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Abstract 
Introduction It is commonly accepted that traveling across time zones affects sport performance (i.e., via jet 
lag). This belief is based on poor quality evidence for team sports and simplistic analyses, such as t-tests and 
linear regression, to explore complex phenomena. For instance, Roy & Forest used such analyses to examine 
win percentages for the NFL, NBA, and NHL, concluding that East Coast teams were disadvantaged. Similarly, 
Smith et al. primarily used t-tests to show that West Coast NFL teams were more likely than East Coast teams 
to beat the Vegas spread in evening games (non-coastal teams were omitted). Neither analysis considered 
time zone change or game time as continuous constructs nor did they account for important contextual 
information. We used modern causal inference methods and a decade of collegiate football games to 
determine if jet lag and kickoff time have any causal effect on beating the Vegas spread. This required fitting 
nonlinear splines for both data re-weighting and analysis; however, using weights in a generalized additive 
model (GAM) presents challenges for standard frequentist inferences. Thus, non-parametric simulations were 
developed to obtain valid causal inferences via randomization inference (RI). 
Methods Pro Football Focus data from college football seasons 2013–2022 were paired with time zone data 
from Google Maps, weather data from gridMET, and Vegas spread data from collegefootballdata.com. GAM-
based propensity scores were calculated from turf type, precipitation, humidity, temperature, and wind 
speed. These propensity scores orthogonalized the variables relationship to the treatments (i.e., game time 
and hours gained due to time zone change), consistent with the Potential Outcomes framework. The 
propensity scores were used to weight the observations in a GAM logistic regression, which modeled beating 
the Vegas spread as a function of a splined effect modification for game time and hours gained in travel. Since 
valid standard errors cannot be calculated from GAMs with weights, we used RI to compare the effect 
modification to a null model. We simulated 5,000 datasets of random treatments under the positivity 
assumption. Each RI dataset was analyzed with the same GAM used for the observed data to obtain a 
distribution of noise F-statistics. The real data F-statistic was contrasted to the RI distribution for inferences. 
Results The real data were compatible with the null hypothesis of no effect for hours lost/gained in travel 
and game time (P = 0.142).  
Conclusion We need to rigorously interrogate assumptions regarding what affects performance in team 
sports. There is no clear indication that jet lag and game time affect team performance when appropriate 
analyses are performed in a causal inference framework. Similarly, rigorous analysis should be undertaken to 
confirm or refute other assumptions in sport science, such as workload management, sleep practices, and 
dietary/supplementation regimens. 
 

1. Introduction 
It is commonly accepted that traveling across time zones affects sports performance via “jet lag”.1–7 
This concept has likely gained broad acceptance because non-athletes often traverse multiple time 
zones and experience a perception that “something is off” or have irregular sleep patterns, so it is 
straightforward for non-athletes to accept the premise that jet lag affects sports performance with 
minimal resistance. One complication is distinguishing travel fatigue from jet lag.6 Travel fatigue is a 
non-medical condition resulting from frequent travel with minimal recovery, resulting in persistent 
fatigue, generalized recurrent illness, and potential mood changes.8 Jet lag is a medical condition 
and specific to the travel direction (east→west/west→east) and the number of time zones crossed, 
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resulting in distinctive sleep disturbances, daytime fatigue/sleepiness, and impaired 
mental/physical concentration.9,10 Whereas it seems apparent that travel fatigue can be mitigated 
by optimizing travel logistics, such as limiting connecting flights or providing appropriate recovery 
between travel, jet lag is less forgiving: If an athlete must travel from one location to the next, it 
requires a specific direction and crossing an exact number of time zones. Despite the conceptual 
overlap between travel fatigue and jet lag, they have different cause-effect structures and thus 
provide different opportunities for intervention. 

