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Abstract

Genomic surveillance of pathogen evolution is essential for public health response,
treatment strategies, and vaccine development. In the context of SARS-COV-2, multi-
ple models have been developed including Multinomial Logistic Regression (MLR) de-
scribing variant frequency growth as well as Fixed Growth Advantage (FGA), Growth
Advantage Random Walk (GARW) and Piantham parameterizations describing vari-
ant Rt. These models provide estimates of variant fitness and can be used to forecast
changes in variant frequency. We introduce a framework for evaluating real-time fore-
casts of variant frequencies, and apply this framework to the evolution of SARS-CoV-2
during 2022 in which multiple new viral variants emerged and rapidly spread through
the population. We compare models across representative countries with different
intensities of genomic surveillance. Retrospective assessment of model accuracy high-
lights that most models of variant frequency perform well and are able to produce
reasonable forecasts. We find that the simple MLR model provides ∼0.6% median ab-
solute error and ∼6% mean absolute error when forecasting 30 days out for countries
with robust genomic surveillance. We investigate impacts of sequence quantity and
quality across countries on forecast accuracy and conduct systematic downsampling
to identify that 1000 sequences per week is fully sufficient for accurate short-term fore-
casts. We conclude that fitness models represent a useful prognostic tool for short-term
evolutionary forecasting.

Introduction

The emergence of acute respiratory virus SARS-CoV-2 (COVID-19) and its subsequent
circulating variants has had far-reaching implications on global health and worldwide
economies [1]. Due to its rapid evolution, original SARS-CoV-2 strains have been replaced
by derived, more selectively advantageous variant lineages [2]. This dynamic landscape
led to the emergence of Omicron, a highly transmissible and immune evasive variant
that rapidly became the dominant strain [3]. It has become increasingly evident that
monitoring the evolution and dissemination of these variants remains crucial with SARS-
CoV-2 continuing to evolve beyond Omicron [4]. Forecasting variant dynamics allows us
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to make informed decisions about vaccines and to predict variant-driven epidemics.

Fitness models are a key resource for forecasting changes in variant frequency through time.
These models were first introduced for the study of seasonal influenza virus [5–7] and there
have relied on correlates of viral fitness such as mutations to epitope sites on influenza’s
surface proteins. In modeling emergence and spread of SARS-CoV-2 variant viruses, the
use of Multinomial Logistic Regression (MLR) has become commonplace [8–11]. Here,
MLR is analogous to a population genetics model of a haploid population in which different
variants have a fixed growth advantage and are undergoing Malthusian growth. As such,
it presents a natural model for describing evolution and spread of SARS-CoV-2 variants.
Additionally, models introduced by Figgins and Bedford [12] and by Piantham et al [13]
incorporate case counts and variant-specific Rt, but still can be used to project variant
frequencies.

Here, we systematically assess the predictive accuracy of fitness models for nowcasts and
short-term forecasts of SARS-CoV-2 variant frequencies. We focus on variant dynamics
during 2022 in which multiple sub-lineages of Omicron including BA.2, BA.5 and BQ.1
spread rapidly throughout the world. We compare across several countries including Aus-
tralia, Brazil, Japan, South Africa, the United Kingdom and the United States to assess
genomic surveillance systems with different levels of throughput and timeliness. To assess
the performance of these models, we used mean and median absolute error (AE) as a
metric to compare the predicted frequencies to retrospective truth. This metric allowed
us to evaluate the accuracy and reliability of the models and to identify those that were
most effective in predicting SARS-CoV-2 variant frequency. We also examined aspects of
country-level genomic surveillance that contribute to errors in these models and explored
the role of sequence availability on nowcast and forecast errors through downsampling
sequencing efforts for a sample location.

