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Abstract 38 

Background 39 

Tanzania is currently implementing therapeutic efficacy studies (TES) in areas 40 

of varying malaria transmission intensities as per the World Health 41 

Organization’s (WHO) recommendations. In TES, distinguishing reinfection 42 

from recrudescence is critical for the determination of antimalarial efficacy. 43 

Recently, the WHO recommended genotyping polymorphic coding genes 44 

(msp1, msp2, and glurp) and highly polymorphic neutral microsatellites in 45 

Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study 46 

assessed the polymorphisms of six neutral microsatellite markers and their 47 

potential use in TES, which are routinely performed in Tanzania. 48 

Methods 49 

P. falciparum samples were obtained from four TES sentinel sites, Kibaha 50 

(Pwani), Mkuzi (Tanga), Mlimba (Morogoro), and Ujiji (Kigoma), between April 51 

and September 2016. Parasite genomic DNA was extracted from dried blood 52 

spots on filter papers using commercial kits. Genotyping was performed using 53 

six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and 2490) by the 54 

capillary method, and the data were analyzed to determine the extent of 55 

polymorphisms and genetic diversity at the four sites. 56 

Results 57 

Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with 58 

positive results for ≥50.0% of the markers), and >50.0% (range = 47.6-59.1%) 59 

were polyclonal, with the mean multiplicity of infection ranging from 1.68 to 1.88 60 

among the four sites. There was high genetic diversity but limited variability 61 

among the four sites based on mean allelic richness (RS = 7.48, range= 7.27-62 

8.03, for an adjusted minimum sample size of 18 per site) and mean expected 63 

heterozygosity (He = 0.83, range= 0.80-0.85). Cluster analysis of haplotypes 64 

using STRUCTURE, principal component analysis, and pairwise genetic 65 

differentiation (FST) did not detect any population structure, and isolates 66 

clustered independently of geographic origin. Of the six markers, Poly-α was 67 

the most polymorphic, followed by C2M34, TA1 and C3M69, while 2490 was 68 

the least polymorphic. 69 

Conclusion 70 
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Microsatellite genotyping revealed high polyclonality and genetic diversity but 71 

without any significant population structure. Poly-α, C2M34 and TA1 were the 72 

top polymorphic markers and could be adopted for use in TES in Tanzania. 73 

 74 

Key words: Plasmodium falciparum, falciparum malaria, therapeutic efficacy 75 

studies, microsatellites, Tanzania. 76 
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Background 78 

Malaria case management is one of the main interventions for malaria control, 79 

and together with vector control tools have significantly contributed to the 80 

reduction in morbidity and mortality that was reported between 2000 and 2015 81 

[1]. However, this strategy has been compromised by antimalaria drug 82 

resistance which led to the withdrawal of chloroquine and SP and replacing 83 

them with artemisinin combination therapy (ACT) [2]. In 2006, Tanzania 84 

introduced ACTs with artemether-lumefantrine (AL) for the treatment of 85 

uncomplicated malaria, and the drug was officially rolled out in January 2007 86 

[3]. AL, which is a fixed-dose combination of artemether and lumefantrine, has 87 

been effectively used for the past 16 years for the treatment of malaria [4], and 88 

studies undertaken in Tanzania have shown that it has maintained high and 89 

optimal efficacy and safety with high cure rates and minimal safety concerns 90 

[5–9]. Previous reports showed that ART-R emerged in the Mekong Subregion 91 

of Southeast Asia following deployment of ACTs and was associated with 92 

delayed parasite clearance [10,11], extended survival of ring stage [12,13] and 93 

mutations in the kelch13 (k-13) gene [14–16]. Until 2018, mutations associated 94 

with artemisinin resistance had not been reported in Africa [4], and ACTs 95 

retained high cure rates for the treatment of uncomplicated falciparum malaria 96 

[4]. However, recent studies confirmed artemisinin partial resistance in Rwanda 97 

with mutations at codon R561H (>5%) of the k-13 gene and day 3 positivity 98 

rates (>10%), but AL still had sufficient cure rates (>90%) [17,18]. Similarly, 99 

artemisinin partial resistance has been reported in Uganda with mutations in 100 

the k-13 gene at codons A675V and C469Y [19], Tanzania with 561H mutations 101 

(Ishengoma D. Unpublished data) and in Eritrea for mutations at codon R622I 102 

[20]. For lumefantrine, studies conducted in Tanzania [9] and elsewhere have 103 

reported an increase in polymorphisms in the multidrug resistance 1 gene 104 

(mdr1), which are associated with reduced susceptibility to lumefantrine [21]. 105 

