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  23 

Abstract:  24 

This study explores the application of deep proteomic profiling to extract disease-specific features from 25 
urine. Early detection of cancer and other chronic disorders is crucial for better outcomes, but traditional 26 
diagnostics as well as emerging genomic-based diagnostics are expensive and invasive. Our research 27 
reveals that a select group of urinary proteins can accurately detect early-stage diseases with high 28 
sensitivity, surpassing current tests. While urine-based protein panels could offer cost-effective and 29 
accurate alternatives to current screening methods, kidney factors and blood urine barrier pathologies 30 
could pose significant challenges. New diagnostic technologies may emerge because of these findings, 31 
ushering in an era of early detection for cancer and chronic diseases. 32 

 33 
One-Sentence Summary:  34 
Urine-based protein panels show distinct patterns in early disease detection, promising opportunities for 35 
advancing diagnostic tests36 
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Main Text 37 

Urine-based diagnostics are becoming increasingly popular as a non-invasive and cost-effective method 38 
of early detection of various types of diseases.(1-8) In recent years, urine-based cancer diagnostics have 39 
been developed for a variety of different types of cancer, including bladder, prostate, and colorectal 40 
cancer. For example, a urine-based test called UroSEEK has been developed for the early detection of 41 
bladder cancer. The test detects mutations in 11 cancer-associated genes in urine samples and has shown a 42 
sensitivity of 96% and specificity of 88% in early detection of urothelial cancer.(9) EpiCheck is another 43 
example of urine-based test detecting 15 DNA methylation targets in urine samples and has demonstrated 44 
a sensitivity of 68% at the specificity of 88% for bladder cancer.(9) Additionally, a 19-protein urinary 45 
biomarker model was recently developed and exhibited an 87% sensitivity and 65% specificity, 46 
outperforming traditional markers.(10) 47 

While urine is seen as an extract and proxy of the serum, reliable measurement of proteins in urine to 48 
develop effective and widely available diagnostic tests is challenging.(11) The low abundance of 49 
biomarkers in urine, the physiology of kidney and urinary system, and the high variability in sample 50 
collection and processing can make it difficult to obtain accurate and consistent results and interpret the 51 
variation across different diseases and healthy populations. Additionally, identifying biomarkers that are 52 
specific and sensitive enough to detect diseases in low levels has been a major challenge for developing 53 
effective urine-based screening tests.(12) 54 

Recent advancements in protein measurements, particularly with innovations like the Proximity Extension 55 
Assay, coupled with advanced AI algorithms, hold the transformative potential to reshape the landscape 56 
of urine-based diagnostics. These innovations not only enable the detection of low-abundance biomarkers 57 
in urine with remarkable sensitivity and specificity (13-19) but also open the door to a more 58 
comprehensive diagnostic approach. Rather than concentrating solely on individual biomarkers, we are 59 
now poised to identify the unique patterns associated with each disease within urine samples. This 60 
paradigm shift in diagnostics offers the promise of developing more robust and promising biomarker 61 
panels for the early detection of various diseases. 62 

Additionally, the establishment of standardized protocols for urine collection, processing, and storage 63 
represents a critical step in our pursuit of reliable and accurate urine-based diagnostic tests. These 64 
protocols not only reduce variability but also significantly enhance the overall precision and reliability of 65 
the diagnostic process. 66 

In this study, leveraging these advancements, we have embarked on landscaping of the urine proteome to 67 
develop novel diagnostics for a range of diseases.  68 

 69 

Urine proteome landscape in healthy individuals  70 

We utilized the PEA technology to detect a total of 3,072 proteins in urine samples, and successfully 71 
identified 2,850 of these proteins. This subset of 2,850 proteins formed the basis for the exploration of 72 
novel biomarkers in urine. Notably, all proteins were directly assessed from urine samples with a fourfold 73 
dilution, primarily aimed at minimizing the presence of salt in the samples. It is noteworthy that no 74 
further dilution was necessary for the PEA technology analysis, suggesting that the concentrations of the 75 
detected proteins generally remained at lower levels across the entire spectrum of proteins examined. 76 

Our analysis indicated that the concentrations of certain proteins did not display significant differences in 77 
relation to the age of the individuals. As illustrated in Figure 1.A, specific proteins, such as VEGFB and 78 