Results

Reconstructing real-time forecasts

We focus on SARS-CoV-2 sequence data shared to the GISAID EpiCoV database [14].
Each sequence is annotated with both a collection date, as well as a submission date. We
seek to reconstruct data sets that were actually available on particular ‘analysis dates’,
and so we use use submission date to filter to sequences that were available at a specific
analysis date. We additionally filter to sequences with collection dates up to 90 days before
the analysis date. We categorize each sequence by Nextstrain clade (21K, 21L, etc. . . ) as
such clades are generally at a reasonable level of granularity for understanding adaptive
dynamics [15]; there are 7 clades circulating during 2022 vs hundreds of Pango lineages.
Resulting data sets for representative countries Japan and the USA for analysis dates
of Apr 1 2022, Jun 1 2022, Sep 1 2022 and Dec 1 2022 are shown in Figure 1A. We see
consequential backfill in which genome sequences are not immediately available and instead
available after a delay due to the necessary bottlenecks of sample acquisition, testing,
sequencing, assembly and data deposition. Thus, even estimating variant frequencies
on the analysis date as a nowcast requires extrapolating from past week’s data. Different
countries with different genomic surveillance systems have different levels of throughput as
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Figure 1. Reconstructing available data sets and corresponding predictions for Japan
and USA. (A) Variant sequence counts categorized by Nextstrain clade from Japan and United
States at 4 different analysis dates. (B) +30 day frequency forecasts for variants in bimonthly
intervals using the MLR model. Each forecast trajectory is shown as a different colored line.
Retrospective smoothed frequency is shown as a thick black line.

well as different amounts of delay between sample collection and sequence submission [16].

We employ a sliding window approach in which we conduct an analysis twice each month
(on the 1st and the 15th) and estimate variant frequencies from −90 days to +30 days
relative to each analysis date. We illustrate our frequency predictions using the MLR
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model with Figure 1B showing resulting trajectories for Japan and the US and Figure
S.1B showing trajectories for Australia, Brazil, South Africa and the UK. Sometimes we
see initial over-shoot or under-shoot of variant growth and decline, but there is general
consistency across trajectories. Additionally, we retrospectively reconstructed the simple
7-day smoothed frequency across variants and present these trajectories as solid black lines.
We treat this retrospective trajectory as ‘truth’ and thus deviations from model projections
and retrospective truth can be assessed to determine nowcast and short-term forecast
accuracy. Consistent with less available data, we observe that the model predictions for
Japan were more frequently misestimated compared to the United States with particularly
large differences for clades 22B (lineage BA.5) and 22E (lineage BQ.1) (Fig.1B).

Model error comparison

We utilize five models for predicting the frequencies of SARS-CoV-2 variants in six coun-
tries (Australia, Brazil, Japan, South Africa, UK and USA). The simplest of these models
is Multinomial Logistic Regression (MLR) commonly used in SARS-CoV-2 analyses [8–11],
which uses only clade-specific sequence counts and has a fixed growth advantage for each
variant. More complex models include the Fixed Growth Advantage (FGA) and Growth
Advantage Random Walk (GARW) parameterizations of the variant Rt model introduced
by Figgins and Bedford [12], which uses case counts in addition to clade-specific sequence
counts. The Piantham et al model [13] operates on a similar principle in estimating
variant-specific Rt, but differs in model details. We compare these four models to a naive
model to serve as a reference for comparison. The naive model is implemented as a 7-day
moving average on the retrospective raw frequencies using the most recent seven days for
which sequencing data is available. We compare forecasting accuracy across different time
lags from −30 days back from date of analysis to target hindcast date, to +0 days from
date of analysis to target nowcast date, to +30 days forward from date of analysis to target
forecast date.

We refer to the absolute error AEm,d
t for a given model m, data set d and time t as the