The impacts of the polymorphism in the mdr1 gene on the performance of AL 106 

are not clearly known, and thus, sustained surveillance is needed to monitor 107 

the performance of this important ACT and allow early detection of any 108 

emergence of resistance before its efficacy is compromised. 109 

 110 
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In Tanzania, the National Malaria Control Programme (NMCP) and its partners 111 

have been collaboratively implementing therapeutic efficacy studies (TES) 112 

since 1997 [22,23]. These TES are based on the WHO standard protocol 113 

[24,25] and aim at monitoring the efficacy and safety of antimalarials used for 114 

the treatment of uncomplicated malaria in children aged six months to 10 years. 115 

For Tanzania, studies have focused on first-line antimalarial (artemether-116 

lumefantrine – AL) and alternative artemisinin-based combination therapies 117 

(ACTs). The current alternative ACTs covered in TES include artesunate-118 

amodiaquine (ASAQ), which is the first-line drug in Zanzibar [26], and 119 

dihydroartemisinin-piperaquine, which was included in the National Guidelines 120 

for Diagnosis and Treatment of Malaria from 2014 [22,27] 121 

 122 

According to the WHO protocol [24,28,29], TES has two components: field data 123 

and sample collection and laboratory analyses. The laboratory analyses aim at 124 

distinguishing recrudescent from new infections in patients with recurrent 125 

infections and generating data of molecular markers in the genes associated 126 

with resistance or reduced sensitivity/susceptibility of the parasites to the drugs. 127 

To distinguish recrudescent from new infection, the old WHO protocol, which 128 

was developed in 2008, recommended genotyping of three polymorphic genes, 129 

including merozoite surface protein 1 and 2 (msp1 and msp2) and glutamate-130 

rich protein (glurp) [29]. Recently, the WHO has recommended a new protocol 131 

that recommends genotyping both msp1 and msp2 and one or two highly 132 

polymorphic microsatellite markers [30]. Several microsatellite makers have 133 

been utilized in studies of malaria parasites, but they differ in their level of 134 

polymorphisms and informativeness [13,31]. Of the different microsatellites, 135 

WHO recommends using poly-A and any of the other two markers, TAE1 and 136 

Pfk2. However, these markers have not been optimized in different countries to 137 

determine if they are indeed sufficiently polymorphic and sensitive and can 138 

reliably be used for genotyping within TES. This study was therefore 139 

undertaken to assess the polymorphisms of six microsatellite markers (Poly-A, 140 

PfPK2, TA1, C3M69, C2M34 and 2490) for potential use in TES in Tanzania. 141 

The findings provide important information on these markers and parasite 142 

populations in the country and will facilitate future genomic studies and their 143 

application in TES and malaria surveillance as well. 144 
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Materials and Methods 145 

Study sites 146 

The samples used for this study were obtained from clinical malaria cases 147 

sampled in a TES that was conducted during and after the long rainy season 148 

between April and September 2016 [9]. It was undertaken in four geographically 149 

and epidemiologically distinct areas of Tanzania (Kibaha – Pwani, Mkuzi – 150 

Tanga, Mlimba – Morogoro and Ujiji - Kigoma), and these sites have been 151 

NMCP sentinel sites for monitoring of antimalarial efficacy since 1997 (Figure 152 

1) [22,23]. The study sites were selected to represent distinct geographic areas 153 

of Tanzania. In Kibaha district of the coastal region (Pwani), the study was 154 

conducted at Yombo Dispensary, which is located in an area that has 155 

transitioned from high to low malaria transmission (with prevalence by mRDTs 156 

in under-fives of <10% in 2017)[32–34]. In Tanga region, the study site was 157 

Mkuzi health center, which is located in Muheza district. Areas around Mkuzi 158 

have reported a progressive decline in malaria prevalence (in individuals aged 159 

< 20 years) from over 80% in the 1990s to <10% in 2017 [35,36]. The Ujiji health 160 

center is located in Kigoma urban district of the Kigoma region. Parasite 161 

prevalence among under-fives (by mRDTs) in Kigoma increased from 19.6% in 162 

2007 to 38.1% in 2016, followed by a decline to 24.4% in 2017, but this was the 163 

highest prevalence in the country [32–34]. The fourth site of Mlimba health 164 

center (parasite prevalence among under-fives in 2017 was <10%) is located in 165 

Kilombero district of Morogoro region and has experienced a significant decline 166 

in malaria burden in the last two decades [37]. Additional details of the study 167 

sites were given elsewhere [9,38]. 168 
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 169 

