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Background: Impaired microvascular and vasomotor function is a common consequence 

of aging, diabetes, and other risk factors, and is associated with adverse cardiac outcomes. 

Such impairments are not readily identified by standard clinical methods of cardiovascular 

testing such as coronary angiography and noninvasive single photon emission tomography 

(SPECT) myocardial perfusion imaging (MPI). We hypothesized that signals embedded 

within stress electrocardiograms (ECGs) identify individuals with microvascular and 

vasomotor dysfunction. Methods: We developed and validated a novel convolutional 

neural network (CNN) using stress and rest ECG data (ECG-Flow) to identify patients with 

impaired myocardial flow reserve (MFR) on quantitative positron emission tomography 

(PET) MPI (N=3887). Diagnostic accuracy was validated with an internal holdout set of 

patients undergoing stress PET MPI (N=963). The prognostic association of ECG-Flow with 

mortality was then evaluated in a separate cohort of patients undergoing SPECT MPI 

(N=5102). Results: ECG-Flow achieved good diagnostic accuracy for impaired MFR in the 

holdout PET cohort (AUC, sensitivity, specificity: 0.737, 71.1%, 65.7%). Abnormal ECG-

Flow was found to be significantly associated with mortality in both PET holdout and 

SPECT MPI cohorts (adjusted HR 2.12 [95% CI 1.45, 2.10], 𝑝 = 0.0001, and 2.07 [1.82, 

2.36], 𝑝 < 0.0001, respectively). Conclusion: Signals predictive of microvascular and 

vasomotor dysfunction are embedded in stress ECG waveforms. These signals can be 

identified by deep learning methods and are related to prognosis in patients undergoing 

both stress PET and SPECT MPI. 
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1 Introduction 

Coronary microvascular/vasomotor dysfunction (CMD) develops as a result of aging, 

diabetes, and a range of other cardiometabolic diseases (1) and cause myocardial ischemia 

and symptomatic angina without obstructive coronary disease (2,3). Approximately half of 

patients referred for invasive cardiac evaluation are found to have no obstructive coronary 

disease (4), and of these, more than two-thirds have some form of CMD (2). Further, CMD is 

associated with markedly increased rates of adverse cardiac outcomes (5). 

Despite high prevalence and prognostic relevance, CMD is difficult to diagnose with 

standard clinical tools, and many patients remain undiagnosed or have presumptive 

diagnoses without confirmation. Advanced diagnostic measures that can identify CMD 

include quantitative coronary or myocardial flow reserve (MFR) as measured from invasive 

vasomotor testing (4,6) or noninvasive stress imaging with positron emission tomography 

(PET) myocardial perfusion imaging (MPI) (7), transthoracic doppler echocardiography, or 

cardiovascular magnetic resonance imaging (6). Although the prognostic value of 

myocardial flow measures has been well-established (8), these advanced techniques are 

not widely available and are substantially more costly than standard cardiovascular testing 

methods, such as invasive coronary angiography and stress electrocardiography, which 

cannot quantify these parameters. Challenges and heterogeneity in the diagnosis of CMD 

have also been a major barrier to the design and implementation of clinical trials in this 

space. 

Electrocardiography (ECG) signals are well known to reflect cardiac structure and function 

(9) and have long been used for noninvasive detection of ischemia and infarction through 

analysis of ST segment and Q wave changes (10). However, the diagnostic accuracy of 

traditional ECG criteria for detection of myocardial ischemia at rest or even during stress 

has been modest (11,12). Inspired by recent studies applying machine learning to ECG 

analysis (13,14), we posited that stress ECGs acquired concurrently with MPI testing would 

be a rich source of information on coronary vasomotor and microvascular dysfunction (15). 

We hypothesized that a machine learning convolutional neural network (CNN) using stress 

and rest ECG waveform data could identify individuals with impaired myocardial flow 
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reserve. The model was trained, validated, and tested with paired ECG and PET-derived 

MFR measurements. We then assessed the CNN model’s ability to predict mortality risk in a 

large single-center registry of patients undergoing standard noninvasive MPI and stress 

ECG for which MFR was not available. 