IL11, exhibited relatively higher urinary concentrations in older patients, while proteins like BOLA1, 79 
ARHGEF, and NFKB2 showed lower urinary concentrations in older individuals. It is pertinent to 80 
mention that only a limited number of proteins demonstrated a p-value of <0.01, and only one protein 81 
exhibited a p-value of 0.0016, indicating the overall subtle age-related differences in protein 82 
concentration in urine. 83 

Furthermore, protein concentrations in urine exhibited variations based on the biological sex of the 84 
individuals. Figure 1.B depicts these differences in protein abundances between healthy males and 85 
females. Notably, Kallikreins, in particular, proved to be highly sensitive to the sex of the samples. 86 
Among these proteins, KLK3 and MSMB displayed significantly higher concentrations in male urine 87 
samples, while proteins KLK8 and KLK13 exhibited significantly higher concentrations in female 88 
samples. In total, our analysis identified more than 20 proteins with a significant p-value of <0.001, 89 
indicating a more pronounced contrast among patients when considering biological sex, in comparison to 90 
age. 91 

 92 

Urine proteome landscape across diseases 93 

The volcano plots, as illustrated in Figure 2, provide an insightful perspective on the differential 94 
expression of proteins in various medical conditions under examination in this study. Notably, it is 95 
apparent that most of these conditions exhibited an asymmetric pattern, characterized by 96 
overrepresentation of proteins in patients compared to normal samples, except for the case of melanoma. 97 
The observations collectively reveal three distinct patterns. Firstly, in the context of melanoma and to 98 
lesser extent endometrial cancer, the volcano plot exhibits a symmetrical pattern without a statistically 99 
significant changes in the great majority of the proteins. Secondly, in cancers of the cervix, ovary, and 100 
prostate as well as in MS, an asymmetrical shape is observed while majority of the protein changes were 101 
non-significant. Thirdly, the third pattern was related to cancers of kidney, bladder, and NASH where we 102 
observed an asymmetrical shape on the volcano plots and significant increase in the great majority of 103 
proteins. These findings underscore the substantial role of the kidneys in protein excretion in urine, which 104 
holds important implications for urine proteomics studies. Overall, our results consistently point to a 105 
distinctive pattern with statistically significant over-presentation of proteins in patients, offering potential 106 
utility for disease detection across a broad spectrum of conditions.  107 

The analysis of correlations between different proteins has revealed intriguing patterns (as shown in 108 
Figure S1). To simplify the interpretation of these correlation matrices while ensuring their clarity, we 109 
chose to focus on the top 100 proteins with the lowest p-values in disease-normal comparisons. This 110 
selective approach allowed us to assess changes in the proteomic landscape across different diseases. For 111 
example, when examining the top 100 proteins that distinguish bladder, kidney, and NASH, we observe 112 
notably high correlations in normal samples. This suggests a potential non-differential over-leakage of 113 
these proteins into urine. In contrast, the correlation between proteins that vary between melanoma and 114 
endometrial cancer patients and their respective normal samples is considerably lower, indicating distinct 115 
urinary presentations. Furthermore, when comparing the protein correlations in healthy controls and 116 
patients, we observe significant differences in correlation patterns for the top 100 proteins in the cases of 117 
cervical cancer and prostate cancer. In summary, the volcano plots and correlation matrices together 118 
emphasize the unique urinary patterns associated with various diseases, underscoring their pivotal role in 119 
developing diagnostics for each disease category. 120 

Figure S2 illustrates the distribution of over-represented and under-represented proteins across various 121 
diseases, similar to Figure S1, focusing only on the top 100 proteins with the lowest p-values in disease-122 
normal comparisons. The data underscores the specificity of proteins associated with each disease. As 123 



corroborated by the volcano plots, the majority of proteins were over-represented. Notably, among the top 124 
100 proteins with the lowest p-values, only melanoma, prostate cancer, endometrial cancer, and NASH 125 
exhibited under-represented proteins in urine. In diagram S2, the over-represented proteins were uniquely 126 
linked to individual diseases, with no proteins common to more than two conditions, suggesting a disease-127 
specific protein signature. Figure S2B displays the under-represented proteins identified in the study, 128 
found in fewer diseases. These cases are highly disease-specific, emphasizing that urine proteomes 129 
exhibit distinctive protein changes in response to diseases, thereby underscoring the specificity and 130 
diagnostic potential of urine proteomics in the context of various diseases. 131 