Figure 1. Map of Tanzania showing the four study sites of Kibaha, Mkuzi, 170 

Mlimba, and Ujiji. (Parasite prevalence data were obtained from the School 171 

Malaria Parasitological Survey of 2015[39]. 172 

 173 

Study design and target population 174 

Samples used for this analysis were collected during a single-arm prospective 175 

in vivo TES that assessed the therapeutic efficacy and safety of artemether-176 

lumefantrine (AL) for the treatment of uncomplicated falciparum malaria and 177 

markers of artemisinin and lumefantrine resistance [9]. The study recruited 344 178 

out of the 963 febrile children aged 6 months to 10 years who were screened 179 

according to the WHO protocol [24,25]. 180 

 181 

Sample collection 182 

Enrolled children were treated with AL and followed up for 28 days with clinical 183 

and parasitological assessments in the first three days post-treatment (day 1, 184 

2 and 3) and once weekly from day 7 to 28 [9]. Thick and thin films were taken 185 

for the detection of malaria parasites during each visit. Dried blood spots (DBS) 186 

on filter papers were also collected at enrollment and from day 7 onward for 187 

molecular analyses of malaria parasites. 188 
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Sample processing and genotyping 189 

Parasite genomic DNA was extracted from DBS using QIAamp DNA mini-kits 190 

(Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions. 191 

Analysis of six neutral microsatellite markers was undertaken at the Centers for 192 

Disease Control and Prevention’s (CDC) Malaria Laboratory in Atlanta, USA. A 193 

total of 94 samples were collected on day zero among patients with recurrent 194 

infections and a random selection of other samples from patients without 195 

recurrent infections collected on day zero were selected for microsatellite 196 

genotyping. These samples were analyzed to distinguish recrudescent from 197 

new infections as previously reported [9] and to determine genetic diversity in 198 

the study populations. The microsatellite markers (TA1 on chromosome 6, Poly 199 

– α on chromosome 4, PfPK2 on chromosome 12, 2490 on chromosome 10, 200 

C2M34-313 on chromosome 2 and C2M69-383 on chromosome 3) were 201 

genotyped by nested PCR for all except C2M34-313 and C2M69-383 (which 202 

were analyzed with a single step PCR). Fragment size was measured by 203 

capillary electrophoresis on ABI 3033 (Applied Biosystems) and scored using 204 

GeneMapper® Software Version 4.0 (Applied Biosystems) [40,41]. 205 

 206 

Ethical considerations 207 

Ethical clearance was obtained from the medical research coordinating 208 

committee (MRCC) of the National Institute for Medical Research (NIMR), while 209 

permission to conduct the study at the health facilities was sought in writing 210 

from the relevant regional and district medical authorities. Ethical clearance 211 

from the CDC was not needed because the assessments performed at the CDC 212 

Malaria Laboratory, using samples without linked identifiers (deidentified 213 

samples), were determined by the CDC Center of Global Health’s Human 214 

Research Protection Coordinator to not constitute an engagement in human 215 

subjects’ research. Informed consent (oral and written) was obtained from 216 

parents or guardians before patients were screened to assess their eligibility 217 

for possible inclusion in the study. 218 

 219 

 220 

 221 

 222 
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Data analysis 223 

Population genetic analysis 224 

GeneScan chromatograms were analyzed using GeneMapper® Software 225 

Version 4.0 (Applied Biosystems) with an internal size standard of 350 Rox. 226 

The stutter window was set to 2.5 for 2 bp repeats, 3.5 for 3 bp repeats and 4.5 227 

for 4 bp repeats. The stutter ratio was set to 0.4 for the four markers, and for 228 

the remaining two markers (C2M34 and C3M69), a relatively higher stutter ratio 229 

(0.6) was set, as they showed greater stuttering during manual inspection of 230 

chromatograms. A cut-off of 1,000 relative fluorescence units (RFUs) was used 231 

to distinguish true peaks from background signals. All dominant peaks (i.e., 232 

those peaks within the size range with the highest RFUs) and any additional 233 

alleles with a minimum 30% height of the dominant allele were scored. All 234 

chromatograms were inspected manually to confirm call quality. Then, samples 235 

with low RFUs were re-analysed with a minimum fluorescence of 200 RFU. 236 

Microsatellite haplotypes comprising more than 3 (50%) successfully typed 237 

markers were selected for further analysis. 238 

 239 

For downstream population genetics analysis, multilocus microsatellite allele 240 

