hydrocephalus. Am J Med Genet A 152a (2010) 1488-97.
- [366] A. Vetro, M. Iascone, I. Limongelli, N. Ameziane, S. Gana, E. Della Mina, U. Giussani, R. Ciccone, A. Forlino, L. Pezzoli, M.A. Rooimans, A.J. van Essen, J. Messa, T. Rizzuti, P. Bianchi, J. Dorsman, J.P. de Winter, F. Lalatta, and O. Zuffardi, Loss-of-Function FANCL Mutations Associate with Severe Fanconi Anemia Overlapping the VACTERL Association. Hum Mutat 36 (2015) 562-8.
- [367] R.M. Zechi-Ceide, M.L. Guion-Almeida, E.S. de Oliveira Rodini, N.A. Jesus Oliveira, and M.R. Passos-Bueno, Hydrocephalus and moderate mental retardation in a boy with Van der Woude phenotype and IRF6 gene mutation. Clin Dysmorphol 16 (2007) 163-166.
- [368] L. Castañeyra-Ruiz, I. González-Marrero, J.M. González-Toledo, A. Castañeyra-Ruiz, H. de Paz-Carmona, A. Castañeyra-Perdomo, and E.M. Carmona-Calero, Aquaporin-4 expression in the cerebrospinal fluid in congenital human hydrocephalus. Fluids and barriers of the CNS 10 (2013) 18.
- [369] M. Kvarnung, F. Taylan, D. Nilsson, M. Albåge, M. Nordenskjöld, B.M. Anderlid, A. Nordgren, and E. Syk Lundberg, Mutations in FLVCR2 associated with Fowler syndrome and survival beyond infancy. Clinical genetics 89 (2016) 99-103.
- [370] E. Lalonde, S. Albrecht, K.C. Ha, K. Jacob, N. Bolduc, C. Polychronakos, P. Dechelotte, J. Majewski, and N. Jabado, Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum Mutat 31 (2010) 918-23.
- [371] V. Martínez-Glez, V. Romanelli, M.A. Mori, R. Gracia, M. Segovia, A. González-Meneses, J.C. López-Gutierrez, E. Gean, L. Martorell, and P. Lapunzina, Macrocephaly-capillary malformation: Analysis of 13 patients and review of the diagnostic criteria. Am J Med Genet A 152a (2010) 3101-6.
- [372] M. Özdemir Ö, C. Çıralı, S. Yılmaz Ağladıoğlu, H. Evrengül, E. Tepeli, and H. Ergin, Neonatal Bartter syndrome with cholelithiasis and hydrocephalus: Rare association. Pediatrics international : official journal of the Japan Pediatric Society 58 (2016) 912-5.
- [373] S. Thomas, F. Encha-Razavi, L. Devisme, H. Etchevers, B. Bessieres-Grattagliano, G. Goudefroye, N. Elkhartoufi, E. Pateau, A. Ichkou, M. Bonnière, P. Marcorelle, P. Parent, S. Manouvrier, M. Holder, A. Laquerrière, L. Loeuillet, J. Roume, J. Martinovic, S. Mougou-Zerelli, M. Gonzales, V. Meyer, M. Wessner, C.B. Feysot, P. Nitschke, N. Leticee, A. Munnich, S. Lyonnet, P. Wookey, G. Gyapay, B. Foliguet, M. Vekemans, and T. Attié-Bitach, High-throughput sequencing of a 4.1 Mb linkage interval reveals FLVCR2 deletions and mutations in lethal cerebral vasculopathy. Hum Mutat 31 (2010) 1134-41.
- [374] I. Visapää, R. Salonen, T. Varilo, P. Paavola, and L. Peltonen, Assignment of the locus for hydrolethalus syndrome to a highly restricted region on 11q23-25. Am J Hum Genet 65 (1999) 1086-95.
- [375] Y. Morimoto, S. Yoshida, A. Kinoshita, C. Satoh, H. Mishima, N. Yamaguchi, K. Matsuda, M. Sakaguchi, T. Tanaka, Y. Komohara, A. Imamura, H. Ozawa, M. Nakashima, N. Kurotaki, T. Kishino, K.I. Yoshiura, and S. Ono, Nonsense mutation in CFAP43 causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology 92 (2019) e2364-e2374.
- [376] J. Zhang, C.W. Carr, D. Rigamonti, and A. Badr, Genome-wide linkage scan maps ETINPH gene to chromosome 19q12-13.31. Hum Hered 69 (2010) 262-7.

- [377] C.P. Schaaf, J. Koster, P. Katsonis, L. Kratz, O.A. Shchelochkov, F. Scaglia, R.I. Kelley, O. Lichtarge, H.R. Waterham, and M. Shinawi, Desmosterolosis-phenotypic and molecular characterization of a third case and review of the literature. Am J Med Genet A 155a (2011) 1597-604.
- [378] A.M. Alazami, N. Patel, H.E. Shamseldin, S. Anazi, M.S. Al-Dosari, F. Alzahrani, H. Hijazi, M. Alshammari, M.A. Aldahmesh, M.A. Salih, E. Faqeih, A. Alhashem, F.A. Bashiri, M. Al-Owain, A.Y. Kentab, S. Sogaty, S. Al Tala, M.H. Temsah, M. Tulbah, R.F. Aljelaify, S.A. Alshahwan, M.Z. Seidahmed, A.A. Alhadid, H. Aldhalaan, F. AlQallaf, W. Kurdi, M. Alfadhel, Z. Babay, M. Alsogheer, N. Kaya, Z.N. Al-Hassnan, G.M. Abdel-Salam, N. Al-Sannaa, F. Al Mutairi, H.Y. El Khashab, S. Bohlega, X. Jia, H.C. Nguyen, R. Hammami, N. Adly, J.Y. Mohamed, F. Abdulwahab, N. Ibrahim, E.A. Naim, B. Al-Younes, B.F. Meyer, M. Hashem, R. Shaheen, Y. Xiong, M. Abouelhoda, A.A. Aldeeri, D.M. Monies, and F.S. Alkuraya, Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep 10 (2015) 148-61.
- [379] G. Houge, D. Haesen, L.E. Vissers, S. Mehta, M.J. Parker, M. Wright, J. Vogt, S. McKee, J.L. Tolmie, N. Cordeiro, T. Kleefstra, M.H. Willemsen, M.R. Reijnders, S. Berland, E. Hayman, E. Lahat, E.H. Brilstra, K.L. van Gassen, E. Zonneveld-Huijssoon, C.I. de Bie, A. Hoischen, E.E. Eichler, R. Holdhus, V.M. Steen, S.O. Døskeland, M.E. Hurles, D.R. FitzPatrick, and V. Janssens, B56δ-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J Clin Invest 125 (2015) 3051-62.
- [380] L. Ouyang, and F. Yang, Cole-Carpenter syndrome-1 with a de novo heterozygous deletion in the P4HB gene in a Chinese girl: A case report. Medicine (Baltimore) 96 (2017) e9504.
- [381] F. Rauch, S. Fahiminiya, J. Majewski, J. Carrot-Zhang, S. Boudko, F. Glorieux, J.S. Mort, H.P. Bächinger, and P. Moffatt, Cole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HB. Am J Hum Genet 96 (2015) 425-31.
- [382] A. Slavotinek, J. Kaylor, H. Pierce, M. Cahr, S.J. DeWard, D. Schneidman-Duhovny, A. Alsadah, F. Salem, G. Schmajuk, and L. Mehta, CRB2 mutations produce a phenotype resembling congenital nephrosis, Finnish type, with cerebral ventriculomegaly and raised alpha-fetoprotein. Am J Hum Genet 96 (2015) 162-9.
- [383] L. Zhang, Z. Zhang, X. Bi, Y. Mao, Y. Cheng, P. Zhu, S. Xu, Y. Wang, X. Zhan, J. Fan, Y. Yuan, H. Bi, and X. Wu, Genetic and preimplantation diagnosis of cystic kidney disease with ventriculomegaly. J Hum Genet 65 (2020) 455-459.
- [384] A.U. Meszarosova, J. Lastuvkova, L. Rennerova, P. Hitka, F. Cihlar, P. Seeman, and D. Safka Brozkova, Two novel pathogenic variants in KIAA1109 causing Alkuraya-Kučinskas syndrome in two Czech Roma brothers. Clin Dysmorphol 29 (2020) 197-201.
- [385] T. Shiihara, A. Oka, I. Suzaki, H. Ida, and K. Takeshita, Communicating hydrocephalus in a patient with Gaucher's disease type 3. Pediatr Neurol 22 (2000) 234-6.
- [386] L. Basel-Vanagaite, A. Raas-Rotchild, L. Kornreich, A. Har-Zahav, J. Yeshaya, V. Latarowski, I. Lerer, W.B. Dobyns, and M. Shohat, Familial hydrocephalus with normal cognition and distinctive radiological features. Am J Med Genet A 152a (2010) 2743-8.
- [387] J.D. Bernstock, I. Tafel, D.J. Segar, R. Dowd, A. Kappel, J.A. Chen, O. Aglan, A. Montaser, S. Gupta, B. Johnston, J. Judge, K. Fehnel, S. Stone, and B.C. Warf, Complex Management of Hydrocephalus Secondary To Choroid Plexus Hyperplasia. World neurosurgery 141 (2020) 101-109.
- [388] M. Boxill, N. Becher, L. Sunde, and T. Thelle, Choroid plexus hyperplasia and chromosome 9p gains. Am J Med Genet A 176 (2018) 1416-1422.
- [389] J.A. Brock, S. Dyack, M. Ludman, N. Dumas, M. Gaudet, and B. Morash, Mosaic tetrasomy 5p resulting from an isochromosome 5p marker chromosome: case report and review of literature. Am J Med Genet A 158a (2012) 406-11.
- [390] N. Brunetti-Pierri, J.S. Berg, F. Scaglia, J. Belmont, C.A. Bacino, T. Sahoo, S.R. Lalani, B. Graham, B. Lee, M. Shinawi, J. Shen, S.H. Kang, A. Pursley, T. Lotze, G. Kennedy, S. Lansky-Shafer, C. Weaver, E.R. Roeder, T.A. Grebe, G.L. Arnold, T. Hutchison, T. Reimschisel, S. Amato, M.T. Geragthy, J.W. Innis, E. Obersztyn, B. Nowakowska, S.S. Rosengren, P.I. Bader, D.K. Grange, S. Naqvi, A.D. Garnica, S.M. Bernes, C.T. Fong, A. Summers, W.D. Walters, J.R. Lupski, P. Stankiewicz, S.W. Cheung, and A. Patel, Recurrent reciprocal 1q21.1 deletions and duplications

associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet 40 (2008) 1466-71.

- [391] M. Cai, H. Huang, L. Xu, and N. Lin, Classifying and Evaluating Fetuses With Ventriculomegaly in Genetic Etiologic Studies. Frontiers in genetics 12 (2021) 682707.
- [392] F. Cambosu, G. Capobianco, G. Fogu, P. Bandiera, A. Pirino, M.A. Moro, R. Sanna, G. Soro, M. Dessole, and A. Montella, Partial trisomy of the long arm of chromosome 1: prenatal diagnosis, clinical evaluation and cytogenetic findings. Case report and review of the literature. J Obstet Gynaecol Res 39 (2013) 592-7.
- [393] V. Capra, P. De Marco, E. Merello, A.M. Baffico, M. Baldi, M.T. Divizia, S. Gimelli, D. Mallet, A. Raso, S. Mascelli, P. Tomà, A. Rossi, M. Pavanello, A. Cama, and C. Magnani, Craniosynostosis, hydrocephalus, Chiari I malformation and radioulnar synostosis: probably a new syndrome. European journal of medical genetics 52 (2009) 17-22.
- [394] M. Castro-Gago, E. Pintos-Martínez, J. Forteza-Vila, M. Iglesias-Diz, R. Ucieda-Somoza, I. Silva-Villar, J. Codesido-López, A. Viso-Lorenzo, Y. Campos, J. Arenas, and J. Eirís-Puñal, Congenital hydranencephalic-hydrocephalic syndrome with proliferative vasculopathy: a possible relation with mitochondrial dysfunction. Journal of child neurology 16 (2001) 858-62.
- [395] C.P. Chen, Y.N. Su, C.Y. Hsu, Y.P. Liu, S.R. Chern, L.F. Chen, and W. Wang, Prenatal diagnosis of a de novo 17p13.1 microduplication in a fetus with ventriculomegaly and lissencephaly. Taiwan J Obstet Gynecol 50 (2011) 554-7.
- [396] C.P. Chen, T.Y. Chang, Y.Y. Chen, S.R. Chern, J.W. Su, and W. Wang, VACTERL association with hydrocephalus in a fetus conceived by in vitro fertilization and embryo transfer. Taiwan J Obstet Gynecol 52 (2013) 575-9.
- [397] C. Descipio, L. Schneider, T.L. Young, N. Wasserman, D. Yaeger, F. Lu, P.G. Wheeler, M.S. Williams, L. Bason, L. Jukofsky, A. Menon, R. Geschwindt, A.E. Chudley, J. Saraiva, A.A. Schinzel, A. Guichet, W.E. Dobyns, A. Toutain, N.B. Spinner, and I.D. Krantz, Subtelomeric deletions of chromosome 6p: molecular and cytogenetic characterization of three new cases with phenotypic overlap with Ritscher-Schinzel (3C) syndrome. Am J Med Genet A 134a (2005) 3-11.
- [398] P. Dubé, V.M. Der Kaloustian, S. Demczuk, H. Saabti, and R.K. Koenekoop, A new association of congenital hydrocephalus, albinism, megalocornea, and retinal coloboma in a syndromic child: a clinical and genetic study. Ophthalmic Genet 21 (2000) 211-6.
- [399] C.M. Forcelini, A.B. Mallmann, P.S. Crusius, C.A. Seibert, M.U. Crusius, D.I. Zandoná, C. Carazzo, C.U. Crusius, E. Goellner, J. Ragnini, L.B. Manzato, G. Winkelmann, A.V. Lima, and M.G. Bauermann, Down syndrome with congenital hydrocephalus: case report. Arq Neuropsiquiatr 64 (2006) 869-71.
- [400] L. Garavelli, E. Guareschi, S. Errico, A. Simoni, P. Bergonzini, M. Zollino, F. Gurrieri, G.M. Mancini, R. Schot, P.J. Van Der Spek, G. Frigieri, P. Zonari, E. Albertini, E.D. Giustina, S. Amarri, G. Banchini, W.B. Dobyns, and G. Neri, Megalencephaly and perisylvian polymicrogyria with postaxial polydactyly and hydrocephalus (MPPH): report of a new case. Neuropediatrics 38 (2007) 200-3.
- [401] K. Inui, K. Yanagihara, K. Otani, Y. Suzuki, M. Akagi, M. Nakayama, H. Ida, and S. Okada, A new variant neuropathic type of Gaucher's disease characterized by hydrocephalus, corneal opacities, deformed toes, and fibrous thickening of spleen and liver capsules. The Journal of pediatrics 138 (2001) 137-9.
- [402] A. Kariminejad, F. Radmanesh, A.R. Rezayi, S.H. Tonekaboni, and J.G. Gleeson, Megalencephalypolymicrogyria-polydactyly-hydrocephalus syndrome: a case report. Journal of child neurology 28 (2013) 651-7.
- [403] E.G. Lemire, and G.P. Stoeber, Chudley-McCullough syndrome: bilateral sensorineural deafness, hydrocephalus, and other structural brain abnormalities. American journal of medical genetics 90 (2000) 127-30.
- [404] R.B. Lowry, D.B. Gould, M.A. Walter, and P.R. Savage, Absence of PITX2, BARX1, and FOXC1 mutations in De Hauwere syndrome (Axenfeld-Rieger anomaly, hydrocephaly, hearing loss): a 25-year follow up. Am J Med Genet A 143a (2007) 1227-30.
- [405] F. Matteucci, E. Tarantino, M.C. Bianchi, C. Cingolani, B. Fattori, A. Nacci, and F. Ursino, Sensorineural deafness, hydrocephalus and structural brain abnormalities in two sisters: the Chudley-McCullough syndrome. Am J Med Genet A 140 (2006) 1183-8.

- [406] K. Naritomi, N. Shiroma, Y. Izumikawa, K. Sameshima, S. Ohdo, and K. Hirayama, 16q21 is critical for 16q deletion syndrome. Clinical genetics 33 (1988) 372-5.
- [407] E. Østergaard, V.F. Pedersen, E.B. Skriver, and K. Brøndum-Nielsen, Brothers with Chudley-McCullough syndrome: sensorineural deafness, agenesis of the corpus callosum, and other structural brain abnormalities. Am J Med Genet A 124a (2004) 74-8.
- [408] A.M. Remes, H. Rantala, J.K. Hiltunen, J. Leisti, and A. Ruokonen, Fumarase deficiency: two siblings with enlarged cerebral ventricles and polyhydramnios in utero. Pediatrics 89 (1992) 730-4.
- [409] F. Silan, M. Yoshioka, K. Kobayashi, E. Simsek, M. Tunc, M. Alper, M. Cam, A. Guven, Y. Fukuda, M. Kinoshita, K. Kocabay, and T. Toda, A new mutation of the fukutin gene in a non-Japanese patient. Ann Neurol 53 (2003) 392-6.
- [410] J. Tohyama, N. Akasaka, N. Saito, J. Yoshimura, K. Nishiyama, and M. Kato, Megalencephaly and polymicrogyria with polydactyly syndrome. Pediatr Neurol 37 (2007) 148-51.
- [411] A. Toren, S. Alpern, M. Berkenstadt, O. Bar-Yosef, E. Pras, and E. Katorza, Chromosomal Microarray Evaluation of Fetal Ventriculomegaly. Isr Med Assoc J 22 (2020) 639-644.
- [412] C. Vincent, V. Kalatzis, S. Compain, J. Levilliers, R. Slim, F. Graia, M.L. Pereira, A. Nivelon, M.F. Croquette, D. Lacombe, and et al., A proposed new contiguous gene syndrome on 8q consists of Branchio-Oto-Renal (BOR) syndrome, Duane syndrome, a dominant form of hydrocephalus and trapeze aplasia; implications for the mapping of the BOR gene. Human molecular genetics 3 (1994) 1859-66.
- [413] K. Wadt, L.N. Jensen, L. Bjerglund, M. Lundstrøm, M. Kirchhoff, and S. Kjaergaard, Fetal ventriculomegaly due to familial submicroscopic terminal 6q deletions. Prenat Diagn 32 (2012) 1212-7.
- [414] M.E. Walker, D.A. Lynch-Salamon, A. Milatovich, and H.M. Saal, Prenatal diagnosis of ring chromosome 6 in a fetus with hydrocephalus. Prenat Diagn 16 (1996) 857-61.
- [415] J. Wang, Z. Zhang, Q. Li, H. Zhu, Y. Lai, W. Luo, S. Liu, H. Wang, and T. Hu, Prenatal diagnosis of chromosomal aberrations by chromosomal microarray analysis in foetuses with ventriculomegaly. Scientific reports 10 (2020) 20765.
- [416] K.O. Welch, M. Tekin, W.E. Nance, S.H. Blanton, K.S. Arnos, and A. Pandya, Chudley-McCullough syndrome: expanded phenotype and review of the literature. Am J Med Genet A 119a (2003) 71-6.
- [417] M. Yoshioka, and S. Kuroki, Clinical spectrum and genetic studies of Fukuyama congenital muscular dystrophy. American journal of medical genetics 53 (1994) 245-50.

Figures

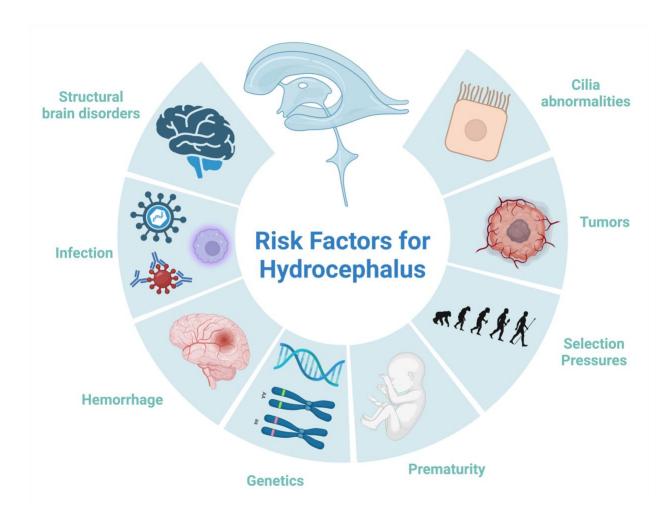
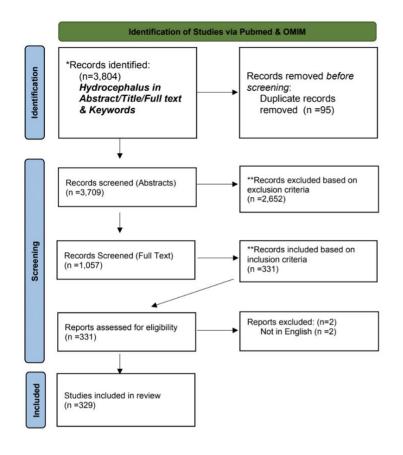



Figure 1. Factors contributing to the development of hydrocephalus in humans.

*Search Criteria: "Hydrocephalus" and "Ventriculomegaly" in Title/Abstract/Fulltext AND any term: Mendelian, functional genomics, whole exome sequencing, whole-exome sequencing, whole genome sequencing, whole-genome sequencing, genotyping, genotype, microarray, genome-wide association study, genome wide association study, GWAS, transcriptome wide association study, transcriptome-wide association study, TWAS, gene expression, copy number variation, insertion, deletion, mosaic, mosaicsm, genetic variation, consanguinous, consanguinity, autosomal recessive, autosomal dominant, x-linked recessive, x-linked dominant, inherited, inheritance, de novo, non-coding, coding, co-expression, germline, linkage, linkage disequilibrium, genetic counseling, syndrome, syndromic, genetic testing, aqueductal stenosis, obstructive hydrocephalus, acquired hydrocephalus, congenital hydrocephalus, proteomics, proteomic, metabolomic, metabolomics, methylation, mutation, genetic deficiency, gain of function, gainof-function, loss of function, loss-of-function, molecular. **Exclusion Criteria: No hydrocephalus in primary genetic findings, primary animal subjects, retrospective study. **Inlcusion Criteria: Congential hydrocephalus, primary human subjects, primary genetic testing and findings, prospective study

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71

For more information, visit: http://www.prisma-statement.org/

Figure 2. PRISMA flowchart outlining literature search to identify genes, mutations, and genetic mechanisms contributing to hydrocephalus in humans.

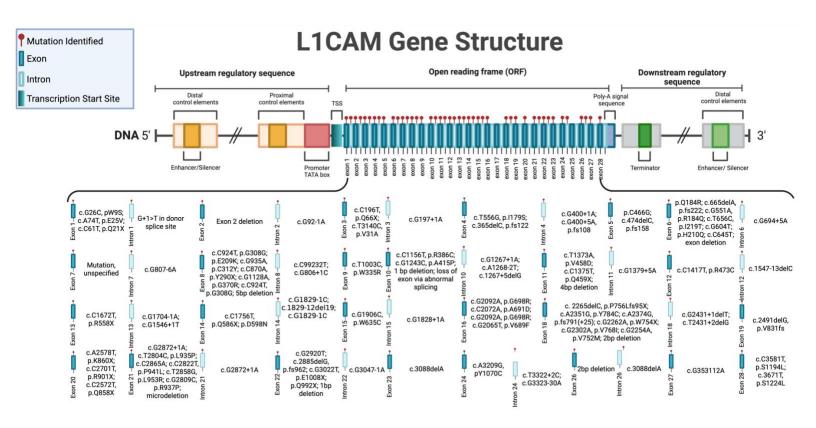


Figure 3. L1CAM mutations implicated in human patients with hydrocephalus.

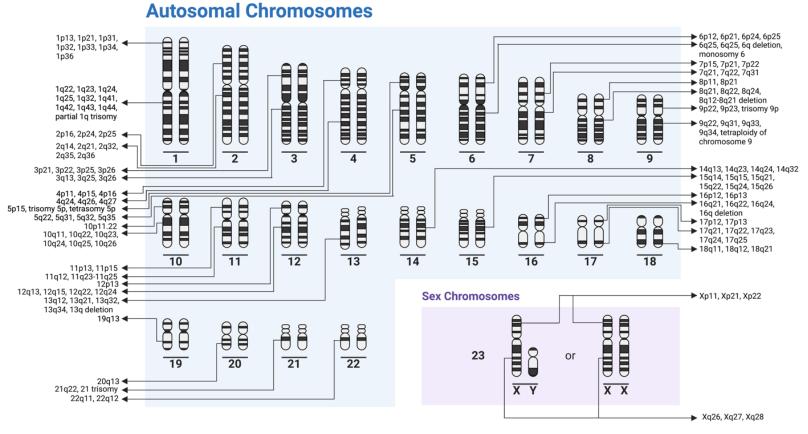
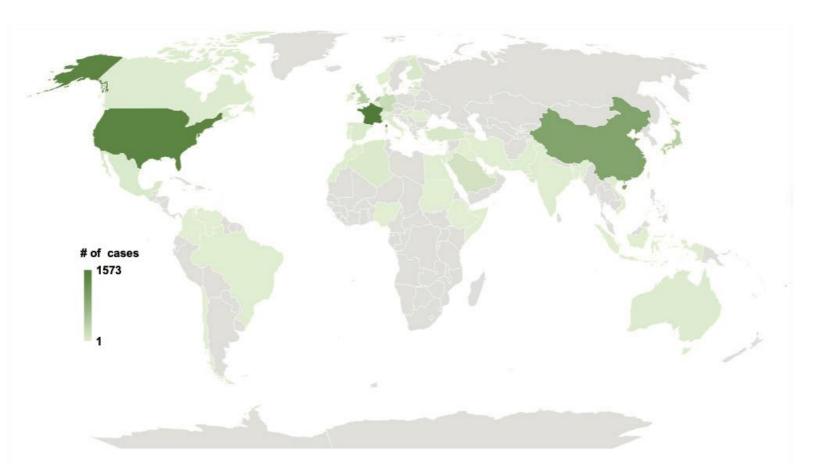



Figure 4. Chromosome map of hydrocephalus-associated loci across autosomal and sex chromosomes in humans.

Figure 5. Heatmap of the globe demonstrating the country of origin for patients with genetic contributions to hydrocephalus. Figure created with OpenStreetMap.

Tables

Table 1. Aqueductal Stenosis.