 132 

Optimal disease-specific protein signature  133 

In Figure 3, we present the AUC scores achieved for each of the diseases under examination, with 134 
consideration to the number of proteins utilized. Generally, we observed that an optimal disease detection 135 
performance, characterized by AUC scores exceeding 0.9, required the incorporation of at least 7 136 
proteins. Notably, ovarian cancer was the sole exception, where the maximum AUC score was attained 137 
with a minimum set of 15 proteins. On the other hand, our analysis reveals a distinctive case in our 138 
study—namely, the detection of MS, where the highest AUC score achieved was 0.88, despite the 139 
utilization of 17 proteins. This unique instance suggests that this neurological disease might exhibit 140 
minimal alterations in its protein signature within urine, offering a plausible explanation for the relatively 141 
lower AUC score. 142 

Figure 4 illustrates the performance of both individual proteins within the panel and the overall 143 
performance of the panel. As depicted in the figure, the overall performance of the panel surpassed that of 144 
any individual protein in most instances. This underscores the distinct contribution of each protein within 145 
the panel in characterizing the unique proteomic signature of the disease. 146 

While the urinary panels exhibited high performance (AUC>0.95) for most diseases in the study, there 147 
was a noticeable trade-off between sensitivity and specificity across diseases. For instance, in the cases of 148 
prostate cancer, NASH, and melanoma, relatively high sensitivity could be achieved at 99% specificity. 149 
However, achieving high sensitivity for panels related to cervical and endometrial cancers proved more 150 
challenging and necessitated a significant reduction in panel specificity. 151 

Figure 5 illustrates the quantified significance of individual proteins for various diseases. To determine 152 
the importance of each protein, we employed a random forest classifier trained on each disease using a 153 
feature set composed of concatenated proteins from all panels. The feature importance scores generated 154 
reflect the normalized total reduction in Gini impurities resulting from the utilization of a specific protein 155 
as a feature. Gini impurity serves as a metric to gauge how frequently a randomly selected element from 156 
the dataset would be incorrectly classified if it were randomly labeled according to the distribution of 157 
labels within the subset. The Gini impurity reaches its minimum value when all cases within the node 158 
exclusively belong to a single class. In this context, the scores indicate the influence of each protein in 159 
reducing the mixture or impurity of the samples. 160 

The heatmap in Figure 5 effectively portrays the unique significance of protein sets for detecting specific 161 
diseases. The majority of disease detection sets typically comprise seven proteins, with the exception of 162 
the ovarian cancer protein set, which comprises 15 proteins to achieve an acceptable level of specificity. It 163 
is noteworthy that proteins exhibiting the highest predictive specificity for their target diseases are the 164 
most prevalent. Moreover, certain proteins play a crucial role in the detection of multiple diseases, in 165 
addition to their primary target. For instance, the protein VEGFD, included in the prostate cancer protein 166 
set, also proves to be highly significant for bladder cancer. In the case of bladder cancer, protein C9orf40 167 



exhibited substantial importance, even though it wasn't selected for the final set. Another example is 168 
protein PPY, which demonstrated equivalent importance for both melanoma and multiple sclerosis 169 
detection. 170 

 171 

Interpretation  172 

Our landscaping of the urine proteome revealed the potential of utilizing low-abundance proteins in urine 173 
for the early detection of cancer, metabolic disorders, and neurological conditions. This finding forms the 174 
basis for the development of a range of non-invasive urine-based screening tests capable of identifying a 175 
variety of diseases. The early diagnosis of conditions such as cancer and metabolic disorders is essential 176 
for the development of effective treatments. Our study has demonstrated that distinct biological signals 177 
can be detected in urine even during the initial stages of diseases.  178 

Furthermore, our findings indicate that proteins characterizing the urinary pattern of each disease is 179 
relatively unique and are not affected by the other conditions. This offers a promising avenue for the 180 
development of non-invasive urine-based tests designed to detect disease-specific proteins. These tests, if 181 
implemented, could enable early disease diagnosis, thereby preventing disease progression and 182 
facilitating the development of more effective treatments. In essence, our research has the potential to 183 
significantly impact healthcare by improving early disease detection and advancing public health. 184 

