ORIGINAL RESEARCH

Dietary diversity moderates household economic inequalities in the

double burden of malnutrition in Tanzania

Sanmei Chen, PhD¹*, Yoko Shimpuku, PhD¹, Takanori Honda, PhD², Dorkasi L.

Mwakawanga, MSc^{1,3}, Beatrice Mwilike, PhD³

Affiliations:

1. Global Health Nursing, Graduate School of Biomedical and Health Sciences,

Hiroshima University, Japan

 Center for Cohort Studies, Graduate of Medical Sciences, Kyushu University, Japan

3. Department of Community Health Nursing, School of Nursing, Muhimbili

University of Health and Allied Sciences, Tanzania

*Correspondence to:

Sanmei Chen, PhD

Global Health Nursing, Graduate School of Biomedical and Health Sciences,

Hiroshima University, 1-2-3 Kasumi, Minami Ward, Hiroshima 734-8553, Japan

Email: chens@hiroshima-u.ac.jp

Phone: +81-82-257-5377

Word account:

Abstract: 300

Main text: 3,578

Number of tables: 2

Number of figures: 2

Supplemental material: 2 supplemental tables, 3 supplemental figures

What is already known on this topic?

The double burden of undernutrition and obesity is increasing in low- and middle-income countries and has serious and lasting developmental and socioeconomic impact.

Household economic inequalities have been linked to the double burden of malnutrition (DBM) at the household level. However, existing evidence is conflicting and limited in Tanzania.

Diversified diet may mitigate the potential adverse impact of household economic inequalities on DBM; however, evidence is scarce.

What this study adds?

This study is one of the few attempts to explore economic inequalities in DBM at the household level in Tanzania by considering the moderating role of dietary diversity in these inequalities.

The prevalence of DBM varies regionally and is unequally distributed across levels of household wealth nationwide in Tanzania. Greater household wealth is associated with higher DBM; however, achieving minimum dietary diversity mitigates the negative impact of household wealth on DBM.

How this study might affect research, practice or policy?

This study provide evidence that supports the hypothesis that dietary diversity might be an underrated action target for addressing DBM.

Our findings encourage the implementation of double-duty approaches that simultaneously tackle different forms of malnutrition through operations such as nutrition education interventions for mothers with young children and relevant public health nutrition programs and policies in Tanzania.

1 Abstract

2	Background: Improved food availability and a growing economy in Tanzania
3	may insufficiently decrease preexisting nutritional deficiencies and
4	simultaneously increase overweight within the same individual, household, or
5	population, causing a double burden of malnutrition (DBM). We investigated
6	economic inequalities in DBM at the household level, expressed as a stunted
7	child with an overweight/obese mother, and the moderating role of dietary
8	diversity in these inequalities.
9	Methods: We used cross-sectional data of 2,867 children (aged 6-23 months)
10	and their mothers (aged 15–49 years) from the 2015–2016 Tanzania
11	Demographic and Health Survey. The participants were categorized into two
12	groups based on their dietary diversity score: achieving and not achieving
13	minimum dietary diversity. We assessed the interaction effect between
14	household wealth and dietary diversity on DBM and examined the association
15	between household wealth and DBM in subgroups based on achieving
16	minimum dietary diversity. Logistic regression models with sample weights and
17	restricted cubic spline functions were used for the analysis.
18	Results: The prevalence of DBM was 5.6% (SD=0.6) and significantly varied by
19	regions (ranging from 0.6%–12.2%). Significant interaction was observed
20	between dietary diversity and household wealth index (p for interaction = 0.01).
21	The prevalence of DBM monotonically increased with greater household wealth
22	among those who did not achieve minimum dietary diversity (p for trend =
23	0.002; however, but this association was attenuated in those who achieved
24	minimum dietary diversity (p for trend = 0.15), particularly for the richest

- households (p = 0.43). Similar results were observed when modeling the
- household wealth index score as a continuous variable (odds ratio [95%
- 27 confidence interval]: 2.05 [1.32-3.19] for non-achievers of minimum dietary
- 28 diversity, 1.39 (0.76–2.54) for achievers).
- 29 Conclusions: Greater household wealth was associated with higher odds of
- 30 DBM in Tanzania; however, achieving minimum dietary diversity may mitigate
- the negative impact of household economic status on DBM.
- 32 **Keywords**: Malnutrition; dietary diversity; Tanzania; household wealth

1 INTRODUCTION

2	Countries worldwide are now experiencing a fast-evolving and more complex
3	nutrition paradigm. ¹ Instead of focusing on a single side of malnutrition,
4	combating all forms of malnutrition is among the top priorities of the United
5	Nations Decade of Action on Nutrition and the Sustainable Development Goals
6	(SDGs, Target 2.2). ^{2,3} Undernutrition and overweight or obesity have been
7	historically addressed as separate challenges affecting distinct populations with
8	contrast risk factors. ⁴ However, the changing global nutrition reality is that these
9	two distinct forms of malnutrition frequently coexist within individuals,
10	households, and populations, with common mechanisms (e.g., economic
11	inequalities ⁵) and consequences on health. ⁴ This growing recognition in the
12	global health community forms the basis of the emerging concept of double
13	burden of malnutrition (DBM). ^{6,7} This global double burden of undernutrition and
14	obesity and its great developmental and socioeconomic impact have been
15	recognized as serious and lasting in low- and middle-income countries (LMICs)
16	undergoing rapid nutrition transition ^{8–10} ; however, thay have not yet been
17	examined extensively.
18	Tanzania is experiencing improved food availability as its economy is
19	growing rapidly. Economic transition with an increased average household

growing rapidly. Economic transition with an increased average household
income enables more households to purchase more food¹¹, which potentially
improves undernutrition. However, the rates of decline in undernutrition (e.g.,
stunting from 34.4% in 2014 to 31.8% in 2018) in children under age five in
Tanzania are still too slow to meet the SDG targets by 2030.¹² Even worse, the
prevalence of underweight increased from 13.7% in 2014 to 14.6% in 2018.¹²

Simultaneously overweight and obesity is rapidly growing, affecting over 40% of
Tanzanian women aged 15–49 years,¹² perhaps mainly due to very rapid
changes in the food system in Tanzania (e.g., the availability of cheap ultraprocessed fast food and beverages).¹³ This co-occurrence of undernutrition and
obesity may increase DBM in Tanzania.¹⁴