Table 1. Ad	ueductal Stenosis.											
Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodolog y	Genetic Analysis	Inheritance	Genetic Findings
Alazami et al., 2019 [1]	A novel ISLR2- linked autosomal recessive syndrome of congenital hydrocephalus, arthrogryposis and abdominal distension	King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia	2 Subject s, 8 Control s	Saudi	Case series	generalized hypotonia, diminished reflexes	arthrogryposis and abdominal distension	Obstructive	WES	Autozygo me analysis; Variant analysis	AR	13q21.32 (c.652T>C, p.Y218H in PCDH9); 15q24.1 (c.1660delT, p.W554Gfs*40 in ISLR2)
Allocco et al., 2019 [2]	Recessive Inheritance of Congenital Hydrocephalus with Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3	Yale University, New Haven, CT, United States	1 Subject , 2 Parents	Caucasian	Case study	open schizencephaly, type 1 Chiari malformation, and dysgenesis of the corpus callosum	-	Obstructive	WES	CNV, Sanger sequencin g	AR	19q13.2 (p.R19C in exon 2 and p.R463C in exon 11 of ATP1A3)
Chassain g et al., 2007 [3]	Germinal mosaicism and familial recurrence of a SOX2 mutation with highly variable phenotypic expression extending from AEG syndrome to absence of ocular involvement	Hôpital Purpan, Toulouse, France	1 Subject , 1 Control	-	Case study	Brain malformations, corpus callosum hypoplasia	ocular dysgenesis, male genital tract malformations, postnatal growth retardation, and facial dysmorphic features	Obstructive	TGS	-	AD	3q26.33 (deletion within SOX2)
Cox et al., 1997 [4]	VACTERL with hydrocephalus in twins due to Fanconi anemia (FA): mutation in the FAC gene	Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom	2 Subject s, 2 Parents	South African Ashkenazi Jew	Case study	isolated hydrocephalus	absent thumb, pericardial effusion, tracheo-esophageal fistula, pulmonary dysgenesis, intestinal malrotation, ectopic kidney, tetralogy of fallot	Obstructive	TGS	-	AR	9q22.32 (IVS4 + 4 A to T splice mutation in intron 4 of FAC)
De Keersma ecker et al., 2013 [5]	Prenatal diagnosis of MPPH syndrome	University Hospitals, Leuven, Belgium	1 Subject	-	Case study	polymicrogyria	postaxial polydactyly	Obstructive	Cytogenetics , TGS	aCGH	-	-
Escobar et al., 2009 [6]	Significant phenotypic variability of Muenke syndrome in identical twins	St. Vincent Children's Hospital, Indianapolis, Indiana, USA	2 Subject s	-	Case study	coronal craniosynostosis , porencephalic cyst, and absence of the corpus callosum	Bilateral sensorineural hearing loss, Tracheoesophageal Fistula, ASD, VSD	Obstructive	TGS	-	De novo	4p16.3 (c.C749G, p.P250R in FGFR3 gene)

						•						
Gomy et al., 2008 [7]	Two new Brazilian patients with Gómez- López- Hernández syndrome: reviewing the expanded phenotype with molecular insights	School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil	2 Subject s	Brazilian	Case study	craniosynostosis , craniofacial anomalies, trigeminal anesthesia, cerebellar ataxia, intellectual disability, and rhombencephalo synapsis	Scalp alopecia, developmental delay	Obstructive	TGS	Direct sequencin g	-	No pathogenic mutations
lsik et al., 2018 (78) [8]	Clinical and genetic features of L1 syndrome patients: Definition of two novel mutations	Faculty of Medicine, Ege University, Izmir, Turkey	2 Subject s	-	Case series	intellectual disability, microcephaly, spasticity	developmental delay, broad forehead, hypertelorism, low set ears, long philtrum, bilateral adducted thumbs, atrial septal defect	Obstructive	Molecular analysis, unspecified	De-novo mutation analysis, Segregati on analysis	X-linked	Xq28 (c.3166 + 1G > A; c.749delG, p.S250Tfs*51)
Jin et al., 2019 [9]	SLC12A ion transporter mutations in sporadic and familial human congenital hydrocephalus	Yale University School of Medicine, New Haven, CT, USA	2 Subject s	-	Case series	agenesis of the corpus callosum, and schizencephaly	-	Obstructive	WES	CNV	De novo	15q14 (c.C1814T, p.Pr05L in SLC12A6); 5p15.33 (SLC12A7 deletion)
Jouet et al., 1993 [10]	Refining the genetic location of the gene for X linked hydrocephalus within Xq28	University of Cambridge	4 Subject s	-	Case series	seizures, intellectual disability, callosal agenesis, aqueduct stenosis, spastic paraparesis	adducted thumbs	Obstructive	Genotyping	Two point/multi point linkage analysis	X-linked recessive	Xq28 (HSAS gene proximal to DXS605 & coincident with DXS52)
Khattab et al., 2011 [11]	A de novo 3.54 Mb deletion of 17q22-q23.1 associated with hydrocephalus: a case report and review of literature	Yale University School of Medicine, New Haven, Connecticut 06520-8064, USA	1 Subject	-	Case study	generalized hypotonia	sutural separation with full anterior fontanel, small palpebral fissures, hypertelorism, low-set ears, micrognathia, downturned corners of the mouth, arachnodactyly of fingers and toes, contractures of joints	Obstructive	TGS, cytogenetics	aCGH; FISH	De novo	17q22-q23.1 deletion
Lamont et al., 2016 [12]	Expansion of phenotype and genotypic data in CRB2-related syndrome	Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Calgary, Alberta, Canada	5 Subject s	-	Case series	Hypoplastic cerebellum, subependymal heterotopias, hypertonia	bilateral echogenic kidneys, hypoplastic right lung, hypoplastic right pulmonary artery, dextroposition of the heart, ASD defect, low visual acuity, irregular retinal pigmentation, mild optic atrophy	Obstructive	WES	NGS, Sanger sequencin g, SNP genotypin g array	AR, <i>De</i> <i>novo</i> , maternal	9q33.3 (CRB2 mutations (p.C620S; p.R628C; p.C629S; p.G1036Afs*42; p.R1248Q; p.R498C; p.R633W; p.E643A; p.W759X; p.N800K; p.D1076A; p.C1098Sfs*53; p.R1115C; p.C1129R)); 4q27 (BBS7 mutation (p.R238Efs*59));

I				<u> </u>								
												1q25.2 (NPHS2 mutation (p.R229Q))
Lyonnet et al., 1992 [13]	The gene for X- linked hydrocephalus maps to Xq28, distal to DXS52	Hôpital des Enfants- Malades, Paris, France	58 Subject s	French, German	Case series	Intellectual disability and spasticity	abnormal flexion deformity of the thumbs	-	Haplotyping	Pairwise and multipoint linkage analysis	X-linked	HSAS1 localized to Xq28 and distal to DXS52
Maurya et al., 2021 [14]	A case report of Arnold Chiari type 1 malformation in acromesomelic dwarf infant	Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, Maharashtra, India	1 Subject	-	Case study	Arnold Chiari type 1 malformation, atrophy of both lentiform nuclei, paucity of white matter in bilateral occipital regions, thinning of the corpus callosum	acromesomelic dwarfism	Obstructive	WGS	NGS	AR	4p16.3 (c.G1138A, p.G380R in exon 9 of FGFR3); 9p23 (c.G394A, p.G132S in exon 5 of MPDZ); 7q31.1 (c.T4133A, p.L1378H in exon 27 of LAMB1); 17q25.3 (c.A1G, p.M1V in exon 2 of GAA)
Porayett e et al., 2013 [15]	Novel mutations in geleophysic dysplasia type 1	Boston Children's Hospital, Harvard Medical School, Boston, MA, USA	1 Subject	-	Case study	Isolated hydrocephalus	large head, prominent flat forehead, hypertelorism, wide mouth with long thin lips, full cheeks, downturned corners of the mouth, short palpebral fissures, long flat philtrum, grooved tongue with tongue-tie, low-set ears, small nose with depressed nasal bridge, short neck, mild abdominal distension, symmetrical shortening of all extremities, aortic stenosis, pulmonary valve stenosis	Obstructive	TGS	-	AD	9q34.2 (c.1934G>A, p.R645H in exon 13 and mutation in intron 8) of ADAMTSL2)
Serville et al., 1993 [16]	Prenatal exclusion of X- linked hydrocephalus- stenosis of the aqueduct of Sylvius sequence using closely linked DNA markers	Unité de Recherches sur les Handicaps Génétiques de l'Enfant INSERM U- 12, Hôpital des Enfants- Malades, Paris, France	2 Subject	-	Case series	cortex thinning, spasticity, cerebral palsy, intellectual disability, corpus callosum agenesis, aqueductal stenosis	bilateral adducted thumbs	Obstructive	Southern blotting, DNA probes; autoradiogra phy	Linkage analysis	X-linked recessive	Xq28 region linkage with the HSAS locus
Strain et al., 1994 [17]	Genetic heterogeneity in X-linked hydrocephalus: linkage to markers within Xq27.3	Human Genetics Unit, University of Edinburgh, Western General Hospital, UK	4 Subject s, Control s used	-	Case series	septum pellucidum and corpus callosum agenesis, aqueductal stenosis	adducted thumbs	Obstructive	Chromosom al banding	Two- point/multi point linkage analysis	-	Linkage to DXS548 and FRAXA loci in Xq27.3
Tzschac h et al., 2012 [18]	Interstitial 9q34.11-q34.13 deletion in a	Institute of Human Genetics,	1 Subject	-	Case study	Intellectual disability	Cleft lip and palate, bilateral talipes equinovarus,	Obstructive	Chromosom e analysis	SNP array	-	9q34.11–q34.13 (3.7 Mb deletion)

	patient with severe intellectual disability, hydrocephalus, and cleft lip/palate	University of Tuebingen, Tuebingen, Germany	, 2 Parents				kyphoscoliosis, psychomotor development delay, short stature, bilateral convergent strabismus, dysmorphic facial features					
Verbeek et al., 2012 [19]	COL4A2 mutation associated with familial porencephaly and small-vessel disease	Erasmus University Medical Center, Rotterdam, The Netherlands	10 Subject s, Control s used	Caucasian , Afghani	Case series	porencephaly, periventricular leukoencephalop athy, cerebellar hypoplasia, cerebral atrophy	developmental delay, feeding difficulties, bilateral ICA, ophthalmological signs	Obstructive	TGS	SNP array	AD	13q34 (c.4165G4A, p.G1389R in exon 44 and c.3206delC in exon 34 in COL4A2)
Vieira et al., 2012 [20]	Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis	Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisbon, Portugal	1 Subject	Gypsy	Case study	aqueductal stenosis	dextrocardia, a complex heart malformation, situs inversus, intestinal malrotation	Obstructive	TES	-	AR	No mutations in DNAI1 or DNAH5

Table 1. Abbreviations include the following: Amplification created restriction site (ACRS). Array comparative genomic hybridization (aCGH). Arthrogryposis multiplex congenital (AMC). Atrial septal defect (ASD). Autosomal dominant (AD). Autosomal recessive (AR). Copy number variant (CNV). Fluorescein isothiocyanate (FITC). Fluorescence-assisted mismatch analysis (FAMA). Fluorescence In Situ Hybridization (FISH). Heteroduplex analysis (HA). Internal carotid artery (ICA). Next generation sequencing (NGS). Restriction endonuclease fingerprinting (REF). Single nucleotide polymorphisms (SNP). Single nucleotide primer extension (SNuPE). Single-strand conformation polymorphisms (SSCP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 2: X-linked Hydrocephalus.

	ed Hydrocephalus.						Non-CNS					
Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotyp e	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings
Alhousseini et al., 2019 [21]	Familial Hydrocephalus and Dysgenesis of the Corpus Callosum Associated with Xp22.33 Duplication and Stenosis of the Aqueduct of Sylvius with X-Linked Recessive Inheritance Pattern	Wayne State University, Detroit, Michigan, USA	2 Subjects, 1 Control	Furey	Case study	global motor delay	-	Obstructive	Chromosomal microarray	CNV	X-linked Recessive	Xp22.33 (439 Kb duplication)
Beggs et al., 1992 [22]	Possible influences on the expression of X chromosome- linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy	Howard Hughes Medical Institute, Children's Hospital, Boston, MA	37 Subjects, Controls used	Japanese	Case series	comedullar atrophy, cortical dysgenesis	congenital muscular dystrophy	Communicating	TGS	Southern blotting	AR with X linked interaction	Xp21.2-p21.1 (exons 51-54 deletion in DMD)
Berger et al., 2011 [23]	Early prenatal ventriculomegaly due to an AIFM1 mutation identified by linkage analysis and whole exome sequencing	Hadassah- Hebrew University Medical Center, Jerusalem, Israel	2 Subjects, 86 Controls	Palestinian	Case Study	bilateral septated choroid plexus cysts, enlarged cisterna magna, swallowing difficulties, hypotonia	hypertrophi c cardiomyo pathy, dystrophic muscle changes	Obstructive	WES	Linkage analysis	X-linked	Xq26.1 (c.G923A, p.G308E in exon 9 of AIFM1)
Cacciagli et al., 2013 [24]	AP1S2 is mutated in X-linked Dandy- Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome)	Faculté de Médecine de La Timone, Marseille, France	4 Subjects, Control matched sampling	-	Case series	dandy walker malformation , intellectual disability, self-harm, ataxia, limb scissoring, spasticity, kyphoscolios is	facial dysmorphi sm with a long and narrow face, prominent mandible, inconstant choreoathe tosis	-	WES	SNP analysis; Sanger Sequenci ng	X-linked	Xp22.2 (c.G426+1T mutation in exon 4 of AP1S2)
Chassaing et al., 2005 [25]	X-linked dominant chondrodysplasia with platyspondyly, distinctive brachydactyly, hydrocephaly, and microphthalmia	Hôpital Pellegrin, CHU Bordeaux, France	4 Subjects	-	Case study	macrocephal y	microphtha Imia, small Iow-set ears, and a short flat nose, platyspond yly, poor mineralizati on of the bones, 11 pairs of thin ribs, hypoplasia of the iliac wings, metaphyse	-	TGS	Microsate Ilite marker assay; linkage analysis	X-linked dominant	X-linked dominant

		1	1	1			1	1	1	1	1	
							al cupped phalanges, and hypoplastic bilobar- shaped calcaneus					
Furtado et al., 2010 [26]	A novel X-linked multiple congenital anomaly syndrome associated with an EBP mutation	University of Utah Health Sciences Center, Salt Lake City, Utah, USA	1 Subject, 5 Controls	-	Case study	dandy– walker malformation , dysgenesis of the corpus callosum,	cataracts, bilateral cryptorchid ism, collodian or ichthyotic skin, 2,3- toe syndactyly, Robin anomaly, a high-nasal bridge, auricular dysplasia, and septal defects	Obstructive	TGS	Variant analysis, Sanger sequenci ng	X-linked recessive	Xp11.23 (c.G141T, p.W47C in exon 2 of EBP)
Holden et al., 2006 [27]	Fanconi anaemia complementation group B presenting as X linked VACTERL with hydrocephalus syndrome	Guy's Hospital, St Thomas Street, London SE1 9RT, UK	2 Subjects, 2 Controls	-	Case Study	Cervical vertebral defects, Arnold Chiari malformation , lumbar spina bifida occulta	absent thumbs, unilateral renal agenesis, incomplete lung lobulation, cardiac defects, tracheoeso phageal fistula/atre sia, abnormal ear	Communicating	TGS	chromoso me breakage assay, direct sequenci ng	X-linked	Xp22.2 (G to A substitution in intron 7 of FANCB which causes skipping of exon 7)
Jouet et al., 1995 [28]	New domains of neural cell-adhesion molecule L1 implicated in X- linked hydrocephalus and MASA syndrome	University of Cambridge Department of Medicine, Addenbrooke's Hospital, United Kingdom	9 Subjects	-	Case- Control	Intellectual disability, and spastic paraplegia type I	aphasia, shuffling gait, adducted thumbs	-	TGS	Automate d sequenci ng; SSCP; HA; direct radioactiv e cycle sequenci ng; SNuPE	X-linked	Xq28 (L1 gene mutations: c.G2302T, p.V768F; c.G361A, p.G121S; exon 1 (c.G26C, p.W9S); exon 8 (nucleotide G-to-A transition, p.E209K); exon 14 (c.C1756T, p.Q586X); exon 21 (c.C2822T, p.P941L); exon 24 (c.A3209G, p.Y1070C); base change

												at the intron 10 donor splice site resulting in the skipping of exon 10; point mutation in intron 26)
Kaepernick et al., 1994 [29]	Clinical aspects of the MASA syndrome in a large family, including expressing females	Michigan State University	22 Subjects	-	Case series	intellectual disability, spasticity	developme ntal delay, adducted thumbs, syndactyly of toes, rounded shoulders, shuffling gait, kyphosis, lordosis, hammer toes, metatarsus adductus, pes cavus, ankle	-	Southern blotting	DNA probing	X-linked	Mutation within Xq28
Kenwrick et al., 1986 [30]	Linkage studies of X- linked recessive spastic paraplegia using DNA probes	Nutfield Department of Clinical Medicine, John Radcliffe Hospital, OX39DU, Oxford, UK	6 Subjects	_	Case series	Spastic paraplegia, intellectual disability	absence of extensor pollicis longus	-	Southern blotting	Linkage analysis	X-linked	Mutation within Xq28
Ko et al., 1994 [31]	Prenatal diagnosis of X-linked hydrocephalus in a Chinese family with four successive affected pregnancies	National Taiwan University Hospital, Taipei, Republic of China	4 Subjects	Chinese	Case study	psychomotor delay, spastic quadriplegia, seizures	aphasia	Obstructive	TES	Linkage analysis; direct sequenci ng	X-linked	Mutation within Xq28
Kolanczyk et al., 2015 [32]	Missense variant in CCDC22 causes X- linked recessive intellectual disability with features of Ritscher-Schinzel/3C syndrome	Institute for Medical Genetics and Human Genetics, Charité- Universitätsme dizin Berlin, Berlin, Germany	2 Subjects, 1 Parent, 1 Control	Australian	Case study	Dandy– Walker malformation , cerebellar vermis hypoplasia, posterior fossa cysts, and ventricular dilatation, intellectual disability	facial dysmorphi sm, cardiac defects, glaucoma, VSD, cryptorchid ism	Obstructive	WES, cytogenetics	NGS- based WES, aCGH, segregati on analysis, Sanger sequenci ng	X-linked recessive	Xp11.23 (c.A1670G, p.Y557C in exon 15 of CCDC22)
Kroes et al., 2005 [33]	Cerebral, cerebellar, and colobomatous anomalies in three related males: Sex- linked inheritance in	University Medical Center Utrecht, Utrecht, The Netherlands	3 Subjects, 1 Control	Caucasian, Indonesian	Case study	Neural tube defect, convulsions, hypotonia,	Meckel's diverticulu m, facial dysmorphi	Communicating/ Obstructive	TGS	X- inactivatio n status	X-linked recessive	X-linked inheritance

							1	[1		1
	a newly recognized syndrome with features overlapping with Joubert syndrome					dandy walker - cerebellar malformation s, hypotonia, molar tooth sign,	sm, bilateral colobomas					
Legius et al., 1994 [34]	Fine mapping of X- linked clasped thumb and mental retardation (MASA syndrome) in Xq28	University of Michigan, Department of Pediatric Genetics, Ann Arbor	49 Subjects	-	Case Study	spastic paresis, Intellectual disability	adducted thumbs, global physical delay	-	Haplotyping	Two-point and Multipoint linkage analysis	X-linked	Xq28 (Genetic etiology of MASA syndrome is localized to between DXS455 and F8C)
McCauley et al., 2011 [35]	X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations	GSTS Pathology, Guy's Hospital, London, UK	10 Subjects, Controls used	-	Case series	isolated hydrocephal us	vertebral defects, hear anomalies, esophagea l/duodenal/ anal atresia, renal abnormaliti es, genital abnormaliti es (VACTERL -H like phenotype)	-	TGS	Direct sequenci ng	X-linked, De novo	Xp22.2 (FANCB mutations: deletion of exons 8-10; c.2165 + 1G > T exon 9 donor splice site mutation; c.1857_1858d elAG, p.R619fs; c.T2150G, p.L717X)
Mikat et al., 2016 [36]	X-linked recessive VACTERL-H due to a mutation in FANCB in a preterm boy	University Hospital Essen, University Duisburg- Essen, Duisburg and Essen	1 Subject, 1 Control	Caucasian	Case study	isolated hydrocephal us	bilateral renal agenesis, posteriorly rotated ears, retrognathi a, oligodactyl y of the hands, bilateral dysplasia of the radius and ulna, anal atresia, and myocardial hypertroph y	-	TGS	-	X-linked recessive	Xp22.2 (c.C832T, p.Q278X in FANCB)
Peters et al., 2014 [37]	Focal dermal hypoplasia: report of a case with myelomeningocele, Arnold-Chiari malformation and hydrocephalus with a review of neurologic manifestations of Goltz syndrome	University of Calgary, Calgary, Alberta, Canada	1 Subject	Nigerian	Case study	Arnold Chiari I malformation , lumbosacral meningomye locele	cryptorchid ism, pointed chin and low set under folded ears with hypopigme ntation of the helices line ar	Obstructive	TGS	a-CGH	X-linked, De novo	Xp11.23 (c853_855del ACG in PORCN)

-		1		1		1		1	1	1	1	
							hypoplasia and atrophy of the skin, bilateral iris and chorioretin al colobomas , syndactyly					
Rietschel et al., 1991 [38]	MASA syndrome: clinical variability and linkage analysis	Institut für Humangenetik der Universität Bonn, Germany	3 Subjects	-	Case series	intellectual disability, spastic paraplegia	aphasia, shuffling gait, and adducted thumbs	-	Chromosome analysis	Linkage analysis	X-linked	Mutation within Xq28
Rosenthal, Jouet, Kenwrick, 1992 [39]	Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X- linked hydrocephalus	University of Cambridge, Addenbrooke's Hospital, UK	2 Subjects, 2 Controls	-	Case- Control	intellectual disability, spasticity	adducted thumbs	-	TGS	Direct sequenci ng	X-linked	Xq28 (intronic A to C base change 19bp upstream of a splice acceptor site in the L1 gene)
Saillour et al., 2007 [40]	Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia	Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France	8 Subjects	Scottish, French	Case series	hypotonia, calcification of the basal ganglia, intellectual disability, seizures	osteoscler osis of the calvarium, mild facial dysmorphi sm	Communicating/ Obstructive	WGS	Microsate llite marker assay; linkage analysis, chromato graphic mutation analysis	X-linked	Xp22.2 (c.288+5G>A in AP1S2)
Schrander- Stumpel et al., 1990 [41]	MASA syndrome: new clinical features and linkage analysis using DNA probes	State University of Limburg, The Netherlands	3 Subjects	-	Case series	Intellectual disability, macrocephal y, spastic paraplegia	aphasia, shuffling gait, adducted thumbs, divergent strabismus , myopia, astigmatis m, anteverted hip and shoulders, bowed knees, pupils irregularly shaped and not reactive to light, camptodac tyly of fingers, dysarthria	-	Southern blotting	Linkage analysis	X-linked recessive	Mutation within Xq28
Serville et al., 1992 [42]	X-linked hydrocephalus: clinical heterogeneity	CHU, Hôpital Pellegrin,	3 Subjects	-	Case series	cortex thinning, spasticity,	bilateral adducted thumbs	-	Southern blotting	Linkage analysis	X-linked	Mutation within Xq28

	at a single gene	Bordeaux,				cerebral						
	locus	France				palsy, intellectual disability, corpus callosum agenesis, aqueductal stenosis						
Sheen et al., 2004 [43]	Etiological heterogeneity of familial periventricular heterotopia and hydrocephalus	Beth Israel Deaconess Medical Center, Harvard Medical School, HIM 816, 4 Blackfan Circle, Boston, MA 02115, USA	3 Subjects	Caucasian (Australian & American), Ethiopian	Case series	periventricul ar heterotopia, callosal agenesis, hypotonia, Chiari I malformation and aqueductal stenosis, seizures	pulmonary artery stenosis, cardiac defects, bilateral per planovalgu s, bilateral knee recurvatum , bilateral hip dysplasia, dysmorphi c facial features	Obstructive	TGS	Linkage analysis	X-linked, Autosomal	Xq28
Simon et al., 2010 [44]	A mutation in the 3'- UTR of the HDAC6 gene abolishing the post-transcriptional regulation mediated by hsa-miR-433 is linked to a new form of dominant X-linked chondrodysplasia	Laboratoire de Génétique Humaine, EA 4137, Université Victor Segalen Bordeaux 2, Bordeaux 33076, France	2 Subjects, 1 Control	-	Case series	Isolated hydrocephal us	platyspond yly, rhizomelic shortening of the members, specific brachydact yly, hydroceph aly, facial dysmorphi sm and microphtha Imia	-	TES, cytogenetics	Linkage analysis; aCGH	X-linked dominant	Xp11.23 (c.*281A>T in exon 29 of HDAC6 gene)
Tripolszki et al., 2020 [45]	An X-linked syndrome with severe neurodevelopmental delay, hydrocephalus, and early lethality caused by a missense variation in the OTUD5 gene	CENTOGENE GmbH, Rostock, Germany	13 Subjects, Controls used	Irish Caucasian	Case study	severe neurodevelo pmental delay, hypotonia	growth retardation, congenital heart defects, hypospadi as	Obstructive	WGS	Variant analysis	X-linked	Xp11.23 (c.G598A, p.E200K in exon 2 of OTUD5)
Watanabe et al., 2018 [46]	X-linked VACTERL- H caused by deletion of exon 3 in FANCB: A case report	Yamagata University Faculty of Medicine, Yamagata, Japan	1 Subject	-	Case study	isolated hydrocephal us	Tetralogy of Fallot, absence of pulmonary valve, tracheoeso phageal fistula, esophagea l atresia, bilateral radial aplasia, left	-	WES	CNV, MLPA analysis	X-linked	Xp22.2 (exon 3 deletion in FANCB)

							renal dysplasia, duodenal atresia, imperforate anus, and cleft vertebrae					
Willems et al., 1990 [47]	Assignment of X- linked hydrocephalus to Xq28 by linkage analysis	University of Antwerp-UIA, Wilrijk, Belgium	7 Subjects, 34 Family Members, 55 Controls	Dutch, UK, USA	Case Series	stenosis of the aqueduct of Sylvius, intellectual disability, spastic paraparesis	clasped thumbs	-	X chromosome DNA marker probing	Southern Blot analysis, Linkage analysis	X-linked	mutation located on Xq28
Willems et al., 1992 [48]	Further localization of X-linked hydrocephalus in the chromosomal region Xq28	University of Antwerp-UIA, Belgium	20 Subjects, 84 Family Members	Netherlands, European, Israeli, German, French	Case series	stenosis of the aqueduct of Sylvius, intellectual disability, and spastic paraparesis	clasped thumbs	-	Southern blotting	Two-point and multipoint linkage analysis	X-linked	Gene mutations within Xq28 (between DXS52 and F8C)
Zhang et al., 2021 [49]	A rare mutant of OFD1 gene responsible for Joubert syndrome with significant phenotype variation	West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China	1 Subject, 5 Family Members, 201 Controls	-	Case study	agenesis of cerebellar vermis and abnormal brain stem	Tetralogy of Fallot	Obstructive	WES	Sanger sequenci ng	X-linked recessive	Xp22.2 (c.599T>C, p.L200P in exon 8 of OFD1)

Table 2. Abbreviations include the following: Amplification created restriction site (ACRS). Array comparative genomic hybridization (aCGH). Atrial Septal Defect (ASD). Autosomal Recessive (AR). Central Nervous System (CNS), Copy number variant (CNV). Deep tendon reflexes (DTR). Denaturing gradient gel electrophoresis (DGGE). Fluorescein isothiocyanate (FITC). Fluorescence assisted mismatch analysis (FAMA). Mental retardation, aphasia, shuffling gait, and adducted thumbs syndrome (MASA syndrome). Multiplex ligation dependent probe amplification (MLPA). Restriction endonuclease fingerprinting (REF). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Ventricular septal defect (VSD). Whole exome sequencing (WES). Whole genome sequencing (WGS). Internal carotid artery (ICA).

Table 3: L1CAM.