difference between the retrospective 7-day smoothed frequency and the model predicted
frequency (see Methods). We calculate median absolute error and mean absolute error
across datasets and across time lags to assess the relative performance of the models for
the six countries (Figure 2 , Table 1). As expected, we observe decreasing performance
across models as lags increase from −30 days to +30 days. For example, median absolute
error increases for the MLR model from 0.1–1% at −30 days, to 0.3–1.4% at 0 days and
to 0.4–1.4% at +30 days. Similarly, mean absolute error increases for the MLR model
from 0.4–2.3% at −30 days, to 2.2–5.7% at 0 days and to 5.8–9.6% at +30 days. All four
forecasting models perform better than the naive model in terms of median absolute error,
with MLR and the variant Rt models FGA and GARW performing slightly better than the
Piantham variant Rt model, except for in Australia where MLR, FGA and GARW per-
formed decreased error by 2.4% median absolute error compared to Piantham. However,
we observe larger differences when comparing mean absolute error across models wherein
MLR generally has lowest mean absolute error at +30 days, improving on FGA and
GARW by ∼1% in most countries. Piantham often shows large errors and mean absolute
error is comparable to the naive model at +30 days. Absolute error varies substantially
across predictions for individual analysis dates and variants with most predictions having
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Figure 2. Absolute error across models, countries and forecast lags. (A) Median absolute
error and (B) mean absolute error across countries, models and forecast lags moving from −30 day
hindcasts to +30 day forecasts. For each county / model / lag combination, the median and the
mean are summarized across analysis data sets. Panel A uses a log y axis for legibility while panel
B uses a natural y axis. (C) Distribution of absolute error on a log scale across models and across
forecast lags. Each point represents the absolute error for a data set / country combination. Solid
lines show the median of these distributions and dashed lines show the means of these distributions.
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Table 1. Median and mean absolute error across models, countries and forecast lags
Models with the lowest error for each country / lag combination are bolded for clarity.

very little error, while a subset of predictions have larger error (Fig. 2C). This skewed
distribution results in the large observed differences between median and mean summary
statistics.

In observing heterogeneity in prediction accuracy, we hypothesized that error is largest
for emerging variants that present a small window of time to observe dynamics and
where sequence count data is often rare. We investigate this hypothesis by charting how
variant-specific growth advantage estimated in the MLR model varied across analysis dates
(Fig. 3).Generally, we see sharp changes in estimated growth advantage in the first 1-3
weeks when a variant is emerging, but then see less pronounced changes. Thus it often
takes a couple weeks for the MLR model to ‘dial in’ estimated growth advantage and
accuracy will tend to be poorer in early weeks when variant-specific growth advantage is
uncertain.
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Figure 3. Growth advantage of variants across analysis dates. Growth advantage is
estimated via the MLR model and is computed relative to clade 21K (lineage BA.1).

Genomic surveillance systems and forecast error

Again, using the MLR model, we find that different countries have consistently different
levels of forecasting error with forecasts in Brazil and South Africa showing more error
than forecasts in the UK and the USA (Fig. 4A). We find that broad statistics describing
both quantity and quality of sequence data available in at different analysis timepoints
and in different genomic surveillance systems correlates with forecasting error (Fig. 4B–E).
Using Pearson correlations we find that poor sequence quality as measured by proportion
of available sequences labeled as ‘bad’ by Nextclade quality control [17] correlates slightly
with mean AE (Fig. 4B). We find that good sequence quantity as measured by total
sequences available at analysis has a moderate negative correlation with mean absolute
error (Fig. 4E).

As suggested by these correlations across countries and time points, we expect that as se-
quencing intensity decreases, our accuracy in forecasting may vary as we have decreasing
levels of resolution in current variant frequencies and estimated growth advantages. In
order to investigate what number of sequences need to collected weekly to keep forecast
error within acceptable bounds, we subsampled existing sequences from the United King-
dom and Denmark. For context, we also computed the mean weekly sequences collected
for selected countries globally in 2022 (Fig. 5A). We select the United Kingdom due to
its large counts of available sequences, relatively short submission delay, and low forecast
error. Additionally, we include Denmark due to its large counts of available sequences
and to explore the possibility of stochastic effects due to relative population sizes (Den-
mark has ∼9% the population of the UK). We simulate several downscaled data sets by
subsampling the collected sequences at multiple thresholds for number of sequences per
week and then fit the MLR model to each of the resulting data sets to see how forecast
accuracy varies with sampling intensity. In order to properly account for variability in the
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Figure 4. Sequence quantity and quality influence nowcasts error. (A) Absolute error
at nowcast for the MLR model across countries. Points represent separate data sets at different
analysis dates. Median and interquartile range of absolute errors are shown as box-and-whisker
plots. (B-E) Correlation of sequence quality and sequence quantity metrics with absolute error.
Points represent separate data sets at different analysis dates. Correlation strength and significance
are calculated via Pearson correlation and are inset in each panel.

subsampled data sets, we generate 5 subsamples per threshold, location and analysis date.