30 DBM at the household-level is defined as multiple family members affected by different forms of malnutrition.⁸ Household-level DBM varies 31 between countries and often arises in lower-middle-income countries including 32 Tanzania¹⁵. Evidence showed that the prevalence of the total household-level 33 34 DBM ranged between 3% and 35% across 126 LMICs, with stunted child-35 overweight mother pairs being the most prevalent DBM type (ranging between 1% and 24%).^{15,16} Household-level DBM has been shown to be primarily driven 36 by socioeconomic inequalities; however, the effect of household economic 37 status on DBM is heterogeneous.^{17–21} In poorer LMICs higher household 38 economic levels were linked to increased odds of DBM, while in richer LMICs 39 lower household economic levels were associated with higher odds of DBM.²² 40 In Tanzania, it remains uncertain how household economic inequalities are 41 42 associated with DBM. A bivariate analysis in Tanzania reported a 1.4 times higher crude likelihood of DBM among richer households; however, this study 43 did not quantify this association while accounting for important household 44 characteristics such as place of residence.¹⁴ 45 46 Evidence regarding the critical factors that could help explain the link

Evidence regarding the childan factors that could help explain the link
 between household economic inequalities and DBM is lacking^{17–22}. However,
 some dietary factors have been proposed to explain this link (e.g., food

49	expenditure, changing eating habits, and the replacement of powder milk with
50	breastfeeding). ^{4,5,15} Dietary diversity, a proxy indicator for diet metrics, is
51	hypothesized to be an underrated action target for addressing DBM ^{23,24} ,
52	especially among populations with diets based on starchy staples ²⁵ including
53	Tanzanians. Generally, dietary diversity increases as household income
54	increases ²⁵ , thus improving nutrient adequacy and diet-related health
55	outcomes ²⁶ . Paradoxically, in emerging economies increased household
56	income can worsen diet-related health outcomes due to poor dietary diversity ²⁷
57	and other lifestyle, social, and ecological factors ⁴ . Whether diversified diet can
58	mitigate the potential adverse impact of increased household wealth on DBM in
59	Tanzania remains unknown.
60	We aimed to address this gap by investigating household economic
61	inequalities in the DBM in Tanzania, expressed as a stunted child with an
62	overweight/obese mother, and test whether dietary diversity modifies the
63	association between household economic status and DBM. We hypothesized
64	that higher household wealth is associated with higher odds of DBM but that
65	this association is attenuated by a diversified diet.
66	
67	METHODS
68	Data
69	We obtained cross-sectional data from the 2015–2016 Tanzania Demographic

- and Health Survey (DSH), provided by the United States Agency for
- ⁷¹ International Development.²⁸ The data are from nationally representative
- household surveys of girls and women of productive age (15–49 years) and

73	their children born in the five years preceding the survey, using a stratified two-
74	stage cluster sampling method. This sampling technique allowed each
75	household to have an equal probability of participating in the survey. In the
76	present study, we used the dataset for children under the age of five and their
77	mothers. This dataset provides anthropometric information for each child , as
78	well as the characteristics of the mother and household (n = $10,233$). ²⁹ For the
79	analysis, we included children aged 6–23 months old (n = $3,320$), who were
80	recommended by the WHO as key targets for assessing infant and young child
81	feeding practices using diet quality indicators such as dietary diversity. ³⁰ We
82	excluded children who were not alive $(n = 137)$, children who were not living
83	with their mothers (n = 47), and children with height missing values (n = 55).
84	Moreover, we excluded mothers who were pregnant ($n = 207$) and those with
85	missing values of weight or height ($n = 7$). Our final sample consisted of 2,867
86	child-mother pairs (weighted sample size: $n = 2,850$) (see Supplemental Figure
87	S1). Ethical approval was not required because the analysis used publicly
88	available DHS data.

89

90 Double burden of malnutrition

DBM can occur in different scenarios, including when a child is both stunted and overweight, when a child is wasted with an overweight mother, when a child is stunted with an overweight mother, or when a child is overweight with an underweight mother.¹⁵ In this analysis, we defined DBM as a child being stunted with an overweight mother in the same household, as this is the most prevalent measure of household-level DBM in LMICs.^{15,22} A child was considered stunted

97	if their height-for-age Z-score was below minus two standard deviations (-2 SD)
98	from the WHO Child Growth Standards median Z-score. A mother was
99	considered overweight if her body mass index (BMI) was 25 kg/m ² or higher.
100	The DBM variable was coded 1 if a child was stunted and the mother was
101	overweight, and 0 otherwise.
102	
103	Household economic status
104	Household economic affluence was measured using the DHS wealth index. The
105	DHS wealth index is a composite measure of relative household economic
106	status, constructed using household-level information on ownership of selected
107	assets, such as television and bicycles, materials for housing construction, and
108	type of water access and sanitation facilities. ³¹ It is one of the most useful
109	indicators of household financial well-being in LMICs where it is difficult to
110	obtain accurate data on household income from surveys. This is because a
111	significant portion of the population in LMICs do not receive market level
112	transactions and engage in significant home production. ²¹ A continuous
113	measure of relative wealth (i.e., wealth index factor score) was assessed for
114	each household using principal component analysis. ^{28,29} Based on the
115	distribution of the wealth index factor score in the whole survey sample of the
116	2015-2016 Tanzania, all households were categorized into five quintiles (i.e.,
117	the wealth index quintiles). ^{28,29}
118	

119 Dietary diversity

12

120	Dietary diversity is a commonly used indicator of diet quality estimated using the
121	number of different food groups consumed over a given reference period. ³⁰
122	Minimum dietary diversity was defined according to the DHS statistics guide as
123	feeding the child with \geq 5 out of the following eight food groups during the day
124	or night preceding the survey: breastmilk; grains, roots, and tubers; legumes
125	and nuts; dairy products (infant formula, milk, yogurt, cheese); flesh foods (meat,
126	fish, poultry and liver/organ meats); eggs; fruits and vegetables rich in vitamin
127	A; and other fruits and vegetables. ³² The participants were categorized into two
128	groups: achieving and not achieving minimum dietary diversity.
129	
120	
130	Covariates
	Covariates We considered the following demographic and socio-economic covariates that
130	
130 131	We considered the following demographic and socio-economic covariates that
130 131 132	We considered the following demographic and socio-economic covariates that may affect both household economic status and the presence of DBM: the
130 131 132 133	We considered the following demographic and socio-economic covariates that may affect both household economic status and the presence of DBM: the mother's age (in years), education (no completed education, completed primary
130 131 132 133 134	We considered the following demographic and socio-economic covariates that may affect both household economic status and the presence of DBM: the mother's age (in years), education (no completed education, completed primary education, or completed secondary education and above), marital status (never
 130 131 132 133 134 135 	We considered the following demographic and socio-economic covariates that may affect both household economic status and the presence of DBM: the mother's age (in years), education (no completed education, completed primary education, or completed secondary education and above), marital status (never married, currently married, formerly married), place of residence (urban or rural),
 130 131 132 133 134 135 136 	We considered the following demographic and socio-economic covariates that may affect both household economic status and the presence of DBM: the mother's age (in years), education (no completed education, completed primary education, or completed secondary education and above), marital status (never married, currently married, formerly married), place of residence (urban or rural), whether the mother was currently breastfeeding a child (yes or no), number of

