
PowerAI-CVD – the first Chinese-specific, validated artificial intelligence-powered in-silico 
predictive model for cardiovascular disease  

 
Lifang Li * 1, Oscar Hou In Chou * 2,3, Lei Lu4, Hugo Hok Him Pui 5, Quinncy Lee 3, Narinder Kaur 6, 

Wing Tak Wong 7, Carlin Chang 8, Haipeng Liu 9, Abraham Ka Chung Wai 5, Bernard Man Yung 
Cheung 2, Tong Liu 10, Gary Tse # 6,10, Jiandong Zhou # 11 

 
1 Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & 

Neuroscience, King’s College London, London, United Kingdom 
2 Division of Clinical Pharmacology and Therapeutics, Department of Medicine, LKS Faculty of 

Medicine, The University of Hong Kong, Hong Kong, China 
3 Family Medicine Research Unit, Cardiovascular Analytics Group, PowerHealth Limited, Hong Kong, 

China 
4 Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, 

Oxford, United Kingdom 
5 Department of Emergency Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong 

Kong, China 
6 School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China 

7 School of Life Science, The Chinese University of Hong Kong, Hong Kong, China 
8 Division of Neurology, Department of Medicine, Queen Mary Hospital, Hospital Authority, Hong 

Kong, China 
9 Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom 

10 Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of 
Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 

300211, China 
11 Division of Health Science, Warwick Medical School, University of Warwick, Coventry, United 

Kingdom 
 

* Co-first authors 

# Correspondence to: 

Gary Tse MD PhD FRCP FFPH 

Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University 

Tianjin 300211, China 

School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China 

Email: gatse@hkmu.edu.hk 

 

Jiandong Zhou PhD 

Division of Health Science, Warwick Medical School, University of Warwick, Coventry, United 
Kingdom 
Email: jiandong.zhou@warwick.ac.uk 

  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.08.23296722doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:gatse@hkmu.edu.hk
mailto:jiandong.zhou@warwick.ac.uk
https://doi.org/10.1101/2023.10.08.23296722
http://creativecommons.org/licenses/by/4.0/


Abstract  

Background: The main risk stratification tools for identifying high-risk individuals of 

cardiovascular disease (CVD) are based on Western populations. Few models are developed 

specifically for Asian populations and are not enhanced by artificial intelligence (AI). The aim 

of this study is to develop the first AI-powered quantitative predictive tool for CVD (PowerAI-

CVD) incorporate physiological blood pressure measurements, existing diseases and 

medications, and laboratory tests from Chinese patients. 

Methods: The study analysed patients who attended family medicine clinics between 1st 

January 2000 and 31st December 2003. The primary outcome was major adverse 

cardiovascular events (MACE) defined as a composite of myocardial infarction, heart failure, 

transient ischaemic attack (TIA)/stroke or cardiovascular mortality, with follow-up until 31st 

December 2019. The performance of AI-driven models (CatBoost, XGBoost, Gradient Boosting, 

Multilayer Perceptron, Random Forest, Naïve Bayes, Decision Tree, k-Nearest Neighbor, 

AdaBoost, SVM-Sigmod) for predicting MACE was compared. Predicted probability (ranging 

between 0 and 1) of the best model (CatBoost) was used as the baseline in-silico marker to 

predict future MACE events during follow-up.  

Results: A total of 154,569 patients were included. Over a median follow-up of 16.1 (11.6-

17.8) years, 31,061 (20.44%) suffered from MACE (annualised risk: 1.28%). The machine 

learning in-silico marker captured MACE risk from established risk variables (sex, age, mean 

systolic and diastolic blood pressure, existing cardiovascular diseases, medications 

(anticoagulants, antiplatelets, antihypertensive drugs, and statins) and laboratory tests (NLR, 

creatinine, ALP, AST, ALT, HbA1c, fasting glucose, triglyceride, LDL and HDL)). MACE 

incidences increased quantitatively with ascending quartiles of the in-silico marker. The 

CatBoost model showed the best performance with an area under the receiver operating 
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characteristic curve of 0.869. The CatBoost model based in-silico marker shows significant 

prediction strength for future MACE events, across subgroups (age, sex, prior MACE, etc) and 

different follow-up durations. 

Conclusions: The AI-powered risk prediction tool can accurately forecast incident CVD events, 

allowing personalised risk prediction at the individual level. A dashboard for predictive 

analytics was developed, allowing real-time dynamic updates of risk estimates from new data. 

It can be easily incorporated into routine clinical use to aid clinicians and healthcare 

administrators to identify high-risk patients. 

 

Keywords: artificial intelligence; Chinese; cardiovascular disease; predictive model 
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Introduction  

Cardiovascular disease (CVD) is one of the leading causes of deaths globally, leading 

to health decline and increasing burdens of healthcare costs 1. The Global Burden of Diseases, 

Injuries, and Risk Factors Study (GBD) identified high systolic blood pressure as the leading 

modifiable risk factor for CVD, accounting for 10.8 million and 11.3 million deaths in 2021 2. 

