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ABSTRACT 
 
Objective: The Philippines has had several COVID-19 infection waves brought about by different strains 
and variants of SARS-CoV-2. This study aimed to describe COVID-19 outcomes by infection waves 
using machine learning. 
 
Methods: We used a cross-sectional surveillance data review design using the DOH COVID DataDrop 
data set as of September 24, 2022. We divided the data set into infection wave data sets based on the 
predominant COVID-19 variant(s) of concern during the identified time intervals: ancestral strain (A0), 
Alpha/Beta variant (AB), Delta variant (D), and Omicron variant (O). Descriptive statistics and machine 
learning models were generated from each infection wave data set. 
 
Results: Our final data set consisted of 3 896 206 cases and ten attributes including one label attribute. 
Overall, 98.39% of cases recovered while 1.61% died. The Delta wave reported the most deaths 
(43.52%), while the Omicron wave reported the least (10.36%). The highest CFR was observed during 
the ancestral wave (2.49%), while the lowest was seen during the Omicron wave (0.61%). Higher age 
groups generally had higher CFRs across all infection waves. The A0, AB and D models had up to four 
levels with two or three splits for each node. The O model had eight levels, with up to 16 splits in some 
nodes. Of the ten attributes, only age was included in all the decision tree models, while region of 
residence was included in the O model. F-score and specificity were highest using naïve Bayes in all 
four data sets. Area under the curve (AUC) was highest in the naïve Bayes models for the A0, AB and D 
models, while sensitivity was highest in the decision tree models for the A0, AB and O models. 
 
Discussion: The ancestral, Alpha/Beta and Delta variants seem to have similar transmission and 
mortality profiles. The Omicron variant caused lesser deaths despite being more transmissible. Age 
remained a significant predictor of death regardless of infection wave. We recommend constant timely 
analysis of available data especially during public health events and emergencies. 
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INTRODUCTION 
 
The Philippines has been considered a hotspot for the coronavirus disease 2019 (COVID-19) in the 
Western Pacific region.1 As of December 1, 2022, the country’s Department of Health (DOH) has 
reported a total of 4,037,547 cases, including 64,658 reported deaths.2 Meanwhile, the World Health 
Organization (WHO) has tallied 639,572,819 confirmed cases and 6,615,258 deaths globally.3 The 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the primary etiologic agent of 
COVID-19 infection. The infection causes symptoms like cough, colds, fever, dyspnea and dysgeusia, 
and may progress to be more life-threatening if it presents with complications such as shock and organ 
failure. COVID-19 mortality is influenced by several factors like advanced age, sex, presence of pre-
existing comorbid illness, and history of smoking and alcohol consumption.1 More recently, studies have 
surfaced highlighting the differences in mortality rates among cases with different vaccination statuses4,5 
and among those who were previously infected.5 According to SeyedAlighani and his colleagues (2021), 
mortality rates are additionally influenced by adequacy of health care delivery, political decisions, and 
epidemiological characteristics of the affected population.6 
 
Generally, viruses evolve to become more transmissible, regardless of severity.7 The ancestral strain 
was the original SARS-CoV-2 virus which originated in China. The virus has been persistent in its 
infection rates due to its intrinsic capability to replicate and mutate. These spontaneous mutations are 
products of viral RNA replication errors within the host cell resulting in the appearance of multiple 
variants.8  As of December 2022, there have been five recognized circulating SARS-CoV-2 variants of 
concern (VOCs): Alpha, Beta, Gamma, Delta and Omicron.  These VOCs have appeared in infection 
waves among different countries in varying timelines, but their designation as VOCs were December 
2020 (Alpha and Beta), January 2021 (Gamma), May 2021 (Delta) and November 2021 (Omicron).9 
Recent studies have characterized the different VOCs in terms of their transmissibility and severity. For 
instance, while the Delta variant evolved to become more transmissible than previous variants, several 
studies report similar hospitalization and mortality rates among the different infection waves.10–12 The 
Omicron variant, on the other hand, proved to be even more highly transmissible compared to the 
previous variants, but has shown the lowest hospitalization and mortality rates.13 The observed 
differences in transmission and severity among COVID-19 variants is possibly related to the increased 
immunity among the people infected, either through vaccination or previous infection waves.7 
 