Alterations in the urine proteome can be attributed to structural or physiological damage within the 185 
kidneys, potentially affecting the integrity of the blood-urine barrier. It is worth noting that distinguishing 186 
certain diseases that share similarities in protein classes with kidney damage can be challenging. 187 
Therefore, in the development of protein-based tests designed to detect a range of disease types, careful 188 
consideration of these complexities is imperative. Recent insights gleaned from the CKD273 biomarker 189 
panel, specifically tailored for the identification of impaired kidney function, have shed light on the 190 
predominant biomarkers, primarily comprising collagen fragments originating from modified 191 
extracellular matrix turnover.(9) This knowledge offers a practical opportunity to either accommodate or 192 
differentiate kidney-related changes when formulating diagnostic tests for other diseases. 193 

Our new generation of protein-based urine test has exhibited remarkable sensitivity in the early detection 194 
of a variety of tumors in asymptomatic individuals, positioning it as a strong candidate for widespread 195 
screening—a role currently unattainable with existing methods. The non-invasive and cost-effective 196 
nature of urine testing makes it a practical option for screening large populations for cancer, especially 197 
among individuals with risk-elevating lifestyle factors or family histories. The potential for earlier 198 
detection and subsequent treatment holds promise for substantially improving patient outcomes.  199 

In addition to our comprehensive protein measurement coverage and the accuracy of these measurements, 200 
even for proteins present in small quantities; our strengths encompass developing a machine learning 201 
platform for extracting unique features from a wide range of urinary proteins. Furthermore, our approach 202 
encompasses diseases with significant unmet diagnostic needs. There are also limitations to consider, 203 
including the small size of the cohort and the presence of comorbidities. Hence, we need to validate our 204 
protein panels in a larger population cohort before it can be widely accepted across a variety of 205 
populations. Additionally, the test should be evaluated for accuracy and precision in different populations. 206 
Finally, the cost and ease-of-use of the test should be determined. 207 

In summary, this study presents several distinct contributions. These include an analysis of the most 208 
extensive proteomics dataset derived from urine, the formulation of a cancer-specific protein signature 209 



tailored for early-stage cancers, with an emphasis on the baseline carcinogenic state rather than the later-210 
stage tumor behavior and human response. 211 
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Figures 267 

Figure 1. Variations in Urine Proteome by Age and Sex. Volcano plots depicting differential protein 268 
abundances in healthy adults aged above and below 35 years (a), and between adult males and females 269 
(b). Red points indicate proteins with the lowest p-values for statistical differences. 270 

Figure 2. Variations in Urine Proteome across Different Diseases. Volcano plots showing differential 271 
protein abundances in healthy adults and patients with various conditions: bladder cancer (a), cervical 272 
cancer (b), endometrial cancer (c), kidney cancer (d), melanoma (e), multiple sclerosis (MS) (f), 273 
nonalcoholic steatohepatitis (NASH) (g), ovarian cancer (h), and prostate cancer (i). Red points represent 274 
proteins with the lowest p-values for statistical differences. 275 

Figure 3. The relationship between the size of the protein panel and the performance of panel. The 276 
X-axis displays the number of proteins in the panel, while the Y-axis measures panel performance using 277 
the AUC for various conditions: bladder cancer (a), cervical cancer (b), endometrial cancer (c), kidney 278 
cancer (d), melanoma (e), multiple sclerosis (f), nonalcoholic steatohepatitis (NASH) (g), ovarian cancer 279 
(h), and prostate cancer (i).  280 

Figure 4. The performance of the selected protein panel. ROC curves depict the performance of 281 
selected protein panels for each condition: bladder cancer (a), cervical cancer (b), endometrial cancer (c), 282 
kidney cancer (d), melanoma (e), multiple sclerosis (f), nonalcoholic steatohepatitis (NASH) (g), ovarian 283 
cancer (h), and prostate cancer (i). Blue lines represent individual protein performance, while the orange 284 
line represents the overall panel performance. 285 
 286 
Figure 5. Distinctive Significance of Protein Sets for Disease Detection. This heatmap illustrates the 287 
distinct importance of each protein of the panel in detecting other diseases.  288 
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Figure 4.
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