From this analysis, we find that increasing the number of sequences per week generally
decreases the average error, but there are diminishing returns (Fig. 5B,D). Additionally,
the effect appears to saturate at different values depending on the forecast length. We find
that for +14 and +30 day forecasts sampling at least 1000 sequences per week is sufficient
to minimize forecast error. We arrive at a similar threshold of 1000 sequences per week
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Figure 5. Increasing sequencing intensity reduces forecast error (A) Mean sequences
collected per week for selected countries in 2022. Intervals are 95% confidence intervals of the
mean. Dashed lines correspond to sampling rates used in (B-E). (B, C) Mean absolute error as a
function of sequences collected per week colored by forecast horizon (-30 days, -15 days, 0 days,
+15 days, +30 days) for the United Kingdom and Denmark. The dash line corresponds to 5%
frequency error. (D, E) Proportion of forecasts within 5% of retrospective frequency as a function
of sequences collected for week for the United Kingdom and Denmark.

for both the UK and Denmark (Fig. 5B-E).

Discussion

In this manuscript we sought to perform a comprehensive analysis of the accuracy of now-
casts and short-term forecasts from fitness models of SARS-CoV-2 variant frequency. We
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observe substantial differences between median and mean absolute error (Fig. 2, Table 1)
with median errors generally quite well contained at 0.4–1.4% in the +30 day forecast,
while mean errors are larger at 5.8–9.6%. We find that better performing models more
often avoid this failure mode of large errors. The Piantham [13] model is the strongest
example here, where it shows a similar profile in terms of median absolute error, but
performs substantially worse in terms of mean absolute error (Fig. 2, Table 1).Similarly,
we observe MLR slightly outperforming FGA and GARW [12] in terms of mean absolute
error, but not median absolute error. As expected, errors increase as target shifts from
−30 day hindcast to +30 day forecast, but error increases more rapidly for mean absolute
error than median absolute error.

We find that the MLR, FGA and GARW models provide systematic and substan-
tial improvements in forecasting accuracy relative to a ‘naive’ model that uses 7-day
smoothed frequency at the last timepoint with sequence data (Fig. 2, Table 1). For
the MLR model, at +30 days the improvement in median absolute error over naive is
1.5–14.4% and the improvement in mean absolute error is 6.9–17.1%. This result supports
the use of MLR models in live dashboards like the CDC Variant Proportions nowcast
(covid.cdc.gov/covid-data-tracker/#variant-proportions) and the Nextstrain SARS-CoV-
2 Forecasts (nextstrain.org/sars-cov-2/forecasts/).

We also observe improvements in accuracy for the −30 day hindcast of modeled fre-
quency relative to naive frequency with the MLR model showing improvement in median
absolute error of 0.1–2.9% and improvement in mean absolute eror of 0.9–5.2%. These
improvements were greatest in countries with lower cadence and throughput of genomic
surveillance (Brazil and South Africa). Importantly, this suggests that fitness models are
useful for hindcasts in addition to short-term forecasts and that −30 day retrospective
frequency should not be taken as truth; it takes more time than 30 days for backfill to
resolve retrospective frequency.

We find that variability in forecast errors is partially driven by data limitations. When new
variants are emerging, we lack sequence counts and lack time to observe growth dynamics
resulting in initial uncertainty of variant growth rates (Fig. 3). Relatedly, analyzing the
variation in nowcast error, we find that overall sequence quality and quantity at time of
analysis are associated with model accuracy (Fig. 4). Thus, as expected, sequence quality,
volume and turnaround time are all important for providing accurate, real-time estimates
of variant fitness and frequency. Subsampling existing data in high sequencing intensity
countries, we find that there are diminishing returns to increasing sequencing efforts and
that maximum accuracy is achieved at around 1,000 sequences per week (Fig. 5). This level
of sequencing enables robust short-term forecasts of pathogen frequency dynamics at the
level of a country and highlights the feasibility of pathogen surveillance for evolutionary
forecasting.