Citation	Title	Author Affiliation	Case #	Ancestry	Study Desig n	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephal us	Genetic Methodolo gy	Genetic Analysis	Inheritan ce	Genetic Findings
Bott et al., 2004 [50]	Congenital idiopathic intestinal pseudo-obstruction and hydrocephalus with stenosis of the aqueduct of sylvius	Jeanne de Flandre Hospital, Faculty of Medicine Lille, France	1 Subject	French	Case study	bilateral nystagmus, convergent strabismus, spastic paraplegia, callosal agenesis	bilateral adducted thumbs, abdominal distension	Obstructive	-	-	X-linked recessive	Xq28 (G2920T in exon 22 of L1CAM)
Brewer et al., 1996 [51]	X-linked hydrocephalus masquerading as spina bifida and destructive porencephaly in successive generations in one family	Western General Hospital, Edinburgh, UK	1 Subject	-	Case study	midline cysts, callosal agenesis, cognitive impairment	asymmetric tetraplegia, low vision, eye movement disorder	Obstructive	-	-	X-linked recessive	Xq28 (Frameshift mutation in L1CAM)
Chidsey et al., 2014 [52]	L1CAM whole gene deletion in a child with L1 syndrome	ARUP Laboratories, Salt Lake City, Utah	1 Subject, 1 Parent	North European	Case study	absent septum pellucidum	adducted thumbs with contractures	Obstructive	microarray analysis	SNP analysis	X-linked	Xq28 (62 kb deletion)
Claes et al., 1998 [53]	Hydrocephalus and spastic paraplegia result from a donor splice site mutation (2872 + 1G to A) in the L1CAM gene in a Venezuelan pedigree	Center for Human Genetics, University of Leuven, Belgium	3 Subjects	Venezuela	Case study	aqueductal stenosis, psychomotor delay, hypotonia, spastic paraplegia	Learning difficulties	Obstructive	cDNA analysis; TGS	Solid-phase approach w/ FITC primer	X-linked	Xq28 (exon 21 microdeletion in L1CAM; G-to-A transition at bp 2872 + 1 of exon 21)
Coucke et al., 1994 [54]	Identification of a 5' splice site mutation in intron 4 of the L1CAM gene in an X-linked hydrocephalus family	University of Antwerp-UIA, Belgium	1 Subject, 1 Control	-	Case study	aqueductal stenosis, intellectual disability, spastic paresis	clasped thumbs	-	RT-PCR	Linkage analysis	X-linked	Xq28 (G to A transition at position –5 of the 5' splice site of intron 4 of L1CAM)
Du et al., 1998 [55]	A silent mutation, C924T (G308G), in the Li CAM gene results in X linked hydrocephalus (HSAS)	J C Self Research Institute of Human Genetics, Greenwood Genetic Center, SC 29646, USA	1 Subject, 1 Family member	-	Case study	callosal agenesis, intellectual disability, spastic paraplegia	clenched fingers, overlapping digits	Obstructive	TES	REF	X-linked	Xq28 (c.C924T, p.G308G silent mutation in exon 8 of L1CAM)
Du et al., 1998 [56]	Multiple exon screening using restriction endonuclease fingerprinting (REF): detection of six novel mutations in the L1 cell adhesion molecule (L1CAM) gene	J C Self Research Institute of Human Genetics, Greenwood Genetic Center, SC 29646, USA	5 Subjects, 200 Controls	-	Case series	Intellectual disability	adducted thumbs with contractures , aphasia	-	TGS	SSCP, REF	X-linked, <i>De novo</i>	Xq28 (6 novel mutations in the L1CAM gene: intron 7 (G to A base substitution at position 807-6 at the 3 splice site); intron 11 (G to A transition at position 1379+5 within the 5 splice site); intron 10 (A to T base change at position 1268-2 of the 3 splice site); within exons

												16-18 (c.G2092A, p.G698R); exon 16 (c.C2072A, p.A691D); exon 21 (c.T2804C, p.L935P))
Du et al., 1998 [57]	Somatic and germ line mosaicism and mutation origin for a mutation in the L1 gene in a family with X-linked hydrocephalus	J C Self Research Institute of Human Genetics, Greenwood Genetic Center, SC 29646, USA	5 Subjects, 200 Controls	-	Case study	Intellectual disability	adducted thumbs with contractures , aphasia	Obstructive	TGS	SSCP	X-linked	Xq28 (G to A nucleotide change at the first position of intron 10 of L1CAM)
Ferese et al., 2016 [58]	A New Splicing Mutation in the L1CAM Gene Responsible for X- Linked Hydrocephalus (HSAS)	Localita' Camerelle, Pozzilli, Italy	1 Subject, 1 Control	-	Case study	aqueductal stenosis, thinned cerebral parenchyma, lissencephaly, corpus callosum agenesis,	adducted thumbs, dysmorphic facial features	Obstructive	TGS	Direct sequencing	X-linked recessive	Xq28 (Intron 10 in L1CAM hemizygous for c.1267+5delG; loss of exon 10 via abnormal splicing)
Fernande z et al., 2012 ([59]	Association of X- linked hydrocephalus and Hirschsprung disease: report of a new patient with a mutation in the L1CAM gene	Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universi dad de Sevilla, Sevilla, Spain.	1 Subject	-	Case study	bilateral spastic tetraparesis, psychomotor growth delay	cephalo- pelvic dystocia, Hirschsprun g's disease	Obstructive	TES	-	X-linked	Xq28 (c.2092G>A, p.G698R in exon 16 of L1CAM)
Finckh et al., 2000 [60]	Spectrum and Detection Rate of L1CAM Mutations in Isolated and Familial Cases with Clinically Suspected L1-Disease	University Hospital Eppendorf, University of Hamburg, Hamburg, Germany.	153 Subjects, 100 controls	-	Case series	spastic paraplegia, intellectual disability, agenesis, hypoplasia of corpus callosum	adducted thumbs with contractures , cleft palate, heart malformatio n, esophageal atresia, club feet	-	TES	SSCP	X-linked, <i>De novo</i>	Xq28 (L1CAM mutations)
Fransen et al., 1994 [61]	X-linked hydrocephalus and MASA syndrome present in one family are due to a single missense mutation in exon 28 of the L1CAM gene	University of Antwerp-UIA, Belgium	1 Subject	-	Case study	extreme macrocephaly, severe spasticity, and intellectual disability	shuffling gait, adducted thumbs	-	Southern Blotting	SSCP analysis	X-linked	Xq28 (c.C3581T, p. S1194L in exon 28 of L1CAM)
Gigarel et al., 2004 [62]	Single cell co- amplification of polymorphic markers for the indirect preimplantation genetic diagnosis of hemophilia A, X- linked adrenoleukodystrop hy, X-linked hydrocephalus and incontinentia pigmenti loci on Xq28	Hôpital Necker Enfants Malades, 75015 Paris, France	10 Subjects, Controls used	-	Case Serie s	isolated hydrocephalus	Hemophilia A	-	TGS	Microsatellite marker assay	X-linked recessive	Xq28 (2872+1 G to A mutation in intron 21 of L1CAM)

Graf et al., 2000 [63]	Diffusion-weighted magnetic resonance imaging in boys with neural cell adhesion molecule L1 mutations and congenital hydrocephalus	University of Washington School of Medicine, Seattle, USA	5 Subjects, 1 Control	Italian	Case series	agenesis of the corpus callosum, diffuse cerebral dysplasia, decreased white matter, small posterior fossa, Chiari I malformation	developmen tal delay	Obstructive	TES	REF	X-linked	Xq28 (14bp deletion in exon 11, 1bp deletion in exon 10, p.C466G in exon 5, and p.R184W in L1CAM)
Gregory et al., 2019 [64]	Mutations in MAGEL2 and L1CAM Are Associated with Congenital Hypopituitarism and Arthrogryposis	UCL Great Ormond Street Institute of Child Health, London, United Kingdom	5 subjects, Controls used	European, Chile, Afro- Caribbean	Case series	Hypotonia, bulky tectum, white matter loss, thin corpus callosum	bilateral radial clubbed hands, plagiocephal y, distal arthrogrypos is with adducted thumbs, flexion deformities, growth hormone deficiency, ventricular septal defect, severe obstructive sleep apnea, global developmen tal delay, right hip subluxation, scoliosis, bilateral astigmatism, visual impairment	Communicati ng	WES; chromosom e microarray	Sangar Sequencing; Human embryonic expression analysis; Ingenuity Variant analysis	X-linked	Xq28 (c.G1354A, p.G452R in L1CAM)
Griseri et al, 2009 [65]	Complex pathogenesis of Hirschsprung's disease in a patient with hydrocephalus, vesico-ureteral reflux and a balanced translocation t(3;17)(p12;q11)	Laboratory Molecular Genetics and Cytogenetics, Genova, Italy	1 Subject, 1 Control	-	Case Study	intellectual disability, bilateral spastic paraplegia	adducted thumbs, vesico- ureteral reflux, developmen tal delay	-	TGS	-	X-linked, <i>De novo</i>	Xq28 (c.2265delC, p.P756Lfs95X in exon 18 of L1CAM); haploinsufficiency of MYO18A/TIAF1 genes involved in a balanced translocation (3;17)(p12;q21)
Gu et al., 1996 [66]	Five novel mutations in the L1CAM gene in families with X linked hydrocephalus	Institut fur Humangenetik, Medizinische Universitat zu Lubeck, Germany	5 Subjects	-	Case series	intellectual disability, spastic paresis, complex brain malformation with agenesis of the corpus callosum and	Deafness, adducted thumbs, global physical delay, cleft lip and palate	-	TES	SSCP, HA	X-linked, <i>De novo</i>	Xq28 (mutations in exon 1, 6, 7, and 8 of L1CAM)

						fusion of the thalamus						
Guo et al., 2020 [67]	A novel nonsense mutation in the L1CAM gene responsible for X- linked congenital hydrocephalus	Xiangya Hospital, Central South University, Changsha, Hunan, China	1 Subject	Chinese	Case study	agenesis of the corpus callosum, vermis hypoplasia and enlargement of the quadrigeminal plate, aqueductal stenosis	tower- shaped skull, contractions of both thumbs	Obstructive	WES; chromosom al karyotyping ; chromosom al microarray analysis	Sangar Sequencing; Variant segregation analysis	X-linked recessive	Xq28 (c.C2865A in exon 21 of L1CAM)
Hubner et al., 2004 [68]	Intronic mutations in the L1CAM gene may cause X-linked hydrocephalus by aberrant splicing	University Hospital Eppendorf, Hamburg, Germany	7 Subjects, 50 Controls	-	Case series	intellectual disability, hypoplastic or absent corticospinal tract, callosal agenesis, spastic paraparesis, aqueductal stenosis	aphasia, shuffling gait, adducted thumbs	-	TGS	SSCP analysis	X-linked	Xq28 (Intronic L1CAM sequence variants: c.523+5G>A; c.1123+1G>A; c.1547-13delC in intron 12; c.3323- 17dupG; c.3457+3A>T; c.3457+18C>T; and c.523+12C>T)
Jouet et al., 1994 (79)	X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene	University of Cambridge, Addenbrooke's Hospital, UK	6 Subjects	-	Case series	agenesis of the corpus callosum; agenesis of the septum pellucidum; fusion of thalami and hypoplasia of the corticospinal tract, aqueductal stenosis, spastic diplegia	adducted thumbs	Obstructive	TES	SSCP, HA	X-linked	Xq28 (L1 gene mutations: 2 bp deletion in exon 26; single nucleotide deletion in exon 22; p.H210Q in second Ig domain; G to A nucleotide change, p.Q184R in exon 6; C to T mutation in exon 12 that introduces a stop codon at amino acid position 485; G to A mutation in exon 11 that changes a Gly to Arg residue)
Jouet et al., 1995 [69]	Gene analysis of L1 neural cell adhesion molecule in prenatal diagnosis of hydrocephalus	Addenbrooke's Hospital, Cambridge, UK	2 Subjects	-	Case series	Intellectual disability, spastic paraparesis	developmen tal delay, adducted thumbs	-	TGS	SSCP, Direct sequencing	X-linked, <i>De novo</i>	Xq28 (g+ 1->t in the intron 1 donor splice site and 1bp deletion in exon 22 of L1CAM)
Jouet et al., 1996 [70]	Discordant segregation of Xq28 markers and a mutation in the L1 gene in a family with X linked hydrocephalus	University of Cambridge, UK	19 Subjects	-	Case study	Intellectual disability, and spastic paraplegia type I	aphasia, shuffling gait, adducted thumbs	-	TES	SSCP; HA	X-linked	Xq28 (deletion of a single adenosine at position 3088 in exon 23 of L1CAM)

Liebau et al., 2007 [73]	Kong et al., 2019 [72]	Kanemur a et al., 2006 [71]
L1CAM mutation in a boy with hydrocephalus and duplex kidneys	A new frameshift mutation in L1CAM producing X-linked hydrocephalus	Molecular mechanisms and neuroimaging criteria for severe L1 syndrome with X-linked hydrocephalus
University Hospital of Freiburg, Mathildenstrasse 1, Freiburg, Germany	Sichuan Provincial Hospital for Women and Children, Chengdu, China	Osaka National Hospital, Osaka, Japan
1 Subject	1 Subject, 2 Parents	96 Subjects, 7 Controls
-	-	Japanese
Case study	Case study	Case series
tower-shaped skull, corpus callosum agenesis, Intellectual disability, microcephaly, strabismus, neurogenic bladder dysfunction, spasticity	callosal agenesis and lissencephaly	corpus callosum agenesis, vermis hypoplasia, epilepsy, spastic paraplegia
bilateral duplex kidneys and ureters, unilateral mega- ureter, adducted thumbs	-	bilateral adducted thumbs, developmen tal delay, elevated diaphragm
-	-	-
TGS	WES	TGS
SSCP	Sangar Sequencing	Direct sequencing
X-linked	X-linked recessive	X-linked, De novo
Xq28 (c.2431+2deITG at the beginning of intron 18 of L1CAM)	Xq28 (c.2491delG (p.V831fs) in exon 19 of L1CAM)	Xq28 (L1CAM mutations: exon 1 (c.A74T, p.E25V); exon 5 (c.474delC, p.fs158); exon 6 (c.665delA, p.fs222); exon 8 (c.G935A, p.C312Y; c.C870A, p.Y290X); exon 11 (c.T1373A, p.V458D); exon 16 (c.G2065T, p.V689F); exon 18 (c.G2254A, p.V752M); exon 20 (c.A2578T, p.K860X; c.C2701T, p.R901X); exon 21 (c.T2858G, p.L953R); exon 22 (c.2885delG, p.fs962; c.G3022T, p.E1008X); intron 2 (c.92-1gA); intron 3 (c.197+1gA); intron 4 (400+1gA); intron 6 (c.694+5gA); intron 13 (c.1704- 1gA); intron 15 (c.1940- 21~1940-6); intron 18 (c.2431+1delGT); intron 21 (c.2872+1gA); intron 22 (c.3047- 1gA))

Limbrick et al., 2017 [74]	Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus	Washington University in St. Louis, School of Medicine, Saint Louis, MO, United States of America	20 Subjects, 51 Controls	Caucasian , Black, Asian	Case series	lsolated hydrocephalus	-	Obstructive	Chromoso mal microarrays , TGS	-	-	Xq28 (G847X mutation in L1CAM); 1q25.2 anomaly; 11q24.2 anomaly
MacFarla ne et al., 1997 [75]	Nine novel L1 CAM mutations in families with X linked hydrocephalus	University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge, UK	20 Subjects, 56 Controls	-	Case series	intellectual disability, spastic paraplegia, corpus callosum agenesis, absence of the cortical spinal tract	adducted thumbs	Obstructive	TES	SSCP; SNuPE	X-linked	Xq28 (L1CAM: exon 6 (c.G551A, p.R184Q); exon 11 (microdeletion); exon 13 (c.C1672T, p.R558X); exon 18 (c.A2351G, p.Y784C; c.A2374GG, p.fs791(+25); c.G2262A, p.W754X); exon 20 (c.C2701T, p.R901X); exon 21 (microdeletion); intron 7 (c.G(807- 6)A); intron 24 (c.T(3322+2)C))
Marin et al., 2015 [76]	Three cases with L1 syndrome and two novel mutations in the L1CAM gene	Hospital Universitario Puerta del Mar, Cádiz, Spain	3 subjects	-	Case series	corpus callosum agenesis, microcephaly, spastic paraplegia,	Developmen tal delay, bilaterally flexed adducted thumbs, bilateral clinodactyly of the fifth finger	-	TES	Sangar Sequencing	X-Linked recessive, De novo	Xq28 (L1CAM mutations: c.A1754C, p.D585A; c.C3478T, p.Q1160X; c.G353112A in exon 27)
Marx et al., 2012 [77]	Pathomechanistic characterization of two exonic L1CAM variants located in trans in an obligate carrier of X-linked hydrocephalus	Institute of Anatomy and Cell Biology, Center for Neurosciences, University of Freiburg, Freiburg, Germany	3 Subjects, Control cells used	-	Case study	aqueductal stenosis	Adducted thumbs	Obstructive	TGS	Direct sequencing	X-linked	Xq28 (L1CAM mutations: c.C99232T in intron 8; c.G1906C, p.W635C in exon 15; c.G2302A, p.V768I in exon 18)
Michaelis et al., 1998 [78]	The site of a missense mutation in the extracellular Ig or FN domains of L1CAM influences infant mortality and the severity of X linked hydrocephalus	Center for Molecular Studies, J C Self Research Institute, Greenwood Genetic Center, SC 29646, USA	7 Subjects, Controls used	-	Case series	intellectual disability, spasticity, aqueductal stenosis	adducted thumbs	Obstructive	TES	SSCP, REF	X-linked	Xq28 (missense mutations in the extracellular Ig or FN domains of L1CAM)
Nakakimu ra et al., 2008 [79]	Hirschsprung's disease, acrocallosal syndrome, and congenital hydrocephalus: report of 2 patients and literature review	Hokkaido University Graduate School of Medicine, Sapporo, Japan	2 Subjects	-	Case series	callosal body agenesis, spastic paralysis, and porencephaly	bilateral inferior limbs, and bilateral thumb adduction, polydactyly	Obstructive	TGS	Direct sequencing	X-linked	Xq28 (c.T3140C, p.V31A in exon 3 of L1CAM)

Okamoto et al., 1997 [80]	Hydrocephalus and Hirschsprung's disease in a patient with a mutation of L1CAM	Osaka Medical Centre, Japan	1 Subject	Japanese	Case study	intellectual disability, spastic quadriplegia, agenesis of the corpus callosum and septum pellucidum, irregular ventricular wall, hypoplastic white matter, cerebellar hypoplasia, and fusion of the thalami	cleft palate, micrognathi a, abdominal distension, bilateral adducted thumbs, and flexion contractures of the fingers	-	TES	Fluorescent dideoxy terminator method	X-linked, De novo	Xq28 (2bp deletion in exon 18 of L1CAM)
Okamoto et al., 2004 [81]	Hydrocephalus and Hirschsprung's disease with a mutation of L1CAM	Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka, Japan	3 Subjects	Canadian, Spanish	Case series	cerebellar hypoplasia, corpus callosal dysgenesis, thalami fusion, decreased white matter, aqueductal stenosis, intellectual disability, spastic paraparesis	Hirschsprun g's disease, bilateral adducted thumbs, flexion contracture of fingers, aphasia	Obstructive	TGS	Direct sequencing	X-linked recessive	Xq28 (Intron 15 mutation and p.Q992X in exon 22 of L1CAM)
Panayi et al., 2005 [82]	Prenatal diagnosis in a family with X- linked hydrocephalus	National Taiwan University Hospital, Taipei, Republic of China	1 Subject	-	Case study	Aqueductal stenosis, underdevelopm ent of brain tissue, spastic quadriplegia, seizures, and psychomotor retardation	aphasia	Obstructive	TES	Cycle sequencing, SSCP, HA	X-linked, De novo	Xq28 (deletion of exon 2 and 6 in L1CAM)
Parisi et al., 2002 [83]	Hydrocephalus and intestinal aganglionosis: is L1CAM a modifier gene in Hirschsprung disease?	University of Washington and Children's Hospital and Regional Medical Center, Seattle, Washington 98105, USA	1 Subject, 1 Control	-	Case study	macrocephaly, aqueductal stenosis, corpus callosum agenesis	bilateral adducted thumbs and index fingers, bilateral inguinal hernias, Hirschsprun g's disease, developmen tal delay, micropenis, small descended right testis, cryptorchid left testis, upgoing toes, limb spasticity, strabismus, amblyopia	Obstructive	TGS	REF, SSCP	X-linked	Xq28 (c.G2254A, p. V752M in exon 18 of L1CAM)

Pomili et al., 2000 [84]	MASA syndrome: ultrasonographic evidence in a male fetus	University Hospital, Perugia, Italy	1 Subject	Italian	Case study	intellectual disability, spasticity of the lower limbs, callosal hypoplasia	colorblindne ss, bilaterally adduced thumbs	-	TGS	DGGE; direct sequencing	X-linked	Xq28 (G>A base substitution 12 bp upstream from the intron/exon boundary of exon 27 in L1CAM gene)
Rehnberg et al., 2010 [85]	Novel L1CAMSplice Site Mutation in a Young Male with L1 Syndrome	Linköping University, University Hospital, Linköping, Sweden	1 Subject, 3 Family Members	Swedish	Case study	global hypotonia, intellectual disability, spastic paraplegia	bilateral adducted thumbs	-	TGS	Dideoxynucleot ide sequencing	X-linked, De novo	Xq28 (c.G3458-1C in L1CAM)
Rodrígue z Criado et al., 2003 [86]	X-linked hydrocephalus: another two families with an L1 mutation	Unidad de Dismorfología, H.I.U.V. Rocío, Sevilla, Spain	3 Subjects	-	Case series	intellectual disability	aphasia, shuffling gait, and adducted thumbs	Obstructive	TGS	DGGE; REF; direct sequencing	X-linked, <i>De novo</i>	Xq28 (c.C196T, p.Q66X in exon 3 of L1CAM; 1267+1G>A in intron 10 of L1CAM)
Ruiz et al., 1995 [87]	Mutations in L1- CAM in two families with X linked complicated spastic paraplegia, MASA syndrome, and HSAS	University of Leuven, Belgium	3 Subjects	-	Case- Contr ol	spastic paresis, intellectual disability, aqueductal stenosis	adducted thumbs	Obstructive	TGS	Solid-phase approach w/ FITC primer; Dot Blot Assay	X-linked	Xq28 (15 bp deletion was found at coding position 97 of the cDNA; 12bp deletion at bp3551; c.T875C; insertion of a cytosine at nucleotide position 3806 within the 3' untranslated region; exons 4,5,6 (c.T556G, p. I179S); exons 8,9,10 (c.G1128A, p.G370R))
Saugier- Veber et al., 1998 [88]	Identification of novel <i>L1CAM</i> mutati ons using fluorescence- assisted mismatch analysis	Laboratoire de Génétique Moléculaire, CHU de Rouen, France	13 Subjects, 100 Controls	French	Case series	intellectual disability, spastic paraplegia	aphasia, shuffling gait, adducted thumbs, Hirschsprun g's disease	Obstructive	TGS; genotyping	FAMA; ACRS	X-linked, De novo	Xq28 (L1CAM nucleotide changes: c.365delC, p.FS122 in exon 4; c.400+5G>A, p.FS108 in intron 4; c.7656C, p. I219T in exon 6; c.T1003C, p. W335R in exon 9; c.C1156T, p. R386C in exon 10; c.C1417T, p. R473C in exon 12; c.C2572T, p. Q858SX in exon 20; c.2872+1G>A in intron 21; c.C3671T, p. S1224L in exon 28; c.3323-30G>A in intron 24)

Senat et al., 2001 [89]	Prenatal diagnosis of hydrocephalus- stenosis of the aqueduct of Sylvius by ultrasound in the first trimester of pregnancy. Report of two cases	CHI Poissy, France	2 Subjects	Caucasian	Case study	corpus callosum agenesis, hypoplasia of pyramidal tract, spasticity, intellectual disability	adducted thumbs	Obstructive	TGS	FAMA	De novo	Xq28 (p.Y589H in exon 14 of L1CAM)
Serikawa et al., 2014 [90]	Prenatal molecular diagnosis of X- linked hydrocephalus via a silent C924T mutation in the L1CAM gene	Niigata University Medical and Dental Hospital, Niigata, Japan	4 Subjects, 2 Parents	Japanese	Case study	cortex thinning, cerebral palsy, intellectual disability, corpus callosum agenesis, aqueductal stenosis	bilateral adducted thumbs	Obstructive	TGS	Sanger Sequencing	X-linked	Xq28 (c.C924T, p. G308G silent mutation in exon 8 of L1CAM)
Silan et al., 2005 [91]	A novel L1CAM mutation with L1 spectrum disorders	Abant Izzet Baysal University, Duzce School of Medicine, Duzce, Turkey	14 Subjects	Turkish	Case series	Corpus callosum agenesis, intellectual disability, spastic quadriplegia	bilateral adducted thumbs	-	-	-	X-linked	Xq28 (c.C1375T, Q459X in exon 11 of L1CAM)
Stowe et al., 2018 [92]	Clinical Reasoning: Ventriculomegaly detected on 20- week anatomic fetal ultrasound	Baylor College of Medicine, Texas Children's Hospital, Houston	1 Subject	-	Case study	aqueductal stenosis, diencephalic fusion, and brainstem dysplasia	fisted thumbs	Obstructive	WES	Trio-based WES	X-linked, <i>De novo</i>	Xq28 (c.1703+5G>A in L1CAM)
Sullivan et al., 2020 [93]	Exome Sequencing as a Potential Diagnostic Adjunct in Sporadic Congenital Hydrocephalus	Yale School of Medicine, New Haven, Connecticut	475 Subjects	European, African American, south Asian	Case series	hypotonia, cerebral palsy, epilepsy, white- matter hypoplasia, agenesis of the corpus callosum, macrocephaly	bilateral adducted thumbs, skeletal abnormalitie s	Obstructive	WES	Sanger sequencing	X-linked, <i>De novo</i>	Xq28 (L1CAM mutations: p.W460C; p.W635R; c.1828 + 1G>A (localizing to intron 15); c.1546 + 1G>T (located in intron 13); p.E304X; p.V788F; c.806 + 1G>C (positioned in intron 8))
Sztriha et al., 2000 [94]	Novel missense mutation in the L1 gene in a child with corpus callosum agenesis, retardation, adducted thumbs, spastic paraparesis, and hydrocephalus	Faculty of Medicine and Health Sciences, United Arab Emirates University	1 Subject, 1 Parent, 1 Control	Arabic	Case study	corpus callosum agenesis, intellectual disability, spastic paraparesis	adducted thumbs	Communicati ng	TES	DGGE analysis	X-linked	Xq28 (c.G604T in exon 6 of L1CAM)
Sztriha et al., 2002 [95]	X-linked hydrocephalus: a novel missense mutation in the L1CAM gene	Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain	1 Subject	Pakistani	Case study	spastic diplegia, intellectual disability, multiple small gyri, markedly reduced white matter volume, agenesis of the corpus callosum, and lack of	adducted thumbs	Obstructive	-	-	X-linked	Xq28 (c.G1243C, p.A415P in exon 10 of L1CAM)

