| 1<br>2   | Opportunities to Address Specialty Care Deserts and the Digital Divide:<br>VA's Virtual Hub-and-Spoke Cardiology Clinic           |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 3<br>4   | Rebecca Tisdale, MD, MPA <sup>1,2,3</sup> ; Colin Purmal, MD <sup>4,5,6</sup> ; Neil Kalwani, MD, MPP; <sup>1,2,3</sup> Alexander |  |  |  |
| 5        | Sandhu, MD, MS; <sup>3</sup> Paul Heidenreich, MD, MS; <sup>1,2,3</sup> Donna Zulman, MD, MS; <sup>1,2,3</sup> Tanvir Hussain,    |  |  |  |
| 6<br>7   | MD, MBA, MSc, MHS <sup>4,3,0</sup>                                                                                                |  |  |  |
| 8        |                                                                                                                                   |  |  |  |
| 9        | <sup>1</sup> Medical Service, Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA                                         |  |  |  |
| 10       | <sup>2</sup> Center for Innovation to Implementation (Ci2i), Veterans Health Administration, Menlo Park,                          |  |  |  |
| 11       | CA                                                                                                                                |  |  |  |
| 12       | <sup>3</sup> Department of Medicine, Stanford University School of Medicine, Stanford, CA                                         |  |  |  |
| 13       | <sup>4</sup> Veterans Affairs San Francisco Healthcare System, San Francisco, CA                                                  |  |  |  |
| 14       | <sup>5</sup> Sierra Pacific Network, Veterans Health Administration, San Francisco, CA                                            |  |  |  |
| 15       | <sup>6</sup> Department of Medicine, UCSF School of Medicine, San Francisco, CA                                                   |  |  |  |
| 16       |                                                                                                                                   |  |  |  |
| 17       |                                                                                                                                   |  |  |  |
| 18       |                                                                                                                                   |  |  |  |
| 19<br>20 | Running title: VA's Virtual Hub-and-Spoke Cardiology Model                                                                        |  |  |  |
| 21       | Address Correspondence to:                                                                                                        |  |  |  |
| 22       | Rebecca Tisdale, MD, MPA                                                                                                          |  |  |  |
| 23       | VA Palo Alto Health Care System (152-MPD)                                                                                         |  |  |  |
| 24       | Health Services Research and Development (HSR&D)                                                                                  |  |  |  |
| 25       | Center for Innovation to Implementation (Ci2i)                                                                                    |  |  |  |
| 26       | 795 Willow Road                                                                                                                   |  |  |  |
| 27       | Building 324                                                                                                                      |  |  |  |
| 28       | Menlo Park, CA 94025                                                                                                              |  |  |  |
| 29       | Tel: +1 650 269-5193                                                                                                              |  |  |  |
| 30       | Email: rtisdale@stanford.edu                                                                                                      |  |  |  |
| 31       |                                                                                                                                   |  |  |  |
| 32       | Abstract word count: 306                                                                                                          |  |  |  |
| 33       | Article word count including Title Page, Abstract, Text, References, Tables and Figures Legends:                                  |  |  |  |
| 34       | 3,209                                                                                                                             |  |  |  |
| 35       | Number of references: 16                                                                                                          |  |  |  |
| 36       | Number of tables: 2                                                                                                               |  |  |  |
| 37       | Number of figures: 4                                                                                                              |  |  |  |
| 38       | Key words: Cardiovascular disease, virtual care, telehealth                                                                       |  |  |  |
| 39       |                                                                                                                                   |  |  |  |