We find that simple fitness models like MLR provide accurate and robust short-term
forecasts of SARS-CoV-2 variant frequency. Despite the performance of these simple
models, there is evidence to show that modeling variant frequencies using a hierarchical
fitness model can further provide improved short-term forecasts for SARS-CoV-2 variant
dynamics [18]. This gives one avenue for further development of fitness models for short-
term forecasts. That being said, these fitness models do not account for future mutations
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and can only project forward from circulating viral diversity. This intrinsically limits the
effective forecasting horizon achievable by these models. Future modeling work should seek
to incorporate the emergence and spread of ‘adjacent possible’ mutations [19]. Without
empirical frequency dynamics to draw upon, the fitness effects of these adjacent possible
mutations may be estimated from empirical data such as deep mutational scanning [20–22].
Continued timely genomic surveillance and biological characterization along with further
model development will be necessary for successful real-time evolutionary forecasting of
SARS-CoV-2.

Methods

Preparing sequence counts and case counts

We prepared sequence count data sets to replicate a live forecasting environment using
the Nextstrain-curated SARS-CoV-2 sequence metadata [23] which is created using the
GISAID EpiCoV database [24]. To reconstruct available sequence data for a given analysis
date, we filtered to all sequences with collection dates up to 90 days before the analysis
date, and additionally filtered to those sequences which were submitted before the analysis
date. These sequences were tallied according to their annotated Nextstrain clade to pro-
duce sequence count for each country, for each clade and for each day over the period of
interest. Sequence counts were produced independently for the 6 focal countries Australia,
Brazil, Japan, South Africa, the United Kingdom and the United States. We repeated
this process for a series of analysis dates on the 1st and 15th of each month starting with
January 1, 2022 and ending with December 15, 2022 giving a total of 24 analysis data sets
for each country. Since three models (FGA, GARW and Piantham) also use case counts for
their estimates, we additionally prepare data sets using case counts over the time periods
of interest as available from Our World in Data (ourworldindata.org/covid-cases).

Frequency dynamics and transmission advantages

We implemented and evaluated multiple models that forecast variant frequency. These
models estimate the frequency fv(t) of variant v at time t, and simultaneously estimate the

variant transmission advantage ∆v =
Rv

t
Ru

t
where Rv

t is the effective reproduction number

for variant v and u is an arbitrarily assigned reference variant with fixed fitness. We can
interpret these transmission advantages as the effective reproduction number of a variant
relative to some reference variant.

The four models of interest are: Multinomial Logistic Regression (MLR) of frequency
growth and three models of variant-specific Rt: a fixed growth advantage model (FGA)
parameterization and a growth advantage random walk (GARW) parameterization of the
renewal equation framework of Figgins and Bedford [12], as well as an alternative approach
to estimating variant Rt by Piantham et al [13]. We provide a brief mathematical overview
of these methods below.

The multinomial logistic regression model estimates a fixed growth advantage using logistic
regression with a variant-specific intercept and time coefficient, so that the frequency of
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variant v at time t can be modeled as

fv(t) =
exp(αv + δvt)∑
u exp(αu + δut)

, (1)

where αv is the initial frequency and δv is the growth rate of variant v, and the sum-
mation in the denominator is over variants 1 to n. Inferred frequency growth fv can be
converted to a growth advantage (or selective coefficient) as ∆v = exp(δvτ) assuming a
fixed deterministic generation time of τ .

The model by Piantham et al [13] relies on an approximation to the renewal equation
wherein new infections do not vary greatly over the generation time of the virus. This
model generalizes the MLR model in that it accounts for non-fixed generation time though
it assumes little overall case growth.