			<u> </u>			cleavage of the						
	1					thalami						
Takahash i et al., 1997 [96]	L1CAM mutation in a Japanese family with X-linked hydrocephalus: a study for genetic counseling	Asahikawa Medical College, Nishikagura, Japan	1 Subject, 2 Parents, 2 Sisters	Japanese	Case study	intellectual disability, spastic quadriplegia	bilateral adducted thumbs	Obstructive	TES	-	X-linked	Xq28 (1 bp deletion in exon 22 of L1CAM resulting in a premature stop codon)
Takechi at al., 1996 [97]	A deletion of five nucleotides in the L1CAM gene in a Japanese family with X-linked hydrocephalus	National Institute of Neuroscience, Tokyo, Japan	2 Subjects, 1 Sister	Japanese	Case study	aqueduct of Sylvius, mental retardation, and spastic paraparesis	bilateral clasped thumbs	-	TES	Dideoxy plasmid-based sequencing	X-linked	Xq28 (5bp deletion in exon 8 of L1CAM)
Takenouc hi et al., 2011 [98]	Hydrocephalus with Hirschsprung disease: severe end of X-linked hydrocephalus spectrum	Keio University School of Medicine, Tokyo, Japan	1 Subject	Japanese	Case study	aqueductal stenosis, hypoplasia of the corpus callosum	Hirschsprun g disease, frontal bossing, adducted thumbs	Obstructive	TGS	Mutation analysis, unspecified	X-linked, De novo	Xq28 (c.C61T, p.Q21X in exon 1 of L1CAM)
Tegay et al., 2007 [99]	Contiguous gene deletion involving L1CAM and AVPR2 causes X-linked hydrocephalus with nephrogenic diabetes insipidus	Stony Brook University Hospital, Stony Brook, New York, USA	1 Subject, Mother, Grandmoth er, 1 Control	Northern European	Case study	hypotonia	bilateral adducted thumbs, Hirschsprun g disease	Obstructive	WGS	GeneDX, microdeletion	X-linked	Xq28 (32.7 kb deletion and 90 bp insertion at the L1CAM-AVPR2 junction sequence (from L1CAM intron1 to AVPR2 exon2))
Van Camp et al., 1993 [100]	A duplication in the L1CAM gene associated with X- linked hydrocephalus	University of Antwerp-UIA, Belgium	25 Subjects, Controls used	The Netherlan ds, United Kingdom, USA, Israel, Germany, Hungary, Belgium	Case series	stenosis of the aqueduct of Sylvius, intellectual disability, spastic para paresis of the lower extremities, aplasia or hypoplasia of the corpus callosum	bilateral adducted thumbs	-	Southern Blotting	-	X-linked recessive	Xq28 (1.3 kb duplication in L1CAM)
Verhagen et al., 1998 [101]	Familial congenital hydrocephalus and aqueduct stenosis with probably autosomal dominant inheritance and variable expression	Canisius Wilhelmina Hospital, Nijmegen, Netherlands	12 Subjects	-	Case series	septum pellucidum cavitation, aqueductal stenosis	-	Obstructive	TES	-	AD	No mutations in L1CAM
Vits et al., 1994 [102]	MASA syndrome is due to mutations in the neural cell adhesion gene L1CAM	University of Antwerp, Belgium	8 Subjects, 50 Controls	United States, the Netherlan ds, Mexico, UK, Germany	Case series	intellectual disability	adducted thumbs, shuffling gait, aphasia	-	TGS	SSCP	X-linked	Xq28 (p.D598N in exon 14 and p.H210Q in exon 6 of L1CAM)
Vos et el., 2010 [103]	Genotype- phenotype correlations in L1 syndrome: a guide for genetic counselling and mutation analysis	University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands	367 Subjects, 3 Controls	Various	Case- Contr ol	aqueductal stenosis, intellectual disability, callosal agenesis	adducted thumbs, shuffling gait, aphasia	Obstructive	TES	DGGE; direct sequencing; MLPA	X-linked recessive	Xq28 (L1CAM mutations: 23 missense mutations; 3 in- frame deletions/duplicati ons; 18 splice site

												mutations; 14 nonsense mutations; 8 frame-shift mutations; 1 duplication of exons 2-10; 1 deletion of the entire gene; c.C645T within exon 6 of L1CAM)
Wilson et al., 2009 [104]	Prenatal identification of a novel R937P L1CAM missense mutation	University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA	2 Subjects	Caucasian	Case study	aqueductal stenosis, agenesis or hypoplasia of the corpus callosum and corticospinal tracts, intellectual disability, spastic paraplegia	adducted thumbs, short femurs, right clubbed foot	Obstructive	TGS	bidirectional DNA sequencing	X-linked	Xq28 (c.G2809C, p.R937P in exon 21 of L1CAM)
Xie et al., 2018 [105]	Two novel pathogenic variants of L1CAM gene in two fetuses with isolated X-linked hydrocephaly: A case report	Guangxi Maternal and Child Health Hospital, Nanning, Guangxi, P.R. China	2 Subjects, 4 Parents, 100 Controls	Chinese	Case- Contr ol	isolated hydrocephalus	-	-	TES	Sanger sequencing	X-linked	Xq28 (c.C998T, p.P333L and c.G2362T, p.V788F in L1CAM)
Yamasaki et al., 2011 [106]	Prenatal molecular diagnosis of a severe type of L1 syndrome (X-linked hydrocephalus)	Osaka National Hospital, National Hospital Organization, Osaka City, Japan	14 Subjects	Japanese	Case series	intellectual disability, spastic paraplegia	adducted thumbs, shuffling gait, aphasia	-	TGS	Direct sequencing	X-linked	Xq28 (L1CAM mutations: c.G1829-1C 1 bp downstream from the 5' of intron 14; ACC (817–819) nucleotide deletion in exon 8, deletion of T at amino acid position 273; c.C1146A, p.Y382X in exon 10)

Table 3. Abbreviations include the following: Amplification created restriction site (ACRS). Array comparative genomic hybridization (aCGH). Atrial Septal Defect (ASD). Autosomal Recessive (AR). Central Nervous System (CNS), Copy number variant (CNV). Deep tendon reflexes (DTR). Denaturing gradient gel electrophoresis (DGGE). Fluorescein isothiocyanate (FITC). Fluorescence assisted mismatch analysis (FAMA). Mental retardation, aphasia, shuffling gait, and adducted thumbs syndrome (MASA syndrome). Multiplex ligation dependent probe amplification (MLPA). Restriction endonuclease fingerprinting (REF). Single-strand conformation polymorphisms (SSCP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Ventricular septal defect (VSD). Whole exome sequencing (WES). Whole genome sequencing (WGS). Internal carotid artery (ICA).

Table 4: Dandy Walker Malformation

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings
Aldinger et al., 2009 [107]	FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy- Walker malformation	University of Chicago, Chicago, Illinois, USA	18 Subjects, 2 Controls	-	Case series	dandy walker - cerebellar malformation s	ocular abnormalities	Communicating	WES	Trio-based sequencing	<i>De novo</i> , maternal translocation, Mosaicism	6p25.3 (p.S82T and p.S131L in FOXC1)
Arora et al., 2019 [108]	Prenatal presentation of a rare genetic disorder: a clinical, autopsy and molecular correlation	Sir Ganga Ram Hospital. New Delhi, India	1 Subject	-	Case study	dandy walker - cerebellar malformation s, callosal agenesis	talipes equinovarus, renal cysts	Communicating	WES	Trio-based sequencing	AR	9q31.2 (c.C411A. p. C137X in exon 5 of FKTN)
Chen et al., 2009 [109]	A 12 Mb deletion of 6p24.1 >pter in an 18-gestational- week fetus with orofacial clefting, the Dandy-Walker malformation and bilateral multicystic kidneys	Mackay Memorial Hospital, Taipei, Taiwan	1 Subject	-	Case study	craniosynost osis	tracheal stenosis, midface hypoplasia, ocular proptosis and digital malformations	Communicating	Cytogenetics	Karyotyping , aCGH	De novo	6pter/6p24.1 (12 Mb deletion)
Darbro et al., 2013 [110]	Mutations in extracellular matrix genes NID1 and LAMC1 cause autosomal dominant Dandy-Walker malformation and occipital cephaloceles	The University of Iowa, Iowa City, Iowa, USA	7 Subjects, 348 Controls	Indian, Vietnames e	Case study	dandy walker malformation , variable cerebellar hypoplasia, meningeal anomalies, and occipital skull defects	-	-	WES	Massively parallel sequencing , Sanger sequencing	AD	1q25.3 (c.C2237T, p.T746M in LAMC1); 1q42.3 (c.C1162T, p.Q388X in NID1)
Faqeih et al., 2017 [111]	Phenotypic characterization of KCTD3-related developmental epileptic encephalopathy	Children's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabian	7 Subjects	-	Case series	seizures, poor muscle control and tone, dandy walker malformation	renal distention, bilateral hip dislocation, scoliosis	Communicating	WES	Sanger Sequencing	De novo	1q41 (c.1036_107 3del, p.P346Tfs*4 ; c.C166T, p.R56X in KCTD3)
Gai et al., 2016 [112]	Novel SIL1 nonstop mutation in a Chinese consanguineous family with Marinesco-Sjögren syndrome and Dandy-Walker syndrome	Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China	2 Subjects, Matched Controls used	Chinese	Case study	mild intellectual disability, hypotonia, ataxia, dysarthria, strabismus, and dandy walker malformation	cubitus valgus	-	WES	Sanger sequencing	AR	5q31.2 (nonstop mutation in SIL1)
Guo et al., 2020 [113]	Hypoglycemia and Dandy- Walker variant in a Kabuki syndrome patient: a case report	Xingtai People's Hospital, Xingtai, Hebei, China	1 Subject, 2 Parents	Chinese	Cases study	dandy walker - cerebellar malformation S	persistent hypoglycemia, elongated palpebral fissures with eversion of the lower lateral eyelids and	Communicating	WES	Sanger sequencing	De novo	12q13.12 (c.12165del, p.E4056Sfs* 10 in exon 39 of KMT2D)

							prominent ears					
Jalali et al., 2008 [114]	Linkage to chromosome 2q36.1 in autosomal dominant Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity	Northweste rn University Feinberg School of Medicine, Chicago, IL, USA	19 Subjects	Vietnames e- American and Brazilian	Case series	Dandy walker malformation , occipital encephaloce le	prominent forehead, mildly downturned vermilion border of the upper lip, deep-set eyes and flat philtrum, minimal high frequency hearing loss	Communicating	TGS, cytogenetics	SNP genotyping, multipoint linkage analysis, G- banded karyotype analysis and FISH	AD	2q36.1 (silent mutation of SGPP2; insertion/del etion 85 bp upstream of ACSL3 exon 4)
Liao et al., 2012 [115]	Prenatal diagnosis and molecular characterization of a novel locus for Dandy- Walker malformation on chromosome 7p21.3	Guangzhou Women and Children's Medical Center, Guangzhou Medical College, Guangzhou , Guangdon g, China	4 Subjects	-	Case series	dandy walker - cerebellar malformation s	ocular hypertelorism, cardiac anomalies, talipes valgus, syndactyly	-	WGS, cytogenetics	aCGH, FISH	De novo	7p21.3 (de novo adjacent microdeletio n/duplication)
Linpeng et al., 2018 [116]	Diagnosis of Joubert Syndrome 10 in a Fetus with Suspected Dandy-Walker Variant by WES: A Novel Splicing Mutation in <i>OFD1</i>	Central South University, Changsha, Hunan, China	3 Subjects, 1 Control	Chinese	Case study	hypoplastic cerebellum and absent vermis	bilateral postaxial polydactyly	-	WES, cytogenetics	Karyotype; microarray; CNV; FISH; Sanger sequencing	Maternal	8q21 (4.9Mb heterozygou s deletion at 8q21.13- q21.3); Xp22.2 (c.T2488+2 C, resulting in an abnormal skipping of exon 18 in OFD1)
MacDon ald, Holden 1985 [117]	Duplication 12q24qter in an infant with Dandy-Walker syndrome	Queen's University, Kingston, Ont., Canada	1 Subject	-	Case study	dandy walker - cerebellar malformation s	-	-	Cytogenetics	-	Paternal	12q24 (duplication 12q24 to qter)
Mademo nt-Soler et al., 2010 [118]	Description of the smallest critical region for Dandy- Walker malformation in chromosome 13 in a girl with a cryptic deletion related to t(6;13)(q23;q32)	Servei de Bioquímica i Genètica Molecular, Hospital Clínic, Barcelona, Spain	1 Subject, Controls used	-	Case study	dandy walker - cerebellar malformation s	iris coloboma, profound hearing loss, and hyperlaxity of skin and joints	Obstructive	WGS, cytogenetics	G-banded chromosom e analysis, aCGH, CNV analysis, FISH	De novo	Karyotype 46,XX,t(6;13)(q23;q32); 2.47 Mb deletion of band 13q32; 4 Mb deletion of 16q21
Matsukur a et al., 2017 [119]	MODY3, renal cysts, and Dandy-Walker variants with a microdeletion spanning the HNF1A gene	Saiseikai Toyama Hospital	1 Subject	Japanese	Case study	intellectual disability, dandy walker malformation	glycosuria, developmental delay, renal cysts	-	TGS, cytogenetics	MLPA; direct sequencing , aCGH	De novo	5.6 Mb deletion of 12q24.22– 12q24.31 in HNF1A

Mimaki et al., 2015 [120]	Holoprosencephaly with cerebellar vermis hypoplasia in 13q deletion syndrome: Critical region for cerebellar dysgenesis within 13q32.2q34	Graduate School of Medicine, The University of Tokyo, Japan	2 Subjects		Case series	cerebellar hypoplasia, hypoplastic optic nerve	upslanted palp ebral fissures, hyper telorism, low- set malformed ears, a broad prominent nasal bridge, microg nathia, microp enis, hypospa dias, bifid scrotum, and a low- level imperfora te anus, ventral septal defect	Obstructive	Cytogenetics	G-banding, FISH, aCGH	De novo	13q32.3 (ZIC2 and ZIC5)
Shalata et al., 2019 [121]	Biallelic mutations in EXOC3L2 cause a novel syndrome that affects the brain, kidney and blood	Pediatrics and Medical Genetics and The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, Haifa, Israel	4 Subjects, 2 Control	-	Case series	hypotonia, dandy- walker malformation	panhypopituita rism, hearing impairment, cataracts and congenital glaucoma, renal failure, buphthalmos, corneal ectasia, narrow ears canal, high arched palate and undescended testes	Obstructive	WES, cytogenetics	aCGH/SNP array, microarray analysis, Sanger Sequencing	-	19q13.32 (c.T122A, p.L41Q in EXOC3L2)
Sudha et al., 2001 [122]	De novo interstitial long arm deletion of chromosome 3 with facial dysmorphism, Dandy-Walker variant malformation and hydrocephalus	Health Sciences Centre, University of Manitoba, Winnipeg, Canada	1 Subject, 2 Parents	German- Swiss	Case study	dandy walker - cerebellar malformation s, macrocrania	coarse facial features, developmental delay	Obstructive	Cytogenetics	Karyotyping , FISH analysis utilizing WCP	De novo	46,XX,del(3) (q25.1q25.3 3) de novo
Traversa et al., 2019 [123]	Prenatal whole exome sequencing detects a new homozygous fukutin (FKTN) mutation in a fetus with an ultrasound suspicion of familial Dandy-Walker malformation	Fondazion e IRCCS Casa Sollievo della Sofferenza, Laboratory of Clinical Genomics, San Giovanni Rotondo (FG), Italy	1 Subject, 2 Parents	Italian	Case study	dandy walker - cerebellar malformation s	-	Obstructive	WES	Sanger sequencing	-	9q31.2 (c.G898A, p.G300R in FKTN)
Yahyaoui et al., 2011 [124]	Neonatal carnitine palmitoyltransferase II deficiency associated with Dandy-Walker syndrome and sudden death	Clinical Laboratory, Carlos Haya University	1 Subject	Moroccan	Case study	Dandy- Walker malformation	hypoketotic hypoglycemia, severe hepatomuscul ar symptoms,	-	TGS	-	-	1p32.3 (c.534_558d el25bpinsT, p.L178_l186

		Hospital, Málaga, Spain					cardiac abnormalities					delinsF of CPT2)
Zaki, et al., 2015 [125]	Dandy-Walker malformation, genitourinary abnormalities, and intellectual disability in two families	National Research Centre, Cairo, Egypt	3 Subjects	Egyptian	Case series	intellectual disability, Dandy- Walker malformation	genitourinary abnormalities, hearing deficit	Obstructive	TGS, cytogenetics	aCGH, CNV analysis	AR	Genetic analysis unrevealing
Zanni et al., 2011 [126]	FGF17, a gene involved in cerebellar development, is downregulated in a patient with Dandy-Walker malformation carrying a de novo 8p deletion	Bambino Gesù Pediatric Hospital, 4 Piazza S. Onofrio, Rome	1 Subject, 3 Controls	-	Case study	hypotonia	motor delay, gastroesophag eal reflux and frequent gastrointestina l and respiratory infections, joint laxity, facial deformity	Obstructive	WGS, cytogenetics	aCGH, FISH analysis using a locus- specific probe	De novo	8p21.3 (2.3 Mb deletion in 8p21.2- 8p21.3; reduced levels of FGF17)

Table 4. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Dominant (AD). Autosomal Recessive (AR). Copy number variant (CNV). Fluorescence In Situ Hybridization (FISH). Multiplex ligation dependent probe amplification (MLPA). Next generation sequencing (NGS). Single nucleotide polymorphisms (SNP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole chromosome probes (WCP). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 5: Ciliopathy

Table 5: Cilic	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings
Alby et al., 2015 [127]	Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome	Paris Descartes University, Sorbonne Paris Cité and Imagine Institute, Paris, France	8 Subjects, Controls used	Romania, Hungary, Kosovo, Lebanon	Case study	anencephaly or large occipital meningocele to vermian agenesis, associated with brainstem anomalies	cleft lip and palate, polysyndactyly , preaxial polydactyly of the feet	-	TES	NGS; CNV	AR	14q23.1 (c.C230G, p.S77X in exon 2 and c.G1815A of exon 14 in KIAA0586)
Al-Shroof et al., 2001 [128]	Ciliary dyskinesia associated with hydrocephalus and mental retardation in a Jordanian family	Houston Medical Center, Warner Robins, GA, USA	4 Subjects, 5 Family Members	Jordanian	Case study	intellectual disability	Growth delay	Communicating	Chromosome analysis	Haplotype analysis	AR	-
Bachman n- Gagescu et al., 2012 [129]	Genotype-phenotype correlation in CC2D2A- related Joubert syndrome reveals an association with ventriculomegaly and seizures	University of Washington, Seattle, Washington, USA	20 Subjects, Controls used	-	Case series	intellectual impairment, hypotonia, ataxia, molar tooth sign	retinal dystrophy, chorioretinal coloboma, cystic kidney disease, liver fibrosis and polydactyly	Obstructive	TGS	Variant analysis; microsatellit e marker assay; a- CGH, SNP	AR	4p15.32 (CC2D2A mutations: p.S117R; p.IVS11(+1); p.S423Gfs*1 9; p.K507E; p.L559P; p.R950X; p.R1049X; p.V1097Ffs* 1; p.V1045A; p.V1097Ffs* 1; p.V1045A; p.Q1096H; p.T1116M; p.P1122S; p.V1151A; p.V1298Ffs* 16; p.IVS29(-1); p.V1298Ffs* 16; p.R1284C; p.R1284C; p.R1284C; p.R1284C; p.R1284C; p.R1284C; p.R1284C; p.R1284C; p.R1284C; p.R1286C; p.S1615Lfs* 15)
Bondeso n et al., 2017 [130]	A nonsense mutation in CEP55 defines a new locus for a Meckel-like syndrome, an autosomal recessive lethal fetal ciliopathy	Uppsala University, Science for Life Laboratory, Uppsala, Sweden	5 Subjects, Controls used	Swedish	Case study	liquified skull, cerebral cysts, encephalocele	bilateral club foot, renal cysts, neck hygroma, single umbilical artery	-	WES	Sanger Sequencing ; haplotype analysis	AR	10q23.33 (c.C256T, p.R86X in exon 3 of CEP55)

r	r					1	T	1	1			
Boycott et al., 2007 [131]	Meckel syndrome in the Hutterite population is actually a Joubert-related cerebello-oculo-renal syndrome	Alberta Children's Hospital and University of Calgary, Calgary, Alberta, Canada	10 Subjects	Hutterite	Case series	developmental delay, hypotonia, ataxia, abnormal breathing pattern, nystagmus, strabismus	growth failure, retinal colobomas, post-axial polydactyly, cystic kidneys, abnormalities in renal function, hypertension, occipital encephalocele , posterior fossa fluid collections	Obstructive	TGS	Microsatellit e marker assay	AR	Genetic analysis unrevealing
Dawe et al., 2007 [132]	The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation	University of Oxford, South Parks Road, Oxford OX1 3RE, UK	3 Subjects, 2 Controls	-	Case series	dandy-Walker malformation, agenesis of the corpus callosum, microcephaly, rhombic roof dysgenesis and prosencephalic dysgenesis	fibrocystic liver changes, polydactyly, cleft lip/palate, laterality defects and congenital heart malformations including dextrocardia, shortening and bowing of the long tubular bones and abnormal development of the male genitalia	-	In situ hybridization studies	Direct sequencing via dideoxy chain termination method	-	8q22.1 (c.647delA, p.E216fsX2 21 and c.A1127C, p.Q376P in MKS3); 17q22 (c.1448_145 1dupCAGG duplication, p.T485fsX59 1 in MKS1)
Duran et al., 2017 [133]	Mutations in IFT-A satellite core component genes <i>IFT43</i> and <i>IFT121</i> produce short rib polydactyly syndrome with distinctive campomelia	David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095 USA	3 Subjects, Control cells used	European	Case series	isolated hydrocephalus	long narrow chest, markedly shortened long bones, polydactyly and, often, cardiac, gastrointestina I, and genitourinary abnormalities	-	TES	Variant analysis, sanger sequencing	AR	14q24.3 (c.T2A, p.M1K and c.T535C, p.W179R in IFT43); 2p24.1 (IFT121 mutations: c.G1433A, p.R478K; c.C1579T, p.Q527X; c.G932T, p.W311L; c.1501deIC, p.Q501Kfs*1 0)
Edvardso n et al., 2010 [134]	Joubert syndrome 2 (JBTS2) in Ashkenazi Jews is associated with a TMEM216 mutation	Hebrew University Medical Center, Jerusalem, Israel	13 Subjects, Controls used	Ashkenazi Jewish	Case series	Mid hindbrain malformation, hypotonia, cerebellar ataxia, and developmental delay	oculomotor apraxia, abnormal breather patterns, retinal degeneration, renal anomalies, ocular colobomas	Obstructive	TGS	SNP; array- based hybrid selection; deep sequencing	-	11q12.2 (c.G35T, p.R12L in TMEM216)

Failler et al. 2014 Mutations of CEP83 cause infantiles Laboratory bioficiency Kidney TSO15 Paris, France 1,255 Subjects Subjects Funces European: Turkish; used Case series intellectual disability carebellar ataxia, bone anomalies, liver fibrosis renal malformation, reinitia carebellar ataxia, bone anomalies, liver fibrosis TES NGS; senger sequencing Image: Nospice of the second carebellar sequencing Kidney Nospice of the second series Laboratory reinitias Nospice of the second series Image: Nospice of the second second series Image: Nospice of the second second second second series Image: Nospice of the second seco		12q22 (CEP83 mutations: c.C121T, p.R41X in exon 3; c.C241T, p.Q81X in exon 4; c.T260T, p.L87P in exon 4; c.335_352d el, p.P112_L11 7del in exon 5; c.C625T, p.R209X in exon 7; c.C1530A, p.C510X in exon 13; c.G1532C, p.R511P in exon 13; c.2007del, p.E669Dfs*1 4 in exon 17; c.2050_205 2del, p.E684del in exon 17; c.2075_207 7del, p.Q692del in exon 17)	AR -	11p15.4
Failler et al., 2014 Mutations of CEP83 (association) (of inherited Billocitual (135)] Laboratory (of inherited Kidney (135)] 1,255 (billocits) (b		sanger	Direct	sequencing
Failler et al., 2014 Mutations of CEP83 cause infantie nepfronophthisis and intellectual disability Laboratory of Inherited Vidney Diseases, 75015 Paris, France 1,255 Subjects, Controls used European; Turkish; Latino Case series intellectual disability menal matormation, retinitis pigmentosa, intellectual disability [135] Intellectual disability Station Station Station Station		TES		TES
Failler et al., 2014 Mutations of CEP83 cause infantile nephronophthisis and intellectual disability Laboratory of Inherited Kidney Diseases, 75015 Paris, France 1,255 Subjects, Carbo European; Turkish; Latino Case eries intellectual disability intellectual disability [135] Image: Case infantile nephronophthisis and intellectual disability Laboratory of Inherited Kidney 1,255 Subjects, Carbo European; Turkish; Latino Case series intellectual disability intellectual disability [135] Image: Case infantile intellectual disability Situs inversus, micrognathia, unar deviation Situs inversus, micrognathia,		-		-
Failler et al., 2014 [135] Mutations of CEP83 cause infantile nephronophthisis and intellectual disability of Inherited Kidney Diseases, 75015 Paris, France Subjects, Controls used European; Turkish; Latino Case series intellectual disability		malformation, retinitis pigmentosa, intellectual disability, cerebellar ataxia, bone anomalies, liver fibrosis	micrognathia, ulnar deviation of the fingers	with absent distal interphalangea I creases on fingers 2–4, lung abnormalities, and rocker- bottom feet
Failler et al., 2014 [135] Mutations of CEP83 cause infantile nephronophthisis and intellectual disability of Inherited Kidney Diseases, 75015 Paris, France 1,295 Subjects, Controls used European; Turkish; Latino Case series				isolated hydrocephalus
Failler et al., 2014 [135] Mutations of CEP83 cause infantile nephronophthisis and intellectual disability of Inherited Kidney Diseases, 75015 Paris, France 1,203 Subjects, Controls used European; Turkish; Latino				Case study
Failler et al., 2014 [135] Mutations of CEP83 cause infantile nephronophthisis and intellectual disability of Inherited Kidney Diseases, 75015 Paris, France 1,253 Subjects, Controls used		Turkish;		-
Failler et al., 2014 [135] Mutations of CEP83 cause infantile nephronophthisis and intellectual disability of Inherited Kidney Diseases, 75015 Paris, France		Subjects, Controls		3 Subjects
al., 2014 cause infantile nephronophthisis and		of Inherited Kidney Diseases, 75015 Paris,	Keio	University School of Medicine, Tokyo, Japan Children's
al., 2014		cause infantile nephronophthisis and		Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality
		al., 2014		Kosaki et al., 2004 [136]

Nabhan et al., 2014 [138]	Case Report: Whole- exome analysis of a child with polycystic kidney disease and ventriculomegaly	Kasr Al Ainy School of Medicine, Center of Pediatric Nephrology and Transplantat ion, Cairo University, Egyptian Group for Orphan Renal Diseases,	1 Subject, 2 Parents		Case study	Macrocephaly	bilateral enlarged and palpable kidneys, systemic hypertension		WES	Sanger sequencing segregation analysis	AR	p.R
[138]	ventriculomegaly	University, Egyptian Group for Orphan Renal	4				systemic			analysis		(c.G p.R1 Mł
Oud et al., 2016 [139]	A novel ICK mutation causes ciliary disruption and lethal endocrine-	Institute for Molecular Life	Subjects, 2 Controls	Turkish	Case study	absence of septum pellucidum	anomalies, ventral septal defect, renal	-	WES; genotyping	IBD mapping; CNV;	-	(c.G p.G1

	cerebro-osteodysplasia syndrome	Sciences, Radboud University Medical Centre, PO- Box 9101, 6500 HB Nijmegen, The Netherlands					abnormalities, cystic hygroma, scalp edema ascites, very short tubular bones and polydactyly of hands and feet, and short ribs			Sanger sequencing		
Rocca et al., 2020 [140]	A novel genetic variant in DNAI2 detected by custom gene panel in a newborn with Primary Ciliary Dyskinesia: case report	University of Padova, Via Giustiniani, Padova, Italy	1 Subject	Moroccan	Case study	isolated hydrocephalus	situs inversus, respiratory infections	Communicating	TGS, cytogenetics	NGS; aCGH; CNV	-	17q25.1 (6.9kb deletion in of DNAI2)
Wallmeie r et al., 2019 [141]	De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry	University Children's Hospital Muenster, 48149 Muenster, Germany	6 Subjects, Controls used	Germany, USA	Case series	isolated hydrocephalus	chronic destructive airway disease, and randomization of left/right body asymmetry	Obstructive	WES	Sequencing , unspecified	De novo	17q25.1 (FOXJ1 mutations: c.G901T, p.E301X; c.868_871d up, p.T291Kfs*1 2; c.C826T, p.Q276X; c.967delG, p.E323Sfs*1 0; c.939delC, p.I314Sfs*1 9)

Table 5. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Recessive (AR). Copy number variant (CNV). Identical-By-Descent (IBD). Next generation sequencing (NGS). Single nucleotide polymorphisms (SNP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 6: PI3K-Akt-MTOR.