data were converted into different formats using CONVERT software version 241 

1.3.1. The number of genetically distinct parasite clones (multiplicity of infection, 242 

MOI) was calculated considering the maximum number of alleles detected at 243 

any of the six microsatellite loci. The number of clones for each population was 244 

determined by summing the total number of clones per isolate. The mean MOI 245 

for each population was calculated by dividing the total number of clones 246 

detected by the number of samples. Genetic diversity was measured by 247 

calculating allelic richness (Rs) and expected heterozygosity (He) using FSTAT 248 

software version 2.9.3.2 [42]. As a measure of inbreeding within populations 249 

(non-random association of alleles), the standardized index of association (IAS) 250 

was used to measure multilocus linkage disequilibrium (LD) in each parasite 251 

population using LIAN version 3.6, applying a Monte Carlo test with 100,000 re-252 

sampling steps [43]. 253 

 254 

STRUCTURE version 2.3.4 [44] was used to determine the number of 255 

population clusters (K) and whether haplotypes clustered according to their 256 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 4, 2023. ; https://doi.org/10.1101/2023.12.02.23299314doi: medRxiv preprint 

https://paperpile.com/c/EkzevX/Z3C7
https://paperpile.com/c/EkzevX/Jtg2
https://paperpile.com/c/EkzevX/8f3c
https://doi.org/10.1101/2023.12.02.23299314
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

geographic origin. The analysis was run 20 times for K = 1 to 20, for 100,000 257 

Monte Carlo Markov Chain (MCMC) iterations after a burn-in period of 100,000, 258 

and using the admixture model. To obtain the optimal K value, the method of 259 

Evanno et al [44]was used to calculate ΔK from the log probability of the data 260 

(LnP[D]) using STRUCTURE HARVESTER [45]. The STRUCTURE bar plots 261 

(ancestry coefficients) were visualized using Cluster Markov Packager Across 262 

K (CLUMPAK) [46]. Genetic differentiation between populations was measured 263 

by calculating the FST statistic according to Nei [47]. Estimation of average 264 

heterozygosity and genetic distance from a small number of individuals was 265 

performed using the pairwise.neifst function available in the hierfstat R 266 

package[48] . The Mantel test was performed to measure the associations 267 

between genetic distance and geographical distance between catchments 268 

using the Mantel function in the R adegenet package [49]. To assess haplotype 269 

relatedness, the genetic distance metric (1-pairwise allele sharing (PS)) was 270 

calculated and used to generate phylogenetic trees using the bionj Ape R 271 

package [50]. 272 

 273 

Results 274 

From a total of 94 P. falciparum samples, 83 were successfully genotyped, and 275 

all gave positive results for 3 (50%) or more microsatellite markers (Table 1). 276 

Only single infections or dominant haplotypes constructed from multiple 277 

infection data were included in downstream population genetic analyses. The 278 

number of clones per sample ranged from 1 to 4, and a total of 38 (45.8%) 279 

samples had single infections, followed by samples carrying two distinct 280 

parasite clones (n= 31, 37. 3%), three (n= 12, 14.45%), and only two samples 281 

carried four distinct clones. Overall, at least 38% of the samples in each 282 

population contained more than one parasite clone (polyclonal), and there was 283 

limited variability in the mean MOI among populations (average MOI ranged 284 

from 1.68 to 1.88) (Table 1). 285 

 286 

 287 

 288 

 289 
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Table 1. Population genetic metrics of four Tanzanian P. falciparum 290 

populations 291 

Population 
Prevalence 

(%)† 
N n 

 
h Rs +SD He+SD 

 
IAS 
 

MOI 
Polyclonality 

(%) # 

Kibaha 13.8 25 21 19 8.03+2.8 0.85+0.12 0.1569** 1.76 47.6 

Ujiji-
Kigoma 

35.6 23 22 22 7.48+2.1 0.84+0.10 0.1736** 1.88 59.09 

Mkuzi-
Muheza 

22.6 25 22 22 7.79+2.4 0.82+0.14 0.1095** 1.68 54.5 

Mlimba-
Kilombero 

30.2 21 18 18 7.56+2.3 0.80+0.20 0.0903* 1.72 55.5 

N=total number of samples; n=number of samples successfully genotyped; h= 292 

number of unique haplotypes; Rs = Allelic richness, He= expected 293 

heterozygosity, IAS =standard index of association as a measure of multilocus 294 

linkage disequilibrium (LD), MOI= multiplicity of infection (mean number of 295 

clones per infection); Polyclonality= proportion of samples containing more than 296 