- 40 Abstract
- 41
- 42 Background: Access to specialty care, including cardiology, in the Veterans Health
- 43 Administration (VHA) varies widely across geographic regions. VHA's clinical resource hub
- 44 (CRH) model of care offers mostly-virtual specialty care to individuals in low access regions and
- 45 has recently been implemented in cardiology. How implementation of this predominantly virtual
- 46 cardiology program affects the reach of cardiology specialty care in VHA is not known. This
- 47 study describes the association between patient characteristics and use of CRH cardiology care in
- 48 VHA's Sierra Pacific region (Northern California, Nevada, and the Pacific Islands).
- 49
- 50 Methods: We compared patients who used CRH cardiology services between 7/15/2021 and
- 51 3/31/2023 to non-CRH Sierra Pacific cardiology patients, then used multivariate logistic
- 52 regression to estimate the association between patient-level factors and odds of being a CRH user.
- 53
- 54
- 55 Results: There were 804 CRH users over the study period with 1,961 CRH encounters, and
- 56 19,583 non-CRH users with 83,489 encounters. Among CRH users, 8% were women and 41%
- 57 were  $\geq$ 75 years, compared to 5% and 49% respectively among non-CRH users. Similar
- 58 proportions in both groups were rural (26% for both CRH and non-CRH), highly-disabled (48%
- 59 CRH, 47% non-CRH), and low-income (21% CRH, 20% non-CRH). In multivariate logistic
- 60 models, adjusted odds of using CRH were higher for women (adjusted odds ratio [AOR] 1.70
- 61 [95% CI 1.46-1.98]) and lower for older Veterans (AOR 0.33 for ≥75 [95% CI 0.23-0.48]).
- 62 Highly rural Veterans also had higher adjusted odds of using CRH (AOR 1.88 [95% CI 1.30-
- 63 2.69]).
- 64
- 65 Conclusions: The Sierra Pacific CRH cardiology program served a disproportionately high
- 66 number of women and highly rural Veterans and similar proportions of highly-disabled and low-
- 67 income Veterans as conventional VA care in its first two years of operation. This predominately-
- 68 virtual model of cardiology care may be an effective strategy for overcoming access barriers for
- 69 certain individuals, though targeted efforts may be required to reach older Veterans.
- 70 71

72 Introduction

| 75 | Access to specialty care, including cardiology, in the Veterans Health Administration (VHA)                          |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------|--|--|--|
| 76 | varies widely across geographic regions. <sup>1–3</sup> Given the high prevalence of cardiovascular disease          |  |  |  |
| 77 | and associated morbidity and mortality among Veterans, <sup>4</sup> maintaining access to cardiology care            |  |  |  |
| 78 | is essential. As there are unique and disproportionately high risks of dual use of VHA and                           |  |  |  |
| 79 | community care for Veterans with cardiovascular disease, <sup>5</sup> maintaining access to VHA-based                |  |  |  |
| 80 | cardiology care is a particular priority.                                                                            |  |  |  |
| 81 |                                                                                                                      |  |  |  |
| 82 | Virtual care (new or follow-up patient visits, delivered by phone or video) expanded significantly                   |  |  |  |
| 83 | during the COVID-19 pandemic in cardiology <sup>6</sup> as across the VHA <sup>7</sup> and other healthcare systems. |  |  |  |
| 84 | In this post-public health emergency phase of the pandemic, patient familiarity with these                           |  |  |  |
| 85 | modalities of care provides opportunities for new ways of using virtual care, including to                           |  |  |  |
| 86 | improve access to specialty care in non-emergency settings.                                                          |  |  |  |
| 87 |                                                                                                                      |  |  |  |
| 88 | VHA's clinical resource hub (CRH) model of care offers mostly-virtual care to individuals in low                     |  |  |  |
| 89 | access regions. The CRH cardiology program was first implemented in July 2021 in VA's Sierra                         |  |  |  |
|    |                                                                                                                      |  |  |  |

90 Pacific region, which serves Northern California, Nevada, and the Pacific Islands (see Box).

# Box 1. VHA's Clinical Resource Hub (CRH) program

The Palo Alto VHA site serves as the *hub* for specialty care, including cardiology, for VHA's CRH program in the Sierra Pacific region. *Spoke* site-specific contracts known as Telehealth Service Agreements detail the relationship between the Palo Alto-based CRH clinical team and other individual sites; the spoke sites implementing CRH cardiology in 2021-2023 in this region were VA's Sierra Nevada (Reno), Southern Nevada (Las Vegas), and Northern California (Sacramento) sites. The services available via CRH at each spoke site (e.g., which subspecialty clinics, such as heart failure or women's health cardiology) depend on the site's needs and service gaps, and the program employs physicians, nurses, pharmacists, and administrative staff.