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings
Cappucci o et al., 2019 [142]	Severe presentation and complex brain malformations in an individual carrying a CCND2 variant	Federico II University, Naples, Italy	1 Subject, 2 Parents	-	Case study	infantile spasms, siezures, developmental delay, bilateral PMG, white matter hypoplasia, fenestration of the septum pellucidum and hypoplasia of the anterior and posterior commissures, hippocampal hypoplasia and malrotation, hypoplastic thalami and lentiform nuclei malrotation of the vermis, brainstem hypoplasia	bilateral postaxial polydactyly, patent foramen ovale and ductus arteriosus	-	TGS	NGS, sanger sequencing	De novo	12p13.32 (c.C839T, p.T280I in CCND2)
Jin et al., 2020 [143]	Exome sequencing implicates genetic disruption of prenatal neuro- gliogenesis in sporadic congenital hydrocephalus	The Rockefeller University, New York, NY, USA	381 Subjects , 1,798 Controls		Case- Control	Congenital hydrocephalus	-	Obstructive, Communicating	WES	CNV; sanger sequencing	De-novo	3q26.32 (PIK3CA mutations: p.D350N; p.E365K; p.G914R; p.R770Q; p.N345S); 10q23.31 (PTEN mutations: p.Y16X; p.R130Q; p.R335X; p.S305N); 1p36.22 (MTOR mutations: p.E1799K; p.M304T; p.R769C; p.R1161G; p.R1170C; p.H1782R); Mutations in 3p22.3 (TRIM71), 3p21.31 (SMARCC1), 17q25.1 (FOXJ1), 1q43 (FMN2), 9q22.32 (PTCH1) and 11q23.3 (FXYD2)
Maguolo et al., 2018 [144]	Clinical pitfalls in the diagnosis of segmental overgrowth syndromes: a child with the c.2740G > A mutation in PIK3CA gene	University Hospital of Verona, Verona, Italy	1 Subject	Italian	Case study	cerebellar tonsillar ectopia, a markedly thick corpus callosum, and white matter abnormalities	lateralized overgrowth (segmental overgrowth syndrome)	-	TGS	Targeted NGS	-	3q26.32 (c.G2740A, pG914R in exon 18 of PIK3CA)

Maini et al., 2018 [145]	A Novel CCND2 Mutation in a Previously Reported Case of Megalencephaly and Perisylvian Polymicrogyria with Postaxial Polydactyly and Hydrocephalus	Azienda Unità Sanitaria Locale, Arcispedal e Santa Maria Nuova, IRCCS, Reggio Emilia, Italy	1 Subject, Controls used	-	Case study	intellectual disability, seizures	aphasia, postaxial polydactyly	-	WES	Sanger sequencing, direct sequencing	-	12p13.32 (c.C839T, p.T280I in CCND2)
McDerm ott et al., 2018 [146]	Hypoglycaemia represents a clinically significant manifestation of PIK3CA- and CCND2- associated segmental overgrowth	St Mary's Hospital, Central Mancheste r University Hospitals, NHS Foundation Trust Mancheste r Academic Health Sciences Centre, Mancheste r, UK	6 Subjects	-	Case series	Polymicrogyria	polydactyly, capillary malformation , endocrine abnormalities	-	TGS	NGS; sanger sequencing	-	3q26.32 (PIK3CA mutations: c.G1048A, p.D350N; c.G2176A, p.E726K; c.G263A, p.R88Q); 12p13.32 (c.C841G, p.P281R in CCND2)
Mirzaa at al., 2015 [147]	Characterisation of mutations of the phosphoinositide- 3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study	University of Washingto n, Seattle, WA, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA	20 Subjects , Controls used	USA	Case series	polymicrogyria, seizures	oromotor weakness	-	WES	AD assay; smMIPs; amplicon sequencing; sanger sequencing	<i>De novo,</i> maternal,	19p13.11 (c.G1117A, p.G373R and c. A1126G, p.K376E in PIK3R2)
Mirzaa, et al. 2013 [148]	Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP	Center for Integrative Brain Research, University of Washingto n, Seattle Children's Research Institute, Seattle, WA, USA	50 Subjects	-	Case series	cerebellar tonsillar ectopia or Chiari malformation, cortical brain abnormalities, macrocephaly	postaxial polydactyly	-	WES	Sanger sequencing; REF; targeted ultra-deep sequencing	De novo	19p13.11 (p.G373R in PIK3R2); 1q43- q44 (p.R465W and p.N229S in AKT3); 3q26.32 (PIK3CA mutations: c.G241A, p.E81K; c.G263A, p.R88Q; c.G1090A, p.G364R; c.G1093A, p.E365K; c.G1133A, p.C378Y; c.1359_1361del, p.E453del; c.G1633A, p.E545K; c.G2176A, p.E726K;

		1	1		1				n	1		
												c.G2740A, p.G914R; c.A3062G, p.Y1021C; c.A3073G, p.T1025A; c.C3104T, p.A1035V; c.G3129T, p.M10431; c.C3139T, p.H1047Y; c.G3145A, p.G1049S)
Ortega- Recalde et al., 2015 [149]	Biallelic HERC1 mutations in a syndromic form of overgrowth and intellectual disability	Escuela de Medicina y Ciencias de la Salud, Universida d del Rosario, Bogotá, Colombia	2 Subjects	Colombian	Case study	intellectual disability	overgrowth, kyphoscoliosi s and facial dysmorphism	Communicating	WES	NGS, sanger sequencing	AR	15q22.31 (c.G2625A, p.W875X and c.G13559A, p.G4520E in HERC1)
Poduri et al., 2012 [150]	Somatic activation of AKT3 causes hemispheric developmental brain malformations	Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA	8 Subjects , Controls used	-	Case series	intellectual disability and severe, intractable epilepsy	-	-	TGS	CNV; SNP; Karyotyping	De novo	1q43-q44 (c.G49A, p.E17K in AKT3)
Riviere et al., 2012 [151]	De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes	Seattle Children's Hospital, Seattle, Washingto n, USA	52 Subjects , 95 Controls	European	Case series	megalocephaly, variable cortical malformation	growth dysregulation with variable asymmetry, development al vascular anomalies, distal limb malformation s (syndactyly) and polydactyly), and a mild connective tissue dysplasia	-	TES	Sanger sequencing; REF; targeted deep sequencing	De novo	1q43-q44 (c.C1393T, p.R465W and c.A686G, p.N229S in AKT3); 19p13.11 (c.G1117A; p.G373R in PIK3R2); 3q26.32 (PIK3CA mutations: c.G241A, p.E81K; c.G263A, p.R88Q; c.G1090A, p.G364R; c.G1093A, p.E365K; c.G1133A, p.C378Y; c.1359_1361del, p.E453del; c.G1633A, p.E545K; c.G2176A, p.E726K; c.G2740A, p.G914R; c.A3062G, p.Y1021C; c.A3073G,

												p.T1025A; c.C3104T, p.A1035V; c.G3129T, p.M1043I; c.C3139T, p.H1047Y; c.G3145A, p.G1049S)
Sameshi ma et al., 2019 [152]	MPPH syndrome with aortic coarctation and macrosomia due to CCND2 mutations	Hyogo Prefectural Awaji Medical Center, Sumoto, Hyogo, Japan	1 Subject, 2 Parents	Japanese	Case study	polymicrogyria, seizures	forehead protrusion, sacral cusp depression, low auricle, depressed nasal bridge and postaxial polydactyly, aortic coarctation	-	TGS	NGS, sanger sequencing	-	12p13.32 (c.C842G, p.P281R in CCND2)
Szalai et al., 2020 [153]	Maternal mosaicism underlies the inheritance of a rare germline AKT3 variant which is responsible for megalencephaly- polymicrogyria- polydactyly- hydrocephalus syndrome in two Roma half- siblings	University of Pecs, Medical School, Departmen t of Medical Genetics, Pecs, Hungary	2 Subjects	Hungarian Roma	Case study	intellectual disability, epilepsy, brain malformations, and megalencephaly	dysmorphic features, visual impairment	-	WES, cytogenetics	Karyotyping ; aCGH; sanger sequencing	Maternal mosaicism	1q43-q44 (c.C1393T, p.R465W in AKT3)
Tapper et al., 2014 [154]	Megalencephaly syndromes: exome pipeline strategies for detecting low- level mosaic mutations	University of Southampt on, Southampt on, Hampshire, United Kingdom ; Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, Wiltshire, United Kingdom	3 Subjects , 4 Parents	-	Case series	macrocephaly, dysmorphic cerebellum, hypotonia	capillary malformation s, overgrowth and asymmetry, development al delay	-	WES, cytogenetics	aCGH; sanger sequencing	-	3q26.32 (c.G2176A, p.E726K in PIK3CA); 19p13.11 (c.G1117A, p.G373R in PIK3R2)
Tenorio et al., 2014 [155]	A new overgrowth syndrome is due to mutations in RNF125	Hospital Universitari o La Paz, Universida d Autónoma de Madrid (UAM),	6 Subjects , 350 Control	Spanish	Case series	macrocephaly, intellectual disability	overgrowth, hypoglycemi a, inflammatory diseases resembling Sjögren syndrome	-	TGS, cytogenetics	Karyotyping ; aCGH; SNP array; MLPA; high- resolution melting; sanger sequencing;	De novo	18q12.1 (RNF125 mutations: c.G336A, p.M112I; c.C488T, p.S163L; c.C520T, p.R174C)

		Madrid, Spain								pyrosequen cing		
Terrone et al., 2016 [156]	De novo PIK3R2 variant causes polymicrogyria, corpus callosum hyperplasia and focal cortical dysplasia	Federico II University, Naples, Italy	1 Subject	Italian	Case study	left spastic hemiplegia, megalencephaly, perisylvian polymicrogyria, and mega corpus callosum	synophrys, depressed nasal bridge, anteverted nares, pectus excavatum, broad thumb and hallux	-	WES	Sanger sequencing	De novo	19p13.11 (c.G1669C, p.D557H in exon 13 of PIK3R2)
Zarate et al., 2019 [157]	Constitutive activation of the PI3K-AKT pathway and cardiovascular abnormalities in an individual with Kosaki overgrowth syndrome	University of Arkansas for Medical Sciences, Little Rock, Arkansas	1 Subject, 1 Control	-	Case study	Dandy-Walker malformation, cervical spine arachnoid cyst, progressive scoliosis, white matter lesions, spastic diplegia	craniofacial dysmorphism , hyperextensi ble skin, cardiac saccular aneurysms, development al delay, low- frequency hearing loss	Obstructive	TES	Exome sequencing trio analysis, sanger sequencing	De novo	5q32 (c.T1696C, p.W566R in exon 12 of PDGFRB)

Table 6. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Recessive (AR). Copy number variant (CNV). Multiplex ligation dependent probe amplification (MLPA). Next generation sequencing (NGS). Restriction endonuclease fingerprinting (REF). Single-molecule molecular inversion probes (smMIP). Single nucleotide polymorphisms (SNP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 7: Ve	Table 7: Vesicle Regulation & Cell Adhesion													
Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings		
Al-Dosari et al., 2013 [158]	Mutation in MPDZ causes severe congenital hydrocephal us	King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia	1 Subject, 50 Controls	Saudi	Case series	callosal agenesis, hypotonia	chorioretinal coloboma, atrial septal defect	Communicating	TGS, genotyping	Autozygos ity mapping, linkage analysis, sanger sequencin g	AR	9p23 (MPDZ)		
Al- Jezawi et al., 2018 [159]	Compound heterozygo us variants in the PDZ domain protein (MPDZ) cause a case of mild non- progressive communicat ing hydrocephal us	College of Medicine and Heath Sciences, United Arab Emirates University	1 Subject, 2 Parents, 100 Controls	United Arab Emirates	Case study	lsolated hydrocephalus	large head with frontal bossing and high arched palate	Communicating	WES	Variant analysis, sanger sequencin g	AR	9p23 (MPDZ)		
DeMari et al., 2016 [160]	CLTC as a clinically novel gene associated with multiple malformatio ns and developmen tal delay	SUNY Upstate Medical University, Syracuse, New York	1 Subject, 2 Parents	Caucasian	Case study	Hypotonia	prominent jaw, large anterior fontanel, bilateral hip laxity, and jaundice, low-set ears, depressed nasal bridge, anteverted nares, widely set involuted nipples	Communicating	WGS, cytogenetics	Karyotype , SNP microarray , co- segregatio n analysis, sanger sequencin g	De novo	17q23.1 (A heterozygou s de novo frameshift mutation, c.2737_273 8dupGA p.D913Efs*5 9)		
Mégarba né et al., 2013 [161]	Homozygou s stop mutation in the SNX10 gene in a consanguin eous Iraqi boy with osteopetrosi s and corpus callosum hypoplasia	Unité de Génétique Médicale et laboratoire associé INSERM à l'Unité UMR_S 910, Pôle Technologie Santé, Université Saint-Joseph, Beirut, Lebanon	1 Subject, 1 Control	Iraqi	Case study	macrocephaly, brain atrophy, thin corpus callosum	proptosis of the eyes, skeletal abnormality, strabismus, splenomegaly and joint hyperlaxity	Communicating	TGS	Direct sequencin g	AR	7p15.2 (SNX10 gene)		
Rajadhy ax et al., 2007 [162]	Neurologica I presentatio n of Griscelli syndrome: obstructive hydrocephal us without haematologi cal abnormalitie s or	Genetics and Neurosurgery, Leeds General Infirmary, UK	1 Subject	Asian	Case study	sixth nerve palsy, increased muscle tone	patchy hyperpigmentation on the lower limbs, hemophagocytic lymphohistiocytosi s	Obstructive	TGS	-	AR	2q36.3 (RAB27A)		

	· · · · · · · · · · · · · · · · · · ·	·				r		[r			1
	organomeg aly											
Reis et al., 2008 [163]	Mutation analysis of B3GALTL in Peters Plus syndrome	Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA	8 Subjects, 180 Controls	Dutch	Case series	intellectual disability	central corneal opacity, defects in the posterior layers of the cornea, and lenticulo-corneal and/or irido- corneal adhesions, short stature, short broad hands with fifth finger clinodactyly, distinctive facial features, cleft lip and/or cleft palate, hearing loss, abnormal ears, heart defects, genitourinary anomalies	Communicating	TGS	Direct sequencin g,	AR	13q12.3 (beta1,3- glucosyltran sferase gene (B3GALTL))
Rodrigue z et al., 2001 [164]	Infantile Alexander disease: spectrum of GFAP mutations and genotype- phenotype correlation	Laboratoire de Neurogénétiqu e Moléculaire, INSERM U546, Université Paris VI, France	15 Subjects, 50 Controls	-	Case series	macrocephaly, psychomotor regression, seizures, and spasticity	respiratory difficulties	Communicating	TES	-	De novo	17q21.31 (Missense, heterozygou s, de novo GFAP mutations (R79H; four had R239C; and one had R239H))
Sakakiba ra et al., 2007 [165]	A case of infantile Alexander disease diagnosed by magnetic resonance imaging and genetic analysis	Nara Medical University, Japan	1 Subject	-	Case study	megalencephalic, seizures, white matter abnormalities	bulbar paralysis	Obstructive	TGS	-	AD	17q21.31 (R239H mutation of glial fibrillary acidic protein(GFA P))
Saugier- Veber et al., 2017 [166]	Hydrocepha lus due to multiple ependymal malformatio ns is caused by mutations in the MPDZ gene	Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, F76000, Rouen, France	5 Subjects, 3 Controls	-	Case series	Multifocal ependymal malformations	-	Obstructive	TGS, cytogenetics	Karyotypin g, variant analysis, sanger sequencin g, targeted NGS	AR	9p23 (MPDZ gene)

Takeyari et al., 2018 [167]	Japanese patient with Cole- carpenter syndrome with compound heterozygo us variants of SEC24D	Osaka University Graduate School of Medicine, Osaka, Japan	1 Subject	Japanese	Case study	craniosynostosis	prominent eye and micrognathia, short neck, scoliosis, and chest deformity, bone fractures, Wormian bones, lordosis, and long thin bones	-	TES	Variant analysis, sanger sequencin g	-	4q26 (SEC24D)
Van der Knaap et al., 2005 [168]	Unusual variants of Alexander's disease	VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands	10 Subjects, 100 Controls	-	Case series	cerebral white matter abnormalities, brainstem lesions	scoliosis, dysphagia, gait disturbances	Obstructive	TGS	-	De novo	17q21.31 (GFAP)
Zhang et al., 2020 [169]	Prenatal presentatio n and diagnosis of Baraitser- Winter syndrome using exome sequencing	Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA	1 Subject, 2 Parents	-	Case study	interhemispheric cyst	cystic hygroma and omphalocele, ocular coloboma, hypertelorism, heart, renal, musculoskeletal system defects	-	TGS	NGS, variant analysis,	AD	7p22.1 (ACTB)

Table 7. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Dominant (AD). Autosomal Recessive (AR). Next generation sequencing (NGS). Single nucleotide polymorphisms (SNP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 8: Glycosylation defects

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalu s	Genetic Methodology	Genetic Analysis	Inheritanc e	Genetic Findings
Beltran-Valero de Bernabé et al., 2004 [170]	Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome	University Medical Centre Nijmegen, Nijmegen, The Netherlands	2 Patients, 200 Controls	German, Asian	Case series	dandy walker-like malformation , intellectual disability	muscular dystrophy, left ventricular hypertrophy, retinal and eye developmenta l issues	Communicating	TES	Direct sequenci ng, linkage analysis	-	19q13.32 (FKRP)
Beltrán-Valero de Bernabé et al., 2002 [171]	Mutations in the O- mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome	University Medical Centre Nijmegen, Nijmegen, The Netherlands	30 Subjects, 105 Controls	Turkish, Italy, Dutch, Australia n	Case series	cobblestone lissencephaly , occipital encephalocel e	eye malformations , congenital muscular dystrophy or elevated creatine kinase	Obstructive	TES	Linkage analysis, SSCP, restriction enzyme analysis	AR	9q34.13 (POMT1)
Biancheri et al., 2006 [172]	POMGnT1 mutations in congenital muscular dystrophy: genotype-phenotype correlation and expanded clinical spectrum	University of Genova, Italy	3 Subjects, 192 Controls	Italian	Case series	intellectual disability, epilepsy, and lissencephaly	congenital muscular dystrophy, ocular abnormalities	Communicating	TGS	Direct sequenci ng	AR	1p34.1 (POMGnT 1)
Bouchet et al., 2007 [173]	Molecular heterogeneity in fetal forms of type II lissencephaly	Bichat- Claude Bernard Hospital, Biochimie Métabolique, Paris, France	47 Subjects, 100 Controls	French	Case series	agyria, thick leptomeninge s, disorganized cortical ribbon, cerebellar dysplasia	-	Communicating	TGS	-	AR	9q34.13 (15 in POMT1); 14q24.3 (five in POMT2); 1p34.1 (POMGNT 1)
Cormand et al., 2001 [174]	Clinical and genetic distinction between Walker-Warburg syndrome and muscle-eye- brain disease	University of Helsinki, Finland	29 Subjects	Turkish, Netherlan ds, German, Pakistani, Swedish, Palestinia n, Dutch, and American	Case series	malformation of neuronal migration compatible with cobblestone complex	elevated serum creatine kinase level or abnormal muscle biopsy, and ocular abnormalities	-	Genotyping	Linkage analysis	AR	MEB gene locus localized to 1p32- p34
Currier et al., 2005 [175]	Mutations in POMT1 are found in a minority of patients with Walker-Warburg syndrome	Beth Israel Deaconess Medical Center, Boston, Massachuset ts, USA	30 Subjects, 110 Controls	Asian, African, and Caucasia n	Case series	cerebellar hypoplasia, brainstem hypoplasia, agenesis of the corpus callosum, agenesis of the septum pellucidum, interhemisph eric fusion, and the presence of an	ocular abnormalities, congenital muscular dystrophy	Obstructive	TES	Microsate llite marker assay	AR	9q34.13 (POMT1)

· · · · · · · · · · · · · · · · · · ·				1		an and share t				1		I
						encephalocel e						
Geis et al., 2019 [176]	Clinical long-time course, novel mutations and genotype- phenotype correlation in a cohort of 27 families with POMT1-related disorders	Klinik St. Hedwig, University Children's Hospital Regensburg (KUNO), Steinmetzstr. 1-3, 93049, Regensburg, Germany	35 Subjects	German, Turkish, Indonesia n, Gipsy, African	Case series	lissencephaly type II, hypoplasia of the pons and/or brainstem, cerebellar hypoplasia, hypoplasia of the corpus callosum, encephalocel e	muscle weakness, muscular dystrophy, GI malformations	Communicating	TGS	Direct sequenci ng, sanger sequenci ng, massive parallel sequenci ng	AR	9q34.13 (POMT1)
Godfrey et al., 2007 [177]	Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan	Hammersmit h Hospital, Imperial College, London, UK	92 Subjects	Australia, Turkey	Case series	cobblestone lissencephaly	limb girdle muscular dystrophy, Congenital muscular dystrophy, elevated serum CK	Communicating	TGS	Unidirecti onal sequenci ng, HA, segregati on analysis,	AR, De novo	9q34.13 (POMT1); 14q24.3 (POMT2); 1p34.1 (POMGnT 1); 9q31.2 (FKTN); and 22q12.3 (LARGE)
Hehr et al., 2007 [178]	Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease	University of Regensburg, Universitätkli nikum D3, Franz-Josef- Strauss-Allee 11, Regensburg, Germany	9 Subjects	German, Turkish, English	Case series	global development al delay, seizures, cerebellar cysts, intellectual disability	congenital muscular dystrophy, se- vere congenital myopia, glaucoma, retinal hypoplasia	Communicating	TGS	Cycle sequenci ng, linkage analysis, restriction enzyme analysis	AR	1p34.1 (POMGnT 1)
Ichiyama et al., 2016 [179]	Fetal hydrocephalus and neonatal stroke as the first presentation of protein C deficiency	Kyushu University, Fukuoka, Japan	1 Subject	Asian	Case study	isolated hydrocephalu s	Slight developmenta I delay	-	TES	Direct sequenci ng	-	2q14.3 (PROC c.574_576 delAAG)
Kano et al., 2002 [180]	Deficiency of alpha- dystroglycan in muscle-eye- brain disease	Osaka University Graduate School of Medicine, 2- 2 B9, Yamadaoka, Suita, Osaka, Japan	3 Subjects, 1 Control	Turkish, French	Case series	type II lissencephaly , Intellectual disability	congenital muscular dystrophy, congenital myopia, congenital glaucoma, pallor of the optic discs, retinal hypoplasia, hydrocephalu s, myoclonic jerks	Communicating	TGS	-	AR	1p34.1 (POMGnT 1)
Karadeniz et al., 2002 [181]	De novo translocation t(5;6)(q35;q21) in an infant with Walker-Warburg syndrome	Burak Woman's Hospital, Department of Medical Genetics,	1 Subject, 2 Parents	-	Case study	hypoplasia of cerebellar vermis, enlargement of cisterna magna,	eye abnormalities with microphthalmi a cataract, congenital	Communicating	-	G- banding	De novo	translocati on t(5;6)(q35; q21)

				T	·	hilataral		T		1	r	
		Ankara, Turkey				bilateral dilatation of lateral ventricles, widespread agyria, and irregularity of the white matter-gray matter line	muscular dystrophy					2-14.24
Preiksaitiene et al., 2020 [182]	Pathogenic homozygous variant in POMK gene is the cause of prenatally detected severe ventriculomegaly in two Lithuanian families	Vilnius University, Vilnius, Lithuania	4 Subjects, 98 Controls	Lithuania n	Case series	Isolated hydrocephalu s	highly variable	Dependent on phenotype of dystroglycanop athy	WES	Sanger sequenci ng	De novo, AR	8p11.21 (homozyg ous nonsense variant in the POMK)
Van Reeuwijk et al., 2005 [183]	POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker- Warburg syndrome	Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands	3 Subjects, Controls used	Morocca n, Pakistani, Bengali	Case series	lissencephaly , agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigratio n	eye malformations (cataract, microphthalmi a, buphthalmos, and Peters anomaly)	-	TGS	Homozyg osity mapping, direct sequenci ng	AR	14q24.3 (POMT2)
Van Reeuwijk et al., 2006 [184]	The expanding phenotype of POMT1 mutations: from Walker-Warburg syndrome to congenital muscular dystrophy, microcephaly, and mental retardation	Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands	28 Subjects, 100 Controls	Italy, Netherlan ds, Pakistan, Lebanon, India, Qatar, Ireland, turkey	Case series	lissencephaly , agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigratio n	myopia, gait disturbances	Communicating	TGS	Linkage analysis	-	9q34.13 (POMT1)
Van Reeuwijk et al., 2010 [185]	A homozygous FKRP start codon mutation is associated with Walker-Warburg syndrome, the severe end of the clinical spectrum	Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands	2 Subjects, 2 Parents	Caucasia n	Case series	lissencephaly , agenesis of the corpus callosum, fusion of the hemispheres, cerebellar hypoplasia, and neuronal overmigratio n	cataracts, muscular dystrophy	Communicating	TGS	SNP	-	19q13.32 (FKRP)
Riemersma et al., 2015 [186]	Absence of α- and β- dystroglycan is associated with Walker-Warburg syndrome	Leiden University Medical Center, the Netherlands, Sydney Children's Hospital, University of New South Wales, Sydney,	5 Subjects, Controls used	Israeli- Arab	Case series	hypotonia, posterior fossa, a small midline encephalocel e, a hypoplastic vermis, intracranial calcifications	elevated CK, elevated LFTs, respiratory failure, bilateral corneal opacities, and glaucoma	Communicating	TES	Homozyg osity mapping, CNV, sanger sequenci ng	-	3p21.31 (homozyg ous loss- of-function frameshift mutation in the DAG1 gene)

		Australia, Rambam Health Care Campus, Haifa, Weizmann Institute of Science, Rehovot, Israel										
Saredi et al., 2012 [187]	Novel POMGNT1 point mutations and intragenic rearrangements associated with muscle-eye-brain disease	Foundation Neurological Institute C. Besta, Milano, Italy	3 Subjects, 1 Control	Italian	Case series	Microcephaly , spastic tetraparesis	rounded forehead, thin lips, short neck, micrognathia, motor disability, eye abnormalitie	Communicating	TGS	Cycle sequenci ng, MLPA	AR	1p34.1 (c.643C>T , c.1863del C in POMGnT1)
Vervoort et al., 2004 [188]	POMGnT1 gene alterations in a family with neurological abnormalities	J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC, USA	2 Subjects, 2 Parents, 500 Controls	Caucasia n	Case series	hypotonia, bilateral frontal polymicrogyri a, abnormal cerebellum, and characteristic flattened dystrophic pons	congenital muscular dystrophy, congenital glaucoma and severe myopia	-	TGS	Haplotype analysis, SSCP, cycle sequenci ng	AR	1p34.1 (POMGnT 1)
Willer et al., 2012 [189]	ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome	University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa, USA	7 Subjects, Controls used	-	Case series	cobblestone lissencephaly , severe brainstem hypoplasia with a kink at the isthmus and severe hypoplasia of the cerebellum	muscular dystrophy, bilateral microphthalmi a with cataracts and arrested retinal development	Communicating	TGS, cytogenetics	Linkage analysis, targeted NGS, aCGH, CNV, Sanger sequenci ng	AR	7p21 (ISPD mutation)
Yis et al., 2007 [190]	A case of Walker-Warburg syndrome resulting from a homozygous POMT1 mutation	University of Dokuz Eylul, 35340 Izmir, Turkey	1 Subject, 2 Parents	-	Case study	type II lissencephaly and pontocerebell ar hypoplasia	severe ocular malformations and congenit al muscular dystrophy	Communicating	TGS	Linkage analysis, direct sequenci ng	AR	9q34.13 (mutation (R514X) in the POMT1 gene)
Yoshida et al., 2001 [191]	Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1	Central Laboratories for Key Technology, Kirin Brewery Co., Ltd., Kanazawa- ku, Yokohama, Japan	6 Subjects	Turkish, French	Case series	lissencephaly	congenital muscular dystrophy, ocular abnormalities	Communicating	TGS	Direct sequenci ng	AR	1p34.1 (POMGnT 1)

Table 8. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Recessive (AR). Copy number variant (CNV). Heteroduplex analysis (HA). Multiplex ligation dependent probe amplification (MLPA). Polymerase chain reaction (PCR). Next generation sequencing (NGS). Single nucleotide polymorphisms (SNP). Single-strand conformation polymorphisms (SSCP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 9: Growth factor signaling.