The fixed growth advantage (FGA) model uses a renewal equation model based on both
case counts and sequence counts to estimate variant-specific Rt assuming that the growth
advantage ∆v of variant v is fixed relative to reference variant u [12]. The growth advantage
random walk (GARW) model uses the same renewal equation framework and data, but
allows variant growth advantages to vary smoothly in time [12].

The models used all differ in the complexity of their assumptions in computing the variant
growth advantage. Growth advantages presented in this manuscript are estimated relative
to the baseline Omicron 21L (BA.1) strain, providing a point of reference for competing
growth advantages and how median values change over time. Further details on the model
formats can be found in their respective citations. All models were implemented using the
evofr software package for evolutionary forecasting (https://github.com/blab/evofr) using
Numpyro for inference.

We compared the four models to a naive model which is implemented as a 7-day moving
average on the retrospective raw frequencies at the last timepoint with sequence data.

Evaluation criteria

We calculated the ‘absolute error‘ (AE) for a given model m and data set d as the difference
between the retrospective raw frequencies and the predicted frequencies as

AEm,d
t =

1

n

∑
v∈V

∣∣∣fd
v (t) − f̂m,d

v (t)
∣∣∣ , (2)

where fd
v (t) and f̂m,d

v (t) are the retrospective frequencies and the predicted frequencies for
model m, data d, variant v and time t. The AE is the mean across individual variants
for a specific model, data set and timepoint. Additionally, we often work with the lead
time which is defined as the difference between date of analysis for the data set and the
forecast date l = t−Tobs. We summarized median absolute error and mean absolute error
across multiple analysis datasets in Figure 2 and Table 1.

Generating predictors of error

We explored four key variables to describe the effect of sequencing efforts on nowcast
errors and estimated Pearson correlations with the mean absolute nowcast errors. These
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variables are defined as proportion of bad quality control (QC) sequences according to
Nextclade [17], fraction of sequences available within 14 days of the prediction time, total
sequences availability within 14 days of the prediction time and median delay of sequence
submission. To calculate these variables, we selected a 14-day window of data before
each and every analysis date and used the collection and submission dates to determine
their availability. Total sequence availability was calculated by dividing the sequences
where submission date was before the date of analysis by the total collected sequences
and similarly fraction of sequences at observation was estimated. Sequence submission
delay was calculated by taking the difference between the submission date and the date
of collection. Bad QC sequence proportion was estimated by dividing the sequences with
bad Nextclade classification by the total collected sequences. All estimates were run for
all defined dates of analysis across all countries.

Downscaling historical sequencing effort

We explored the effects of scaling back sequencing efforts to assess the effect of sequencing
volume on nowcast and forecast errors. Using the sequencing data from the United King-
dom and Denmark, we subsampled existing available sequences at the time of analysis at a
rate of 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000 sequences per week
for the same analysis dates and study period used in the previous analyses, generating 5
subsampled data sets for each sequencing rate, location, and analysis date. We then fit the
MLR forecast model to each resulting data set and forecast up to 30 days after analysis
date and compared these forecasts to the truth set in previous sections to compute the
forecast error for each model. To better understand how the forecast error varies with
sequencing intensity and forecast length, we computed the fraction of forecasts within an
error tolerance (5% AE) as well as the average error at different sequence threshold and
lag times.

Data and code accessibility

Sequence data including date and location of collection as well as clade annotation was
obtained via the Nextstrain-curated data set that pulls data from GISAID database. A
full list of sequences analyzed with accession numbers, derived data of sequence counts
and case counts, along with all source code used to analyze this data and produce figures
is available via the GitHub repository github.com/blab/ncov-forecasting-fit.
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Figure S1. Reconstructing available data sets and corresponding predictions for Aus-
tralia, Brazil, South Africa and the United Kingdom. (A) Variant sequence counts catego-
rized by Nextstrain clade at 4 different analysis dates. (B) +30 day frequency forecasts for variants
in bimonthly intervals using the MLR model. Each forecast trajectory is shown as a different col-
ored line. Retrospective smoothed frequency is shown as a thick black line.
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