91

92

While the initial implementation and usage of the CRH model has been described in primary and
mental health<sup>8,9</sup> and for certain specialties<sup>10,11</sup>, expansion of the program for cardiology specialty
care has yet to be characterized. In this study, we will analyze the initial implementation of the
VISN 21 CRH cardiology program, describing program growth, sociodemographic
characteristics of users, and different modalities of care across the program.

| 101 | This analysis was conducted as a clinical operations quality improvement project through the              |
|-----|-----------------------------------------------------------------------------------------------------------|
| 102 | VISN 21 Clinical Resource Hub leadership team and was therefore exempt from IRB approval.                 |
| 103 |                                                                                                           |
| 104 | Using VA's Corporate Data Warehouse, we constructed a cohort of all patients with at least one            |
| 105 | evaluation & management (E&M) encounter in any CRH or conventional VHA cardiology clinic                  |
| 106 | in VA's Sierra Pacific region (encompassing Northern California, Nevada, and the Pacific                  |
| 107 | Islands) between 7/15/2021, when the first clinical resource hub site was first implemented, and          |
| 108 | 3/31/2023.                                                                                                |
| 109 |                                                                                                           |
| 110 | Patient Characteristics                                                                                   |
| 111 |                                                                                                           |
| 112 | We included the following patient-level sociodemographic data: age, sex, race/ethnicity                   |
| 113 | (American Indian/Alaska Native, Asian, Black/African American, Native Hawaiian/Pacific                    |
| 114 | Islander, White, or unknown), rurality (highly rural, rural, or urban), and home site for receiving       |
| 115 | VHA care. We also included VHA enrollment priority as a proxy for social need, based on                   |
| 116 | VHA's enrollment priority classification system; <sup>12</sup> this program categorizes VHA patients      |
| 117 | according to military service-related disability and income and influences whether patients pay           |
| 118 | co-pays and what services they can access within VHA. As in prior published literature, <sup>6,7</sup> we |
| 119 | condensed these enrollment priority categories to four: high disability, corresponding to                 |
| 120 | enrollment priority groups 1 and 4; low-moderate disability, including priority groups 2, 3, and 6;       |
|     |                                                                                                           |

121 low-income, including priority group 5; and no disability nor low-income status, wherein

| 122 | patients pay co-pays for VHA care, including priority groups 7-8. Due to the hierarchical nature        |
|-----|---------------------------------------------------------------------------------------------------------|
| 123 | of these groups, Veterans assigned to high- or low-moderate disability groups may also be low-          |
| 124 | income.                                                                                                 |
| 125 |                                                                                                         |
| 126 | We captured cardiovascular diagnoses based on primary diagnoses at cardiology visits, grouping          |
| 127 | these into several categories representing the most commonly-coded primary diagnoses: heart             |
| 128 | failure, ischemic heart disease, valvular heart disease, and atrial fibrillation/flutter. International |
| 129 | Classification of Disease (ICD)-10 codes are shown in Table S1.                                         |
| 130 |                                                                                                         |
| 131 | Encounter Characteristics                                                                               |
| 132 |                                                                                                         |
| 133 | We captured the primary diagnosis group assigned to a given encounter as described above, as            |
| 134 | well as the encounter hub and spoke sites. We also collected data on encounter modality: phone,         |
| 135 | video (either direct to the patient's home via VHA's video platform, or from the cardiology team        |
| 136 | to a local clinic), or in person.                                                                       |
| 137 |                                                                                                         |
| 138 | Statistical Analysis                                                                                    |
| 140 |                                                                                                         |
| 141 | We constructed a logistic regression model with primary outcome of adjusted odds of being a             |
| 142 | CRH user, with all the covariates outlined above and with clustering by the patient's assigned          |
| 143 | primary care site. We then constructed a separate logistic regression model of adjusted odds of         |
| 144 | being a video care user.                                                                                |