In China alone, using the methods of GBD, stroke and ischaemic heart disease were identified 

as the major causes of death and disability-adjusted life-years (DALYs) 3. Therefore, there is a 

pressing need for effective risk stratification tools that enable clinicians to identify high-risk 

individuals and recommend treatment accordingly. Of the different tools, the Framingham 

CVD risk model 4, Systematic COronary Risk Evaluation (SCORE) 5, pooled cohort equations 

(PCEs)6, and QRisk 7were developed using data from Western populations.  

However, Asian populations differ in terms of genetic background, environmental 

exposures and lifestyle choices, disease demographics and epidemiology. For example, Asians 

have a higher burden of stroke 8and hypertension 9 but lower burden of hyperlipidaemia 10. 

Whilst the risk factors for CVD are common to both Western and Asian populations, direct 

application of the above tools can lead to errors in risk estimates 11. Moreover, whilst 

calibration of existing tools is possible 12-14, even recalibration of the Framingham CVD risk 

model led to systematically overestimated CVD risk in older adults from Hong Kong, China 15. 

Yet, few models are specifically developed for Asian populations 16. These are Prediction for 

atherosclerotic CVD Risk in China (China‐PAR) 17 and absolute risk score from the Japan 

Arteriosclerosis Longitudinal Study (JALS) 18. The limitation is that the China-PAR did not 

consider non-high-density lipoprotein cholesterol (non-HDL-C) or total cholesterol (TC), which 

are also important predictors 19. Furthermore, at the time of development, the application of 

artificial intelligence had not yet been popularised 20. AI approaches have indeed led to 
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significant improvement in accuracy, sensitivity and specificity compared to regression-based 

models 21-23. Our team was the first to develop AI-based models for predicting adverse 

outcomes in patients with existing myocardial infarction 24, valvular heart disease 25, heart 

failure 26 and diabetes 27,28. In this study, we develop an AI-driven predictive model for 

forecasting first and recurrent cardiovascular events using a family medicine clinic cohort 

from Hong Kong. The novelty is that this model is the first Chinese-specific, validated AI-

enhanced model that incorporates physiological blood pressure measurements, existing 

diseases and medications, and laboratory tests. 

 

Methods  

 This study was approved by the Institutional Review Board of the University of Hong 

Kong/Hospital Authority Hong Kong West Cluster Institutional Review Board (HKU/HA HKWC 

IRB) (UW-20-250 and UW 23-339) and The Joint Chinese University of Hong Kong (CUHK) 

Hospital Authority New Territories East Cluster (NTEC) Clinical Research Ethics Committee 

(CREC) (2018.309 and 2018.643) and complied with the Declaration of Helsinki.  

 

Study population  

 This was a retrospective population-based study of prospectively collected electronic 

health records using the Clinical Data Analysis and Reporting System (CDARS) managed by the 

Hong Kong Hospital Authority (HA). These records include information from public hospitals, 

their affiliated outpatient clinics, day-care centres and ambulatory care facilities. This system 

has been used extensively by local research teams 29-31. The inclusion criteria were patients 

who attended family medicine clinics in the Hong Kong Hospital Authority between 1st January 
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2000 to 31st December 2003. The exclusion criteria were patients who died within 30 days of 

the index date or those <18 years old. 

 

Data extraction 

 The following clinical and laboratory data were extracted during the baseline period 

(1st January 2000 to 31st December 2003): demographics (sex and age), blood pressure (mean 

systolic blood pressure [SBP] and diastolic blood pressure [DBP]), prior comorbidities 

(diabetes, hypertension, chronic obstructive pulmonary disease, ischaemic heart disease, 

heart failure, myocardial infarction, and stroke/TIA), medication history and mortality 

outcomes, which are linked to the local government death registry. The diseases were 

identified based on International Classification of Diseases (ICD)-9 codes (Supplementary 

Appendix Table 1). 

The following laboratory tests at the baseline period (January 1st, 2000 to December 

31st, 2003) were extracted:  neutrophil and lymphocyte count, x10^9/L; creatinine, μmol/L; 

alkaline phosphatase (ALP), U/L; aspartate transaminase, U/L; serum alanine 

aminotransferase (ALT), U/L; HbA1c, %; fasting glucose, mmol/L; low-density lipoprotein (LDL), 

high-density lipoprotein (HDL), triglyceride, mmol/L. 