As of October 8, 2022, there had been a total of 22,400 SARS-CoV-2 sequences shared by the 
Philippines in the Global Initiative on Sharing All Influenza Data (GISAID) COVID-19 sequence 
repository, which accounts for 0.57% of all cases.14 Tracking of relative frequencies of variants from 
sequenced COVID-19 cases show estimated time frames of the upsurge of specific variants: the 
ancestral strain was predominant (i.e., made up more than 50% of all sequenced samples) until about 
February 2021; the Alpha and Beta variants were concurrently predominant starting March until June 
2021; the Delta variant was predominant from July until November 2021; starting from December 2021 
until present, the Omicron variant and its subvariants were predominant.15 
 
Machine learning is often used for health in the analysis of large datasets and the prediction of outcomes 
based on a variety of inputs. Such applications of machine learning include identification of disease from 
clinical symptoms or laboratory results, as well as in treatment of diseases and facilitation of 
administrative processes. Such techniques have been used to aid in treatment of cancer, pneumonia, 
diabetes and other diseases, including COVID-19, wherein they can give more than 90% accuracy in 
prediction and forecasting.16 
 
Early prediction of COVID-19 mortality risks may help mitigate the effect of the pandemic by providing 
evidence for efficient resource allocation and proper patient treatment plans,17 and has been the topic of 
several researches.17–19 Most studies relied on medical records from admitted patients, relying on 
demographic, clinical and laboratory features to generate predictive models for patient prognosis. Some 
examples of machine learning algorithms used in COVID-19 research include logistic regression,18 
support vector machines,17 and decision tree ensembles (e.g., CatBoost, XGBoost, Random Forest).19 A 
previous study utilized a publicly available national surveillance dataset to predict COVID-19 mortality in 
the Philippines and identified age and history of hospital admission as significant predictors of disease 
outcome, but the study was limited to the early part of the pandemic wherein only the ancestral strain 
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was present in the population.20 This study aimed to describe COVID-19 outcomes by infection waves 
using machine learning. 
 
 
METHODS 
 
The study utilized a cross-sectional, documents review design. Data from the publicly available DOH 
COVID Data Drop database for September 24, 20222  was utilized in this study. The database 
represented all reported COVID-19 cases by reverse transcription polymerase chain reaction of 
respiratory swabs and was updated daily by the DOH Epidemiology Bureau. The raw data set contained 
3 934 777 cases and 22 attributes. Exploratory analysis was performed to screen cases and attributes in 
the raw data set. Ten attributes were included in the model generation which included Age, Sex, 
Admitted, RegionRes, ProvRes, CityMunRes, BarangayRes, Quarantined, Pregnanttab and 
RemovalType. Another attribute Age_Group was generated to reclassify Age into nine bins based on the 
US CDC classification for descriptive statistics. Another attribute, DateRepConf, was retained only for 
splitting of the data sets (below). Missing values for Pregnanttab were recoded as “(N/A)” for cases with 
Sex=MALE. Missing values for BarangayRes, CityMunRes and ProvRes were recoded as “ROF” for all 
cases where RegionRes=”ROF”. Cases with missing values for Age and RemovalType were dropped 
from the data set to generate the final data sets. Details of the exploratory analysis can be found in 
Supplementary Information A. 
 
The final dataset was split into four (4) data sets according to DateRepConf, where each data set 
represents the predominant COVID-19 variant(s) of concern during those time intervals as reported by 
GISAID15. The details of the four data sets are listed below: 

1. A0 data set (predominant strain: ancestral; start date: January 30, 2020; end date: February 28, 
2021); 

2. AB data set (predominant variants: Alpha and Beta; start date: March 1, 2021; end date: June 
30, 2021); 

3. D data set (predominant variant: Delta; start date: July 1, 2021; end date: November 30, 2021); 
4. O data set (predominant variant: Omicron; start date: December 1, 2021; end date: September 

24, 2022) 
 