139

140 Statistical analysis

141 All statistical analyses were performed using the SAS software (version 9.4;

142 SAS Institute, Cary, North Carolina, USA) and R version 4.3.0 (R Foundation for

143 Statistical Computing). All analyses were weighted using sampling weights,

13

144	which considered the stratified cluster sampling design and non-response rate.
145	The prevalence of DBM by region was illustrated as a choropleth map, and
146	regional differences were tested using χ^2 tests. We summarized the sample
147	characteristics according to quintiles of the wealth index among non-achievers
148	and achievers of minimum dietary diversity. Descriptive statistics were
149	presented as weighted means and standard errors (SEs) for continuous
150	variables, and weighted frequencies (%) and their SEs for categorical variables.
151	We compared the sample characteristics among quintiles of household wealth
152	index using χ^2 tests for categorical variables and one-way analysis of variance
153	for continuous variables.
154	We built logistic regression models for stratified cluster sampling to
155	assess the odds ratios (OR) and 95% confidence intervals (CI) of DBM
156	according to the household wealth index levels. Given that there were two few
157	cases of DBM among child-mother pairs who achieved minimum dietary
158	diversity in the poorest group to build logistic regression models, we combined
159	the poorest group with the poorer group. We used both a continuous estimate of
160	the wealth index score and groups of the wealth index as independent variables
161	in separate models. Firstly, we performed unadjusted analyses. We then
162	adjusted the models for covariates at baseline, namely, the mother's age and
163	education, marital status, place of residence, whether the mother was currently
164	breastfeeding a child, number of children in the household, child's age and sex,
165	and the number of household members. We tested the trend in the association
166	between wealth index and DBM by assigning ordinal numbers (0, 1, 2, and 3) to
167	the groups of the wealth index categories and modeled this as a continuous

168	variable. Based on the hypothesis that the household wealth index might exhibit
169	varying associations with DBM depending on the presence of minimum dietary
170	diversity, we initially tested the heterogeneity in the associations between the
171	two groups of minimum dietary diversity. This was achieved by adding a
172	multiplicative interaction term (minimum dietary diversity \times household wealth
173	index) to the multivariable-adjusted model. We tested this interaction effect
174	using the likelihood ratio test by comparing the log-likelihood of the model
175	containing the interaction term and that of the model not containing the
176	interaction term. Statistical tests were two-sided, and a <i>p</i> -value for the
177	interaction term < 0.05 was considered statistically significant. We conducted
178	primary analyses separately for non-achievers and achievers of minimum
179	dietary diversity. We performed a restricted cubic spline analysis without
180	assuming a linear association between the wealth index score and the DBM to
181	visualize the shape of this association. We placed four knots at the 20th, 40th,
182	60^{th} , and 80th percentiles of the wealth index score. The 20th percentile was set
183	as the reference value. Collinearity between independent variables was
184	checked using the variance inflation factor test.
185	We performed two sensitivity analyses: (1) additionally adjusting for
186	region to account for the potential confounding effect in which the association
187	between household wealth and DBM is attributed to regional differences only
188	and (2) removing the variable of place of residence from the covariates to
189	address the potential collinearity between place of residence and the household
190	wealth index (with a variance inflation factor value = 2.3).
101	

191

192 **RESULTS**

193	The estimated prevalence (SE) of DBM (stunted children with overweight/obese
194	mother) was 5.6% (0.6) in the whole sample. The prevalence of child stunting
195	and mother overweight was 21.3% (1.0) and 31.1% (1.2), respectively. Figure 1
196	shows the regional distribution of the DBM prevalence in Tanzania, which
197	ranged from the lowest rate of 0.6% in Manyara to the highest rate of 12.2% in
198	Kusini Unguja, with significant regional differences ($p = 0.03$). In total, 21.3% of
199	the sample achieved minimum dietary diversity. The estimated prevalence (SE)
200	of DBM was 5.8% (0.5) among non-achievers of minimum dietary diversity and
201	6.9% (1.0) among achievers of minimum dietary diversity.
202	Table 1 shows the characteristics of child-mother pairs according to the
203	quintiles of the household wealth index among non-achievers and achievers of
204	minimum dietary diversity. In both groups, households with a higher wealth
205	index were more likely to have mothers with higher education, had few living
206	children and household members, lived in urban areas, and were less likely to
207	breastfeed. They were also more likely to have children with lower mean values
208	of height-for-age and mothers with higher mean values of BMI. In the group that
209	did not achieve minimum dietary diversity, households with a higher wealth
210	index were more likely to have mothers who were younger, never married, or
211	formerly married.

Figure 2 shows the prevalence of DBM according to the household wealth level among who achieved minimum dietary diversity and those who did not. The prevalence of DBM showed a statistically significant increase with increasing household wealth index among those who did not achieve minimum

dietary diversity. However, this was not observed among achievers of minimum
dietary diversity. The DBM prevalence reached a plateau in the richer group
and then deceased in the richest group.
Table 2 shows the association between the household wealth index and

220 DBM in unadjusted and multivariable-adjusted models. The interaction tests showed the associations of household wealth index with DBM significantly 221 differed by minimum dietary diversity, with p for interaction < 0.05 in both 222 223 unadjusted and adjusted analyses. Specifically, the multivariable-adjusted odds 224 of DBM in non-achievers of minimum dietary diversity were approximately two times higher for the middle and richer groups, and more than five times higher 225 226 in the richest group, as compared with the combined poorest and poorer groups 227 (p for trend = 0.02). However, the multivariable-adjusted odds of DBM among achievers of minimum dietary diversity were not statistically different in the 228 229 middle and the richest groups, but they were approximately five times higher in 230 the richer group. Similar results were observed when modeling the continuous 231 variable of the wealth index score (mean [SD]: 0.16 [0.94]) as the independent variable instead of the categories of the wealth index, with an OR (95%CI) per 232 233 unit increase in the wealth index score of 2.05 (1.32-3.19) in non-achievers of minimum dietary diversity and an OR (95%CI) of 1.39 (0.76-2.54) in achievers 234 of minimum dietary diversity. Restricted cubic spline analyses showed a similar 235 shape association between the wealth index score and DBM among non-236 237 achievers and achievers of minimum dietary diversity (see Supplemental Figure 238 3). The prevalence of child stunting decreased as household wealth increased, 239 especially among achievers of minimum dietary diversity. However, the