one parasite clone †Prevalence of malaria in the study districts in the 2015 297 

school malaria parasitological survey [10] *=p-value<0.01, **=p-value<0.001; 298 

#Polyclonality (%) refers to the proportion of infections with >1 clones. 299 

 300 

No significant difference in mean multiplicity of infection among 301 

populations 302 

In malaria endemic countries such as Tanzania, individuals often carry more 303 

than one parasite clone that is genetically different, referred to as multiplicity of 304 

infections (MOI), also known as complexity of infection (COI). MOI occurs either 305 

due to repeated bites of infective mosquitoes or multiple clones in a single 306 

mosquito inoculum [51] and decreases with declining transmission. Here, we 307 

found a mean MOI of 1.73 across populations (range = 1- 4 parasite clones per 308 

sample), and there was no statistically significant difference among the four 309 

populations (Kruskal‒Wallis test) (Figure 2). 310 

 311 
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 312 
 313 

 314 

Figure 2. Multiplicity of infection in four Tanzanian P. falciparum 315 

populations. 316 

Box and whisker plots were generated from the number of clones determined 317 

for each microsatellite marker per population using R software. Dots indicate a 318 

haplotype, boxes indicate the interquartile range, the line indicates the median 319 

and the whiskers show the 95% confidence intervals. The numbers above the 320 

box plot indicate pairwise comparative p values between populations showing 321 

a lack of significant difference in MOI among the four sites. 322 

 323 

 324 

The association between polyclonality (proportion of multiple infections) and 325 

parasite prevalence was assessed, and a positive correlation between 326 

polyclonality and malaria prevalence was observed (based on 2015 school 327 

survey data) per population (R = 0.97, p-value = 0.035, Spearman Rank 328 

Correlation) (Figure 3). Polyclonality was lower in Kibaha and Muheza, which 329 

had a lower prevalence compared to Ujiji, with higher polyclonality and a higher 330 

prevalence of malaria. 331 
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 332 
Figure 3. Association between the parasite prevalence (by mRDT) and 333 

proportion of multiple infections (polyclonality) in four Tanzanian P. 334 

falciparum populations. The graph indicates a significant positive association 335 

between polyclonal infections and parasite prevalence across different 336 

geographic areas. Dots indicate population-level prevalence and proportion of 337 

polyclonal infections; the blue line indicates the Spearman Rank Correlation 338 

line, and the gray shaded region represents the 95% confidence interval. 339 

 340 

High genetic diversity but significant multilocus linkage disequilibrium 341 

(LD) 342 

Of the 83 multilocus haplotypes from successfully genotyped P. falciparum 343 

isolates, 53 (63.8%) were complete genotypes, of which 51 (96.2%) were 344 

unique and only two haplotypes were identical to each other within Kibaha 345 

population. Regardless of transmission intensity, there was high genetic 346 

diversity of P. falciparum, with limited variability among the four parasite 347 

populations based on allelic richness (mean RS = 7.27, range = 7.48-8.03, for 348 

an adjusted minimum sample size of 18 per site) and expected heterozygosity 349 

(mean He = 0.83, range = 0.80-0.85) (Table 1, Figure 4). However, according 350 

to the Index of Association (IAS) analysis, which is a measure of multilocus 351 

linkage disequilibrium (which emerges when genotypes are related), all 352 

parasite populations from the four sites showed significant multilocus LD (Table 353 

1). This could be explained by the presence of some degree of inbreeding 354 

despite high transmission in some areas. 355 
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A.  356 

 357 
 358 

B. 359 

 360 
 361 

Figure 4. Genetic diversity (Expected Heterozygosity (A), Allelic Richness 362 

(B)) of P. falciparum in four geographic sites in Tanzania. 363 

Box and Whisker plots were generated from the diversity metrics for each 364 

microsatellite marker per population using R software. Boxes indicate the 365 

interquartile range, the line indicates the median, and the whiskers show the 366 

95% confidence intervals. 367 
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Furthermore, the diversity of microsatellite markers was assessed, and there 368 

was high variability in the alleles present per marker (A = 3 - 13) (Figure 5), with 369 

variable frequency for the four different sites. The marker M2490 was the least 370 

diverse microsatellite, with only a 3.5 mean number of distinct alleles detected 371 

across the four populations, while PolyA was the most diverse microsatellite 372 

marker (A = 13, He =0.91), followed by C2M34 (A =11, He =0.89). These two 373 

highly polymorphic markers (polyA and C2M34) and, if needed, together with 374 

C3M69 and TA1 can be used for the detection of parasite clones in Tanzania. 375 

 376 

 377 
 378 

Figure 5. Diversity of P. falciparum microsatellite markers among 379 

parasites from the four sites in Tanzania. 380 

Box and Whisker plots were generated from unique allele counts for each 381 

microsatellite marker using R software. Boxes indicate the interquartile range, 382 