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings
Abdel- Salam et al., 2011 [192]	Muenke syndrome with pigmentary disorder and probable hemimegalencep haly: An expansion of the phenotype	National Research Centre, Cairo, Egypt	1 Patient, 2 parents	-	Case study	left HME, inadequate differentiation of white and gray matter, underdeveloped corpus callosum, abnormal hippocampus configuration, right coronal, sagittal, and lambdoid suture synostoses	frontal bossing, sparse, hypopigmented, curly hair, prominent eyes, low-set ears, hypoplastic maxilla, long philtrum, brachydactyly with fusiform fingers, skin hyperpigmentation	Obstructive	TES	MLPA, DHPLC	AD	4p16.3 (FGFR3 showed a c.749C > G, p.Pro250Arg substitution)
Arnaud- López et al., 2007 [193]	Crouzon with acanthosis nigricans. Further delineation of the syndrome	Instituto Mexicano del Seguro Social, Guadalaja ra, México	2 Subjects	-	Case series	Craniosynostosis	laryngomalacia, acanthosis nigricans, choanal stenosis, double collecting system and dysplastic kidney	Communicating	TGS, cytogenetics	Karyotyping	AD	4p16.3 (FGFR3)
Chen et al., 2001 [194]	Prenatal diagnosis and genetic analysis of type I and type II thanatophoric dysplasia	Mackay Memorial Hospital, Taipei, Taiwan	4 Subjects, control matched sampling	Chinese	Case series	cloverleaf skull, macrocephaly, synostosis	short-limbed dwarfism, multiple skeletal dysplasias	-	TES	Direct sequencing	-	4p16.3 (FGFR3)
Chen et al., 2008 [195]	Craniosynostosis and congenital tracheal anomalies in an infant with Pfeiffer syndrome carrying the W290C FGFR2 mutation	Mackay Memorial Hospital, Taipei, Taiwan	1 Subject	-	Case study	dandy walker - cerebellar malformations	turricephalic prominent forehead, hypertelorism, low-set ears, a flat nasal bridge, mid-face hypoplasia, bilateral cleft lip and palate, a thick nuchal fold, and a distended abdomen, and multicystic kidneys	Communicating	-	-	De novo	10q26.13 (c.870 G>T (TGG>TGT) in the FGFR2)
Chen et al., 2017 [196]	Pfeiffer syndrome with FGFR2 C342R mutation presenting extreme proptosis, craniosynostosis, hearing loss, ventriculomegaly , broad great toes and thumbs, maxillary hypoplasia, and laryngomalacia	Mackay Memorial Hospital, Taipei, Taiwan	1 Subject	-	Case study	multisynostoses of sagittal and coronal sutures	bilateral hearing loss, brachycephaly, hypertelorism, broad big toes and thumbs, low-set ears, laryngeomalacia and midface hypoplasia	Obstructive	Cytogenetics	Karyotyping	AD	10q26.13 (FGFR2 C342R mutation)
Fonseca et al., 2008 [197]	Second case of Beare-Stevenson syndrome with an FGFR2 Ser372Cys mutation	Universid ade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.	1 Subject	-	Case study	craniosynostosis, crouzonoid-like features, and cloverleaf skull	cutis gyrata, acanthosis nigricans, skin furrows, skin tags, anogenital anomalies, and prominent umbilical stump	Communicating	TES	Direct sequencing	AD	10q26.13 (FGFR2 Ser372Cys mutation.)

		1	1									
Gonzále z-Del Angel et al., 2016 [198]	Expansion of the variable expression of Muenke syndrome: Hydrocephalus without craniosynostosis	Instituto Nacional de Pediatría, Mexico City, Mexico	56 Subjects	Mexican	Case series	uni- or bicoronal craniosynostosi	wide variability	Obstructive	TES	Direct sequencing, restriction enzyme analysis	AD	4p16.3 (FGFR3)
Gripp et al., 1998 [199]	Phenotype of the fibroblast growth factor receptor 2 Ser351Cys mutation: Pfeiffer syndrome type III	The Children's Hospital of Philadelph ia, Pennsylva nia, USA	1 Subject	Caucasia n	Case study	seizures, developmental delay, pansynostosis	bilateral elbow ankylosis, radial head dislocation, extreme proptosis with luxation of the eyes out of the lids, apnea and airway obstruction, intestinal non-rotation	Communicating	TES	SSCP, cycle sequencing	AD	10q26.13 (Ser351Cys in FGFR2)
Gupta et al., 2020 [200]	Crouzon Syndrome in a Ten-week-old Infant: A Case Report	All India Institute of Medical Sciences, Patna, Bihar, India	1 Subject	Japanese	Case study	neurologic and neuromuscular impairment, Craniosynostosis	airway obstruction, craniofacial dysostosis with abnormal shape of the skull, proptosis, hypertelorism, curved nose and frontal bossing	Communicating	-	-	AR	10q26.13 (FGFR2)
lto et al., 2018 [201]	A ZPR1 mutation is associated with a novel syndrome of growth restriction, distinct craniofacial features, alopecia, and hypoplastic kidneys	University of Ottawa, Ottawa, Canada	4 Subjects, 3 Controls	New Mexican Hispanic heritage	Case series	microcephaly	growth restriction, distinctive craniofacial features, congenital alopecia, hypoplastic kidneys with renal insufficiency, global developmental delay, severe congenital sensorineural hearing loss, and genital hypoplasia	-	WES	Sanger sequencing	AR	11q23.3 (ZPR1 Zinc Finger)
Kan et al., 2002 [202]	Genomic screening of fibroblast growth- factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis	The John Radcliffe Hospital, Oxford, United Kingdom	259 Subjects, 128 Controls	-	Case series	Cloverleaf skull, craniosynostosis	-	Communicating	TES	НА	AD	10q26.13 (FGFR2)
Lajeunie et al., 2006 [203]	Mutation screening in patients with syndromic craniosynostoses indicates that a limited number of recurrent FGFR2 mutations accounts for severe forms of Pfeiffer syndrome	Hôpital Necker- Enfants malades, Paris, France	129 Subjects, 65 Controls	-	Case series	synostosis of one or several cranial sutures	ocular proptosis, maxillary hypoplasia and midface retrusion	Communicating	TES	Direct sequencing	AD	8p11.23 (FGFR 1); 10q26.13 (FGFR2); 4p16.3 (FGFR 3 mutation)
Priolo et al., 2000 [204]	Pfeiffer syndrome type 2 associated with a single amino acid deletion in the FGFR2 gene	G. Gaslini Institute, Genova, Italy	1 Subject, 60 Controls	-	Case study	acrocephalo- trygonocephaly with cloverleaf skull, callosal dysgenesis and Chiari I malformation	facial dysmorphism, radial clinodactyly of the thumbs and valgus deviation of the halluces	Unclear	TGS	Cycle sequencing	AD	10q26.13 (FGFR2)

Przylepa et al., 1996 [205]	Fibroblast growth factor receptor 2 mutations in Beare-Stevenson cutis gyrata syndrome	The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA	5 Subjects, 3 Parents, and 50 Controls	-	Case series	craniosynostosis	cutis gyrata, acanthosis nigricans, craniofacial dysmorphism, digital anomalies, umbilical and anogenital abnormalities	Communicating	TGS	HA, fluorescent dideoxy terminator method, restriction enzyme analysis	AD	10q26.13 (FGFR2)
Rump et al., 2006 [206]	Severe complications in a child with achondroplasia and two FGFR3 mutations on the same allele	Universit y Medical Center Groning en, Universit y of Groning en, The Netherla nds	1 Subject, 2 Parents	Dutch	Case study	megalencephalic	midface hypoplasia, lordotic lumbar spine, trident hand configuration, achondroplasia, respiratory failure	Communicating	TGS	Variant analysis	AD	4p16.3 (p.G380R mutation of FGFR3)
Rutland et al., 1995 [207]	Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes	Institute of Child Health, London, UK	12 Subjects	-	Case series	Cloverleaf skull, craniosynostosis	digital abnormalities	Communicating	TES	SSCP, direct sequencing, restriction endonuclea se analysis	De novo	10q26.13 (FGFR2)
Schaefe r et al., 1998 [208]	Novel mutation in the FGFR2 gene at the same codon as the Crouzon syndrome mutations in a severe Pfeiffer syndrome type 2 case	H.A. Chapman Research Institute of Medical Genetics, Tulsa, Oklahoma, USA	1 Subject	-	Case study	cloverleaf skull	proptosis, radioulnar synostosis and broad thumbs and great toes	Communicating	TES	Cycle sequencing	-	10q26.13 (G to T mutation in codon 290 exon 7 of the FGFR2)
Takenou chi et al., 2013 [209]	Severe congenital lipodystrophy and a progeroid appearance: Mutation in the penultimate exon of FBN1 causing a recognizable phenotype	Keio University School of Medicine, Tokyo, Japan	1 Subject	Japanese	Case study	craniosynostosis	progeroid appearance, wide-open anterior fontanelle, low-set ears, long arms and legs, arachnodactyly, and arthrogryposis, hydronephrosis	Communicating	TGS	NGS, sanger sequencing	AD	15q21.1 (exon 64 of the FBN1 gene)

Table 9. Abbreviations include the following: Autosomal Dominant (AD). Autosomal Recessive (AR). Copy number variant (CNV). Denaturing high performance liquid chromatography (DHPLC). Heteroduplex analysis (HA). Multiplex ligation dependent probe amplification (MLPA). Next generation sequencing (NGS). Single-strand conformation polymorphisms (SSCP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole exome sequencing (WGS).

Table	10.	Extracellular	matrix	defects
abic			maun	acicolo

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings
Balasubra manian et al., 2015 [210]	CRTAP mutation in a patient with Cole- Carpenter syndrome	Sheffield Children's NHS Foundation Trust, UK	1 Subject	Asian Pakistan	Case subject	thoraco-lumbar scoliosis and sutural craniosynostosis	Osteogenesis Imperfecta, bilateral limb deformities, joint hypermobility, prominent eyes with a proptotic appearance, greyish blue sclerae, and dentinogenesis imperfecta	Communicating	TGS	Variant analysis	-	3p22.3 (c.118G>T mutation in exon 1 of the CRTAP gene)
Çiftçi et al., 2003 [211]	Ligneous conjunctivitis, hydrocephalus, hydrocele, and pulmonary involvement in a child with homozygous type I plasminogen deficiency	University of Ankara Medical School, 06100, Dikimevi Ankara, Turkey	1 Subject, 2 Parents , 1 Control	Turkish	Case study	isolated hydrocephalus	tracheal pseudomembranes, bilateral hydrocele and unilateral inguinal hernia	Obstructive	TGS	SSCP, direct sequenci ng	AR	6q26 (L650fsX65 2 mutation (deletion of 2081C))
Cormand et al., 1999 [212]	Assignment of the muscle-eye-brain disease gene to 1p32-p34 by linkage analysis and homozygosity mapping	University of Helsinki, Finland	12 Subject s, 27 Control s	Finnish, Turkish	Case series	intellectual disability, polymicrogyria- pachygyria-type neuronal migration disorder of the brain	ocular abnormalities, congenital muscular dystrophy	Communicating	Genotyping	Linkage analysis, haplotype analysis	AR	1p34.3 (COL8A2), 1p21.2 (VCAM1), 1p34.2 (PTPRF)
Cotarelo et al., 2008 [213]	Two new patients bearing mutations in the fukutin gene confirm the relevance of this gene in Walker-Warburg syndrome	Universida d Autónoma de Madrid, Madrid, Spain	2 Subject s, 3 Family Membe rs	Ashkanaz i Jewish, Spanish	Case series	overriding cranial bones, monolobar holoprosencephal y, interhemispheric cyst, incomplete cleavage of the thalamus and corpora quadrigemina, an absent corpus callosum and rhombencephalic hypoplasia	microphtalmia, atrial septal defect , double subaortic ventricular defect, hypoplastic left ventricle outlet, stenotic pulmonary valve and infundibular transposition of great vessels with no innominate vein, and retinal dysplasia	External and internal	TGS	Restrictio n endonucl ease enzyme analysis, PCR	AR	9q31.2 (FKTN)
de Bernabé et al., 2003 [214]	A homozygous nonsense mutation in the fukutin gene causes a Walker- Warburg syndrome phenotype	University Medical Centre Nijmegen, Nijmegen, Netherland S	30 Subject s, 105 Control s	Japanese	Case series	cobblestone lissencephaly with agenesis of the corpus callosum, fusion of hemispheres, hydrocephalus, dilatation of the fourth ventricle, cerebellar hypoplasia, hydrocephalus, and sometimes encephalocele	eye malformations and congenital muscular dystrophy	Communicating	TGS	Linkage analysis, direct sequenci ng, SSCP	AR	9q31.2 (FKTN)
Horn et al., 2011 [215]	Progeroid facial features and lipodystrophy associated with a novel splice site mutation in the final intron of the FBN1 gene	Charité- Universität smedizin Berlin, Berlin, Germany	1 Subject, 150 Control s	German	Case study	Psychomotor delay, hypotonia	triangular facial shape, large head with a broad and prominent forehead, deep set eyes with proptosis, downward slanting palpebral fissures, and a high nasal bridge,	-	TGS, cytogenetics	Karyotypi ng, aCGH	AD	15q21.1 (FBN1)

							highly arched palate and mild retrognathia, generalized lipodystrophy, long fingers and toes, bilateral pes valgus					
Kondo- lida et al., 1999 [216]	Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD)	Human Genome Center, Institute of Medical Science, University of Tokyo, Japan	19 Subject s, 50 Control s	Japanese	Case series	Intellectual delay micropolygyria, pachygyria and agyria	congenital muscular dystrophy, eye abnormalities	Communicating	TGS	SSCP, direct sequenci ng	De novo	9q31, gene FCMD
Kroes et al., 2003 [217]	Ehlers-Danlos syndrome type IV: unusual congenital anomalies in a mother and son with a COL3A1 mutation and a normal collagen III protein profile	University Medical Center WKZ, Internal mail KC 04.084.2, Lundlaan 6, 3584 EA Utrecht, the Netherland s	2 Subject s	-	Case series	Macrocephaly	blue sclerae, unilateral clubfoot, esophageal atresia, joint hyperlaxity	Communicating	TGS	-	-	2q32.2 (COL3A1)
Radmane sh et al., 2013 [218]	Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities	University of California, San Diego, CA, USA	2 Subject s, 200 Control s	Egyptian and Turkish	Case series	cortical gyral and white-matter signal abnormalities, severe cerebellar dysplasia, brainstem hypoplasia, and occipital encephalocele	minor optic atrophy	Communicating	WES	Sanger sequenci ng	AR	7q31.1 (LAMB1)
Saito et al., 2000 [219]	Haplotype-phenotype correlation in Fukuyama congenital muscular dystrophy	Tokyo Women's Medical University, School of Medicine, Japan	56 Subject s, 82 Control s	Japanese	Case series	cobblestone lissencephaly with cerebral and cerebellar cortical dysplasia	congenital muscular dystrophy, eye abnormalities	Communicating	Allelotyping	Haplotyp e analysis, microsate llite marker assay	AR	FCMD gene
Schott et al., 1998 [220]	Therapy with a purified plasminogen concentrate in an infant with ligneous conjunctivitis and homozygous plasminogen deficiency	Klinikum Mannheim, University of Heidelberg, Germany	1 Subject, 1 Control, 2 Parents , 1 Brother	Turkish	Case study	macrocephalus	pseudomembranous conjunctivitis, ligneous conjunctivitis	-	TGS	SSCP, cycle sequenci ng, restriction enzyme analysis	AR	6q26 (plasminog en gene (Glu460Sto p mutation))
Schuster et al., 1997 [221]	Homozygous mutations in the plasminogen gene of two unrelated girls with ligneous conjunctivitis	Children's Hospital, University of Würzburg, Germany	2 Subject s, 2 Parents , 1 Sister, 1 Control	Turkish	Case study	macrocephaly	pseudomembranous lesions of other mucous membranes in the mouth, nasopharynx, trachea, and female genital tract	Obstructive	TES	SSCP, restriction enzyme analysis	AR	6q26 (Plasminog en gene)

Schuster et al., 1999 [222]	Prenatal diagnosis in a family with severe type I plasminogen deficiency, ligneous conjunctivitis and congenital hydrocephalus	Children's Hospital, University of Würzburg, Germany	1 Subject, 2 Parents , 1 Control	Turkish	Case study	Isolated hydrocephalus	pseudomembranous conjunctivitis, ligneous conjunctivitis	Obstructive	TES	SSCP	AR	6q26 (Plasminog en gene)
Tonduti et al., 2015 [223]	Cystic leukoencephalopathy with cortical dysplasia related to LAMB1 mutations	Université Paris Diderot- Sorbonne Paris Cité and INSERM U1141- DHU Protect, Paris, France	2 Subject s, 100 Control	-	Case series	cerebral palsy, epilepsy, spastic tetraplegia, intellectual disability	lens opacification, optic atrophy	Unclear	WES	Sanger sequenci ng, segregati on analysis	-	7q31.1 (LAMB1)
Van der Knaap et al., 2006 [224]	Neonatal porencephaly and adult stroke related to mutations in collagen IV A1	VU University Medical Center, Amsterdam , the Netherland s	3 Subject s, 192 Control s	Dutch	Case series	Leukoencephalop athy, porencephalic cysts, cerebral microangiopathies	cataracts, blood vessel defects	Obstructive (blood, calcifications) vs. Porencephaly	-	-	AD	13q34 (mutation in the <i>COL4A1)</i>
Yang et al., 2017 [225]	Novel FREM1 mutations are associated with severe hydrocephalus and shortened limbs in a prenatal case	The First Affiliated Hospital of Jinan University, Guangzhou , Guangdon g, China	1 Subject, 200 Control s	Chinese	Case study	isolated hydrocephalus	short limbs	-	WES	Sanger sequenci ng	-	9p22.3 (FREM1)

Table 10. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Dominant (AD). Autosomal Recessive (AR). Single-strand conformation polymorphisms (SSCP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 11: Neurogenesis

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings
Antwi et al., 2018 [226]	A novel association of campomelic dysplasia and hydrocephalus with an unbalanced chromosomal translocation upstream of SOX9	Yale University, New Haven, CT, United States	1 Subject	-	Case study	hypoplastic C6 vertebral body, exaggerated cervical lordosis, and exaggerated thoracic kyphosis	tracheobronchom alacia, cleft palate, retrognathia, hypertelorism, hypoplastic mandible	Communicating	WES, cytogenetics	Karyotyping, FISH, aCGH	De novo	17q24.3 (SOX9)
Avitan- Hersh et al., 2011 [227]	A case of H syndrome showing immunophenotye similarities to Rosai- Dorfman disease	Technion Institute of Technology, Haifa, Israel	1 Subject, 2 Parents	Arab	Case study	isolated hydrocephalus	pulmonic stenosis, skin hyperpigmentatio n, hepatomegaly, splenomegaly, dilatation of the right renal pelvis	Communicating	TES	-	AR	10q22.1 (SLC29A3 gene, encodes human equilibrative nucleoside transporter hENT3)
Cauley et al., 2019 [228]	Overlap of polymicrogyria, hydrocephalus, and Joubert syndrome in a family with novel truncating mutations in ADGRG1/GPR56 and KIAA0556	The George Washington University School of Medicine and Health Sciences, Washington, DC, USA	2 Subjects , 2 Siblings, 2 Parents, Controls used	Sudanese	Case series	psychomotor delay, intellectual disability, seizures, severe brain malformations, spasticity, hyperreflexia	ptosis, unilateral ophthalmoplegia, and bilateral vertical ophthalmoplegia, muscle wasting	-	WES	Variant analysis, Sanger sequencing	AR	16q21 (ADGRG1) And 16p12.1 (KIAA0556)
Christofo lini et al., 2006 [229]	Hydrocephaly, penoscrotal transposition, and digital anomalies associated with de novo pseudodicentric rearranged chromosome 13 characterized by classical cytogenetic methods and mBAND analysis	Departamento de Morfologia, Disciplina de Genética, Universidade Federal de São Paulo, São Paulo, Brazil	1 Subject, 2 Parents	-	Case study	corpus callosum agenesis	imperforate anus with anocutaneous fistula, penoscrotal transposition, and digital reduction defects, short palpebral fissures, telecanthus, epicanthic folds, short nose with depressed nasal bridge and anteverted nostrils, posteriorly rotated ears, short neck	Obstructive	Cytogenetics	G-banding	De novo	13q deletion
Doherty et al., 2012 [230]	GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome	University of Washington, Seattle Children's Hospital, USA	12 Subjects , Controls used	Mennonite, European American, Dutch	Case series	bilateral sensorineural deafness, corpus callosum agenesis, arachnoid cysts, posterior agenesis of the corpus callosum, frontal polymicrogyria , frontal	down slanting palpebral fissures and low-set, posteriorly rotated ears	Communicating, Obstructive	Genotyping, WES	SNP, sanger sequencing	AR	1p13.3 (G protein- signaling modulator 2 gene, GPSM2)

						heterotopia, cerebellar dysplasia						
Forrester et al., 2002 [231]	Kousseff syndrome caused by deletion of chromosome 22q11- 13	Southern Illinois University School of Medicine, Springfield, Illinois, USA	3 Subjects , 2 Controls	-	Case series	intellectual disability	lumbosacral myelomeningocel e, cleft palate, and dysmorphic features consisting of low- set and posteriorly rotated ears, retrognathia, and clinodactyly of the fifth toes, cardiac anomalies	Obstructive	Genotyping, cytogenetics	FISH, karyotyping, microsatellite marker assay	AR	22q11.2- microdeletio n
Furey et al., 2018 [232]	De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus	Yale University School of Medicine, New Haven, CT 06510, USA	177 subjects, 1,789 controls	-	Case series	isolated hydrocephalus	-	Communicating, Obstructive	WES	Direct sequencing	De novo	3p22.3 (TRIM71) 3p21.31 (SMARCC1 9q22.32 (PTCH1)
Grosso et al., 2002 [233]	De novo complete trisomy 5p: clinical and neuroradiological findings	University of Siena, Siena, Italy	1 Subject	-	Case study	isolated hydrocephalus	Low-set, posteriorly rotated ears with reduced cartilage, up slanted palpebral fissures, epicanthus, hypertelorism, a wide and depressed nasal root, a short nose with anteverted nostrils, a long philtrum, retrognathia, an ogival palate, a short neck, abnormal palmar creases, and a bell-shaped trunk	-	Cytogenetics	FISH w/ WCP	De novo	trisomy 5p
Jacquem in et al., 2020 [234]	TrkA mediates effect of novel KIDINS220 mutation in human brain ventriculomegaly	Université Libre de Bruxelles, 1070 Brussels, Belgium	3 Subjects , 1 Control	Pakistan	Case series	isolated hydrocephalus	limb contractures, club feet	-	WES	Variant analysis	AR	2p25.1 (homozygo us variant of KIDINS220)
Kline- Fath et al., 2018 [235]	Fowler syndrome and fetal MRI findings: a genetic disorder mimicking hydranencephaly/hydr ocephalus	Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, USA	1 Subject	-	Case study	thin cerebral cortex, cerebellum, brainstem, and spinal cord	Arthrogryposis, proliferative glomeruloid vasculopathy	Obstructive	WES	-	AR	14q24.3 (FLVCR2 gene)

Koenigst ein et al., 2016 [236]	Chudley-McCullough Syndrome: Variable Clinical Picture in Twins with a Novel GPSM2 Mutation	Justus-Liebig- University, Giessen, Germany	2 Subjects	Turkish	Case series	callosal agenesis, interhemispher ic cyst, frontal polymicrogyria	sensorineural deafness	Communicating	-	-	AR	1p13.3 (c.C1093T; p.R365X in GPSM2)
Lahiry et al., 2009 [237]	A multiplex human syndrome implicates a key role for intestinal cell kinase in development of central nervous, skeletal, and endocrine systems	Robarts Research Institute, London, Ontario N6A 5K8, Canada	6 Subjects , 3112 Controls	Amish	Case series	Cerebral anomalies	facial dysmorphisms, eye anomalies, skeletal anomalies, pulmonary/GI/GU dysplasia	Communicating	Genotyping, TGS	SNP, autozygosity mapping, direct sequencing	AR	6p12.1 (ICK p.R272Q mutation)
Li et al., 2015 [238]	Congenital hydrocephalus and hemivertebrae associated with de novo partial monosomy 6q (6q25.3→qter)	The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China	1 Subject	-	Case study	lsolated Hydrocephalus	Lumbar hemivertebrae	-	Cytogenetics	CNV, aCGH, Karyotyping, FISH	-	deletion in chromosom e region 6q25.3→qte r
Maclean et al., 2004 (258)	Kousseff syndrome: a causally heterogeneous disorder	Sydney Children's Hospital, Sydney, Australia	2 Subjects	Indonesian	Case series	myelomeningo cele, callosal hypoplasia, intellectual delay	posteriorly rotated ears, a large nose, a smooth featureless philtrum, hypertrichosis and restricted ankle dorsiflexion, tetralogy of fallot	Obstructive	TES	Cycle sequencing	AR	22q11.2- microdeletio n
Maclean et al., 2005 [239]	Axenfeld-Rieger malformation and distinctive facial features: Clues to a recognizable 6p25 microdeletion syndrome	The Children's Hospital at Westmead, Sydney, New South Wales, Australia	1 Subject	Caucasian	Case study	cerebellar hypoplasia, a deficient inferior vermis, hypoplasia of the pons, medulla, and posterior corpus callosum, and absent septum pellucidum	Axenfeld-Rieger malformation, hearing loss, congenital heart disease, dental anomalies, developmental delay, and a characteristic facial appearance	Communicating	Cytogenetics, genotyping	Karyotyping, FISH, microsatellite marker assay,	De novo	6p25 (deletion of the FOXC1/FO XF2/FOXQ 1 forkhead gene cluster)
Mero et al., 2017 [240]	Homozygous KIDINS220 loss-of- function variants in fetuses with cerebral ventriculomegaly and limb contractures	Oslo University Hospital, Oslo, Norway	4 Subjects , 2 Parents	-	Case series	callosum agenesis, small cerebellum	limb contractures	Communicating	WES	Sanger sequencing, autozygosity mapping,	AR	2p25.1 (homozygo us frameshift variant in exon 24 in KIDINS220)
Pappa et al., 2017 [241]	Exome analysis in an Estonian multiplex family with neural tube defects-a case report	University of Tartu, Riia 23b, 51010, Tartu, Estonia	3 Subjects , 2 Parents	Estonian	Case series	spina bifida, aqueductal stenosis, intellectual delay	gait and motor abnormalities	Obstructive	WES	Variant analysis	Maternal	21q22.3 (CBS), 5p15.31 (MTRR), 1p36.22 (MTHFR), 19q13.33 (IL4I1), 8q24.3 (SCRIB1),