| 146        | Results                                                                                            |
|------------|----------------------------------------------------------------------------------------------------|
| 147        |                                                                                                    |
| 148        | Patients                                                                                           |
| 149        |                                                                                                    |
| 150        | There were 804 CRH users over the study period with a total of 4,315 ambulatory cardiology         |
| 151        | encounters, 1,961 of which were CRH encounters. Just over half of CRH users (403 of 804) had       |
| 152        | non-CRH cardiology encounters in addition to CRH encounters. In addition, there were 19,583        |
| 153        | non-CRH users with 83,489 ambulatory encounters, meaning CRH users comprised 4% of the             |
| 154        | 20,387 total patients using ambulatory cardiology services in the region over the study period.    |
| 155        |                                                                                                    |
| 156        | Among CRH users, 8% were women and 41% were $\geq$ 75 years old, compared to 5% and 49%            |
| 157        | respectively among non-CRH users. Similar proportions in both groups were rural or highly rural    |
| 158        | (26% for both CRH and non-CRH), highly-disabled (48% CRH, 47% non-CRH), and low-                   |
| 159        | income (21% CRH, 20% non-CRH).                                                                     |
| 160<br>161 | In a multivariate logistic model with clustering at patient's primary site, adjusted odds of using |
| 162        | CRH were lower for older Veterans (AOR 0.33 for ≥75 [95% CI 0.23-0.48]) and higher for             |
| 163        | women (adjusted odds ratio [AOR] 1.70 [95% CI 1.46-1.98]). Highly rural Veterans also had          |
| 164        | higher adjusted odds of using CRH (AOR 1.88 [95% CI 1.30-2.69]). There were few significant        |
| 165        | differences by race/ethnicity, though patients of Native Hawaiian/Pacific Islander race had higher |
| 166        | odds of using CRH (AOR 1.67 [95% CI 1.22-2.28]). Having a diagnosis of atrial                      |
| 167        | fibrillation/flutter or valvular heart disease was also associated with higher adjusted odds of    |
| 168        | using CRH (AOR 1.54 [95% CI 1.29-1.83] and 1.93 [1.34-2.79], respectively).                        |
|            |                                                                                                    |

| 171                                    | The number of CRH patients increased over time (Figure 2), with some sites' growth rates                       |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 172                                    | picking up more abruptly (e.g., Northern California) and others demonstrating a steadier increase              |
| 173                                    | (Sierra Nevada, Southern Nevada). Initial CRH encounters for these sites were 7/29/2021                        |
| 174                                    | (Southern Nevada), 9/8/2021 (Sierra Nevada), and 9/21/2021 (Northern California).                              |
| 175<br>176<br>177<br>178<br>179<br>180 | <i>Encounters</i><br>The total number of ambulatory cardiology encounters in the region remained approximately |
| 181                                    | constant over the study period (Figure 3); a slight uptick in total encounters took place in the first         |
| 182                                    | quarter of 2023, mostly due to an increase in in-person encounters. Figure S1 shows the                        |
| 183                                    | breakdown in encounter modality among CRH sites over time. Figure 4 shows the growth in                        |
| 184                                    | CRH cardiology encounters over time at the three sites with most CRH encounters (Sierra                        |
| 185                                    | Nevada, or Reno; Southern Nevada, or Las Vegas; and Northern California, or Sacramento).                       |
| 186                                    |                                                                                                                |
| 187                                    | Modality                                                                                                       |
| 188                                    |                                                                                                                |
| 189                                    | 714 of the 1,961 CRH encounters (36%) were conducted via video, with the remainder (1,247, or                  |
| 190                                    | 64%) conducted via telephone. For non-CRH encounters, 4% were conducted via video                              |
| 191                                    | (N=3,830), 42% via telephone (N=34,757), and just over half, or 54%, occurred in person                        |
| 192                                    | (N=44,902).                                                                                                    |
| 193                                    |                                                                                                                |
| 194                                    | Ever using CRH was associated with much higher adjusted odds of ever using video care (AOR                     |
| 195                                    | 29.73 [95% CI 11.38-77.66]) (Table 2). Age was associated with lower adjusted odds of video                    |
|                                        |                                                                                                                |

- 196 care use according to a gradient, with an AOR of 0.44 (95% CI 0.37-0.53) for Veterans 75 years
- 197 or older. Living in a rural location was associated with higher adjusted odds of video care use
- 198 (AOR 1.27 [95% CI 1.06-1.52]), though this finding was not significant for those in highly rural
- 199 locations (AOR 1.30 [95% CI 0.82-2.05]).