17

240	prevalence of mother overweight significantly increased with the household
241	wealth levels in both non-achievers and achievers of minimum dietary diversity
242	(see Supplemental Figure S2).
243	In the sensitivity analyses, the results did not materially change after
244	further adjustment for region (see Supplemental Table S1) or removing the
245	variable of place of residence from the covariates (see Supplemental Table S2).
246	
247	DISCUSSION
248	This analysis demonstrated that the prevalence of household-level DBM varied
249	regionally and was unequally distributed across levels of relative household
250	wealth nationwide, and that these inequalities in DBM across levels of
251	household wealth were moderated by minimum dietary diversity. Specifically,
252	higher levels of relative household wealth were associated with higher odds of
253	DBM when minimum dietary diversity was not achieved. This association was
254	attenuated by achieving minimum dietary diversity. Our analysis quantified the

association between household wealth and DBM among non-achievers and

achievers of minimum dietary diversity, suggesting that household wealth

257 increased DBM in the richest households in Tanzania; however, dietary

diversity could potentially mitigate this negative impact. This study is one of the

259 few attempts to examine the economic inequalities in DBM at the household

level in Tanzania by considering the moderating role of dietary diversity in theseinequalities.

262 Our observation of the prevalence of DBM (stunted child and overweight 263 mother) at the household level in Tanzania is comparable to the results from

18

264	analyses of LMICs (5.6% vs. 6.0%). ²² However, our observations indicate
265	relatively higher rates of DBM compared to LMICs in Asia, where the
266	prevalence is mostly less than 1%. ²¹ This disparity may be primarily driven by
267	the higher prevalence of maternal overweight in Tanzania. We also observed
268	regional differences in the prevalence of DBM; DBM tended to be
269	disproportionately concentrated in regions with relatively high economic
270	development levels, such as Kusini Unguja, Mwanza, Tanga, and Dar es
271	Salaam etc. This observation supports the assumption of the undesirable
272	impact of macroeconomic development on DBM. ²¹ Our findings suggest the
273	importance of accounting for regional variations into addressing DBM in
274	Tanzania.
275	Our findings on the negative impact of household economic affluence on
276	household-level DBM in Tanzania agree with findings from previous limited
277	analysis of household level DBM in 55 LMICs worldwide ²² and 11 LMICs in
278	Asia ²¹ , as well as other analyses using nationally representative data ^{19,20} .
279	Nevertheless, other analyses showed no or opposite direction of the
280	association ^{17,18} . Of note, no previous analysis has examined the interaction
281	between household economic affluence and dietary factors in DBM. This study
282	expands on existing evidence regarding the adverse impact of household
283	wealth on DBM and demonstrates that dietary diversity could potentially
284	alleviate these negative impact. This moderating effect of dietary diversity could
285	be driven by the observed dramatic decrease in the child stunting rate among
286	the richest households that embraced a minimum level of dietary diversity. A
287	more diverse diet highly is correlated with higher intake of micronutrients among

19

288	children, thus helping prevent child stunting. ²⁵ The dramatic decrease in child
289	stunting in the richest households could be attributed to the fact that their
290	mothers were more likely to have a higher level of nutritional literacy, in addition
291	to more food expenditure to sustain a high overall quality of diet for their
292	children.33 We also observed a persistent increase in maternal overweight as
293	household wealth increased, even among the group who achieved minimum
294	dietary diversity. This result indicates that affluent Tanzanian women have a
295	high level of total energy intake, regardless of dietary diversity. This finding
296	could be partly explained by the cultural beliefs among Tanzanian women that
297	associate overweight or obesity with beauty and consider it a symbol of success
298	in life. ³⁴ Our findings collectively support the hypothesis that dietary diversity
299	might be an underrated action target for addressing DBM. ^{23,24}
300	A recent Lancet Commission advocated double-duty actions to
300 301	A recent Lancet Commission advocated double-duty actions to simultaneously address different forms of malnutrition, aligning with the United
301	simultaneously address different forms of malnutrition, aligning with the United
301 302	simultaneously address different forms of malnutrition, aligning with the United Nations' SDGs and global nutrition targets. ^{23,24} However, the common
301 302 303	simultaneously address different forms of malnutrition, aligning with the United Nations' SDGs and global nutrition targets. ^{23,24} However, the common mechanisms of DBM through which household economic affluence affects DBM
301 302 303 304	simultaneously address different forms of malnutrition, aligning with the United Nations' SDGs and global nutrition targets. ^{23,24} However, the common mechanisms of DBM through which household economic affluence affects DBM have yet to be identified. Hypothesised pathways include impact on dietary
301 302 303 304 305	simultaneously address different forms of malnutrition, aligning with the United Nations' SDGs and global nutrition targets. ^{23,24} However, the common mechanisms of DBM through which household economic affluence affects DBM have yet to be identified. Hypothesised pathways include impact on dietary quality, food environment, physical inactivity at transportation, and
301 302 303 304 305 306	simultaneously address different forms of malnutrition, aligning with the United Nations' SDGs and global nutrition targets. ^{23,24} However, the common mechanisms of DBM through which household economic affluence affects DBM have yet to be identified. Hypothesised pathways include impact on dietary quality, food environment, physical inactivity at transportation, and breastfeeding practices. ^{4,13,15} For instance, in emerging economies like
 301 302 303 304 305 306 307 	simultaneously address different forms of malnutrition, aligning with the United Nations' SDGs and global nutrition targets. ^{23,24} However, the common mechanisms of DBM through which household economic affluence affects DBM have yet to be identified. Hypothesised pathways include impact on dietary quality, food environment, physical inactivity at transportation, and breastfeeding practices. ^{4,13,15} For instance, in emerging economies like Tanzania, high household income can lead to consuming fast and ultra-
 301 302 303 304 305 306 307 308 	simultaneously address different forms of malnutrition, aligning with the United Nations' SDGs and global nutrition targets. ^{23,24} However, the common mechanisms of DBM through which household economic affluence affects DBM have yet to be identified. Hypothesised pathways include impact on dietary quality, food environment, physical inactivity at transportation, and breastfeeding practices. ^{4,13,15} For instance, in emerging economies like Tanzania, high household income can lead to consuming fast and ultra- processed food with low-nutrient density and shifting into unhealthy eating
 301 302 303 304 305 306 307 308 309 	simultaneously address different forms of malnutrition, aligning with the United Nations' SDGs and global nutrition targets. ^{23,24} However, the common mechanisms of DBM through which household economic affluence affects DBM have yet to be identified. Hypothesised pathways include impact on dietary quality, food environment, physical inactivity at transportation, and breastfeeding practices. ^{4,13,15} For instance, in emerging economies like Tanzania, high household income can lead to consuming fast and ultraprocessed food with low-nutrient density and shifting into unhealthy eating habits ³⁵ , thereby worsening diet-related health outcomes. ²⁷ Our findings