2 Methods 

2.1 Patient population 

All consecutive patients from 2015 to 2020 that underwent at least one stress-rest PET-CT 

or SPECT-CT MPI exam at the University of Michigan Frankel Cardiovascular Center were 

included in our MPI-ECG registry. Exclusion criteria included history of heart 

transplantation, missing or uninterpretable image data, or missing demographic or 

hemodynamic data. 

For patients with more than one MPI exam, only the earliest evaluable exam was included. 

Patients that underwent both PET-CT and SPECT-CT exams were included in the PET 

cohort only and were excluded from the SPECT cohort to avoid label leakage. The PET 

cohort was randomly split into training, validation, and holdout test subsets with a ratio of 

60:20:20%. The SPECT cohort was used as an independent patient population for 

prognostic evaluation. All patient data was de-identified and informed consent was waived 

under an exemption from the University of Michigan Institutional Review Board. 

2.2 Data source 

Cardiac 82Rb PET exams were performed according to guidelines for MPI testing (16) and 

measurement of MBF (17,18) as previously described (19). Cardiac 99mTc-sestamibi SPECT 

exams were performed according to guidelines (20) as previously described (21). Left 

ventricular ejection fraction (LVEF) (22) and stress total perfusion deficit (TPD) (23) were 

routinely estimated in all nuclear images. Stress was induced either pharmacologically with 

intravenous bolus administration of regadenoson (0.4 mg), by treadmill exercise using a 

Bruce, modified Bruce, or Cornell protocol, or by a combination of intravenous 

regadenoson and low-level treadmill exercise. All PET exams were conducted with 

regadenoson vasodilator stress while SPECT exams employed a wide variety of stress 
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protocols. Heart rate, systolic, and diastolic blood pressure were monitored continuously 

during imaging. 

Twelve-lead ECG waveforms of 10 second duration were recorded immediately before 

stress testing and at 1 minute intervals during stress (in supine position for pharmacologic 

or combination pharmacologic/low-level exercise stress) or once during each exercise 

stage (for exercise stress). For CNN model development, both rest and stress ECG and 

quantitative PET MFR data were used. For prognostic model evaluation rest and stress ECG 

data were used for CNN model estimation of ECG-Flow as well as stress MPI findings (LVEF 

and stress TPD) (Figure 1). 

2.3 Outcomes 

The binary outcome for supervised CNN model training was MFR < 2, which is a widely 

used threshold for prognostically significant MFR impairment (24,25). 

The primary patient outcome for prognostic evaluation of the CNN was mortality from all 

causes between the date of imaging and 31 July 2020. The vital status of each patient was 

determined by integrating data from death certificates and hospital records. 

2.4 Deep learning CNN model 

Model development 

ECG waveform data was used directly as multichannel time series input to a novel CNN 

model (Figure 2) constructed with two input channels for waveforms acquired during 

pharmacologically induced stress and at rest. Each input channel consisted of convolutional 

blocks that applied convolutions along either the time axis or the ECG channel axis (26) 

followed by batch normalization, ReLu activation, and max pooling. After two additional 

fully connected layers, the waveform outputs were concatenated followed by global 

average pooling. Finally, a fully connected layer with softmax activation was applied to 

compute a probability score which was thresholded at 50% for the binary outcome. We 

tested concatenation of demographic data (patient age, body mass index, and sex) and 

hemodynamics (systolic blood pressure and heart rate, both at stress and rest) before the 

final fully connected layers. We also tested reducing the number of input waveform leads 
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from twelve to eight. The three augmented unipolar leads are linear combinations of the 

bipolar leads, and by Einthoven’s triangle equation only two of the three bipolar leads are 

linearly independent (27). This suggests that leads III, aVR, aVL, and aVF may be discarded 

if the CNN can effectively learn these linear features from the remaining leads. The final 

model consisted of 72,929 trainable parameters to be optimized (Supplemental Table 4). 

The model was developed using the Keras deep learning framework (v2.10) with the 

Tensorflow backend (v2.10). 