the line indicates the median, and the whiskers show the 95% confidence 383 

intervals. 384 

Lack of population structure and genetic differentiation 385 

To investigate the presence of parasite population structure among the four 386 

Tanzanian sites, cluster analysis of the haplotypes was conducted using 387 

STRUCTURE version 2.3.4. No evidence of any population structure from K = 388 

2 - 4 was detected, and the ancestry of genotypes was equally split between 389 

the genetic populations, showing no evidence of any population structure. 390 
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 391 

Figure 6. Bayesian cluster analysis of P. falciparum microsatellite 392 

haplotypes from the four sites of Tanzania. 393 

Structure bar plots representing individual ancestry coefficients are shown for 394 

K=2, 3 and 4, and each vertical bar represents an individual genotype and the 395 

membership coefficient (Q) within each of the genetic populations, as defined 396 

by the different colours. 397 

 398 

Further cluster analysis of haplotypes using principal component analysis 399 

(PCA, with princomp function in R package) also did not detect any signature 400 

of population structure and found no clustering of isolates by geographic origin 401 

(Figure 7). 402 

 403 

Figure 7. Plasmodium falciparum haplotype clustering. 404 

A) Principal component analysis (PCA) of P. falciparum haplotypes. Dots 405 

indicate individual microsatellite haplotypes, and colours indicate the four 406 

sample collection sites. B) Percentage of variance explained by each principal 407 

component (PC). 408 
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Gene flow and population connectivity 409 

To assess gene flow and population connectivity, pairwise genetic 410 

differentiation based on Jost’s D metric [52] and FST according to Nei [47] were 411 

calculated among the four parasite populations using the pairwise.neifst 412 

function available in the hierfstat R package. Very low levels of genetic 413 

differentiation were observed between populations, confirming that P. 414 

falciparum populations from these sites are highly panmictic (Table 2). We also 415 

conducted the Mantel test to assess the correlation between pairwise genetic 416 

distance and pairwise geographic distance in km as an indication of gene flow 417 

and parasite connectivity. The differentiation of parasite populations was not 418 

statistically associated with geographical distance between populations and 419 

therefore did not fit the Isolation-by-Distance model (Mantel statistic r = 0.072, 420 

p-value = 0.59). 421 

 422 

Table 2. Pairwise genetic differentiation among parasite populations in 423 

Tanzania 424 

 Kibaha Ujiji-Kigoma Mkuzi-Muheza Mlimba 

Kibaha  0.01 0.009 0.038 

Ujiji-Kigoma 0.37  0.005 0.001 

Mkuzi-Muheza 0.22 0.14  0.003 

Mlimba 0.34 0.37 0.24  

Top right = pairwise FST, Left bottom = pairwise Jost’s D 

 425 

Haplotype relatedness 426 

To assess relatedness in P. falciparum, pairwise comparisons among all 427 

isolates were conducted using the dist.gene command in the R Ape package. 428 

The results showed that the majority of isolates had only one identical allele 429 

among all six markers on average, and only a few isolates shared more than 430 

50% of the alleles (three or more alleles). Phylogenetic analysis using 431 

neighbour joining trees also confirmed a lack of population structure and 432 

geographic clustering of genotypes. However, there were more haplotypes 433 

clustering together within populations than between populations (Figure 8). 434 
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 435 

Figure 8 Relatedness of P. falciparum haplotypes in Tanzania. 436 

Neighbour-Joining tree showing low levels of similarity of the multilocus P. 437 

falciparum haplotypes between most isolates with similar haplotypes within 438 

populations. Tips of the NJ tree are colour coded according to the four 439 

geographic sites, and black diamonds indicate bootstrap values >50. 440 

 441 

Discussion 442 

This study included samples from four geographically distinct parasite 443 

populations (located 296 to 1211 km apart) from areas with different 444 

transmission intensities to assess polymorphisms of six neutral microsatellite 445 

markers (Poly-α, PfPK2, TA1, C3M69, C2M34 and 2490) for potential use in 446 

Tanzania. It also aimed at capturing the spatial genetic diversity and population 447 

structure of Tanzanian P. falciparum. The findings showed that four markers 448 

(Poly-α, C2M34, C3M69 and TA1) had high diversity and could be adopted as 449 

validated markers for use in TES in Tanzania. As recently recommended by the 450 

WHO [53] and a previous study that showed that a combination of four 451 

microsatellite markers with sufficient diversity are needed in TES [54,55], these 452 