effective strategy to address DBM in Tanzania. Additionally, the design of such 312 double-duty actions should consider the uneven impact of economic affluence, 313 as well as cultural and regional differences. 314 This study used a large nationally representative sample that provided 315 316 robust estimates of the prevalence of DBM and relavent associations and enhanced the generalizability of our findings. We employed robust 317 318 methodological approaches, including examining interactions between household wealth and dietary diversity and employing restricted cubic splines to 319 320 avoid assuming linear associations. Our results remained robust under different sensitivity analyses, including further adjustment for region. However, this study 321 322 has several limitations. The cross-sectional nature of the data precludes causal 323 inferences. We did not include children aged two years and obove because the DHS employed the WHO-designed indicator of minimum dietary diversity 324 specifically for children 6–23 months³⁰. Future studies should validate our 325 findings among children aged 24-59 months and their mothers in LMICs using 326 standardized indicators.³⁶ We used minimum dietary diversity for children as a 327 proxy indicator at the household level since variables regarding the mother's 328 diet were not available. In Tanzania, there is a food culture in which women and 329 children eat from the same pot ³⁷, indicating that what mothers eat is strongly 330 related to what their children eat.³⁸ Nevertheless, we could not rule out the 331 possibility of misclassification of household minimum dietary diversity in our 332 333 analysis, which may have led to an underestimation of the moderating effect of 334 dietary diversity on DBM. While our study focused on the most prevalent form of 335 DBM, it is crucial to recognize that other forms of DBM may exhibit different

336	associations with household economic status. The wealth index is a country-
337	specific and relative measure of household wealth affluence. We urge caution
338	when generalizing our findings to other countries.
339	In conclusion, the prevalence of household-level DBM was unequally
340	distributed across regions of Tanzania and increased with higher household
341	wealth. However, achieving minimum dietary diversity moderated the economic
342	inequalities of DBM. Improved household economic status may increase DBM,
343	but guaranteeing minimum dietary diversity could potentially address this
344	negative impact. Our findings support and encourage the implementation of
345	double-duty approaches that simultaneously tackle different forms of
346	malnutrition through operations such as nutrition education interventions for
347	mothers with young children and relevant public health nutrition programs and
348	policies in Tanzania.

References

- High Level Panel of Experts on Food Security and Nutrition. Food Security and Nutrition: Building a Global Narrative towards 2030.; 2020.
- UN. The United Nations Decade of Action on Nutrition □: addressing the challenge. Published 2019. Accessed January 24, 2023. https://www.un.org/nutrition/commitments
- Nilsson M, Griggs D, Visbeck M. Policy: Map the interactions between Sustainable Development Goals. *Nature*. 2016;534(7607):320-322. doi:10.1038/534320a
- Wells JC, Sawaya AL, Wibaek R, et al. The double burden of malnutrition: aetiological pathways and consequences for health. *Lancet*. 2020;395(10217):75-88. doi:10.1016/S0140-6736(19)32472-9
- Alao R, Nur H, Fivian E, Shankar B, Kadiyala S, Harris-Fry H. Economic inequality in malnutrition: A global systematic review and meta-analysis. *BMJ Glob Heal*. 2021;6(12):1-12. doi:10.1136/bmjgh-2021-006906
- Khan SS, Ning H, Wilkins JT, et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. *JAMA Cardiol.* 2018;3(4):280-287. doi:10.1001/jamacardio.2018.0022
- Demaio AR, Branca F. Decade of action on nutrition: Our window to act on the double burden of malnutrition. *BMJ Glob Heal*. 2017;3:e000492. doi:10.1136/bmjgh-2017-000492
- 8. World Health Organization. *The Double Burden of Malnutrition: Policy Brief.*; 2017.
- 9. Popkin BM, Horton S, Kim S, Mahal A, Shuigao J. Trends in diet,

nutritional status, and diet-related noncommunicable diseases in China and India: the economic costs of the nutrition transition. 2001;59:379-390. doi:doi: 10.1111/j.1753-4887.2001.tb06967.x.

- Nugent R, Levin C, Hale J, Hutchinson B. Economic effects of the double burden of malnutrition. *Lancet.* 2020;395(10218):156-164. doi:10.1016/S0140-6736(19)32473-0
- 11. The World Bank. The World Bank in Tanzania. Published 2022. Accessed January 26, 2023.

https://www.worldbank.org/en/country/tanzania/overview

- Ministry of Health Community Development Gender Elderly and Children, Ministry of Health, Tanzania Food and Nutrition Center, National Bureau of Statistics, Office of the Chief Government Statistician, UNICEF. *Tanzania National Nutrition Survey 2018.*; 2019.
- Pallangyo P, Mkojera ZS, Hemed NR, et al. Obesity epidemic in urban Tanzania: A public health calamity in an already overwhelmed and fragmented health system. *BMC Endocr Disord*. 2020;20(1):1-9. doi:10.1186/s12902-020-00631-3
- Faustini FT, Mniachi AR, Msengwa AS. Coexistence and correlates of forms of malnutrition among mothers and under-five child pairs in Tanzania. *J Nutr Sci.* 2022;11:1-8. doi:10.1017/jns.2022.103
- Popkin BM, Corvalan C, Grummer-Strawn LM. Dynamics of the double burden of malnutrition and the changing nutrition reality. *Lancet*. 2020;395(10217):65-74. doi:10.1016/S0140-6736(19)32497-3
- 16. Garrett JL, Ruel MT. Stunted child-overweight mother pairs: Prevalence

and association with economic development and urbanization. *Food Nutr Bull*. 2005;26(2):209-221. doi:10.1177/156482650502600205