Model optimization and training 

The model was optimized with the PET training and validation cohorts using a general 

principle of balancing all sources of regularization (28). Model training was performed on 

one NVIDIA V100 GPU with 16 GB of RAM. A binary cross-entropy cost function was 

utilized with the AdamW optimizer (29,30) to maximize validation accuracy. Two learning 

rate schedules were tested: linear warmup with cosine decay (31), and the “1cycle” 

learning rate scheduler (32). An initial learning rate range test was conducted as a function 

of weight decay to determine the optimal weight decay and maximum learning rate bound 

for the “1cycle” scheduler (Supplemental Figure 2). A batch size of 128 was chosen to 

maximize memory usage on the GPU. Training iterations were stopped when validation 

accuracy failed to improve for twelve consecutive epochs. 

Model evaluation 

Final model evaluation was performed with the PET holdout test cohort after completion of 

training and tuning. Model performance is reported as diagnostic accuracy of the binary 

outcome and area under the ROC curve (AUC) relative to the true outcome of PET-derived 

MFR < 2. Prognostic performance was also tested in the PET holdout test cohort, as well as 

the SPECT MPI cohorts with either pharmacologic or exercise-induced stress (Figure 1). 

The two SPECT cohorts were tested separately as the appropriateness of the model for 

exercise stress ECG data was uncertain and considered exploratory. 

2.5 Statistical methods 

For each prognostic cohort, Cox proportional hazards models and Kaplan-Meier survival 

curves were constructed to evaluate the association of ECG-predicted MFR impairment 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.25.23297552doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297552


7 
 

7 
 

with mortality risk. Cox models were adjusted for baseline risk factors and standard MPI 

findings selected a priori on the basis of judgment and prior work (24,33). Baseline 

covariates included patient age, sex, body mass index (BMI), diabetes, hypertension, 

hyperlipidemia, known coronary artery disease (CAD, history of myocardial infarction (MI) 

or previous percutaneous coronary intervention (PCI) or coronary artery bypass graft), 

LVEF, and stress TPD as a combined relative measure of ischemia or scar. Subgroup 

analysis was performed stratifying by age (< 60y), BMI (< 30kg/m2), sex, diabetes, 

dyslipidemia, hypertension, known CAD, LVEF (< 50%), and stress TPD (< 5%). 

Model discrimination was assessed using likelihood ratio χ2 and c-index. The change in 

discrimination after adding ECG-predicted MFR to the baseline Cox models was assessed 

with continuous net reclassification improvement (NRI) (34). 

Continuous variables are summarized as mean ± SD or median [1st – 3rd quartiles]. 

Welch’s unequal variances t-test or Wilcoxon rank sum tests were used as appropriate for 

comparisons of continuous parameters, and chi-squared tests were used to compare 

categorical variables. Two-sided p-values less than 0.05 were considered statistically 

significant. Statistical analyses were performed using R version 4.1 (35) with packages 

survival (36), rms (37), and survminer (38). 

3 Results 

3.1 Patient population 

Of 12,416 patients in the MPI-ECG registry, 4,854 patients underwent PET-CT, and 7,303 

underwent SPECT-CT (Figure 1). A PET MPI subset of 963 patients were held out for 

diagnostic evaluation. These subjects as well as 5,102 patients undergoing pharmacologic 

stress SPECT MPI and 1,533 patients undergoing exercise stress SPECT MPI were also 

evaluated prognostically. 

3.2 Baseline characteristics 

Baseline characteristics are shown in Table 1 stratified by patient cohort. As expected, the 

PET MPI cohorts for Model Derivation and Holdout Test were nearly identical. Not 

surprisingly the two SPECT MPI cohorts (i.e. pharmacologic/combined pharmacologic-
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exercise and exercise-only stress) differed meaningfully from the PET MPI cohort. They 

were slightly older, with lower rates of obesity, diabetes, and history of MI, and higher rates 

of hypertension, hyperlipidemia, and mortality than the PET cohorts. Baseline 

characteristics of the SPECT MPI cohort stratified by stress modality are shown in 

Supplemental Table 1. 