Domestic travel, where flights traverse three or fewer time zones, provides the most common 
opportunity to experience jet lag in team sports. Even individual sports, such as track and field or 
swimming, will have many domestic meets punctuated by a large-scale international meet. The 
lower volume of international meets, which necessitate traveling more than three time zones, make 
it challenging to statistically assess (low number of samples) and easier to develop adaptations for 
the athlete (e.g., arrive earlier to allow adaptation and recovery). As such, most published research 
has focused on how domestic jet lag may impact individual human performance and team 
performance. 

1.1. Current Evidence on Jet Lag & Sport Performance 
There is minimal and low-quality evidence that jet lag impacts an individual athlete’s physical or 
cognitive capabilities. The highest quality study used a randomized cross-over design of 10 athletes 
in control (no flight) and a simulated 5-hour domestic flight, showing that jet lag had no statistically 
significant effects on jump height, jump power, jump peak velocity, intermittent sprint 
performance, sleep duration, sleep latency, sleep efficiency, number of awakenings, duration of 
awakenings, various perceptual measures (fatigue, soreness, anger, confusion, vigor, and 
depression), or salivary cortisol, though blood oxygen saturation was lower following travel.11  A 
small cohort of professional soccer players (n=6) showed no statistically significant effect on sleep 
patterns or perceptual measures of sleepiness and recovery after repeated 5-hour air travel across 
two time zones,12 though such a small study may be underpowered. A somewhat larger study of 19 
Australian rules footballers indicated that traveling 1–2 time zones resulted in no measurable 
change in objective sleep metrics, but a small perceptual decrease in sleep quality.13 Both the small 
soccer cohort and the Australian rules footballer study noted minor differences in in-match metrics 
when comparing home and away games, but it is impossible to attribute this difference to the travel 
itself.12,13 

In contrast to individual-level studies examining jet lag and human performance, ‘big data’ studies 
generally show an apparent effect of jet lag decreasing team performance.14–19 However, all of these 
studies employ univariate analyses16–19 and/or infer causality from multivariable 
correlations.14,15,18,19 Such modeling is not strongly informed by theory (i.e., a putative causal 
structure) and may thus lead to fallacious causal inferences. For example, three studies only include 
data for teams originating and playing in the Pacific and Eastern time zones,16,18,19 omitting major 
sports markets and failing to effectively capture anything resembling real-world dynamics. Given 
the noted analytical issues, it should not be surprising that studies have paradoxically shown 
unidirectional jet lag-based decrements in performance for both westward travel (basketball16,17, 
hockey17) and eastward travel (football18, baseball14,19, basketball15). Most studies examining 
overall game outcomes have also indicated that this effect only occurs in evening games.17–19 The 
lack of “null” findings may be attributable to positive publication bias,20 but how does one explain 
apparent effects in different travel directions between sports? Post hoc justifications about 
commonalities between basketball and hockey (where westward travel is problematic) and 
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associated differences with football, 
baseball, and basketball (where 
eastward travel is problematic) are 
common but unprincipled. 
Moreover, modeling missteps 
preclude causal inferences. For 
instance, team-level studies have 
not treated game time or jet lag as 
the continuous or interval variables 
that they are in the real world, nor 
did they approach their analyses 
with an eye toward causation. Only 
one study attempted to account for 
a team’s expectation of winning a 
game by benchmarking their 
performance against the Vegas 
spread.18 The ‘wisdom of the 
crowd’ Vegas spread, while 
imperfect, appears to be the most 
reasonable method of determining 
if a team under- or over-performs 
expectations. 

1.2. Causal Inference for Complex Data Structures  
All models are, by design, simplifications of a complex reality. The estimand of a causal inference 
problem is the true effect of an intervention—what the study aspires to capture.21 As the estimand 
is a simplified theoretical model, even complex models can often be mathematically described with 
relative ease. For example, the estimand equation for the directed acyclic graph in Figure 1 (Main 
Analysis) could be written as:  

 
𝜕𝜕𝜕𝜕(𝐭𝐭, 𝐱𝐱) = 𝔼𝔼[∇𝐭𝐭𝑌𝑌(𝐭𝐭) ∣∣ 𝑋𝑋 = 𝐱𝐱 ]  (1) 