201

202

204 Discussion

205 206

| 207 | In just under two years of operation, this hub-and-spoke, primarily virtual cardiology clinic in                |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 208 | VHA's Sierra Pacific region served over 800 Veterans hailing from across the region in nearly                   |
| 209 | 2,000 virtual encounters for evaluation and management of cardiovascular disease. The CRH                       |
| 210 | program served women and highly-rural-dwelling Veterans at higher rates and similar                             |
| 211 | proportions of highly-disabled and low-income Veterans compared to conventional cardiology                      |
| 212 | clinics in the same region; conversely, the CRH patient population skewed younger than the                      |
| 213 | conventional VHA clinic population. This suggests that such a predominately-virtual model of                    |
| 214 | specialty care may be an effective method for accessing care for many high-need groups,                         |
| 215 | although more targeted efforts may be required to reach older Veterans.                                         |
| 216 |                                                                                                                 |
| 217 | The reporting of these early results coincides with a shift in virtual care use from effectively a              |
| 218 | requirement during the national emergency phase of the COVID-19 pandemic, to an option-for                      |
| 219 | patients and clinicians alike. <sup>13</sup> This evolution brings both an opportunity and a mandate for        |
| 220 | rigorous study of how, when, and for whom virtual care should be employed, and how telehealth                   |
| 221 | visits affect quality of care, resource use, and health outcomes. <sup>14</sup> The current study is formative, |
| 222 | with a focus on examining patterns of use; this lays a foundation for follow-up studies delving                 |
| 223 | into the latter set of questions.                                                                               |
|     |                                                                                                                 |

The concern of the digital divide<sup>15</sup> is ever-present when considering use of virtual care: will a primarily virtual model of care inadvertently exclude groups frequently falling on the wrong side of the divide, such as those who are rural-dwelling or low-income? Based on these findings, this particular program has reached historically marginalized groups in VHA, such as women,

229 racial/ethnic minority Veterans, or those who are highly disabled or low-income, at similar or 230 higher rates than the conventional model. A notable exception is among older individuals, who 231 used CRH at much lower rates than their younger counterparts. The majority of older individuals in the United States are interested in conducting visits via telehealth,<sup>16</sup> yet disparities in use by 232 age have been widely demonstrated in VHA both in general and in cardiology.<sup>6,7</sup> Establishing the 233 234 source(s) of this discrepancy-whether due to true differences in interest in receiving care via a 235 primarily-virtual care model, lower rates of offering the CRH program to older individuals, 236 familiarity with navigating virtual technologies, or other factors-will be an important focus of 237 follow-up work.

238

239 We found that patients with diagnoses of atrial fibrillation/flutter or valvular heart disease had 240 higher adjusted odds of being CRH users, unlike patients with diagnoses of heart failure or 241 ischemic heart disease. This finding may reflect program-specific offerings (for example, clinics 242 or physicians in the hub site with particular expertise in managing these conditions, or 243 alternatively, a perceived lack of capacity to manage them at spoke sites), or a sense that these 244 conditions are more amenable to primarily virtual management. Planned qualitative work, 245 including interviews with program clinicians and administrators, will help to differentiate 246 between these possible drivers.

247

For virtual care models designed to improve patient access to a given service, it is essential to establish whether that model offloads the conventional model, as intended, or simply induces more demand (e.g., patients whose cardiovascular diseases would have otherwise been cared for in a primary care setting are instead referred for cardiology care). While the current study does

not aim to definitively answer this question, the fact that total cardiology encounters remained constant in the region over the study period suggests that there was not a strong demand-creation effect of the CRH model. However, to date CRH patients comprise only a small fraction of total regional patients using cardiology services, so continued attention to this question will be important as the program grows.

257

258 Limitations

259

260 Within the current data and study design, we are limited in interpretation of various aspects of 261 our findings. For example, although we can capture which CRH users have also used 262 conventional care, our data lacks the granularity to understand how and when this is the case; 263 subsequent qualitative work will further elucidate these care patterns. At present our data is 264 limited to encounters within VHA and does not extend to VA-purchased care in the community, meaning we cannot fully conclude whether CRH affects consumption of this costly form of care. 265 266 This question, and characterization of other important facets of care associated with the program, 267 such as patient, caregiver, and clinician satisfaction, clinical outcomes, and drivers of more and 268 less successful program implementation, are left for future work. Finally, this analysis focused on 269 a particular region and healthcare system, and therefore may not be fully generalizable to other 270 healthcare settings—although as Burnett et al (2023) note in their publication on the early CRH implementation experience, "...some CRH design elements and experiences are unique to the 271 272 VHA system, [but] overall experience with telehealth hubs—including attempts to improve 273 capacity for service provision, increase access, and deployment of telehealth services—is likely highly relevant to other health care systems."<sup>8</sup> 274

## *Conclusions*

The Cardiology CRH program represents a virtual-predominant model of care, implemented over a relatively short period of time, that has served over 800 patients to date in the VHA region serving Northern California, Nevada, and the Pacific Islands. These data from the first two years of program implementation suggest that the program reached many of the most historically marginalized sub-populations of Veterans, including women, rural-dwellers, and low-income Veterans, at similar or higher rates compared to conventional cardiology care in the region. A notable exception was older individuals, who used CRH care at much lower rates; further work will examine the extent to which patient preference versus other factors drove this dynamic. 