microsatellite markers can be included in the revised workflow for TES in 453 

Tanzania. The new panel should replace the old system based on genotyping 454 

of msp1, msp2 and glurp for distinguishing recrudescent from new infections in 455 

ongoing TES in Tanzania. However, the areas around TES sites have 456 
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increasingly reported a decline in malaria transmission in the past two decades, 457 

which suggests that continuous assessment of these and possibly other 458 

microsatellite markers will be critical. This will ensure that high-resolution 459 

markers are used and that the efficacy of antimalarials is not underestimated 460 

due to the limited discrimination power of the markers. Additional methods such 461 

as targeted amplicon sequencing can also be explored based on the capacity 462 

of the laboratory, as recently recommended [56]. 463 

 464 

This study also showed high diversity and a lack of population structure and a 465 

high level of polyclonality despite varying malaria prevalence among the study 466 

sites. The results suggest that these areas still have high malaria transmission 467 

with little evidence of a control impact on transmission dynamics. However, a 468 

significant correlation between parasite prevalence and polyclonality (as a 469 

proxy of malaria measure of transmission intensity) was detected as expected, 470 

given that in areas with higher malaria prevalence, humans are exposed to 471 

multiple mosquito bites (superinfection) or infections with multiple clones (co-472 

transmission) [57,58]. A strong correlation between parasite prevalence and 473 

polyclonality has been reported in other studies [59–61] and needs to be 474 

monitored as a surrogate measure of potential changes in malaria transmission 475 

due to the impacts of interventions. In Papua New Guinea, P. falciparum MOI 476 

was associated with parasite prevalence, but the diversity of the size 477 

polymorphic markers remained high despite wide variation in prevalence at 478 

different sites [59–61]. In contrast to these findings, a study in Indonesia [62] 479 

reported lower genetic diversity, which was consistent with the low level of 480 

malaria transmission at the study sites and could be a result of longer-term 481 

sustained low transmission in this area compared to PNG and Tanzania. 482 

 483 

Microsatellites are highly polymorphic, rapidly evolving and therefore may need 484 

long-term sustained low transmission to detect a signal of low diversity [31]. In 485 

PNG, studies have followed P. falciparum populations in declining transmission 486 

for over nine years and reported very minor changes in microsatellite diversity 487 

[63]. Moreover, high transmission intensity, high polyclonality and therefore 488 

high rates of recombination between distinct clones (outcrossing) might 489 

obscure the expected association between the MOI and transmission intensity 490 
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(prevalence) in different transmission zones. However, in low transmission 491 

areas such as South America, studies conducted in Ecuador and Peru reported 492 

infections containing clonal parasites with clear population structure [64,65]. 493 

 494 

In addition to the MOI as a proxy for transmission intensity, estimating the 495 

extent of parasite genetic diversity and population structure is essential for a 496 

deeper understanding of malaria epidemiology and transmission dynamics as 497 

well as evaluating the impact of malaria control interventions [66]. Polymorphic 498 

markers can also be used for the detection of different parasite clones in 499 

different studies, including TES. In this study, it was shown that parasite genetic 500 

diversity was high in the four Tanzanian sites regardless of the prevalence of 501 

infection and that the respective parasite populations appeared to be highly 502 

mixed with no clear genetic structure according to geographic origin. Thus, high 503 

polymorphism at all sites and with all markers suggest that these markers 504 

(especially the three topmost) can sufficiently be used in TES to distinguish 505 

recurdescent from new infections, as recommended by the WHO [67]. 506 

 507 

Unlike the expectation that geographical isolation causes limited migration 508 

among subpopulations and geographical population structure, there was no 509 

significant genetic differentiation (measured by FST) between distant and 510 

nearby parasite populations. These results suggest high malaria transmission 511 

intensity and/or extensive parasite migration throughout the country despite 512 

significant improvement in malaria control strategies and drastic declines in 513 

malaria transmission and disease burden in recent years. These findings 514 

support previous observations where genetic diversity, geographic clustering 515 

and inbreeding with strong LD as population genetic signals are expected in 516 

low transmission areas, whereas high proportions of polyclonal infections, high 517 

diversity and panmictic parasite populations were expected in areas with high 518 

levels of transmission [31]. Generally, the levels of allelic diversity, parasite 519 

outcrossing, and gene flow are high in African populations, low in South 520 

American populations, and intermediate in Southeast Asian populations [31]. 521 

The results of this study support a situation of continuing highly endemic 522 

transmission dynamics in the country despite the expected substantial impact 523 

of recent interventions on parasite prevalence in Tanzania. 524 
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The observed differences between this and recent studies, which were 525 

conducted in Tanzania and showed population structure among parasites from 526 

different parts of the country[68,69], could be due to the markers used, SNPs 527 

and WGS data compared to microsatellites used in the current study. Validation 528 

of microsatellite markers for surveillance is important because they have been 529 

the gold standard tool for malaria parasite population genetics for many years. 530 