In the current study, we will test the above estimand equation (1), which is the marginal 
conditional average treatment effect (CATE).  This is the instantaneous rate of change (∂) of the 
average treatment effect (τ) for each hour gained/lost in travel (t), conditional on kickoff time (x). 
This is estimated from the expected value (𝔼𝔼) of the partial derivative (∇t) of the away team’s 
performance (Y(⋅)) as a function of hours gained/lost in travel on that game’s performance (Y(t)), 
conditional on the kickoff time for that game (X).  This is different than a conceptually more 
straightforward but less omnibus examination of two counterfactuals (e.g., the difference between 
losing three hours in travel and gaining three hours in travel, conditional on kickoff time), which 
artificially dichotomizes the “hours gained/lost” dynamic into a binary question. While equation 1 
is elegant, how one arrives at the real-world estimate of the estimand based on real-world data 
does often not cleanly conform to an estimand equation. 

When confronted with complex data structures that do not cleanly conform to a directed acyclic 
graph or estimand equation, one common approach is to claim that this data structure itself is “non-
causal” in nature.22 However, ignoring complex data structures has been shown to create a 

Figure 1. DAG depicting the theoretical causal structure. 

Main Analysis

Away team 
beating the 

spread

Kickoff
time

Time 
zone 

changes

Precipitation
Humidity

Temperature Wind
Turf 
type

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.10.19.23296960doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.19.23296960
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

mismatch between a model estimate and desired estimand and, as a result, inflate error rates for 
inferences.23–25 For this reason, the potential outcomes framework26 is often preferred over the 
structural causal model27 when the real-world data has a complex or nested underlying structure. 
The strength of the potential outcomes framework is that it is grounded in approximating a 
randomized control trial and thus has a multitude of statistical procedures and methods from 
which to analyze complicated data often seen in sport. 

1.3. Randomization Inference – Sometimes the Only Valid Solution  
When an intervention is dichotomous (e.g., treatment and control) or polychotomous (i.e., different 
treatments), there are well-established group-based matching and analysis methods for causal 
inference.28 Most ‘off-the-shelf’ causal inference toolboxes assume that data are independent and 
identically distributed (i.i.d.) random variables.29 When an intervention is continuous in nature and 
data have a known hierarchical structure (i.e., are not i.i.d.), which is common in sport, analyses 
based on inverse probability weights (IPW) are the only current option available.  

Although various IPW methods are firmly established for linear versions of clustered or time-series 
data,30,31 none can handle penalized splines to account for nonlinear relationships, commonly called 
generalized additive models (GAMs) and their extension, generalized additive mixed models. To our 
knowledge, only two popular software packages implement weighting in GAMs: STATA and R.32,33 
Both software packages implement frequency weights, which will produce correct parameter 
estimates but invalid standard errors, precluding valid interval coverage and frequentist hypothesis 
testing rates. Frequency weights are predefined counts, which assume each observation yi can be 
counted wi times. In contrast, IPW assumes that yi was observed with a probability 1/wi, altering 
the weights to represent the target population based on empirical estimates from the propensity 
model. These assumptions lead to disparate standard error estimators. Since frequency weights are 
predefined and are akin to duplicating rows in a data frame, their standard errors are well-defined. 
However, IPWs are estimated rather than defined or assumed, meaning that IPWs themselves have 
uncertainty and structure that classical estimators do not consider. Standard errors that consider 
the unique properties of IPWs have not yet been developed for GAMs.  

In many scenarios, including linear regression, bootstrapping would be a valid solution for 
extracting appropriate standard errors and confidence intervals; however, it has been previously 
demonstrated that bootstrapping is not point-wise valid with GAMs and could lead to misleading 
inferences,34,35 a concept that seems to have been overlooked in both the epidemiology36 and 
political science37 literature. GAMs have the added benefit of being able to model a treatment effect 
that is a nonlinear interaction between continuous variables or a mix of multiple categorical and 
continuous variables. This is an important flexibility in sport where athletes may simultaneously 
receive many “treatments” that may affect a potential outcome. After an extensive survey of the 
literature and computational software, we concluded that short of deriving new estimators, 
randomization inference was the only viable solution to our current question: Does jet lag, 
conditional on kickoff time, have a causal effect on whether a team beats the Vegas spread (i.e., 
performs relative to expectations)? 