Descriptive statistics such as means, standard deviations, frequencies, case fatality rates (CFR), t tests 
and Pearson’s χ2 tests were generated with StataCorp 2013 (Stata Statistical Software, Release 13; 
College Station, TX). 
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 � 100 

 
Attribute selection, random undersampling, hyperparameter optimizations, model generation, cross-
validation and calculations of model performances were done in RapidMiner Studio 9.10.008 (rev: 
68db53, platform: WIN64) (see Supplementary Information B). The attribute RemovalType was used 
as the outcome in all data sets. Attribute selection was done individually for all data sets using feature 
weights operators weightbyGiniIndex and weightbyInformationGainRatio to determine appropriate 
attributes to be included in the model generation. Grid optimizations of the hyperparameters for the 
decision tree operator decisionTree for all data sets were done by running fivefold cross-validation using 
the subprocess optimizeParameters(Grid) and operator crossValidation. Model generation was done for 
all four data sets using fivefold cross-validation using the optimized hyperparameters and 
RemovalType=DIED as the positive class set. Random undersampling (RUS) was done only on the 
training data sets for each fold, and was done using the sample operator to a) select all cases with 
RemovalType=DIED, and b) randomly select cases with RemovalType=RECOVERED using simple 
random sampling to achieve a 1:1 RECOVERED:DIED ratio. This training dataset was used to generate 
the decision tree models per fold. All cases in the testing data sets were used to validate each model.  
 
The decision tree models generated per data set were extracted. Performance metrics such as area 
under the curve (AUC), accuracy, F-score, sensitivity and specificity were extracted from the cross-
validation. Similar cross-validation operators were used to generate naïve Bayes and random forest 
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models and performance metrics of all data sets. Receiver operating characteristic (ROC) curves for the 
three models were also generated using RapidMiner Studio 9.10.008 (rev: 68db53, platform: WIN64). 
 
 
 
RESULTS 
 
Description of cases 
 
The final data set consisted of 3 896 206 cases (99.02% of all total reported cases from the raw data 
set) and 10 attributes including one label attribute (RemovalType). The A0, AB, D and O data sets 
comprised 14.68%,  21.45%, 36.31% and 27.56% of the reported cases in the final data set, 
respectively. The daily reported cases as well as the segmentation according to variants are visualized 
in Fig. 1.  Of all reported cases, 98.39% recovered while 1.61% died. Among all reported deaths, the D 
data set contributed the most cases (43.52%) while the O data set contributed the least (10.36%). 
Among the four data sets, the highest CFR occurred during the first wave (2.49%) and the lowest during 
the Omicron wave (0.61%).the Alpha/Beta waves, reported cases were predominantly males, but the 
CFRs among males were higher than females across all four data sets. Cases with age over 85 years 
had the highest CFR among different age groups, while cases in the 5-17, 18-29 and 30-39 age groups 
had the lowest CFRs. Age-stratified CFRs in the Alpha/Beta, Delta and Omicron waves were lower 
compared to the ancestral wave across age groups (Table 1). 

Based on disaggregation by region, the National Capital Region (NCR), Cordillera Autonomous Region 
(CAR), Region II and Region IV-A reported the highest case rates overall (9 304, 7 007, 4 603 and 4 323 
cases per 100 000, respectively) and among most of the four data sets. The highest CFR was recorded 
in Region VII during the Delta wave (4.40%), while the lowest CFR was recorded in repatriated overseas 
Filipinos (ROF) during the Omicron wave (0.02%) (Table 1). 

 
Outcomes from machine learning models 
 
Out of the nine non-outcome attributes retained for model generation, only Age and Admitted were 
included in the models for data sets A0, AB and D. For the data set O, Age, Admitted and RegionRes 
were included in the model. The models were trained and cross-validated with optimized 
hyperparameters detailed in Supplementary Information B.3-5. 
 
In terms of performance, accuracy, F-score and specificity were highest using naïve Bayes in all four 
data sets. AUC was highest in the naïve Bayes models for the A0, AB and D data sets, while sensitivity 
was highest in the decision tree models for the A0, AB and O data sets (Table 2). The ROC curves for 
the naïve Bayes and random forest models were better compared to the ROC curve of the decision tree 
model (Fig. 2). 