- Doak CM, Adair LS, Monteiro C, Popkin BM. Overweight and underweight coexist within households in Brazil, China and Russia. *J Nutr.* 2000;130(12):2965-2971. doi:10.1093/jn/130.12.2965
- Nakphong MK, Beltrán-Sánchez H. Socio-economic status and the double burden of malnutrition in Cambodia between 2000 and 2014: Overweight mothers and stunted children. *Public Health Nutr.* 2021;24(7):1806-1817. doi:10.1017/S1368980021000689
- Hong SA. Prevalence and regional variations of coexistence of child stunting and maternal overweight or obesity in Myanmar. *Public Health Nutr.* 2021;24(8):2248-2258. doi:10.1017/S136898002000186X
- Oddo VM, Rah JH, Semba RD, et al. Predictors of maternal and child double burden of malnutrition in rural Indonesia and Bangladesh. *Am J Clin Nutr.* 2012;95(4):951-958. doi:10.3945/ajcn.111.026070
- Fooken J, Vo LK. Exploring the macroeconomic and socioeconomic determinants of simultaneous over and undernutrition in Asia: An analysis of stunted child - overweight mother households. *Soc Sci Med.* 2021;269. doi:10.1016/j.socscimed.2020.113570
- Seferidi P, Hone T, Duran AC, Bernabe-Ortiz A, Millett C. Global inequalities in the double burden of malnutrition and associations with globalisation: a multilevel analysis of Demographic and Health Surveys from 55 low-income and middle-income countries, 1992–2018. *Lancet Glob Heal*. 2022;10(4):e482-e490. doi:10.1016/S2214-109X(21)00594-5

- Miller V, Webb P, Micha R, Mozaffarian D. Defining diet quality: a synthesis of dietary quality metrics and their validity for the double burden of malnutrition. *Lancet Planet Heal*. 2020;4(8):e352-e370. doi:10.1016/S2542-5196(20)30162-5
- Hawkes C, Ruel MT, Salm L, Sinclair B, Branca F. Double-duty actions: seizing programme and policy opportunities to address malnutrition in all its forms. *Lancet*. 2020;395(10218):142-155. doi:10.1016/S0140-6736(19)32506-1
- Swindale A, Bilinsky P. Household Dietary Diversity Score (HDDS) for Measurement of Household Food Access: Indicator Guide.; 2006. doi:10.1017/CBO9781107415324.004
- Verger EO, Le Port A, Borderon A, et al. Dietary diversity indicators and their associations with dietary adequacy and health outcomes: a systematic scoping review. *Adv Nutr.* 2021;12(5):1659-1672. doi:10.1093/advances/nmab009
- Ren Y, Li H, Wang X. Family income and nutrition-related health: Evidence from food consumption in China. *Soc Sci Med.* 2019;232(April):58-76. doi:10.1016/j.socscimed.2019.04.016
- USAID. DHS Overview. Accessed January 27, 2023. https://dhsprogram.com/Methodology/Survey-Types/DHS.cfm
- Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGMinistry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC) [Tanzania Mainland], Ministry of Health (MoH) [Zanzibar], National Bureau of Statistics (NBS) and I.

Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015-16.; 2016.

- 30. WHO, UNICEF. Global Nutrition Monitoring Framework. Operational Guidance for Tracking Progress in Meeting Targets for 2025.; 2017.
- 31. Rutstein S. The DHS: Approaches for Rural and Urban Areas.; 2008.
- 32. USAID. Guide to DHS Statistics DHS-7: Minimum Dietary Diversity, Minimum Meal Frequency and Minimum Acceptable Diet. Published 2019. Accessed January 27, 2023. https://dhsprogram.com/data/Guide-to-DHS-Statistics/Minimum_Dietary_Diversity_Minimum_Meal_Frequency_and_M inimum_Acceptable_Diet.htm
- Mohsen H, Sacre Y, Hanna-Wakim L, Hoteit M. Nutrition and food literacy in the MENA region: a review to inform nutrition research and policy makers. *Int J Environ Res Public Health*. 2022;19:10190. doi:10.3390/ijerph191610190
- Keding GB, Msuya JM, Maass BL, Krawinkel MB. Obesity as a public health problem among adult women in rural Tanzania. *Glob Heal Sci Pract.* 2013;1(3):359-371. doi:10.9745/GHSP-D-13-00082
- Sauer CM, Reardon T, Tschirley D, et al. Consumption of processed food & food away from home in big cities, small towns, and rural areas of Tanzania. *Agric Econ (United Kingdom)*. 2021;52(5):749-770. doi:10.1111/agec.12652
- 36. DIop L, Becquey E, Turowska Z, Huybregts L, Ruel MT, Gelli A. Standard minimum dietary diversity indicators for women or infants and young children are good predictors of adequate micronutrient intakes in 24-59-

month-old children and their nonpregnant nonbreastfeeding mothers in rural Burkina Faso. *J Nutr.* 2021;151(2):412-422. doi:10.1093/jn/nxaa360

- Forsythe L, Njau M, Martin A, Tomlins K, Forsythe L. Staple Food Cultures: A Case Study of Cassava Ugali Preferences in Dar Es Salaam, Tanzania. Natural Resources Institute and CGIAR Research Program on Roots, Tubers and Bananas (RTB).; 2017.
- Hasan M, Islam MM, Mubarak E, Haque MA, Choudhury N, Ahmed T. Mother's dietary diversity and association with stunting among children
 2 years old in a low socio-economic environment: A case–control study in an urban care setting in Dhaka, Bangladesh. *Matern Child Nutr.* 2019;15(2):1-8. doi:10.1111/mcn.12665

Contributors

SC conceptualized and designed this study. SC performed the statistical analysis. SC, YS, and TH contributed to verification of the statistical results. SC, YS, TH, DLB, and BM contributed to the interpretation of the results. All authors had access to the data in the study. SC had primary responsibility for the final content. SC wrote the first draft of the manuscript, and all authors contributed to the manuscript revision.

Funding and disclaimer

This work was supported by JSPS KAKENHI 23K16471 to SC. The funders had no role in the analysis and interpretation of data, the writing of the report, or in the decision to submit the paper for publication.

Competing interests

We have no competing interests to declare.

Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Map disclaimer

The map included in this research paper are for illustrative purposes only. The boundaries, names, and designations used in the maps do not imply official endorsement or acceptance by the authors or affiliated institutions. The

depiction of any specific geographic area, including political boundaries, does not imply any position regarding legal or political status. Users are advised to exercise caution and consult additional reliable sources for precise and up-todate information. The authors and affiliated institutions bear no responsibility for any errors or omissions in the maps or for any consequences arising from the use or interpretation of the information presented.

Data availability statement

This study used publicly available data that can be found online on their respective repositories: Demographic and Health Survey program (<u>https://dhsprogram.com/</u>). The compiled datasets, analysis files, and logs produced for this study are available from the corresponding author upon request.