Randomization inference assesses all (or a sufficiently large sample) of the possible treatments that 
could have been assigned to a unit (team). The observed outcome is then compared to the 
distribution of randomized potential outcomes.38 While much hypothesis testing relies on 
theoretical distributions (e.g., t-tests = t-distribution; analysis of variance = F-distribution, etc.), 
randomization inference fully describes the sampling distribution under the null hypothesis and 
does not rely on an approximation of a theoretical distribution. The specific metric or test statistic 
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used to build the null distribution and draw inferences depends on the research question and 
analysis. For example, many studies have evaluated the model coefficient for the factor of interest. 
In contrast, if a system of multiple coefficients is of interest, F-statistics are a more natural choice, 
and a researcher can compare the treatment data’s F-statistic to the corresponding null model of 
potential outcomes’ F-statistics.38 Under the potential outcomes framework, randomization 
inference is a flexible analytic solution that works under all circumstances with minimal 
assumptions; thus, it can be leveraged to determine how extreme an observed outcome is relative 
to a noise model, so long as the scientist/analyst can conceptualize and simulate all possible 
treatments.39 

2. Methods 
The data for this work arose from multiple sources: Pro Football Focus (PFF), Wikipedia, Google 
Maps, gridMET, collegefootballdata.com, and the ‘lutz’ R package.40 Across the sources, team names, 
university names, or geographic locations required minor alterations so that the fuzzy matching 
procedure41 rendered an accurate join. First, the NCAA Football teams in PFF were matched with 
the physical locations of each institution from Wikipedia.42 The location of each institution was then 
converted into a latitude and longitude via the Google Maps API and used to obtain the time zone of 
each location via the ‘lutz’ R package. The PFF API was then queried for all game information from 
the 2013–2022 NCAA football seasons. The PFF game information included the stadium at which 
the game was played and the latitude/longitude coordinates, which were subsequently cross-
indexed to obtain the time zone for each stadium. During this process, it was recognized that some 
stadium longitudes were incorrect in the PFF database, which was manually fixed and PFF was 
notified of the issue. The corrected stadium latitude, longitude, and game date were then matched 
with associated meteorological data from the gridMET database.43 Finally, each game was matched 
with the historical consensus Vegas spread data from collegefootballdata.com via team names and 
game scores for each season.44 This process rendered 6,245 complete games for analysis. 
Throughout this process of data aggregation, accuracy was continually manually assessed. 

All game times were standardized to the United States Eastern Time Zone and rounded to their 
nearest hour on a 24-hour clock. The time difference between the away team’s time zone and the 
time zone in which the game was played was calculated. Any observations where the home team 
was playing at a stadium located in a different time zone than their institution were removed. All 
games where either the stadium’s location or the away team’s institutional location was not in the 
continental United States were removed. As weather data is not pertinent when games are played 
inside, all weather variables for inside games were set to ‘0’. Finally, a binary variable was created 
indicating if the away team beat the Vegas spread where ‘1’ indicates beating the spread and ‘0’ 
indicates not beating the spread in a particular game. 

2.1. Causal Structure  
The outcome variable of interest, the away team beating the Vegas spread, encodes a lot of 
underlying information, such as player personnel (including known injuries to important players), 
coaching, “home field advantage”, and other expectations about team play and capabilities. One 
thing the pre-game consensus Vegas spread cannot fully account for is weather patterns that may 
impact gameplay during the game (Figure 1). Additionally, our DAG assumes that the Vegas spread 
is not capturing causal information regarding hours gained/lost from time zone changes, the 
conditional effect of kickoff time on time zone change, and turf type (field turf, artificial turf, or real 
grass).  The effect modification of kickoff time is shown on the DAG in accordance with the 
conventions proposed by Attia et al.45 Because the weather variables (highest temperature, highest 
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wind speed, highest humidity, and precipitation) and turf type have causal paths to the outcome 
only, they should be included in the propensity score under the potential outcomes framework, and 
including these variables increases the precision of the estimated effect without impacting bias.46  