Period Postmartem Amery allocation Amery allocation Subject allocation							-	-	-	-	-		
Powie Powie AL_2018 Alteration in B_2010Diagnostic Ambry Genetics, Alizo Origin Genetics, Alizo Cationia, USAAmbry Subject Parents1 Subject ParentsCaucasian SubjectCase studyposterior fossa oyst. dandy matormation, setzuresoptic nerve abnormalities, ahormalities, ahormalities, ahormalities, ahormalities, abnorma													7q21.13 (FZD1), 1q23.2 (VANGL2), 17p13.1 (DVL2), 18q21.1 (TCEB3B), 2q35 (PLCD4), 10q11.21 (RASSF4), and 6p25.1
Rai et al., 2015 I [243]spinal stenosis and wontrould with developmental delay due to chromosome isp12.1 microcleleionMidland Regional Hospital, Westmeath, Ireland1-Case studysignificant delay in gross motor skills-CytogeneticsaCGH-Chr. t6p12.2 deletionVestmeath, isp12.1 microcleleion rameshift variants in Treatment of Dama and spinal frameshift variants in microcephalus0-CytogeneticsaCGH-Chr. t6p12.2 deletionSu et al., 2021 [244]Novel compound heterozygous frameshift variants in microcephalusChineseCase seriescerebellar hypoplasiacleft lip and palate, hydrose fetalis, hepatomegaly-CytogeneticsaCGH-Chr. t6p12.2 deletionSu et al., 2021 [244]Novel compound 	al., 2018	Diagnostic Exome Sequencing Identifies a De Novo TUBB3 Alteration in a Newborn with Prenatally Diagnosed Hydrocephalus and Suspected Walker- Warburg Syndrome	Genetics, Aliso Viejo,	Subject, 2	Caucasian		cyst, dandy walker malformation,	abnormalities, abnormal renal	-	exome	-	De novo	16q24.3 (TUBB3)
Novel compound heterozygous frameshift varianta in Drain and ises. First Parian communics. First Parian ent of Genetic entitic aratheria and Begion. Nanning. ChinaChinese 2 	al., 2015	spinal stenosis and ventriculomegaly in a child with developmental delay due to chromosome 16p12.1 microdeletion	Regional Hospital, Mullingar Westmeath,	1 Subject	-		macrocephaly	in gross motor	-	Cytogenetics	aCGH	-	16p12.2
Yüksel et al., 2019 [245]A homozygous frameshift variant in an alternatively spliced exon of DLG5 causes hydrocephalus and renal dysplasiaCentogene AG, Rostock, Germany1 Subject, 1 Control-Case studyventricular septal defects, cleft lip and palate, and a renal phenotype including multi- cystic dysplasiaObstructiveWESVariant analysis, sanger sequencingDe novo10q22.3 (DLG5)	2021	Novel compound heterozygous frameshift variants in WDR81 associated with congenital hydrocephalus 3 with brain anomalies: First Chinese prenatal case confirms WDR81	Commission Key Laboratory of Precise Diagnosis and Treatment of Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region,		Chinese			palate, hydrops fetalis, hepatomegaly	НҮСЗ	WES	sequencing, variant	AR	
	et al., 2019 [245]	frameshift variant in an alternatively spliced exon of DLG5 causes hydrocephalus and renal dysplasia	Rostock, Germany	1 Control	-	study	hydrocephalus	ventricular septal defects, cleft lip and palate, and a renal phenotype including multi- cystic dysplasia			analysis, sanger sequencing		(DLG5)

Table 11. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Recessive (AR). Copy number variant (CNV). Fluorescence In Situ Hybridization (FISH). Single nucleotide polymorphisms (SNP). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole chromosome probes (WCP). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 12: Inherited cancer syndromes.

	nnented cancer syndromes.	Author			Study	CNS	Non CNS	Turno of	Constin	Conotio		Constin
Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings
Demir et al., 2011 [246]	WAGR syndrome with tetralogy of Fallot and hydrocephalus	Hacettepe University, Ankara, Turkey	1 Subject	-	Case study	isolated hydrocephalus	Wilms tumor, aniridia, genitourinary abnormalities, and intellectual disability	Communicating	Cytogenetics	G- banding	De novo	deletion of chromosome 11p13
Fukino et al., 2000 [247]	A family with hydrocephalus as a complication of cerebellar hemangioblastoma: identification of Pro157Leu mutation in the VHL gene	Nippon Medical School, Kawasaki- shi, Japan	2 Subjects	Japanese	Case series	isolated hydrocephalus	retinal angioma, cerebellar, hemangioblast omas, pancreatic cysts	Obstructive	TES	Direct sequenci ng, restriction enzyme analysis	-	3p25.3 (VHL)
Kinsler et al., 2013 [248]	Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS	Great Ormond Street Hospital for Children, London, UK	5 Subjects, Controls used	-	Case series	arachnoid cysts, syringomyelia, tumors (including astrocytoma, choroid plexus papilloma, ependymoma, and pineal germinoma), Dandy– Walker, and Chiari malformation	widespread melanocytic nevi	Communicating, Obstructing	TGS, cytogenetics	aCGH, direct sequenci ng	Non- mendelian inheritance	1p13.2 (c.181C>A, p.Q61K NRAS mutations)
Kusakab e et al., 2018 [249]	Combined morphological, immunohistochemical and genetic analyses of medulloepithelioma in the posterior cranial fossa	Ehime University School of Medicine, Toon, Japan	1 Subject	-	Case study	Medulloepitheli oma	_	Obstructive	Cytogenetics	FISH	-	No C19MC mutations
Pastorin o et al., 2009 [250]	Identification of a SUFU germline mutation in a family with Gorlin syndrome	Università degli Studi di Genova, Genova, Italy	1 Subject, 1 Control	Caucasia n	Case study	spina bifida	pits in hands and soles, coarse facies, strabismus, cleft lip and palate, bifid ribs	Obstructive	TGS	MPLA, direct sequenci ng	AD	10q24.32 (c.1022 + 1G>A SUFU germ line splicing mutation)
Reardon et al., 2001 [251]	A novel germline mutation of the PTEN gene in a patient with macrocephaly, ventricular dilatation, and features of VATER association	Our Lady's Hospital for Sick Children, Crumlin, Dublin 12, Ireland	1 Subject, 2 Parents	-	Case study	macrocephaly	hypoplasia of the thumbs bilaterally with radial deviation of the hands, 13 pairs of ribs	Communicating	Cytogenetics, TGS	Karyotypi ng	AD	10q23.31 PTEN
Reichert et al., 2015 [252]	Diagnosis of 9q22.3 microdeletion syndrome in utero following identification of craniosynostosis, overgrowth, and skeletal anomalies	Children's Hospital of Philadelphi a, Philadelphi a, Pennsylvani a	1 Subject, 2 Parents	-	Case study	metopic craniosynostos is, intellectual disability, trigonocephaly	macrosomia, hepatomegaly, nephromegaly, and anomalous vertebrae	Communicating	Cytogenetics	Karyotypi ng, SNP, FISH	De novo	9q22.32 (PTCH1) and 9q22.32 (FANCC) genes 9q22.3
Shimket s et al., 1996 [253]	Molecular analysis of chromosome 9q deletions in two Gorlin syndrome patients	Yale University School of Medicine,	2 Subjects, 4 Parents	African American ,	Case series	macrocephalus , agenesis of the corpus callosum	bilateral inguinal hernias, bilateral	Communicating	Cytogenetics, genotyping,	G- banding, restriction	AD	chromosome 9q22 deletion and 9q22-q3l

				-	-							
		New		Caucasia			conductive			enzyme		
		Haven, CT		n			hearing loss,			analysis		
		06520-					strabismus,					
		8005, USA					and ectopic					
							eruption of the					
							upper central					
							incisors,					
							multiple basal					
							cell					
							carcinomas,					
							medulloblasto					
							mas, ovarian					
							fibromas					
		Service										
		d'anatomie										
		et cytologie										
		pathologiqu										
	Severe hydrocephalus caused	es, Brest,								aCGH,		
Uguen	by diffuse leptomeningeal and	F-29220				leptomeningeal				FISH,		1p13.2
et al.,	neurocutaneous melanocytosis	France;	2	-	Case	pigmentation,	melanocytic	Obstructive	Cytogenetics,	pyrosequ	-	(NRAS)
2015	of antenatal onset: a clinical,	Université	Subjects		series	Dandy walker	nevi	0.0011.0011.0	ŤGS	encing,		(INKAS)
[254]	pathologic, and molecular study	Européenn				malformation				NGS		
	of 2 cases	e de										
		Bretagne,										
		29238										
		France										
		TIANCE										

Table 12. Abbreviations include the following: Autosomal Dominant (AD). Fluorescence In Situ Hybridization (FISH). Multiplex ligation dependent probe amplification (MLPA). Single nucleotide polymorphisms (SNP). Targeted genome sequencing (TGS).

Table 13: WNT signaling

	/NT signaling	Author	C #	A	Study	CNS	Non-CNS	Type of	Genetic	Genetic	lu hanitan aa	Genetic
Citation	Title	Affiliation	Case #	Ancestry	Design	Phenotype	Phenotype	Hydrocephalus	Methodology	Analysis	Inheritance	Finding
Doherty et al., 2010 [255]	Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis)	University of Washington, Seattle Children's Hospital, USA	26 Subjects, 210 Controls	USA, European, Asian, African, Native American, Italy, the Netherlands, Germany, UK, and Turkey	Case series	intellectual impairment, hypotonia, ataxia, cerebellar vermis hypoplasia, encephalocele	congestive heart failure, hepatic fibrosis, coloboma, retinal disease, renal disease, polydactyly	Communicating	Genotyping, TGS	Microsate llite marker assay, SNP	AR	4p15.32 (CC2D2A)
Drielsma et al., 2012 [256]	Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus	Institute of Interdisciplin ary Research – IRIBHM, Université Libre de Bruxelles, Brussels, Belgium	8 Subjects, 4 Parents, 721 Controls	Jewish Ashkenazi, Palestinian,	Case series	Seizures, parietal polymicrogyria	hypertelorism, lung lymphangiectasi as	Communicating	Cytogenetics, genotyping, TGS	Karyotypi ng, MLPA, homozyg osity mapping, sanger sequenci ng	AR	14q32.11- q32.12 (CCDC88C)
Ekici et al., 2010 [257]	Disturbed Wnt Signalling due to a Mutation in CCDC88C Causes an Autosomal Recessive Non- Syndromic Hydrocephalus with Medial Diverticulum	University of Regensburg, Regensburg, Germany	58 subjects, 224 controls	Algeria	Case series	mild psychomotor delay	-	-	Genotyping, TGS	Linkage analysis, homozyg osity mapping, cycle sequenci ng	AR	14q32.11- q32.12 (CCDC88C)
Ruggeri et al., 2018 [258]	Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus	Seattle Children's Research Institute, Seattle, Washington	2 Subjects	-	Case series	intellectual delay and infantile onset seizures	varying degrees of motor delay	-	WES	Variant analysis, trio-based exome sequenci ng, sanger sequenci ng	AR	14q32.11- q32.12 (CCDC88C)
Wallis et al., 2018 [259]	Surprisingly good outcome in antenatal diagnosis of severe hydrocephalus related to CCDC88C deficiency	Austin Health, Heidelberg, Victoria, Australia	5 Subjects	Moroccan, Saudi	Case series	isolated hydrocephalus	Developmental delay	Obstructive	TGS	Massively parallel sequenci ng	AR	14q32.11- q32.12 (CCDC88C)

Table 13. Abbreviations include the following: Autosomal Recessive (AR). Multiplex ligation dependent probe amplification (MLPA). Single nucleotide polymorphisms (SNP). Targeted genome sequencing (TGS). Whole exome sequencing (WES)

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodolog y	Genetic Analysis	Inheritance	Genetic Finding
Chen et al., 2020 [260]	Prenatal diagnosis and molecular cytogenetic characterization of a chromosome 1q42.3-q44 deletion in a fetus associated with ventriculomegaly on prenatal ultrasound	Mackay Memorial Hospital, Taipei, Taiwan	1 Subject, 2 Parents	_	Case study	anomalies of corpus callosum, microcephaly	hypertelorism, large low-set ears, micrognathia, a broad nose, arched eyebrows, prominent forehead and flat nasal bridge	-	Cytogenetics	aCGH, FISH, polymorphi c DNA marker analysis	Paternal	1q42.3- q44 deletion (including 1q43 (RGS7), 1q43 (FH), 1q43 (CEP170) , 1q43-44 (AKT3), 1q44 (ZBTB18 and 1q44 (HNRNP U))
Diets et al., 2019 [261]	A recurrent de novo missense pathogenic variant in SMARCB1 causes severe intellectual disability and choroid plexus hyperplasia with resultant hydrocephalus	Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands	4 Subjects	-	Case series	Choroid plexus hyperplasia w/ papilloma, truncal hypotonia, intellectual disability	visual impairment, myopia, sleep apnea, joint hypermobility, renal and cardiac anomalies	-	WES	Trio-based exome sequencing	De novo	22q11.23 (SMARC B1)
Hale et al., 2021 [262]	Multi-omic analysis elucidates the genetic basis of hydrocephalus	Vanderbilt University School of Medicial Scientist Training Program, Nashville, TN	287 Subjects , 18,740 Controls	European	Case series	various neurological phenotypes	-	Variable	Gene expression	PrediXcan analysis	Variable	1q24.1 (MAEL)
Hishimur a et al., 2016 [263]	Genetic and prenatal findings in two Japanese patients with Schinzel- Giedion syndrome	Tenshi Hospital N-12, E-3 Sapporo, Japan	2 Subjects	Japanese	Case series	Isolated Hydrocephalus	overlapping fingers, hydronephrosis. high, prominent forehead, hypertelorism, and depressed nasal root	-	TES, cytogenetics	G-banding	AD	18q12.3 (SETBP1)
Mattioli et al., 2019 [264]	Clinical and functional characterization of recurrent missense variants implicated in THOC6-related intellectual disability	Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch- Graffenstaden, France	2 Subjects , controls used	European	Case series	Intellectual disability, multiple brain abnormalities	facial dysmorphism, a cleft palate, micrognathia, choanal atresia, congenital heart defect, micropenis	Communicating	TGS, cytogenetics	Karyotypin g, aCGH, SNP	AR	16p13.3 (THOC6 gene- Trp100Ar g, Val234Le u, Gly275As p)
Mee et al., 2005 [265]	Hydrolethalus syndrome is caused by a missense mutation in a novel gene HYLS1	David Geffen School of Medicine, University of California at	24 subjects , 40 Controls	Finland	Case series	absent midline structures of the brain	micrognathia, polydactyly, defective lobation of the lungs, anomalies of the respiratory	Communicating	Genotyping, TGS	Microsatelli te marker analysis, SNP, haplotype	AR	11q24.2 (HYLS1 gene)

		Los Angeles, Los Angeles, CA, USA					tract, small chin and anomalous nose			analysis, two-point linkage analysis		
Negishi et al., 2015 [266]	Truncating mutation in NFIA causes brain malformation and urinary tract defects	Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan	1 Subject, Control databas e used	-	Case study	ventricular enlargement, callosal agenesis, urinary tract defects, mildly dysmorphic facial features	urinary tract defects	Communicating	WES	Variant analysis, sanger sequencing	De novo	1p31.3 (de novo truncating mutation (c.1094de IC; p.Pro365 Hisfs*32) in the NFIA gene)
Nyboe et al., 2015 [267]	Familial craniosynostosis associated with a microdeletion involving the NFIA gene	Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark	4 Subjects	-	Case series	hypoplasia of the corpus callosum, craniosynostosis , lambdoid synostosis	dysmorphic features, renal defects	Obstructive	Cytogenetics	aCGH	De novo	1p31.3 (NFIA gene)
Shtaya et al., 2019 [268]	Leukoencephalopathy, Intracranial Calcifications, Cysts, and SNORD118 Mutation (Labrune Syndrome) with Obstructive Hydrocephalus	Neurosciences Research Centre, St. George's, University of London, United Kingdom; Atkinson Morley Neurosurgery Centre, St. George's University Hospital NHS Foundation Trust, London, United Kingdom	1 Subject	-	Case study	widespread intracranial calcifications, cysts, and leukoencephalo pathy	motor developmental delay	Obstructive	-	-	-	17p13.1 (SNORD 118
Verkerk et al., 2010 [269]	Unbalanced der(5)t(5;20) translocation associated with megalencephaly, perisylvian polymicrogyria, polydactyly and hydrocephalus	Erasmus Medical Center, Rotterdam, The Netherlands	2 Subjects	Dutch	Case series	perisylvian polymicrogyria, megalencephaly	ASD, hypothalamic hypothyroidism, kyphoscoliosis, pectus carinatum and rickets, vesicoureteral reflux, high broad forehead, large fontanel, hypertelorism with epicanthic folds, short, upturned nose with hypoplastic nostrils, down turned corners of the mouth with thick vermilion of the lips, high arched palate, small, pointed chin with a vertical groove, large low-set ears, barrel shaped chest with kyphoscoliosis,	-	Cytogenetics, WGS	Karyotypin g, MLPA, FISH, SNP, CNV	-	5q35.3 deletion and 20q13.3 trisomy

							postaxial polydactyly					
							of the 5th right toe					
Vetro et al., 2015 [270]	Loss-of-Function FANCL Mutations Associate with Severe Fanconi Anemia Overlapping the VACTERL Association	Biotechnology Research Laboratories, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy	3 Subjects , 2 Parents, 3 Controls	Morocco, Dutch	Case series	aqueductal stenosis, cerebellar hypoplasia	bilateral radial and thumbs aplasia, hypoplasia of the left shoulder girdle, bilateral club feet, micrognathia, single and ectopic kidney, absent uterus, micropenis, hypoplastic lungs with abnormal lobation, Tetralogy of Fallot, ventricular septal defect and patent ductus arteriosus, esophageal atresia with tracheoesophageal fistula, anal atresia and rectovaginal fistula	-	WES	Sanger sequencing	AR	2p16.1 (FANCL truncating mutation)
Zechi- Ceide et al., 2007 [271]	Hydrocephalus and moderate mental retardation in a boy with Van der Woude phenotype and IRF6 gene mutation	Hospital de Reabilitação de Anomalias Craniofaciais Department of Biological Sciences, Universidade Estadual Paulista, Bauru Human Genome Center and Department of Genetics and Evolutionary Biology, Institute of Biosciences, USP, São Paulo, SP, Brazil	1 Subject, 2 Parents, Controls used	Finnish	Case study	callosal hypoplasia, intellectual delay	lip pits, distinct craniofacial dysmorphism with cleft lip and palate	-	TES	Segregatio n analysis, direct sequencing	AD w/ variable expressivity	1q32.2 (IRF6)

Table 14. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Recessive (AR). Copy number variant (CNV). Fluorescence In Situ Hybridization (FISH). Multiplex ligation dependent probe amplification (MLPA). Single nucleotide polymorphisms (SNP). Targeted genome sequencing (TGS). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 15: Ion Transport and Regulation

Table 15: Ion	Transport and Regulation								a			
Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritan ce	Genetic Finding
Castañey ra-Ruiz1 et al., 2013 [272]	Aquaporin-4 expression in the cerebrospinal fluid in congenital human hydrocephalus	Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Canary Island, Spain	13 Subjects, 4 Controls	-	Case series	isolated hydrocephalus	-	Communicating, Obstructive	Gene expression	Western blot, ELISA assay	-	18q11.2 (AQP4)
Kvarnung et al., 2016 [273]	Mutations in FLVCR2 associated with Fowler syndrome and survival beyond infancy	Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden	2 Subjects	Somalian	Case series	Intellectual disability, glomerular vasculopathy in the central nervous system, hypokinesia/akines ia	arthrogryph osis	-	TES	Variant analysis, sanger sequencin g	AR	14q24.3 (FLVCR2)
Lalonde et al., 2010 [274]	Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next- generation exome sequencing	McGill University and Genome Quebec Innovation Centre, Montreal, Canada	2 Subjects	French Canadian	Case series	CNS microcalcifications and hyperplastic microvessels forming glomeruloid structures	arthrogrypo sis multiplex, webbing of joints, muscular atrophy	Obstructive	WES	Variant analysis, SNP	AR	14q24.3 (FLVCR2)
Martínez- Glez et al., 2010 [275]	Macrocephaly-capillary malformation: Analysis of 13 patients and review of the diagnostic criteria	Hospital Universitario La Paz, Madrid, Spain	13 Subjects	Spain	Case series	megalencephaly, Chiari I, Sylvius aqueduct stenosis, polymicrogyria and hypocampic nodular hypocampic, septum pellucidum bifida, hemimegaloencep haly, tonsillar herniation, polymicrogyria, subependymal cyst	both overgrowth/ asymmetry, capillary malformatio ns, skeletal abnormaliti es	Communicating	Cytogenetics, TGS, genotyping	G- banding, MLPA, SNP	-	17p13: ABR, YWHAE, SMYD4, TRPV3
Meyer et al., 2010 [276]	Mutations in FLVCR2 are associated with proliferative vasculopathy and hydranencephaly- hydrocephaly syndrome (Fowler syndrome)	Institute of Biomedical Research, University of Birmingham, Birmingham, UK	7 Subjects, 646 Controls	Pakistan	Case series	hydranencephaly, brain stem, basal ganglia, and spinal cord diffuse clastic ischemic lesions with calcifications	glomeruloid vasculopat hy of the retinal vessel, akinesia deformation sequence (FADS) with muscular neurogenic atrophy	Obstructive	Genotyping	SNP, microsatel lite marker assay	AR	14q24.3 (FLVCR2)
Özdemir et al., 2016 [277]	Neonatal Bartter syndrome with cholelithiasis and hydrocephalus: Rare association	Pamukkale University Faculty of Medicine, Denizli, Turkey	1 Subject	-	Case study	isolated hydrocephalus	renal abnormaliti es	Communicating	Cytogenetics	Karyotypin g	AR	-
Thomas et al., 2010 [278]	High-throughput sequencing of a 4.1 Mb linkage interval reveals FLVCR2 deletions and	Hôpital Necker- Enfants Malades, Paris, France	16 Subjects, 2 Controls	Turkish	Case series	brain angiogenesis, hydranencephaly	arthrogrypo sis/pterygia	Obstructive	TGS	Homozyg osity mapping, SNP, cycle	AR	14q24.3 (FLVCR2)

Table 15. Abbreviations include the following: Autosomal Recessive (AR). Single nucleotide polymorphisms (SNP). Targeted genome sequencing (TGS). Whole exome sequencing (WES).

Table 16: Normal Pressure Hydrocephalus.

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocepha Ius	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Findings
Kato et al., 2011 [280]	Segmental copy number loss of SFMBT1 gene in elderly individuals with ventriculomeg aly: a community- based study	Yamagata University Faculty of Medicine, Japan	8 Subjects, 10 Controls	Japanese	Case series	isolated hydrocephalus	-	Communicati ng	WGS, cytogenetics	CNV, aCGH	-	3p21.1 (12 kb deletion within intron 2 of SFMBT1)
Morimoto et al., 2019 [281]	Nonsense mutation in CFAP43 ca uses normal- pressure hydrocephalu s with ciliary abnormalities	Kagawa University, Takamatsu, Japan	5 Subjects, Controls used	Japanese	Case study	isolated hydrocephalus	chronic sinusitis, pneumonia	Communicati ng	WES	Sanger sequencing	Heterozygo us	10q25.1 (c.C1058934 68T in CFAP43)
Sato et al., 2016 [282]	A Segmental Copy Number Loss of the SFMBT1 Gene Is a Genetic Risk for Shunt- Responsive, Idiopathic Normal Pressure Hydrocephalu s (iNPH): A Case-Control Study	Yamagata University Faculty of Medicine, Yamagata, Japan	50 Subjects, 110 Controls	Japanese	Case- Control	isolated hydrocephalus	-	Communicati ng	TGS	CNV	De novo	3p21.1 (deletion in intron 2 of the SFMBT1)
Zhang et al., 2010 [283]	Genome-wide linkage scan maps ETINPH gene to chromosome 19q12-13.31	Center for Neurosciences, Texas Tech University Health Science Center, El Paso, TX, USA	26 Subjects	-	Case series	essential tremor	-	Communicati ng	Genotyping	SNP, linkage analysis	AD	ETINPH locus localized to chromosome 19q12–13.31

Table 16. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Dominant (AD). Copy number variant (CNV). Single nucleotide polymorphisms (SNP). Targeted genome sequencing (TGS). Whole exome sequencing (WES). Whole genome sequencing (WGS).

Table 17: Metabolism

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Finding
Abdulhag et al., 2015 [284]	Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy	Hadassah- Hebrew University Medical Center, Jerusalem, Israel	1 Subject, 60 Controls	Palestinian	Case study	hypotonia, cortical blindness	symmetrical left ventricular hypertrophy tricuspid regurge and pulmonary hypertension	-	WES	Variant analysis, sanger sequencing	Mitochondrial inheritance	19q13.12 (COX6B1)
Cizmeci et al., 2013 [285]	Multiloculated hydrocephalus of intrauterine-onset: a case report of an unexpected MTHFR A1298C positive test result	Fatih University Medical School, Ankara, Turkey	1 Subject	-	Case study	loculated hydrocephalus	-	Obstructive	-	-	-	1p36.22 (MTHFR A1298C homozygosity)
Schaaf et al., 2016 [286]	Desmosterolosis- phenotypic and molecular characterization of a third case and review of the literature	Baylor College of Medicine, Houston, Texas, USA	1 Subject, 1 Control, 2 Parents	-	Case study	macrocephaly, thickening of the tectum and massa intermedia, effaced gyral pattern, underopercularization, thin corpus callosum	arthrogryposis, disorder of cholesterol biosynthesis, bilateral fifth finger clinodactyly, mild cutaneous 2–4 toe syndactyly, and proximal placement of the great toes, and dysmorphic facial features	Obstructive	TGS	-	De novo	1p32.3 (compound heterozygote for c.281G>A (p.R94H) and c.1438G>A (p.E480K) mutations in DHCR24 gene)
Schlotawa et al., 2011 [287]	SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency	Georg August University Göttingen, Göttingen, Germany	7 Subjects, Controls used	USA, Turkey, Switzerland, Pakistan	Case series	intellectual disability, neurodegeneration	Skeletal changes, cardiac involvement, corneal clouding, organomegaly	Communicating	TGS	-	AR	3p26.1 (SUMF1)

 sulfatase deficiency
 Image: Sulfatase deficiency
 I

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Finding
Alazami et al., 2015 [288]	Accelerating novel candidate gene discovery in neurogenetic disorders via whole- exome sequencing of prescreened multiplex consanguineous families	King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia	143 Families	-	Case series	global developmental delay, autism, epilepsy, primary microcephaly, ataxia, and neurodegeneration (<i>among many</i> others)	Wide Variability	Variable	WES	Autozygosity mapping, sanger sequencing	Variable	5q35.1 (SPDL1), 2q21.1 (TUBA3E), 15q15.1 (INO80), 1q42.3 (NID1), 1q25.3 (TSEN15), 1p33 (DMBX1), 2p16.1 (CLHC1), 15q26.1 (WDR93), 7q31.2 (ST7), 20q13.12 (MATN4), 4q26 (SEC24D), 5q31.3 (PCDHB4), 3p21.31 (PTPN23), 7q22.1 (TAF6), 4q24 (TBCK), 14q13.2 (FAM177A1), 4q27 (KIAA1109), 16q22.1 (MTSS1L), 3p22.2 (XIRP1), 1q41 (KCTD3), 21q22.12- q22.13 (CHAF1B), 1q42.2 (ARV1), 14q24.3 (ISCA2), 17q23.1 (PTRH2), 17p13.3 (GEMIN4), 17p13.3 (DPH1), 12q15 (NUP107), 17q21.33 (TMEM92), 5q22.1-q22.2 (EPB41L4A),