ORCID

Sanmei Chen https://orcid.org/0000-0003-0811-1701

Figure legends

Figure 1. Th estimated prevalence of double burden of malnutrition (stunted child and overweight mother) in Tanzania by region

Figure 2. The estimated prevalence and 95% confidence interval of DBM accorind to the household wealth index levels among non-achievers and achievers of minimum dietary diversity

The error bar denotes 95% confidence intervals of the prevalence. The poorest group was combined with the poorer group as there was only 1 case of DBM in the poorest group among those who achieved minimum dietary diversity.

*The trend of the association was assessed by assigning ordinal numbers to each group of the household wealth index and modeling this variable as a continuous variable.

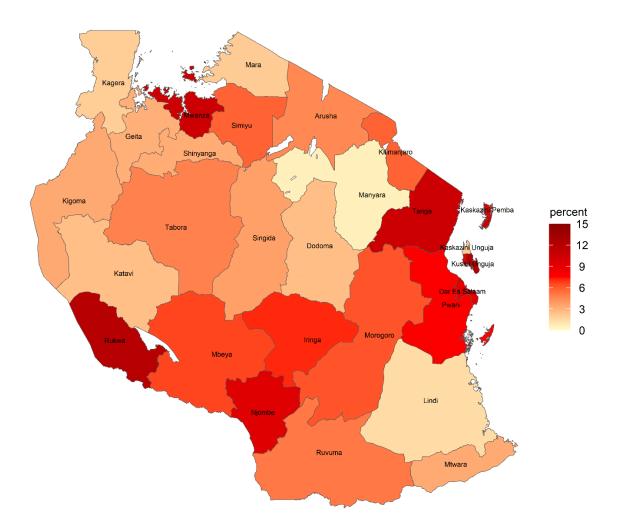
DBM=double burden of malnutrition.

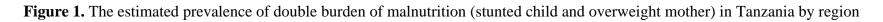
	Non-achievers of minimum dietary diversity							Achievers of minimum dietary diversity						
	Poorest	Poorer	Middle	Richer	Richest	<i>p</i> value	Poorest	Poorer	Middle	Richer	Richest	<i>p</i> value		
Number of mother- child pairs	544	498	441	352	320		89	79	97	171	176			
Mean age of mother (SE), years	28.3 (0.3)	28.1 (0.4)	27.9 (0.4)	27.0 (0.4)	27.4 (0.5)	0.03	27.8 (0.9)	27.9 (0.8)	28.5 (0.8)	27.2 (0.6)	28.9 (0.5)	0.35		
Mean age of child (SE), months	14.0 (0.3)	13.9 (0.3)	14.0 (0.3)	14.1 (0.3)	14.4 (0.4)	0.32	14.1 (0.5)	13.7 (0.6)	15.3 (0.4)	14.7 (0.4)	14.4 (0.4)	0.54		
Sex of child (female), % (SE)	49.9 (2.5)	49.3 (2.7)	48.3 (3.0)	49.3 (2.9)	46.0 (3.5)	0.91	42.6 (6.9)	57.9 (7.0)	47.1 (6.0)	55.3 (4.8)	46.7 (4.4)	0.30		
Mother's education, % (SE)						<0.001						<.0001		
No completed education	36.3 (3.0)	28.3 (2.7)	18.9 (2.1)	11.8 (2.0)	1.3 (0.5)		26.0 (5.4)	35.4 (6.2)	5.1 (2.4)	6.7 (2.3)	0.8 (0.5)			
Primary education	59.2 (3.1)	65.9 (2.6)	70.9 (2.5)	68.8 (2.5)	51.8 (3.7)		70.0 (5.6)	60.3 (6.3)	84.8 (3.8)	61.6 (4.4)	38.0 (4.6)			
Secondary education or above	4.5 (1.1)	5.8 (1.3)	10.2 (1.8)	19.4 (2.1)	46.9 (3.7)		4.0 (1.9)	4.3 (2.3)	10.1 (3.1)	31.7 (4.2)	61.2 (4.6)			
Current marital status, % (SE)						<0.001						0.50		
Never married	3.1 (0.8)	4.6 (1.1)	8.3 (1.7)	17.8 (2.4)	14.5 (2.6)		2.3 (1.8)	9.7 (5.1)	7.9 (2.7)	9.8 (2.8)	5.2 (1.6)			

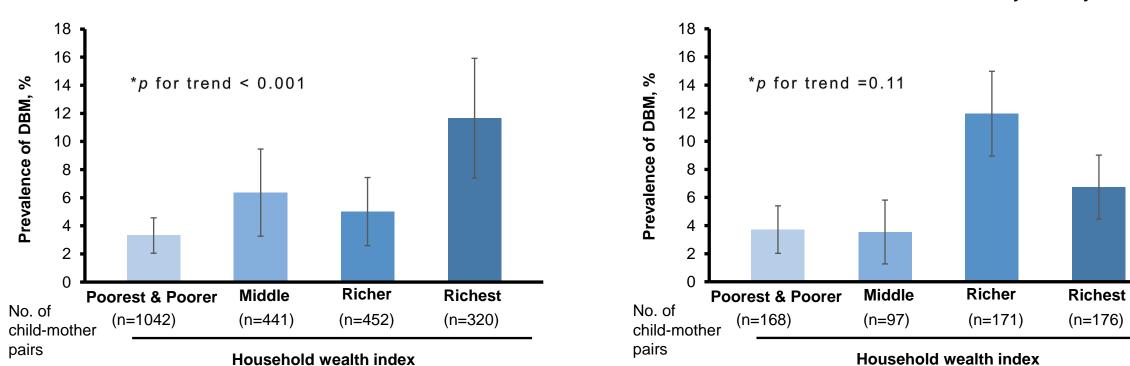
Table 1 Characteristics according to the household wealth index among non-achievers and achievers of minimum dietary diversity.