The decision tree models for the A0 and AB data sets were similar: they were composed of three levels, 
with each node splitting into two branches (Fig. 3A and Fig. 3B, respectively). The D data set had four 
levels and had either two or three splits (Fig. 3C). The root node for the A0, AB and D datasets was 
Age, with the lowest split criterion in the D data set (41.5 years) and the highest in the A0 data set (47.5 
years). Another split according to Age was also observed in all three data sets at Age = 0.5 years. The 
attribute Admitted also split the D data set for cases with Age <= 41.5 years (Fig. 3C). Majority of cases 
above the root node cutoffs died in all three data sets (A0 = 76.60%, AB = 72.93%, D = 70.21%), while 
majority of cases within or below the root node cutoff and above Age = 0.5 years recovered (A0 = 
82.88%, AB = 86.19%, D = 86.39%). In the D data set, 64.04% of cases who had a history of hospital 
admission died. In the A0, AB and D data sets, majority of cases below Age = 0.5 years died (A0 = 
65.88%, AB = 59.70%, D = 55.61%). 

The O data set had eight levels, but the number of node splits ranged between two and 16 (Fig. 3D). 
The root node was Age with a split criterion of 52.5 years. Cases with Age <= 52.5 years were further 
split according to Age <= 41.5 years, with 77.02% of those less than 41.5 years recovering. Cases with 
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Age between 41.5 and 52.5 were split into their region of residence, with the majority outcome = DIED 
for those residing in Regions I, II, III, IV-B, VI, VII, XI, XII, XIII as well as in CAR. Cases with Age > 52.5 
years were split into region of residence, with majority of cases from any region dying except for 
repatriate overseas Filipinos. Supplementary Information B.5 provides the full information of the 
decision tree models, including the actual number of cases and outcomes per leaf. 

 
DISCUSSION 
 
We generated four different decision tree models corresponding to the different predominant COVID-19 
strain and variants in the Philippines, with age being the root node for all models. The A0 and AB data 
sets generated simple and similar decision trees with only age as the significant attribute, while the D 
data set model incorporated admission history as an additional attribute. The O data set generated a 
more complicated decision tree which incorporated age, admission history and region of residence of the 
cases into the model. Machine learning models such as decision trees have been used in analyzing 
trends in COVID-19 data, including in epidemiological modeling21 and prediction of disease 
prognosis.17,20 
 
Reported COVID-19 cases in the Philippines reached almost 4 million cases as of September 24, 2022, 
with most cases occurring during the Delta and Omicron waves despite the relatively shorter duration of 
these waves compared with the first infection wave from the ancestral strain. SARS-CoV-2 variants have 
shown increasing transmissibility compared to previous ones, with the Delta and Omicron variants 
reaching R0 of 7 and 10, respectively, compared to 2.5 of the ancestral strain.8,22 Other studies reported 
that the Omicron variant was up to 3.7 times more transmissible compared to the Delta variant and is 
primarily due to its ability for immune evasion and reinfection regardless of vaccination status and 
previous infection23,24 mainly due to an enhanced viral replication efficiency in the bronchus.25 
 
Previous studies have found that the severity among the ancestral, Alpha and Delta variants are 
comparable,11,18 but the severity of the Omicron variant has consistently been lower compared to the 
other variants.11,24,26,27 This may be due to lower replication competence of the Omicron variant in the 
lung parenchyma.25 These findings were consistent with our study: our calculated CFR during the 
Omicron wave was 65%, 68% and 75% lower than those of the Alpha/Beta, Delta and ancestral waves, 
respectively. Earlier studies on sex differentials in COVID-19 mortality (i.e., males tend to have higher 
CFRs)20,28 also confirm our results regardless of COVID-19 variant. 
 