3.3 ECG-predicted MFR impairment 

Overall, 47.9% (N=461) of patients in the PET holdout test set had PET-measured MFR < 2. 

Among this cohort, the CNN ECG-Flow model accuracy for ECG-predicted MFR < 2 was 

68.0%, with AUC of 0.737, sensitivity and specificity of 71.1% and 65.7%; positive and 

negative predictive value of 65.6% and 70.5%; and F1-score of 68.3% (Figure 3). 

3.4 Prognostic assessment 

Abnormal ECG-Flow was significantly and strongly associated with risk of death from any 

cause in adjusted Cox models of all three prognostic cohorts (Table 2). Significantly 

improved c-index (from 0.662 to 0.688; and from 0.671 to 0.697) and overall net 

reclassification improvement (0.324 [0.146, 0.505]; and 0.460 [0.388, 0.535]) were also 

noted in PET holdout and SPECT pharmacologic stress cohorts (Table 2). Adjusted hazard 

ratios were similar between PET holdout (HR 2.12 [1.45, 3.10], 𝑝 = 0.0001) and SPECT MPI 

(HR 2.07 [1.82, 2.36], 𝑝 < 0.0001) cohorts, as well as between ECG-Flow and an adjusted 

model of PET-measured MFR < 2 (HR 3.20 [2.19, 4.68], 𝑝 < 0.0001) in the PET holdout 

cohort (Table 2). Overall NRI was significantly increased in both PET and pharmaceutical 

stress SPECT cohorts (Table 3). Intriguingly, ECG-Flow also performed well in the 

exploratory SPECT exercise stress cohort (HR 4.33 [2.47, 7.58], 𝑝 < 0.0001) (Supplemental 

Table 2). However, overall NRI was not significantly greater than zero in this population 

(Table 3), possibly due to much lower event rate (6%) in this broadly healthier population. 

Kaplan-Meier incidence curves are shown in Figure 4 and Supplemental Figure 1, 

demonstrating significantly increased mortality risk in patients with abnormal ECG-Flow. 

In addition, mortality risk of PET-measured and ECG-Flow in the PET holdout test cohort 

are compared in Figure 4 (a). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.25.23297552doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297552


9 
 

9 
 

3.5 Subgroup analysis 

In subgroups stratified by patient characteristics, abnormal ECG-Flow was consistently a 

strong predictor across subgroups and remained significantly associated with higher 

mortality risk in the PET holdout test cohort (Table 4) and both pharmacologic (Table 5) 

and exercise stress (Supplemental Table 3) SPECT cohorts. ECG-Flow was a significant 

independent predictor of mortality in women, patients with diabetes, hypertension, LV 

dysfunction (LVEF < 50%), and those with minimal or no stress perfusion abnormality 

(TPD < 5%) representing patients with likely diffuse CMD. 

4 Discussion 

To our knowledge we have developed and validated the first deep learning CNN model 

(ECG-Flow) with the ability to predict impaired MFR from stress-rest ECG waveform data, 

demonstrating that CMD pathophysiology can result in characteristic electrophysiologic 

changes detectable in surface ECG tracings. As further clinical evaluation of the CNN model, 

we demonstrated consistently strong prognostic performance of ECG-Flow in two distinct 

clinical populations: a PET holdout test cohort for which PET-measured MFR was available, 

and a large independent SPECT MPI cohort for which MFR measurements were not 

possible (Table 2). Our results demonstrate that impaired ECG-Flow is independently 

associated with higher risk of death after adjusting for clinical risk factors and standard 

MPI measurements of LV dysfunction (LVEF) and stress perfusion abnormality (TPD). In 

both cohorts, impaired ECG-Flow improved the prognostic performance of standard MPI in 

terms of improved c-index and continuous net reclassification improvement. In subgroup 

analysis of patients with minimal or no stress perfusion abnormalities, ECG-Flow remained 

a consistent predictor of adverse outcomes, consistent with its identification with CMD 

(39). The results confirm our hypothesis that signals predictive of coronary 

microvascular/vasomotor dysfunction are embedded in stress and rest ECG waveforms 

and suggest that further CNN model development and external validation is warranted in 

larger multicenter datasets. 