2.2. Propensity Score Development & Validation 
A GAM was used to create the propensity score to account for nonlinearities as well as incorporate 
an assumed multi-level structure, which was hypothesized to be inherent in the data. In the context 
of the current experiment, we want it equally likely that each game could have theoretically been 
“assigned” to any level of the effect modification “treatment” (kickoff time and hours gained/lost 
from time zone changes, see Figure 1).47 For the purposes of propensity score development, a 
multivariate generalized additive mixed model modeled the multivariate Gaussian where games are 
nested within away teams. This structure makes theoretical sense as a team like the University of 
North Carolina-Chapel Hill on the East Coast will have time zone changes ranging from 0 to +3 as 
they travel from east to west, and a team such as the University of Texas-Austin will have time zone 
changes ranging from −1 to +2, 
depending on if they travel to the 
east coast or towards the west 
coast. Similarly, many East Coast 
teams are likely to have a higher 
probability of playing earlier in 
absolute time than West Coast 
teams as they will play relatively 
more games in the Eastern Time 
Zone (e.g., the University of 
Southern California would not 
play a home game at noon 
Eastern Time, as this is 9 am 
Pacific Time). The necessity of 
the multilevel propensity score 
for both time zone changes and 
kickoff time was confirmed by 
nonnegligible away-team 
intraclass correlation coefficients 
(ICC) of 0.29 and 0.16,48,49 
respectively. 

All weather predictors were 
continuous variables and allowed 
to vary nonlinearly using 
penalized thin plate regression 
splines. The propensity scores 
were then cluster-mean 
stabilized as previously 
described.30 After stabilization, 
the covariate balance of the 
propensity score was checked to 
verify that each factor was 
balanced across the effect modification treatment.50 The vast majority of the literature on IPW 

Figure 2. R2 statistics for the unweighted (unadjusted) 
and weighted (adjusted) proportion of variance 
assessments between the effect modification treatment 
and the covariate of interest. The solid vertical line at 
0.100 is a commonly applied threshold and the dashed 
line at 0.050 is the desired threshold we applied. 
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validation of covariate balance only assesses univariate treatments and not a joint effect 
modification treatment.51 The most commonly used metric to assess covariate balance for 
continuous data, the Pearson correlation coefficient, was inappropriate in our case. Thus, we took a 
two-pronged approach to determine if our IPW was effective in orthogonalizing the covariates to 
the effect modification treatment: 1) show that the IPW decreases the overall fit of the treatment to 
the covariate via increasing Akaike’s information criterion (AIC) and 2) examine the proportion of 
variance explained between the effect modification treatment and the individual covariates via the 
marginal R2 criterion.52 For the continuous covariates, this was assessed via linear multilevel 
models with observations clustered at the away team level (e.g., precipitation was regressed on 
hours gained or lost in travel and (kickoff time × hours gained or lost in travel)). The balance 
assessment for grass type was slightly more complicated as a polychotomous covariate. In this case, 
we extracted the AIC from an analogous multinomial multilevel model with restricted maximal 
likelihood estimation, where we were unable to obtain an R2, and re-fit with a multinomial 
multilevel model with penalized quasi-likelihood estimation to obtain an R2. The goal of the balance 
diagnostics was to see the AIC reliably increase with the IPW and for R2 to be as low as possible, and 
certainly below a 0.1 threshold.52,53 The adjusted and unadjusted R2 variance explained statistics for 
the effect modification treatment and the covariates can be seen in Figure 2 and the AIC metrics are 
available in Table 1.  