| 287        | Acknowledgments: The authors thank the Virtual Access QUERI team for supporting this               |  |  |  |
|------------|----------------------------------------------------------------------------------------------------|--|--|--|
| 288        | evaluation, including Cindie Slightam, MPH and Camila Chaudhary, MPH, from VA Palo Alto            |  |  |  |
| 289        | Health Care System, for providing project management support and Liberty Greene, MEd and           |  |  |  |
| 290        | James Van Campen, MS for data consulting. Preliminary results of this work will be presented at    |  |  |  |
| 291        | the American Heart Association Scientific Sessions, November 13, 2023.                             |  |  |  |
| 292        |                                                                                                    |  |  |  |
| 293        | Funding: This work was supported by the Veterans Administration (VA) Office of Academic            |  |  |  |
| 294        | Affairs Advanced Fellowship in Health Services Research (RT) and by a pilot grant from the VA      |  |  |  |
| 295        | Palo Alto Center for Innovation to Implementation (RT). Views expressed are those of the           |  |  |  |
| 296        | authors and the contents do not represent the views of the US Department of Veterans Affairs or    |  |  |  |
| 297        | the United States Government. The funders had no role in the design and conduct of the study;      |  |  |  |
| 298        | collection, management, analysis, and interpretation of the data; preparation, review, or approval |  |  |  |
| 299        | of the manuscript; and decision to submit the manuscript for publication.                          |  |  |  |
| 300<br>301 |                                                                                                    |  |  |  |
| 302        | Disclosures: All authors have no competing interests to disclose.                                  |  |  |  |

#### 304 References 305 1. Gurewich D, Shwartz M, Erin B-W, Heather D, Rosen AK. Did Access to Care Improve 306 Since Passage of the Veterans Choice Act? Med Care 2021;59(6 Suppl 3):S270-8. 307 2. Mattocks KM, Kroll-Desrosiers A, Kinney R, Elwy AR, Cunningham KJ, Mengeling MA. 308 Understanding VA's Use of and Relationships With Community Care Providers Under the 309 MISSION Act. Med Care 2021;59(6 Suppl 3):S252-8. 310 Ohl ME, Carrell M, Thurman A, et al. Availability of healthcare providers for rural veterans 3. 311 eligible for purchased care under the Veterans Choice Act. BMC Health Serv Res 312 2018;18(1):315. 313 Hinojosa R. Veterans' Likelihood of Reporting Cardiovascular Disease. J Am Board Fam 4. 314 Med 2019;32(1):50-7. 315 Axon RN, Gebregziabher M, Everett CJ, Heidenreich P, Hunt KJ. Dual health care system 5. use is associated with higher rates of hospitalization and hospital readmission among 316 317 veterans with heart failure. Am Heart J 2016;174:157-63. Tisdale RL, Ferguson J, Van Campen J, et al. Disparities in virtual cardiology visits among 318 6. 319 Veterans Health Administration patients during the COVID-19 pandemic. JAMIA Open 320 2022;5(4):00ac103. 321 Ferguson JM, Jacobs J, Yefimova M, Greene L, Heyworth L, Zulman DM. Virtual care 7. 322 expansion in the Veterans Health Administration during the COVID-19 pandemic: clinical 323 services and patient characteristics associated with utilization. J Am Med Inform Assoc 324 2020;ocaa284. 325 8. Burnett K, Stockdale SE, Yoon J, et al. The Clinical Resource Hub Initiative: First-Year 326 Implementation of the Veterans Health Administration Regional Telehealth Contingency 327 Staffing Program. J Ambulatory Care Manage 2023;46(3):228. 328 Kleinfeld S, Burgos-Chapman I, Filips J, Gould C. Utilizing Telehealth to Meet the Needs 9. 329 of Rural Veterans: Introduction the VA's Clinical Resource Hubs Geriatric Mental Health 330 Programs. Am J Geriatr Psychiatry 2023;31(3, Supplement):S3-4. 331 10. Serper M, Agha A, Garren PA, et al. Multidisciplinary teams, efficient communication, 332 procedure services, and telehealth improve cirrhosis care: A qualitative study. Hepatol 333 Commun 2023;7(6):e0157. 334 11. Chun VS, Whooley MA, Williams K, et al. Veterans Health Administration TeleSleep 335 Enterprise-Wide Initiative 2017–2020: bringing sleep care to our nation's veterans. J Clin 336 Sleep Med [Internet] 2023 [cited 2023 Jul 6]; Available from: https://jcsm.aasm.org/doi/10.5664/jcsm.10488 337

Wang ZJ, Dhanireddy P, Prince C, Larsen M, Schimpf M, Pearman G. 2019 Survey of
 Veteran Enrollees' Health and Use of Health Care. 2020;207.