The availability of large ECG databases has recently enabled the development of a plethora 

of machine learning applications that have further extended the clinical utility of ECG 
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signals (13,14). These advanced applications have proven useful for diagnosis and 

assessment of arrhythmias (40,41), congestive heart failure (42), valvular disease (43), left 

(26) and right (44) ventricular dysfunction, coronary artery disease (45), myocardial 

infarction (46,47), and mortality risk (48,49). Resting ECG data was used exclusively in all 

of these studies. In contrast, the present results also employed stress ECG data, and 

underline the potential of stress perturbations to reveal important insights relevant to 

coronary microvascular and vasomotor dysfunction (50). 

Ahmad, et al. (51) performed a ground-breaking study on a similar question. Using logistic 

regression, they built a prediction model using rest ECG data to identify patients with CMD 

identified with invasive coronary vasomotor testing. Although such invasive testing is 

precise, it is rarely performed and is subject to substantial referral bias. Given the limited 

sample size, simpler model architecture, and lack of stress perturbation data, the 

performance of their prediction model was only moderate (51). We believe the higher 

performance of our approach may in large part be due to utilization of ECGs at both rest 

and in response to stress perturbation. Prior studies have demonstrated that broad 

metabolic and physiologic changes are detectible with a single episode of exercise (50). 

Several clinical implications follow from these results. Standard noninvasive SPECT MPI is 

not a sensitive test for identifying CMD (52). Although direct SPECT measurement of MBF 

and MFR with contemporary CZT SPECT camera technology is under active development 

and has shown promise (53–58), the limitations of currently available 99mTc-based 

perfusion tracers may impede the clinical utility of SPECT-measured MFR (59). However, as 

shown in Figure 4 (a), ECG-Flow, when combined with standard MPI findings, provided risk 

assessment approaching that of PET-measured MFR. This suggests that CMD assessment by 

standard clinical SPECT MPI can potentially be greatly improved without additional data 

acquisition or alteration of standard MPI protocols. 

Second, although the CNN model was developed exclusively using pharmacologic stress 

PET, the prognostic performance of ECG-predicted MFR in the exploratory SPECT exercise 

stress cohort (Supplemental Table 2) indicates that our CNN model may find further utility 

across more diverse patient populations. For example, the longer half-life of the 
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experimental perfusion tracer 18F-flurpiridaz enables exercise stress protocols for PET that 

are analogous to those of SPECT MPI. However, when exercise is performed, direct MFR 

measurement is generally not feasible for such PET MPI exams. Consequently, the ECG-

Flow approach could be combined with exercise PET to obtain both functional capacity and 

MFR status. Finally, the present study did not evaluate the diagnostic performance of the 

CNN model for detection of CAD. We speculate that ECG-predicted MFR impairment could 

potentially improve the diagnostic accuracy of MPI in the presence of high risk left main or 

multi-vessel obstructive CAD, as seen for PET-measured MFR in prior studies (39,60,61). 

4.1 Future studies 

We have demonstrated the feasibility of predicting impaired MFR using a relatively simple 

CNN with only 72,929 trainable parameters. We expect that CNN model performance may 

be further improved by additional machine learning technologies such as larger CNN 

architectures (41), self-supervised model pre-training (62), and transformer-based 

frameworks (40,63). A further possible extension would be to train the CNN using only rest 

ECG waveforms or reduced leads which could enable use of ambulatory ECG monitoring 

data. If successful, such a model could enable evaluation of cohorts from clinical trials of 

novel cardiovascular therapeutics where resting or ambulatory ECG data were acquired 

without cardiac imaging. 

4.2 Limitations 

Global MFR does not distinguish CMD from myocardial perfusion impairments due to focal 

epicardial or diffuse CAD. However, recent work has shown that regional quantitative PET 

measures combined with global MFR can be effective at assessing the additive risk of 

diffuse or microvascular disease (64). Additional work will be necessary to evaluate the 

utility of ECG-Flow for similarly detailed CMD assessment. 