											and 9q22.31 (FAM120AOS)
B56ō-related protein phosphatase 2A dysfunction identified in patients with intellectual disability	Haukeland University Hospital, Bergen, Norway	16 Subjects, Controls used	Dutch, English, Israeli, Norwegian	Case series	Intellectual disability, seizures, callosal agenesis, hypotonia	frontal bossing, mild hypertelorism, and down slanting palpebral fissures	Communicating	Diagnostic exome sequencing, cytogenetics	Sanger sequencing, NGS, aCGH, SNP	De novo	6p21.1 (c.C157T, p.P53S; c.G592A, p.E198K; c.G598A, p.E200K; c.C602G, p.P201R; c.T619A, p.W207R in PPP2R5D); 19q13.41 (c.C536T, p.P179L; c.C544T, p.R182W; c.G773A, p.R528H in PPP2R1A)
Cole-Carpenter syndrome-1 with a de novo heterozygous deletion in the P4HB gene in a Chinese girl: A case report	West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China	1 Subject, 2 Parents, 1 Control	Chinese	Case subject	craniosynostosis	plump anterior fontanel, growth retardation, osteopenia, and distinctive facial features, ocular proptosis, frontal bossing	-	WES	CNV, FQ- PCR	De novo	17q25.3 (P4HB)
Cole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HB	Shriners Hospital for Children, Montréal, QC H3G 1A6, Canada	2 Subjects, Controls used	-	Case series	craniosynostosis	bone fractures, ocular proptosis, and distinctive facial features	Communicating	WES	Variant analysis, sanger sequencing	<i>De novo</i> , Mosaic	17q25.3 (P4HB)
CRB2 mutations produce a phenotype resembling congenital nephrosis, Finnish type, with cerebral ventriculomegaly and raised alpha- fetoprotein	University of California, San Francisco, San Francisco, CA 94143- 2711, USA	6 Subjects, 6 Parents	Ashkenazi Jewish	Case series	gray matter heterotopias	severe, congenital renal involvement; congenital nephrotic syndrome	-	WES, cytogenetics	aCGH, Karyotyping, variant analysis, sanger sequencing	AR	9q33.3 (CRB2)
Genetic and preimplantation diagnosis of cystic kidney disease with ventriculomegaly	Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, 030013, PR China	1 Subject, 2 Parents	Chinese	Case study	isolated hydrocephalus	echogenic kidneys and bowel, small fetal stomach bubble	-	WES	Variant analysis, sanger sequencing	-	9q33.3 (CRB2)
	protein phosphatase 2A dysfunction identified in patients with intellectual disability	protein phosphatase 2A dysfunction identified in patients with intellectual disabilityHaukeland University Hospital, Bergen, NorwayCole-Carpenter syndrome-1 with a de novo heterozygous deletion in the P4HB gene in a Chinese girl: A case reportWest China Second University Hospital, Sichuan, University, Chengdu, Sichuan, ChinaCole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HBWest China Second University, Chengdu, Sichuan, ChinaCole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HBShriners Hospital for Children, Montréal, QC H3G 1A6, CanadaCRB2 mutations produce a phenotype resembling congenital nephrosis, Finnish type, with cerebral fetoproteinUniversity of California, San Francisco, San Francisco, San Francisco, San Francisco, San Francisco, Shanxi and Women Health Center of Shanxi, and Women Health Center of Shanxi, out on the shanxi, Taiyuan, Shanxi, Out on the shanxi, Taiyuan, Shanxi, Out on the shanxi, Taiyuan, Shanxi, Taiyuan, Shanxi, Out on the shanxi, Taiyuan, Shanxi, Taiyuan, Shanxi, Out on the shanxi, Taiyuan, Sh	protein phosphatase 2A dysfunction identified in patients with intellectual disabilityHaukeland University Hospital, Bergen, Norway16 Subjects, Controls usedCole-Carpenter syndrome-1 with a de novo heterozygous deletion in the P4HB gene in a Chinese girl: A case reportWest China Second University Hospital, Sichuan University, Chengdu, Sichuan, China1 Subject, 2 Parents, 1 ControlCole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HBShriners Hospital for California, San Francisco, San Francisco, San Francisco, San Francisco, CA 94143- 2711, USA1 Subject, 2 Subjects, Controls usedCRB2 mutations produce a hoephrosis, Finnish type, with cerebral ventriculomegaly and raised alpha- fetoproteinUniversity of Children, San Francisco, San Francisco, San Francisco, San Francisco, San Francisco, San Francisco, San Francisco, Sanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, 	protein 	protein phosphatase 2A dysfunction identified in patients with intellectual disabilityHaukeland University Hospital, Bergen, Norway16 Subjects, Controls usedDutch, English, Israeli, NorwegianCase seriesCole-Carpenter syndrome-1 with a de novo heterozygous deletion in the P4HB gene in a Chinese girt: A case reportWest China Second University Hospital, Sichuan University, Chengdu, Sichuan, China1 Subject, 2 Parents, 1 ControlChineseCase subject, 2 Parents, 1 ControlCole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HBWest China Sichuan, China1 Subject, 2 Parents, 1 ControlChineseCase subjectCRB2 mutations produce a phenotype resembling congenital reportUniversity of California, San Francisco, CA 94143- 2711, USA2 Subjects, 6 ParentsAshkenazi JewishCase seriesGenetic and preimplantation diagnosis of cystic kidney disease with ventriculomegalyChildren's Hospital of Shanxi, Taiyuan, Shanxi, O30013, PR1 Subject, 2 ParentsChineseCase series	protein phosphatase 2A dystunction identified in patients with intellectual disabilityHaukeland University Apstunction identified in patients Bergen, Norway16 Subjects, Controis usedDutch, English, Israeli, NorwegianCase seriesIntellectual disability. seizures, callosal agenesis, hypotoniaCole-Carpenter syndrome-1 with a de novo heterozygous deletion in the PAHB gene in a Chinese girl: A case reportWest China Second University Hospital, Sichuan, China1 Subject, 2 Parents, 1 ControlChinese Subject, 2 Parents, 1 ControlCase subject, 2 Parents, 1 ControlCole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HB controlaWest China Schuan, China1 Subject, 2 Parents, 1 ControlChinese subject, 2 ControlCase subject, 2 Case Subjects, ControlacraniosynostosisCole-Carpenter syndrome is caused by a heterozygous missense mutation in P4HB ControlaSan AG, California, San Francisco, CA 94143- 2711, USA2 Subjects, Controls Subjects, Controlscase seriesCRE2 mutations produce a phenotype resembling and raised alpha- 2711, USAUniversity of California, San Francisco, CA 94143- 2711, USAAshkenazi Ashanxi, 2 ParentsCase seriescase seriesGenetic and preimplantation diagnosis of cystic kidney disease with ventriculomegaly and raised alpha- 2711, USA1 Subject, 2 ParentsChinese Stanxi, 2 ParentsCase studyGenetic	Bobo-felated protein phosphatase 2A dysfunction identified in patients with intellectual disabilityHaukeland University disability16 Subjects, Bergen, NorwayDutch, Subjects, usedDutch, English, NorwegianCase case seriesIntellectual disability, seizures, callosal agenesis, hypotoniamid own slanting palpebral fissuresCole-Carpenter syndrome-1 with a deteorygous deteinin the PHB gene in a ChineseWest China Second University Hospital, interversity fortanel, China1 Subject, 2 Parents, 1 ControlChineseCase seriescranicsynostosisplump anterior fortanel, growth retardation, osteopenia, and distinctive facial features, ocular proptosis, frontal call features, ocular proptosis, frontal call features, ocular proptosis, frontal features, ocular proptosis, frontal features, ocular proptosis, and distinctive facial features, ocular proptosis, and distinctive facial features, case seriesplump anterior fortanel, case subject, cranicsynostosisplump anterior fortanel, growth retardation, osteopenia, and distinctive facial features ocular proptosis, and distinctive facial featuresCole-Carpenter syndrome in P4HBUniversity of CA 94143- 2711, USA2 Controls Subject, San CA 94143-2 6 ParentsCase seriescase seriesgray matter heterotopiasbone fractures, coupenital renal involvement: congenital read involvement: congenital read alpha- topproteincase seriesgray matter heterot	Bodo-Heilded protein dystincticular identified in patients with intellectual disabilityHaukeland University denome beterozyous denome Colle-Carpenter syndrome in a Chinese in P4HB gene in a Chinese in P4HBHaukeland University of ColleCargent Sichuan, Chinas16 Subjects, Derents, 1 Subject, 1 Subjects, ChineseDutch, Engish, israid SeriesCase seriesIntellectual disability, seizures, callosal agenesis, hypotoniamild mild mad down slanting palesbrail fissuresmild mild mad down slanting palesbrail fissuresCommunicating ommunicatingCole-Carpenter syndrome in a Chinese in P4HBWest China Sichuan, Chinas1 Subject, 1 ControlChinese in ChineseCase subjectcraniosynostosis craniosynostosisplump anterior fontanel, growth retardation, osteopenia, and distinctive facial features, ocular proptosis, and distinctive facial features, collercase seriescraniosynostosisbit distinctive facial features, ocular proptosis, and distinctive facial featurescommunicating congenital involvement; congenital involvement; congenital involvement; congenital readiagentmild municating disting seriesmild municating disting francisco, spital of shanxi, and algenda1 Subjects, seriesCase seriesand algenda craniosynostosismild municating disting francisco, congenital involvement; congenital involvement; congenital involvement; congenital involvement; congenital involvement; congenital involvement	Bootherstand protein protein (dentrified in partial withing of partial dystancial dystancial dystancial dentrified in partial withing of partial disabilityHaukeland Haukeland University dystancial Bergen, Norway16 English, Subjects, Controls usedDutch, English, Israeli, Israeli, NorwegianCase caseIntellectual disability, seizures, carse seriesIntellectual disability, seizures, seriesMid mid mid second palpebrain fissuresDutch, mid second sequencing, optionalDutch, israeli, second sequencing, carseDutch, second sequencing, carse seriesCase carse carse carseIntellectual disability, seizures, series seriesMid mid mid mid mid second finance, reportDiamostic exome sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlsDiamostic sequencing, controlDiamostic sequencing, controlsDiamostic sequencing, controlDiamostic sequencing, controlDiamostic sequencing, controlCoheese sy	Color-training protein protein dependenciesHaukeland Hospital, Hospit	Decorrelation prophotonics dysfunction thatfield practicities dysfunction with intellectual disabilityDecorrelation subjects disabilityDecorrelation subjects disabilityDecorrelation controls subjects disabilityDecorrelation controls controls subjects disabilityDecorrelation controls controlsDecorrelation controls controlsDecorrelation control controlsDecorrelation controlsDecorrelation controlsDecorrelation controlsDecorrelation controlsDecorrelation controlsDecorrelation controlsDecorrelation controlsDecorrelation controlsDecorrelation controlsDecorrelation controlsDecorrelation control controlsDecorrelation controlsDecorrelation control control control controlsDecore controlsDecore controlsDecore control control control controlDecore control control controlDecore control control control controlDecore control control control control controlDecore control

Table 18. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Recessive (AR). Copy number variant (CNV). Fluorescence In Situ Hybridization (FISH). Fluorogenic quantitative-polymerase chain reaction (FQ-PCR). Next generation sequencing (NGS). Single nucleotide polymorphisms (SNP). Whole exome sequencing (WES).

Table 19: Lipid Structure and Regulation

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Finding
Meszarosova et al., 2020 [294]	Two novel pathogenic variants in KIAA1109 causing Alkuraya- Kučinskas syndrome in two Czech Roma brothers	Second Faculty of Medicine Charles University and University Hospital Motol, Prague	2 Subjects	Roma	Case series	hypotonia, cerebellar malformation, lissencephaly, callosum agenesis	facial dysmorphic features, dysplastic ears, bilateral cataracts, finger contractures on both hands	-	WES	Variant analysis	AR	4q27 (KIAA1109)
Shiihara et al., 2000 [295]	Communicating Hydrocephalus in a Patient with Gaucher's Disease Type 3	Institute of Neurological Sciences, Faculty of Medicine, Tottori University, Tottori, Japan	1 Subject, Controls used	Japanese	Case study	lsolated hydrocephalus	splenomegaly, thrombocytopenia, bilateral papilledema, motor deficits	Communicating	TGS	Restriction enzyme analysis	-	1q22 (D409H mutation in GBA)

 Table 19. Abbreviations include the following: Autosomal Recessive (AR). Targeted genome sequencing (TGS). Whole exome sequencing (WES).

Table 20: Genes of Unknown Function

Citation	Title	Author Affiliation	Case #	Ancestry	Study Design	CNS Phenotype	Non-CNS Phenotype	Type of Hydrocephalus	Genetic Methodology	Genetic Analysis	Inheritance	Genetic Finding
Basel- Vanagait e et al., 2010 [296]	Familial hydrocephalus with normal cognition and distinctive radiological features	Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel	6 Subjects	-	Case series	Mega cisterna magna, midline cysts	bilateral cleft lip and palate	Obstructive	TGS, cytogenetics	X- inactivatio n analysis, karyotypi ng	-	-
Bernstoc k et al., 2020 [297]	Complex Management of Hydrocephalus Secondary to Choroid Plexus Hyperplasia	Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts	1 Subject	-	Case study	developme ntal delay, villous hyperplasia of choroid	hydrocele, abdominal distension, short stature, developmental delay, low-set ears, hypertelorism, deep-set eyes, down slanting palpebral fissure, and a bulbous nose	Communicating	Cytogenetics	aCGH	De novo	tetraploidy of chromoso me 9
Boxill et al., 2018 [298]	Choroid plexus hyperplasia and chromosome 9p gains	Viborg Regional Hospital, Viborg, Denmark	4 Subjects	-	Case series	Choroid plexus hyperplasia	enophthalmia, hypertelorism, downslanting palpebral fissures, broad nasal bridge, bulbous nose, downturned corners of the mouth, anomalous ears, clinodactyly, single fifth finger crease, hydrocele	Communicating	Cytogenetics	Q- banding, G- banding FISH, a- CGH	De novo	trisomy 9p
Brock et al., 2012 [299]	Mosaic tetrasomy 5p resulting from an isochromosome 5p marker chromosome: case report and review of literature	Dalhousie University, Halifax, Nova Scotia, Canada	1 Subject	Irish	Case study	mild scoliosis, refractory siezures, global delay, hypotonia	supernumerary nipples, transverse left palmar crease, square fingertips, bilateral 5th finger clinodactyly and shortened 4th and 5th metacarpals, overlapping toes bilaterally, skin pigmentary changes	Communicating	Cytogenetics	G- banding, FISH w/ WCP, aCGH	De novo	tetrasomy 5p
Brunetti- Pierri et al., 2008 [300]	Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and	Baylor College of Medicine, Houston, TX, USA	36 Subjects, 50 Controls	-	Case series	attention deficit hyperactivit y disorder autism, anxiety/dep	frontal bossing, deep-set eyes and bulbous nose, hypertelorism	Communicating	Cytogenetics	aCGH, FISH	AR	1q21.2 microdeleti on/microdu plication

	developmental and					raccion					1	
	developmental and behavioral abnormalities					ression, antisocial behavior, aggression, hallucinatio ns						
Cai et al., 2021 [301]	Classifying and Evaluating Fetuses with Ventriculomegaly in Genetic Etiologic Studies	Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China	293 Subjects	-	Case series	isolated hydrocepha lus	many - large study: Cardiac, renal, facial agenesis, orthopaedic malformations, vascular malformations	-	WGS	SNP	<i>De-novo</i> , Maternal	Incidence of varying chromoso mal abnormaliti es is higher in patients with non- isolated ventriculo megaly
Cambos u et al., 2013 [302]	Partial trisomy of the long arm of chromosome 1: prenatal diagnosis, clinical evaluation and cytogenetic findings. Case report and review of the literature	University of Sassari, Sassari, Italy	1 Subject	-	Case study	macroceph aly with dolichocep haly	prominent foreheads, modest microphthalmia, flat nasal bridge, microstomia, retrognathia, small, dysmorphic ears with small lobe and short neck, and hypoplastic left kidney	-	Cytogenetics	Q- banding, FISH	-	Partial 1q trisomy
Capra et al., 2009 [303]	Craniosynostosis, hydrocephalus, Chiari I malformation and radioulnar synostosis: probably a new syndrome	UO Neurochirurgia, Istituto G. Gaslini, Genova, Italy	2 Subjects	Caucasian, European	Case series	sagittal craniosyno stosis, chiari I malformatio n,	blepharophimosi s, small low-set ears, hypoplastic philtrum, radioulnar synostosis, kidney malformation, and hypogenitalism	Obstructive	Cytogenetics, TGS	Karyotypi ng, aCGH, MLPA	-	-
Castro- Gago et al., 2001 [304]	Congenital hydranencephalic- hydrocephalic syndrome with proliferative vasculopathy: a possible relation with mitochondrial dysfunction	Hospital Clínico Universitario, Santiago de Compostela, Spain	1 Subject	-	Case study	severe encephalo malacia	muscle body inclusions	-	-	-	-	-
Chen et al., 2011 [305]	Prenatal diagnosis of a de novo 17p13.1 microduplication in a fetus with ventriculomegaly and lissencephaly	Mackay Memorial Hospital, Taipei, Taiwan	1 Subject	-	Case study	mental and motor retardation, hypotonia	skeletal anomalies, clinodactyly of the fingers, hypertrichosis, congenital heart defects, craniofacial abnormalities such as microcephaly, down-slanting	-	Cytogenetics	aCGH	De novo	17p13.1 microdupli cation

		-				r						
							palpebral fissures, ptosis, hypertelorism, low-set malformed ears, smooth philtrum, micrognathia, high-arched palate, and a short neck					
Chen et al., 2013 [306]	VACTERL association with hydrocephalus in a fetus conceived by in vitro fertilization and embryo transfer	Mackay Memorial Hospital, Taipei, Taiwan	1 Subject	-	Case study	isolated hydrocepha lus	bilateral arthrogryposis, right radial aplasia, a right club hand, aplasia of the right thumb, hypoplasia of the left thumb, scoliosis, and an imperforate anus	-	Cytogenetics, TGS	aCGH	-	-
Descipio et al., 2005 [307]	Subtelomeric deletions of chromosome 6p: molecular and cytogenetic characterization of three new cases with phenotypic overlap with Ritscher-Schinzel (3C) syndrome	The Children's Hospital of Philadelphia, and The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA	6 Subjects, 12 Parents, Controls used	-	Case series	Dandy– Walker malformatio n intellectual disability	ptosis, posterior embryotoxon, optic nerve abnormalities, mild glaucoma, atrial septal defect, patent ductus arteriosus	Communicating, Obstructive	Cytogenetics, TGS	STS mapping, FISH, direct sequenci ng	-	-
Dubé et al., 2000 [308]	A new association of congenital hydrocephalus, albinism, megalocornea, and retinal coloboma in a syndromic child: a clinical and genetic study	McGill University, Montreal Children's Hospital, Montreal, Quebec, Canada	1 Subject	French- Canadian	Case study	global developme ntal delay, trigonoceph aly	oculocutaneous albinism, retinal coloboma, and megalocornea, prominent metopic suture, and cryptorchidism	-	Cytogenetics	FISH, karyotypi ng	-	-
Forcelini et al., 2006 [309]	Down syndrome with congenital hydrocephalus: case report	Rua Paissandu, Passo Fundo RS, Brazil.	1 Subject	-	Case study	isolated hydrocepha lus	upslanting)palpe bral fissures; flat nasal bridge; open mouth; protruding tongue; transverse palmar creases; poor Moro reflex; hyper flexibility; short stature; loose skin on nape of neck; flat facial profile; epicanthic folds; short broad hands; clinodactyly of fifth finger; gap between the first and second toes	-	Cytogenetics	-	-	Chr. 21 Trisomy

							-					
Garavelli et al., 2007 [310]	Megalencephaly and perisylvian polymicrogyria with postaxial polydactyly and hydrocephalus (MPPH): report of a new case	S. Maria Nuova Hospital, Reggio Emilia, Italy	1 Subject	-	Case study	Hypotonia, dysmorphic facial features, hypoplasia of corpus callosum	Polydactyly	-	Cytogenetics	Karyotypi ng, FISH, SNP	De novo	-
Inui et al., 2001 [311]	A new variant neuropathic type of Gaucher's disease characterized by hydrocephalus, corneal opacities, deformed toes, and fibrous thickening of spleen and liver capsules	Osaka University, Osaka, Japan	1 Subject	Japanese	Case study	oculomotor apraxia, rigidity, spasticity, and hyperactive deep tendon reflexes	corneal opacities, deformed toes, gastroesophage al reflux, and fibrous thickening of splenic and hepatic capsules	Communicating	WES	Cycle sequenci ng	De novo	1342G to C (D409H) homozygo us mutation
Karimine jad et al., 2012 [312]	Megalencephaly- polymicrogyria- polydactyly- hydrocephalus syndrome: a case report	Kariminejad- Najmabadi Pathology and Genetics Center, Tehran, Iran	1 Subject	-	Case study	megalocep haly, polymicrog yria, Hypotonia	Polydactyly, developmental delay, bossing forehead, long philtrum, strabismus, and mild hypertelorism	-	Cytogenetics	aCGH	-	-
Lemire et al., 2000 [313]	Chudley-McCullough syndrome: bilateral sensorineural deafness, hydrocephalus, and other structural brain abnormalities	Royal University Hospital and University of Saskatchewan, Saskatoon, Saskatchewan, Canada	2 Subjects	Canadian	Case series	callosal dysgenesis, gray matter heterotopia, cortical dysplasia, cerebellar dysgenesis, intellectual disability	bilateral sensorineural hearing loss, developmental delay	Obstructive	Cytogenetics, TGS	-	AR	-
Lowry et al., 2007 [314]	Absence of PITX2, BARX1, and FOXC1 mutations in De Hauwere syndrome (Axenfeld-Rieger anomaly, hydrocephaly, hearing loss): a 25-year follow up	Alberta Children's Hospital & University of Calgary, Calgary, Alberta, Canada	1 Subject	-	Case study	Isolated hydrocepha lus	Short stature, hyperlaxity of joints, hearing loss	Communicating	Cytogenetics, TGS	Karyotypi ng, FISH	AD	-
Matteucc i et al., 2006 [315]	Sensorineural deafness, hydrocephalus and structural brain abnormalities in two sisters: the Chudley- McCullough syndrome	Department of Neurosciences, University of Pisa, Pisa, Italy	2 Subjects	Italian	Case series	callosum agenesis, interhemisp heric cyst, cerebral and cerebellar abnormaliti es	sensorineural hearing loss, developmental delay	Communicating	TGS, Cytogenetics	G- banding, Q- banding	AR	-
Naritomi et al., 1988 [316]	16q21 is critical for 16q deletion syndrome	School of Medicine, University of the Ryukyus, Okinawa, Japan	1 Subject	-	Case study	hypotonia	bossed forehead, epicanthal folds, hypertelorism, a flat, broad nasal bridge, a short nose with a bulbous tip, and low-set posteriorly rotated, deformed ears,	-	Cytogenetics	G- banding	De novo	Chr. 16q deletion

		1	1		1				1	1		
							high-arched pallet, short neck, medial toe curvature					
Østerga ard et al., 2004 [317]	Brothers with Chudley- McCullough syndrome: sensorineural deafness, agenesis of the corpus callosum, and other structural brain abnormalities	The John F. Kennedy Institute, Gl. Landevej 7, DK- 2600 Glostrup, Denmark	2 Subjects	Pakistan	Case series	callosal agenesis, colpocepha ly	bilateral sensorineural deafness	Obstructive	TGS	-	AR	-
Remes et al., 1992 [318]	Fumarase deficiency: two siblings with enlarged cerebral ventricles and polyhydramnios in utero	University of Oulu, Finland	2 Subjects, 5 Family Members, Controls	-	Case series	hypotonia, seizures	aciduria, dystonic tetraplegia	Communicating	-	-	AR	-
Silan et al., 2003 [319]	A new mutation of the fukutin gene in a non- Japanese patient	Abant Izzet Baysal University Duzce Medical Faculty, Duzce, Turkey	1 Subject, 2 Parents, 1 Brother	Turkish	Case study	hypotonia, polymicrog yria in several cortical segments and severe cortical disorganiza tion	congenital muscular dystrophy, bilateral buphthalmus, proptosis, and cataracts	Communicating	TGS	Restrictio n enzyme analysis, direct sequenci ng	AR	9q31.2 (1bp insertion mutation in exon 5 of the fukutin gene)
Tohyam a et al., 2007 [320]	Megalencephaly and polymicrogyria with polydactyly syndrome	Kariminejad- Najmabadi Pathology and Genetics Center, Tehran, Iran	1 Subject	Japanese	Case study	megalence phaly, hypotonia, polymicrog yria, and thin corpus callosum	bilateral postaxial polydactyly of upper and lower limbs, developmental delay	Communicating	Cytogenetics	FISH	-	-
Toren et al., 2020 [321]	Chromosomal Microarray Evaluation of Fetal Ventriculomegaly	Sheba Medical Center, Tel Hashomer, Israel	164 Subjects, 209 Controls	-	Case series	Severity and anatomical variability in ventriculom egaly	-	-	Cytogenetics	Karyotypi ng, chromoso mal microarra y	<i>De Novo</i> , Paternal	Incidence of varying chromoso mal abnormaliti es is higher in patients with non- isolated ventriculo megaly and bilateral ventriculo megaly
Vincent et al., 1994 [322]	A proposed new contiguous gene syndrome on 8q consists of Branchio-Oto-Renal (BOR) syndrome, Duane syndrome, a dominant form of hydrocephalus and trapeze aplasia; implications for the mapping of the BOR gene	Unité de Génétique Moléculaire Humaine (CNRS URA 1445), Institut Pasteur, Paris	1 Subject	-	Case study	isolated hydrocepha lus	trapeze aplasia	-	Cytogenetics	Linkage analysis	De novo	8q12.2- q21.2 deletion
Wadt et al., 2012 [323]	Fetal ventriculomegaly due to familial submicroscopic terminal 6q deletions	University Hospital of Copenhagen,	2 Subjects, 16 Family Members	-	Case series	hypotonia	oromotor difficulties, hypermobility, high, flat	Obstructive	Cytogenetics	Karyotypi ng, aCGH, MLPA	Variable expressivity	terminal deletion of chromoso me 6q

· · · · · · · · · · · · · · · · · · ·	·	D'ach sonitalat	. <u> </u>			, 	fersheed		r	. <u> </u>	T	,,
	1	Rigshospitalet, Denmark	1	1	1	'	forehead, bilateral ptoses,					
Walker et al., 1996 [324]	Prenatal diagnosis of ring chromosome 6 in a fetus with hydrocephalus	Children's Hospital Research Foundation, Cincinnati, Ohio, USA	1 Subject	-	Case study	microcepha ly, seizures	severe bilateral hearing loss, and global development delay	Obstructive	Cytogenetics	-	De novo	chromoso me 6/monoso my 6 mosaicism
Wang et al., 2020 [325]	Prenatal diagnosis of chromosomal aberrations by chromosomal microarray analysis in foetuses with ventriculomegaly	West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China	548 Subjects	-	Case series	agenesis/h ypoplasia of the corpus callosum, Dandy– Walker malformatio n, migration abnormality , and holoprosen cephaly	renal, cardiac, and skeletal anomalies	-	WGS, cytogenetics	SNP, Karyotypi ng, CNV	<i>De-nov</i> o, maternal, balanced translocation	Incidence of varying chromoso mal abnormaliti es (13 types) is higher in patients with severe ventriculo megaly
Welch et al., 2003 [326]	Chudley-McCullough syndrome: expanded phenotype and review of the literature	Gallaudet University, Washington DC, USA	3 Subjects, 13 Family Members	Western European	Case series	obstruction of the foramen of Monro, arachnoid cyst, partial agenesis of the corpus callosum, and abnormaliti es in the migration of cerebellar cells	deafness	Obstructive	TES	Linkage analysis	AR	-
Yoshiok a et al., 1994 [327]	Clinical spectrum and genetic studies of Fukuyama congenital muscular dystrophy	Kobe General Hospital, Japan	48 Subjects	Japanese	Case series	lissencepha ly	weakness, joint contractures, delayed motor development	Communicating	-	-	AR	-

 Table 20. Abbreviations include the following: Array comparative genomic hybridization (aCGH). Autosomal Dominant (AD). Autosomal Recessive (AR). Copy number variant (CNV). Fluorescence In Situ Hybridization (FISH). Fluorogenic quantitative-polymerase chain reaction (FQ-PCR). Multiplex ligation dependent probe amplification (MLPA). Next generation sequencing (NGS). Single nucleotide polymorphisms (SNP). Sequenced tagged sites (STS). Targeted exome sequencing (TES). Targeted genome sequencing (TGS). Whole chromosome probes (WCP). Whole exome sequencing (WES). Whole genome sequencing (WGS).