- 340 13. Goettsche K, DellaCava E. Telehealth As an Option, Not a Requirement-Who May Benefit,
  341 and How Do We Decide? Am J Geriatr Psychiatry 2023;31(3, Supplement):S3.
- Wray CM. Post-Emergency Department Virtual Care—More Questions Than Answers.
   JAMA Netw Open 2022;5(10):e2237790.
- 15. Rogers EM. The Digital Divide. Convergence 2001;7(4):96–111.
- Li KY, Marquis LB, Malani PN, et al. Perceptions of telehealth among older U.S. adults
  during the COVID-19 pandemic: A national survey. J Telemed Telecare
  2023;1357633X231166031.

#### Tables

# 

Table 1. Characteristics of Cardiology Patients, CRH Users (N=804) and Non-Users (N=19,583) 

|                                              | CRH Users   | CRH Non-Users | Effect Size Estimate<br>(Cramer's V or Cohen's d) <sup>a</sup> |
|----------------------------------------------|-------------|---------------|----------------------------------------------------------------|
|                                              | N=804       | N=19,583      |                                                                |
| Used VVC <sup>b</sup>                        | 438 (54.5)  | 1,633 (8.3)   | -0.81                                                          |
| Age, years (mean [SD])                       | 69.5 (12.8) | 72.7 (11.1)   | -0.05                                                          |
| Age, years, categorical                      |             |               | 0.05                                                           |
| 18-44                                        | 50 (6.2)    | 515 (2.6)     | -                                                              |
| 45-64                                        | 168 (20.9)  | 2,998 (15.3)  | -                                                              |
| 65-74                                        | 253 (31.5)  | 6,470 (33.0)  | -                                                              |
| 75+                                          | 333 (41.4)  | 9,600 (49.0)  | -                                                              |
| Race                                         |             |               | 0.03                                                           |
| American Indian or<br>Alaska Native          | 15 (1.9)    | 275 (2.6)     | -                                                              |
| Asian                                        | 20 (2.5)    | 765 (3.9)     | -                                                              |
| Black or African<br>American                 | 79 (9.8)    | 2,011 (10.3)  | -                                                              |
| Native Hawaiian or other<br>Pacific Islander | 28 (3.5)    | 503 (2.6)     | -                                                              |
| Unknown/Missing                              | 87 (10.8)   | 1,979 (10.1)  | -                                                              |
| White                                        | 574 (71.4)  | 14,036 (71.7) | -                                                              |
| Ethnicity                                    |             |               | 0.01                                                           |
| Hispanic or Latino                           | 55 (6.8)    | 1,569 (8.0)   | -                                                              |
| Not Hispanic or Latino                       | 695 (86.4)  | 16,837 (86.0) | -                                                              |
| Unknown/Missing                              | 54 (6.7)    | 1,177 (6.0)   | -                                                              |
| Sex                                          |             |               |                                                                |
| Female                                       | 67 (8.3)    | 840 (4.3)     | -0.18                                                          |
| Male                                         | 737 (91.7)  | 18,743 (95.7) | 0.01                                                           |
| Rurality                                     |             |               | 0.02                                                           |
| Urban                                        | 592 (73.6)  | 14,574 (74.4) | -                                                              |
| Rural                                        | 197 (24.5)  | 4,745 (24.2)  | -                                                              |
| Highly Rural                                 | 8 (1.0)     | 191 (1.0)     | -                                                              |
| Missing                                      | 7 (0.9)     | 74 (0.4)      | -                                                              |
| Enrollment Priority                          |             |               | 0.02                                                           |
| No special priority                          | 113 (14.1)  | 2,650 (13.5)  | -                                                              |
| Low/moderate disability                      | 137 (17.0)  | 3,644 (18.6)  | -                                                              |
| High disability                              | 387 (48.1)  | 9,246 (47.2)  | -                                                              |
| Low income                                   | 165 (20.5)  | 3,941 (20.1)  | -                                                              |
| Missing                                      | 2 (0.2)     | 102 (0.5)     | -                                                              |
| Diagnoses                                    |             |               |                                                                |
| Atrial Fibrillation/Flutter                  | 320 (39.8)  | 6,300 (32.2)  | -0.02                                                          |
| Heart Failure                                | 153 (19.0)  | 3,405 (17.4)  | -0.10                                                          |
| Ischemic Heart Disease                       | 261 (32.5)  | 8,137 (41.6)  | -0.17                                                          |
| Valvular Heart Disease                       | 161 (20.0)  | 2,530 (12.9)  | 0.12                                                           |