4.3 Conclusion 

ECG waveforms at rest and during stress carry important clinical information on coronary 

vasomotor and microvascular function. We have developed a novel proof-of-concept deep 

learning CNN model which uses ECG data to identify MFR impairment with reasonable 

clinical accuracy and strong prognostic value, approaching that of directly measured MFR. 
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Table 1  

Baseline characteristics stratified by patient cohort. 
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Table 2  

Cox models of impaired MFR and risk of all-cause mortality for the PET holdout test and 

SPECT pharmacologic stress cohorts. Cox models were adjusted for patient age, BMI, sex, 

diabetes, dyslipidemia, hypertension, known CAD, LVEF, and stress TPD. For each model, 

either ECG-predicted (ECG-Flow) or PET-measured MFR impairment (< 2.0) were added to 

this baseline model. 
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Table 3  

Continuous Net Reclassification Improvement (NRI) within each cohort. In each case, ECG-

predicted MFR impairment was added to the base model of demographic covariates, risk 

factors, known CAD, LVEF, and stress TPD. 
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Table 4  

Subgroup analysis of ECG-predicted MFR (ECG-Flow) and risk of all-cause mortality in the 

PET holdout test cohort.  Models were adjusted for patient age, BMI, sex, diabetes, 

dyslipidemia, hypertension, known CAD, LVEF, and stress TPD. 
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Table 5  

Subgroup analysis of ECG-predicted MFR (ECG-Flow) and risk of all-cause mortality in the 

SPECT pharmacologic stress cohort.  Models were adjusted for patient age, BMI, sex, 

diabetes, dyslipidemia, hypertension, known CAD, LVEF, and stress TPD. 
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11 Figures 
 

Figure 1: CONSORT diagram. 
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Figure 2: (A) CNN model (number of trainable parameters: 72,929) 
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Figure 3: Accuracy of ECG-predicted MFR (ECG-Flow) in the PET holdout test cohort. ROC 
curve and confusion matrix (N=963 patients). 
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Figure 4: Kaplan-Meier plots of all-cause mortality incidence (a) in the PET holdout test 
cohort stratified by ECG-predicted (ECG-Flow) and PET-measured MFR; and (b) in the 
SPECT pharmacologic stress cohort stratified by ECG-predicted MFR. 

(a) 
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(b) 
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12 Supplemental Data 
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12.1 Supplemental Tables 
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Supplemental Table 1  

Baseline characteristics of SPECT MPI cohort stratified by stress modality. 
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Supplemental Table 2  

Cox models of ECG-predicted MFR (ECG-Flow) and risk of all-cause mortality for the SPECT 

exercise stress cohort. Cox models were adjusted for patient age, BMI, sex, diabetes, 

dyslipidemia, hypertension, known CAD, LVEF, and stress TPD. For each model, ECG-

predicted or PET-measured MFR < 2.0 were added to this baseline model. 
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Supplemental Table 3  

Subgroup analysis of ECG-predicted MFR (ECG-Flow) and risk of all-cause mortality in the 

SPECT exercise stress cohort.  Models were adjusted for patient age, BMI, sex, diabetes, 

dyslipidemia, hypertension, known CAD, LVEF, and stress TPD. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.25.23297552doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.25.23297552


34 
 

34 
 

Supplemental Table 4  

Optimization of the ECG-Flow CNN using the PET validation cohort (N=971). Baseline 

network included input channels for 12-lead rest and stress ECG waveforms. Channel 

Reduction network reduced the input waveforms to 8-leads by removing redundant leads 

(III, aVR, aVL, and aVF). In the + Demographics network, demographic data (patient age, 

sex, BMI) were concatenated before the final layer of the Channel Reduction network. In the 

+ Hemodynamics* network, the heart rate and systolic blood pressure at rest and during 

stress were concatenated before the final layer of the + Demographics network. 
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12.2 Supplemental Figures 

Supplemental Figure 1  

Kaplan-Meier plot of all-cause mortality incidence in the SPECT exercise stress cohort 

stratified by ECG-predicted MFR. 
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Supplemental Figure 2  

Learning rate range test as a function of weight decay for the AdamW optimizer. 
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