Currently married	62.6 (2.9)	61.9 (3.1)	51.2 (3.1)	49.2 (3.1)	62.3 (4.0)		70.1 (5.8)	54.1 (6.0)	63.4 (5.5)	62.8 (4.7)	66.3 (4.3)	
Formerly married	34.3 (2.8)	33.5 (3.0)	40.5 (2.8)	33.0 (3.2)	23.2 (3.3)		27.6 (5.6)	36.2 (5.6)	28.7 (5.0)	27.4 (4.1)	28.4 (4.2)	
Mean number of living children in the household (SE)	3.9 (0.1)	3.6 (0.1)	3.5 (0.1)	2.7 (0.1)	2.2 (0.1)	<0.001	3.5 (0.2)	3.7 (0.3)	3.4 (0.2)	2.8 (0.1)	2.2 (0.1)	<0.001
Mean number of household members (SE)	8.5 (0.4)	7.3 (0.3)	7.4 (0.3)	6.7 (0.3)	6.7 (0.2)	<0.001	8.8 (0.8)	8.0 (0.6)	6.6 (0.3)	6.1 (0.3)	5.8 (0.2)	<0.001
Place of residence (urban), % (SE)	5.2 (1.9)	1.9 (0.7)	7.8 (1.5)	50.9 (3.7)	85.1 (3.0)	<0.001	6.8 (2.6)	2.7 (2.1)	10.1 (3.4)	40.5 (4.6)	88.3 (2.6)	<0.001
Currently breastfeeding mother, % (SE)	89.5 (1.8)	85.6 (1.8)	84.8 (1.9)	81.7 (2.3)	75.3 (2.8)	<0.001	98.1 (1.6)	97.1 (2.0)	95.7 (2.2)	87.8 (3.0)	87.8 (3.2)	0.01
Food groups being fed (yes), % (SE)												
Breastmilk	85.5 (1.9)	81.7 (1.9)	81.5 (2.0)	76.8 (2.6)	70.5 (3.1)	<0.001	98.1 (1.6)	96.9 (2.0)	94.8 (2.3)	86.7 (3.0)	87.8 (3.2)	0.01
Grains, roots and tubers	81.3 (2.0)	85.0 (1.9)	88.9 (1.9)	91.0 (1.8)	87.7 (2.4)	0.01	98.9 (1.1)	96.2 (2.3)	96.6 (2.0)	99.5 (0.5)	97.8 (1.6)	0.43
Legumes and nuts	21.6 (2.3)	26.9 (2.6)	31.4 (2.7)	33.5 (3.1)	23.8 (3.1)	0.01	72.5 (5.7)	79.6 (4.7)	71.7 (5.7)	72.2 (4.1)	67.3 (3.7)	0.51

Dairy products	22.1 (2.0)	15.1 (2.1)	8.8 (1.7)	9.4 (1.6)	24.7 (3.2)	<0.001	50.7 (6.4)	37.2 (6.0)	39.0 (6.0)	43.3 (4.9)	48.6 (4.5)	0.45
Flesh foods	16.6 (2.1)	15.1 (1.9)	20.1 (2.4)	28.1 (2.6)	38.7 (3.4)	<0.001	45.5 (6.3)	63.0 (6.7)	62.6 (5.5)	72.7 (4.0)	76.0 (3.9)	<0.001
Eggs	1.9 (0.6)	1.8 (0.7)	2.1 (0.7)	2.9 (1.1)	7.4 (2.1)	<0.001	10.0 (3.3)	14.5 (4.2)	20.9 (4.8)	24.5 (4.3)	34.7 (5.3)	<0.001
Vitamin A rich fruits and vegetables	53.0 (3.0)	57.3 (2.9)	58.7 (3.0)	54.4 (3.5)	57.3 (3.3)	0.58	96.1 (2.7)	91.1 (3.7)	92.4 (2.8)	91.7 (2.3)	95.3 (1.7)	0.58
Other fruits and vegetables	11.2 (1.6)	10.2 (1.5)	11.1 (2.1)	10.6 (1.9)	15.2 (2.5)	0.48	38.2 (6.3)	43.7 (6.7)	49.7 (5.7)	54.0 (5.1)	59.3 (4.3)	0.05
Mean BMI of mother (SE), kg/m ²	· 21.4 (0.1)	21.7 (0.1)	22.2 (0.2)	22.9 (0.2)	25.2 (0.4)	<0.001	21.1 (0.3)	22.0 (0.4)	22.5 (0.4)	24.5 (0.6)	26.8 (0.6)	<0.001
5 5		-1.4 (0.1)	-1.5 (0.1) -1.3 (0.1) -1.0 (0.1) 0.02				-1.5 (0.2) -1.4 (0.2) -1.6 (0.2) -1.3 (0.1) -0.7 (0.1) <0.001					


Values are frequency (%) or mean. Frequencies, means, and SEs are weighted using the sampling weights. BMI = body mass index; SE = standard error.


Table 2 Associations between household wealth index and the double burden of malnutrition (stunted child with overweight/obese mother) among non-achievers and achievers of minimum dietary diversity (MDD)


	Unadjusted analy	ses		Adjusted analyses						
	Non-achievers <i>p</i> value of MDD (n=2,278)		ADD of MDD value interaction		Non-achievers of MDD (n=2,278)	p value	Achievers of MDD (n=614)	p value	<i>p</i> for interaction between wealth index and MDD	
	OR (95% CI)		OR (95% CI)			OR (95% CI)		OR (95% CI)		
Quintiles	of wealth index									
Poorest & poorer*	1.00 (ref)		1.00 (ref)			1.00 (ref)		1.00 (ref)		
Middle	2.00 (1.09-3.68)	0.03	0.95 (0.19-4.66)	0.95	0.006	1.98 (1.07- 3.66)	0.03	0.84 (0.20-3.55)	0.81	0.01
Richer	1.56 (0.82-2.96)	0.17	3.52 (1.18-10.50)	0.02		1.88 (0.88- 4.03)	0.10	4.94 (1.30-18.81)	0.02	
Richest	3.89 (2.20-6.89)	<0.001	1.86 (0.57-6.07)	0.30		5.38 (2.00- 14.48)	0.001	2.06 (0.34-12.51)	0.43	
<i>p</i> for trend†	<0.001		0.11			0.002		0.15		
Wealth ir	ndex score (continu	ous, per 1	point increment)							
	1.62 (1.31-2.01)	<0.001	1.25 (0.90-1.73)	0.19		2.05 (1.32- 3.19)	0.002	1.39 (0.76-2.54)	0.29	

CI=confidence interval; DBM=double burden of malnutrition; OR=odds ratio. Adjusted models were adjusted for mother's age (in years), education (no completed education, completed primary education, or completed secondary education and above), marital status (never married, currently married, formerly married), place of residence (urban or rural), whether the mother was currently breastfeeding a child (yes or no), number of children in the household, child's age (in months) and sex (male or female), and number of household members. *The poorest group was combined with the poorer group as there was only 1 case of DBM in the poorest group among those who achieved minimum dietary diversity to build the logistic regression model.

†Trend association was assessed by assigning ordinal numbers to each group of household wealth index and modelling this variable as a continuous variable.

Figure 2. The estimated prevalence and 95% confidence interval of the DBM according to the household wealth index levels among non-achievers and achievers of minimum dietary diversity

Non-achievers of minimum dietary diversity

Achievers of minimum dietary diversity