Furthermore, they are cheaper and easier to access for resource-limited 531 

laboratories. Ongoing and future studies will test different markers to increase 532 

the resolution and robustness of capturing different population genetics metrics 533 

that will be useful in assessing the impact of interventions and progress toward 534 

malaria elimination in Tanzania. Additionally, optimization of markers for 535 

molecular genotyping of samples collected in TES needs to be pursued as 536 

recently recommended [56]. 537 

 538 

In contrast to the above findings, there was significant multilocus linkage 539 

disequilibrium (LD) within populations, suggesting some level of inbreeding of 540 

related parasites and repeated haplotypes, suggesting the occurrence of some 541 

clonal transmission (monoclonal infections transmitted by the mosquito vector 542 

in which parasite sexual recombination occurred between genetically identical 543 

clones, albeit within the limitations of the markers used). An additional 544 

explanation for this finding could be the presence of subpopulations within 545 

populations (Wahlund effect) [70], as the samples for this study were obtained 546 

from clinical sites where patients usually come from different geographic areas 547 

to seek medical care. Other studies in different malaria endemic countries found 548 

similar results, significant LD despite high genetic diversity and a high 549 

proportion of polyclonal infection in P. falciparum [71,72] and P. vivax [73,74]. 550 

Detection of significant LD has important implications that could facilitate 551 

inbreeding and dispersal of multilocus drug resistance haplotypes or other 552 

virulent strains. As transmission decreases in Tanzania due to intensive control 553 

activities, as shown elsewhere [63], the presence of LD combined with a lack 554 

of geographic population structure is highly likely to facilitate such events and 555 

could be a future challenge in achieving malaria elimination. 556 

There was high diversity in each of the microsatellite markers, indicating that 557 

few highly polymorphic markers (C2M34 and PolyA) can be used to track the 558 
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MOI of P. falciparum in Tanzania. However, the genotyped markers may have 559 

limited the resolution of the population structure. The microsatellite panel used 560 

had few markers (only six, with less than one per chromosome), many were 561 

highly polymorphic (many alleles) and they are prone to technical artefacts [75]. 562 

In addition, the sample size per population was relatively limited, with 563 

approximately 20 samples successfully genotyped per site. Therefore, some 564 

subtle differences between populations may not be detected. For example, in 565 

Kibaha, the same haplotype was found in two samples, while in all other 566 

populations, all haplotypes were unique. If more samples had been genotyped, 567 

additional repeated haplotypes may be found, and diversity measures altered 568 

somewhat. Further analysis of large numbers of samples (n>50) from additional 569 

sites (again with varying transmission intensity) and utilizing larger numbers of 570 

highly polymorphic microsatellite markers [31,76,77] and/or comparing them 571 

with SNP barcodes [78], amplicons [79–82] and WGS [83] will be needed in an 572 

effort to optimize these markers. This should also be part of the ongoing 573 

initiatives to establish a molecular surveillance platform to support policy and 574 

decision-making by the Tanzanian NMCP in their strategy to eliminate malaria 575 

by 2030. Nevertheless, the data generated provide findings of useful markers 576 

for TES and parasite populations in Tanzania, showing that there are potentially 577 

large, diverse and highly intermixing parasites despite strong reductions in 578 

infection prevalence and disease burden. The findings also provide useful 579 

baseline information for future monitoring of parasite populations in response 580 

to ongoing malaria interventions. 581 

Conclusion 582 

Microsatellite genotyping revealed high polyclonality and genetic diversity but 583 

without any significant population structure. Poly-α, C2M34, C3M69 and TA1 584 

were the top polymorphic markers and could be adopted for use in TES in 585 

Tanzania. Failure to reveal any significant population structure among parasite 586 

populations could be due to high transmission or inherent limitations of small 587 

numbers of microsatellite markers and sample size. More studies covering sites 588 

with varying transmission intensity, more samples and using other genotyping 589 

markers will be needed for establishing an effective molecular surveillance 590 

system to support implementation of TES and area-specific interventions in 591 

Tanzania and monitoring the impacts of the interventions. 592 
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