Covariate Unadjusted AIC Adjusted AIC Weighting 
Differential 

Precipitation 5,833 6,179 +346 
Humidity 55,495 55,720 +225 

Temperature 54,701 54,946 +245 
Wind Speed 34,742 34,820 +78 
Grass Type 2,682 2,749 +67 

Table 1. IPW-adjusted models increase the AIC for each covariate, indicating a lower association 
between the covariate and the effect-mediated treatment. 

2.3. Causal Inference via Randomization Inference 
In a GAM logistic regression with propensity score weights, we can orthogonalize the secondary 
variables affecting the away team’s probability of beating the spread, enabling us to focus on the 
main problem of interest: “Does the gain or loss of hours due to travel, in combination with kickoff 
time, causally affect the probability of beating the Vegas spread?” To do this, we used a smoothed 
effect for hours gained/lost with 5-dimension bases and a tensor product interaction smooth for 
the effects of hours gained/lost and kickoff time with 7-dimension bases. We originally assumed 
that this model would require a nested structure, similar to that of the propensity score, but away 
team-level ICCs were negligible (0.015),54 suggesting this additional complexity, which introduced 
considerable computational demand, was unnecessary.  

To our knowledge, there is no analytical software implementing probability sampling weights 
within a GAM framework. The weighting type implemented for GAMs in R and STATA is frequency 
weights (no weighting is offered for GAMs in SAS or Python), which appropriately model parameter 
estimates but not standard errors.55 Thus, we employed randomization inference of F-statistics to 
facilitate causal inferences.38 This involved fitting an intercept-only ‘null model’ to predict the 
outcome measure (away team beating the spread) while including the propensity score weights. 
We then performed an analysis of variance (ANOVA) by comparing the null model with the full 
model (including the smoothed effects) to obtain an F-statistic. While this F-statistic is not valid for 
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inference based on a standard F-distribution, it can be contrasted to a distribution of F-statistics 
generated from all potential outcomes (or a sufficiently large sample of potential outcomes), to 
determine how a model fit using our real data compares to a model fit using randomly generated 
data (i.e., randomization inference).38  

To perform randomization inference, we need to build many datasets of treatments (i.e., noise 
treatments) while maintaining the current positivity status. Positivity is the concept that all games 
should be equally exposed to each given treatment—something that our study, by definition, 
violates (termed structural or deterministic positivity).56 Section 2.2 noted the clustered nature of 
time zone changes and kickoff times; this same dynamic plays out with the randomization inference 
datasets. Our noise treatments should be theoretically possible and not suggest that the North 
Carolina Tar Heels can play an away game where they lose two hours due to travel, which would 
imply they were playing somewhere in the Atlantic Ocean. The kickoff time positivity requirement 
is neither fully random nor fully 
structural. A school’s local time, 
location of their conference (e.g. 
Atlantic Coast Conference, 
Southeastern Conference, etc.), and 
the school makeup of that conference 
naturally create a differential 
probability of kickoff times (in the 
Eastern Time Zone) that a team is 
likely to play; however, given the 
substantial conference re-alignments 
occurring at present, it is unclear if 
the randomization inference noise 
data should adhere to previous 
proportions of kickoff times for each 
team or a fully random assignment. 
As such, we created both datasets to 
see if this affects our final inferences.  

Five thousand noise treatment 
datasets, each consisting of 6,245 
observations, were simulated.  These 
5,000 datasets were analyzed with 
the same GAM model used with the 
real data, and then an ANOVA was 
performed between that full noise 
model and the null noise model to 
render a “noise F-statistic”.  The 
5,000 noise F-statistics are then 
plotted in a histogram with the 
observed F-statistic. This distribution 
is then used to determine the compatibility of the observed F-statistic with the distribution of noise 

Figure 3. F-statistic for observed effects of jet lag and 
kickoff time contrasted against the distribution of F-
statistics for 5,000 potential outcomes when kickoff 
time is fully randomized and hours gained/lost is fully 
random but consistent with positivity assumption. 
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F-statistics —i.e., a P-value. As a matter of intellectual curiosity, the P-values from the naïve non-
causal (i.e., unweighted), naïve causal (i.e., weighted), causal randomization inference with fully 
randomized kickoffs, and causal 
randomization inference with 
proportionally randomized kickoffs 
are reported to illustrate the 
dynamics of how inferences might 
change in these different scenarios. 