<sup>a</sup> Standardized mean differences calculated via Cramer's V for categorical variables and via Cohen's d for continuous variables and binary categorical variables. <sup>b</sup> Indicates use of VVC during study period.

Table 2. Adjusted Odds of Using Video Care During Study Period Among All Cohort Patients (N=20,387) 357

|                                              | Adjusted Odds Ratio | 95% Confidence Interval |
|----------------------------------------------|---------------------|-------------------------|
| CPH User Status                              |                     |                         |
| Never used CRH                               | (ref)               | (ref)                   |
| Used CRH                                     | 29.73               | (1138, 77.66)           |
| Ago voors optogorical                        | 29.15               | (11.58, 77.00)          |
| Age, years, categoricar                      | (nof)               | (maf)                   |
| 15-44                                        |                     |                         |
| 45-64                                        | 0.80                | (0.12, 0.89)            |
| 65-74                                        | 0.57                | (0.49, 0.66)            |
| 75+                                          | 0.44                | (0.37, 0.53)            |
| Race                                         |                     |                         |
| American Indian or<br>Alaska Native          | 1.27                | (0.96, 1.67)            |
| Asian                                        | 0.68                | (0.50, 0.92)            |
| Black or African<br>American                 | 0.78                | (0.48, 1.25)            |
| Native Hawaiian or other<br>Pacific Islander | 0.83                | (0.64, 1.08)            |
| Unknown                                      | 0.90                | (0.79, 1.03)            |
| White                                        | (ref)               | (ref)                   |
| Ethnicity                                    |                     |                         |
| Hispanic or Latino                           | 0.91                | (0.68, 1.22)            |
| Not Hispanic or Latino                       | (ref)               | (ref)                   |
| Unknown                                      | 1.12                | (0.92, 1.37)            |
| Gender                                       |                     |                         |
| Female                                       | 1.20                | (1.01, 1.42)            |
| Male                                         | (ref)               | (ref)                   |
| Rurality                                     |                     |                         |
| Urban                                        | (ref)               | (ref)                   |
| Rural                                        | 1.27                | (1.06, 1.52)            |
| Highly Rural                                 | 1.30                | (0.82, 2.05)            |
| Missing                                      | 1.81                | (0.65, 5.04)            |
| Enrollment Priority                          |                     |                         |
| No special priority                          | (ref)               | (ref)                   |
| Low/moderate disability                      | 1.02                | (0.87, 1.21)            |
| High disability                              | 1.13                | (0.93, 1.36)            |
| Low income                                   | 0.81                | (0.70, 0.94)            |
| Missing                                      | 0.54                | (0.25, 1.13)            |
| Diagnoses                                    |                     | (                       |
| Atrial Fibrillation/Flutter                  | 1.23                | (1.09, 1.40)            |
| Heart Failure                                | 1.37                | (0.92, 2.03)            |
| Ischemic Heart Disease                       | 1.25                | (1.01, 1.54)            |
| Valvular Heart Disease                       | 1.20                | (130, 221)              |
| , arvular meant Disease                      | 1./0                | (1.50, 2.21)            |

# 361 Figures with Figure Legends

### 

# 363 Figure 1: Adjusted Odds of Being a Clinical Resource Hub (CRH) Cardiology User



Figure 1 represents the odds of using CRH adjusted for the sociodemographic and clinical
 characteristics shown and with clustering by the patient's assigned primary care site.

# 





## 372 Figure 2 shows patients seen in CRH clinics each quarter by site over the study period.



376 Figure 3. Cardiology Encounters Over Time by Encounter Modality, VHA Sierra Pacific Region<sup>a</sup>