In our study, age is the main predictor of our defined outcome for reported COVID-19 cases. Older age 
groups tend to have higher case fatality rates regardless of predominant COVID-19 variant. This general 
trend has been documented in previous studies.1,6,11,29,30 However, we noticed a pattern similar to a 
previous Philippine study20 on cases of the ancestral variant: the CFRs of the lowest age group (i.e., 0-4 
years) tend to be up to 6 times the CFR of the baseline (i.e., 18-29 years), with the lowest CFRs seen in 
the 5-17 age group. The US Centers for Disease Control and Prevention29 shows a generally increasing 
trend in CFR but a study by Khera et al. (2021) supports our findings and attributed this “U-shaped” 
phenomenon to several factors such as children having differential expression of ACE-2 receptors, more 
robust innate immune system (except for newborns), and lesser exposure due to public health 
measures.31  
 
Our decision tree models showed several results. First, among all the attributes included in our models 
and consistent with our descriptive analysis, age is the most important predictor of mortality. Previous 
machine learning models on COVID-19 mortality20,32 confirm this finding, suggesting that in the absence 
of clinical data in surveillance data sets, age remains an important factor. Second, the similarities 
between the A0 and AB models suggest that earlier in the pandemic, the impact of the two waves in the 
general population may have been similar. During these times, large portions of the population in the 
country were still under COVID-19 lockdowns and vaccinations had barely started.33,34 These events 
may have limited the population’s exposure to the virus and to COVID-19 vaccines which may suggest 
that during the early months of the pandemic, internal biological factors such as age-related 
immunosenescence and presence of comorbidities are bigger factors in prognosis compared to natural 
or acquired immunity.1 Third, the D model incorporated history of admission as a splitting criterion, 
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similar to a previous study.20 The previous national guidelines for hospitalization of COVID-19 patients 
prioritizes admission of only severe and critical COVID-19 cases,20,35 and this may have been 
exacerbated by the sudden influx of COVID-19 cases during the Delta wave as reported in this study. 
  
Fourth, the incorporation of the attribute RegionRes (region of residence) in the O data set model is 
quite novel. A previous study20 of the early COVID-19 ancestral wave in the Philippines did not include 
geopolitical classifications in the model and was consistent with our A0, AB and D models. Our current O 
model suggests that there may be different impacts of the Omicron variant among different regions in 
the Philippines. Literature regarding regional differences in COVID-19 CFRs are limited, but previous 
studies recognized the association of transmission or mortality rates with differences in health care 
system factors such as number of available hospital beds,10,36,37 length and severity of lockdowns, 
population or industrial composition,37,38 and previous infection or vaccination rates.5,7,12,27 Repatriated 
overseas Filipinos, on the other hand, are only allowed to return to the country if they are well enough to 
travel,39 hence the lower CFR among this cohort regardless of infection wave. 
 
Our study has several limitations. Since the data set is publicly available surveillance data, it did not 
include clinical factors that are associated with COVID-19 mortality such as presence of comorbidities, 
vaccination status and sociodemographic information. Our categorization of cases according to infection 
waves was also based on the predominant variant during the date of confirmation of infection and not 
based on genetic sequencing. Additionally, these dates may have also been delayed. These factors 
could have led to improper classification of reported cases, particularly those whose reported dates were 
near the boundaries of our infection wave timelines.  
 
Surveillance data sets during the pandemic are often imbalanced in that the number of recoveries vastly 
outnumber reported deaths. We used undersampling techniques to control for this imbalance. The 
models we generated generally had high AUC and sensitivity, with the naïve Bayes and the decision 
tree models mostly having the highest AUC and sensitivity across the different data sets, respectively. 
Higher sensitivity is often preferred in inherently imbalanced data sets.40 We utilized similar techniques 
from a previous study20 to reduce overfitting: removing irrelevant or highly correlated attributes, enabling 
pre-pruning and pruning during model training, and optimizing the hyperparameters for the highest 
sensitivity. 
 
In conclusion, our study highlights the observable changes in COVID-19 transmissibility and case fatality 
rates depending on the infection timeline and predominant SARS-CoV-2 variant, with the mortality 
pattern of the Omicron variant being significantly different from the preceding variants. Our findings also 
reinforce the strong influence of increasing age in predicting COVID-19 outcomes regardless of SARS-
CoV-2 variant. The models that we generated highlight the need for up-to-date and stratified policies 
especially during viral epidemics and pandemics. We recommend future research to apply similar 
analysis of publicly available surveillance data to monitor emerging or ongoing outbreaks. 
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