3. Results 
The resulting P-values for planned 
tests can be seen in Table 2. The 
randomization inference analyses—
the only completely valid causal 
inference analyses—are both highly 
compatible with the null hypothesis 
that time zone changes, with or 
without an effect mediation of kickoff 
time, do not impact the probability of 
beating the Vegas spread. The non-
causal analysis, simply assessing the 
non-linear relationship between 
effect-mediated travel time changes 
and the Vegas spread, was also 
compatible with the null hypothesis. 
As expected, inappropriately using 
frequency weights and an invalid 
hypothesis test (i.e., naïve causal 
analysis) results in an overly liberal 
P-value and likely incorrect causal 
inference.  
 

 P-Value 
Naïve Non-Causal Analysis 0.387 

Naïve Causal Analysis 0.028 
Randomization Inference w/Fully Random Kickoff Time 0.133 

Randomization Inference w/Proportionally Random Kickoff Time 0.142 
Table 2. Final P-values from the naïve relational analysis, naïve causal analysis with known errors, 
and the two causal randomization inference analyses. 
 
There is no statistically significant causal effect of jet lag and kickoff time on the probability of the 
away team beating the Vegas spread. The ‘real data’ F-statistics can be contrasted against a large 
sample of the potential outcome F-statistics, both when the kickoff time is fully randomized and 
when it is kept proportional to historical data (Figures 3 and 4, respectively). The surface plot of 
point estimates for the observed data is depicted in Figure 5—point estimate probabilities are 
denoted by the black lines.  The left-hand side of the surface plot illustrates eastward-traveling west 
coast teams (i.e., ‘losing hours’ in time zone changes) and the right-hand side of the plot represents 

Figure 4. F-statistic for observed effects of jet lag and 
kickoff time contrasted against the distribution of F-
statistics for 5,000 potential outcomes when kickoff 
time is randomized proportionally to existing data and 
hours gained/lost is fully random but consistent with 
positivity assumption. 
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westward-traveling east coast teams (i.e., ‘gaining hours’ due to changing time zones). All kickoff 
times have been standardized to the Eastern Time Zone; as such, the bottom-right quadrant of the 
surface plot is uncommon in the real world, as it implies an East Coast team traveling to the West 
Coast and playing between 9:00 am and 11:00 am Pacific Time. 
 
4. Discussion 
Using rigorous causal inference 
methods, we have shown there 
to be no discernable causal 
effect of jet lag and kickoff time 
on collegiate football team 
performance in the continental 
United States. Moreover, our jet 
lag data is likely contaminated 
with ‘information’ from travel 
fatigue that we are unable to 
remove with any available data. 
To remove any effects of travel 
fatigue, we would have needed 
data related to the away team’s 
travel itinerary and plans, 
which were not available for the 
representative subset of the 
6,245 games examined.  We can 
either assume that travel 
fatigue does have a causal effect 
on decreasing a team’s 
probability of beating the Vegas 
spread, in which case our null 
findings represent a liberal 
estimate of a jet lag × kickoff time effect (i.e., the real effect is even lower than our point estimates) 
or travel fatigue does not have a causal effect on a team’s probability of beating the Vegas spread 
(i.e., this travel fatigue effect either does not exist or is contained within the Vegas spread), in which 
case there should be no change in our estimates or inferential results. In either case, we can 
conclude that in a collegiate football population, there is no CATE of jet lag and kickoff time on 
beating the Vegas Spread (i.e., team expected performance). 

Previous studies showing conflicting effects of jet lag (with performance decrements in different 
geographic directions) and game time were all completed using professional team data.14–19 It is 
reasonable to assume that professional sports have more resources to anticipate, mitigate, and 
handle any potential effects of jet lag or travel fatigue. Furthermore, it is not unreasonable to 
imagine a selection bias where athletes more capable of rapidly adapting to travel perturbations 
(either from jet lag or fatigue) would be selected to move from the collegiate to the professional 
level. In other words, advancing from high school to university and university to professional levels 
necessitates more long-distance travel while continuing to perform at a higher level of play. 
Therefore, if we cannot discern an effect of jet lag and game time on a large dataset of collegiate 
football games, it certainly calls into question previous studies suggesting these effects existed in 
NFL teams,17,18 if not other professional sports.14–17,19 The surface plot of point estimates (Figure 5) 

Figure 5. Surface plot of observed point estimates. 
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further supports the idea of an unlikely effect from jet lag as they seem to not follow any sort of 
rationale or logic. Figure 5 could be interpreted to say that West Coast teams playing on the East 
Coast overperform expectations when games are played between noon and 5 pm local time and 
underperform expectations when games are played between 8 pm and midnight local time; East 
Coast teams playing on the West Coast overperform expectations when games are played between 
11 am to 2 pm local time. In other words, the more time zones a team travels—whether eastward 
or westward—the more likely they are to (a) win if the game is early or (b) lose if the game is late. A 
large set of data across nearly a decade, high compatibility with the null hypothesis, and point 
estimates that defy explanation all indicate that no effect of jet lag on team performance is the most 
appropriate interpretation. 

We believe Table 2 illustrates how a non-causal ‘relational’ analysis can sometimes reach more 
accurate inferences than a poorly conducted causal inference analysis. With the increasing number 
of widely accessible causal inference libraries available in the Python and R programming 
languages, it is likely that many untrained data scientists or statisticians are employing causal 
inference methods incorrectly, leading to poor inferences delivered to stakeholders.57 It is critically 
important for upper management within a sport organization to hire personnel with verifiable 
analytical training and skill sets for their desired tasks. Relatedly, it is critical for these 
organizations to have external consultants available to evaluate their internal analyses if they want 
to ensure that quality work is continually performed which increases team and organizational 
performance both from a sport and business perspective. 

Complex questions require complex models that do not have a “textbook” solution from which to 
draw inferences and conclusions. For many complex models, bootstrapping is a general solution 
from which one can derive standard errors and confidence intervals.58 However, the bootstrap is 
not valid with penalized splines, and the typical solution, resampling the posterior, is not 
appropriate when using weights.34,35 As such, we propose randomization inference as an even 
broader solution than bootstrapping when it is necessary to make as few distributional or 
structural assumptions as possible for an inference problem. The primary requirement for 
randomization inference is that the general structure of the potential outcomes distribution must 
be able to be simulated.  

Randomization inference is closely related to permutation testing. Indeed, it has been stated that 
these procedures are equivalent,59 randomization inference is a special case of permutation 
testing,60 and permutation testing is a special case of randomization inference.61 We agree with the 
work of Zhang & Zhao39 who argue that they are not equivalent methods and one does not subsume 
the other. Rather, randomization inference is based on randomized experimental design, while 
permutation testing is based on random sampling after data is collected under the required 
assumption of exchangeability.62 Specific to the current analysis, permutation testing could have 
been a viable solution had the permutations been clustered within the away team (failure to cluster 
permutations would violate the positivity requirement). However, this is probably not the best 
solution for two primary reasons: 1) much of the potential outcomes framework is based on the 
design of experiments and examination of all potential outcomes, so randomization inference is 
theoretically consistent whereas permutation testing is not, and 2) while nine years of game data is 
substantial, there is no theoretical reason to believe that future game schedules will distributionally 
adhere to previous data, particularly given conference re-alignments and changes in television 
contracts, so permuting existing data would not account for all potential outcomes. 
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5. Conclusion 
We need to rigorously interrogate assumptions concerning what affects performance in team 
sports. There is no clear indication that jet lag and game time affect team performance when 
appropriate analyses are performed in a causal inference framework. Similarly rigorous analyses 
should be undertaken to investigate other assumptions in sport science, such as workload 
management, sleep practices, and dietary/supplementation regimens. 
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