 

Outcome and statistical analysis 

The primary outcome was MACE, defined as any of the following events: myocardial 

infarction, heart failure, TIA/stroke and cardiovascular mortality, with follow-up until 31st 

December 2019. Heart failure was included to capture the full spectrum of CVD development 

32. Continuous variables were presented as median (95% confidence interval [CI] or 

interquartile range [IQR]) and categorical variables were presented as frequency (%). The 
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Mann-Whitney U test was used to compare continuous variables. The χ2 test with Yates’ 

correction was used for 2×2 contingency data, and Pearson’s χ2 test was used for contingency 

data for variables with more than two categories.  

All significance tests were two-tailed and considered statistically significant when P-

values <0.05. Data analyses were performed using RStudio software (Version: 1.1.456) and 

Python (Version: 3.6). Experiments were simulated on a 15-inch MacBook Pro with 2.2 GHz 

Intel Core i7 Processor and 16 GB RAM.   

 

Model development 

AL approaches have the advantages of directly considering the relationships and 

latent interactions between risk variables and outcomes, without requiring assumptions 

made in the Cox model. In this study, our objective was the development of an in-silico 

predictive marker utilizing machine learning techniques, amalgamating baseline clinical data 

points of family medicine patients. Our primary aim was to forecast the occurrence of Major 

Adverse Cardiovascular Events (MACE) during the follow-up period. The predictive model we 

constructed encompassed a diverse ensemble of machine learning algorithms, including 

CatBoost 33, XGBoost 34, Gradient Boosting 35, Multilayer Perceptron  36, Random Forest 37, 

Naïve Bayes 38, Decision Tree 39, k-Nearest Neighbor 40, AdaBoost 41, and SVM-Sigmod model 

42. We also incorporated logistic regression and a dummy classifier as baseline predictors to 

facilitate comparative analysis. The probability scores from the machine learning model were 

obtained for each patient as their in-silico marker of MACE event, which ranges from 0 (lowest 

probability) to 1 (highest probability), and was subsequently evaluated as a quantitative 

marker for future MACE events across subgroups (age, sex, prior MACE, etc) and different 
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follow-up durations. Feature importance was calculated by both AUC reduction approach and 

SHAP tool 43, for cross-checking purpose. 

Our workflow involved a random allocation of 80% of cases and an equal number of 

controls for training purposes, while the remaining 20% of cases and controls were reserved 

for validation. To mitigate potential sampling bias, this process was reiterated 100 times. To 

enhance model interpretability and reduce complexity 44, we applied the ReliefF feature 

selection method on the training dataset 45, and the resulting feature set was subsequently 

employed for validation. Additionally, we adopted a 10-fold cross-validation technique, 

utilizing a grid-search approach for hyperparameter optimization. The resultant predictive 

model demonstrated its efficacy in identifying MACE status within the validation dataset. 

Performance metrics were meticulously computed and reported as the mean, accompanied 

by a 95% confidence interval, across the 100 iterations of our analysis. 

 

Results  

Basic characteristics of the study cohort  

 A total of 155,066 patients who attended family medicine clinics managed by the Hong 

Kong Hospital Authority between 1st January 2000 and 31st December 2003 were included. Of 

these, 92 patients who died within 30 days after admission and 405 patients under 18 years 

old at admission were excluded (Figure 1). After exclusion, this cohort compromised a total 

of 154,569 patients (57.54% females, age at diagnosis: 65.85 [Interquartile range: 52.64-76.0 

years old]; median follow-up duration: 15.66 years). The baseline characteristics of the cohort 

are presented in Table 1. Amongst the patients, 31,601 developed MACE, 6,704 developed 

new onset myocardial infarction, 13,826 developed new onset heart failure, and 10,446 
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developed stroke/TIA. Furthermore, 60,694 patients died during follow-up. The incidence of 

MACE and all-cause mortality are illustrated in Supplementary Figure 1. 

 

Comparison of different modelling approaches 

 The parameters that were significant in predicting specific MACE events in the 

univariate Cox model were identified as the key variables for inclusion (Supplementary Table 

2). The variables that predict MACE and their optimal cut-off were identified (Supplementary 

Table 3). The relationship between the laboratory test results with MACE is illustrated in 

Supplementary Figure 2.  

The performance of the logistic regression model and the different AI-driven models for 

the MACE and the specific MACE events were compared. CatBoost had the best performances 

compared to logistic regression and other AI-driven models in terms of area under the curve 

(AUC) (AUC: 0.868; 95% Confidence interval [CI]: 0.839-0.939]) (Table 2). The order in 

descending order of AUC: XGBoost, Gradient Boosting, Multilayer Perceptron, Random Forest, 

Logistic Regression, Naïve Bayes, Decision Tree, k-Nearest Neighbor, AdaBoost, SVM-Sigmod. 

CatBoost also had the best performances across all models in terms of CA (CA: 0.891; 95% 

Confidence interval [CI]: 0.856-0.925]), F1-score (F1: 0.836; 95% CI: 0.759-0.89), precision 

(Precision: 0.826; 95% CI: 0.733-0.889) and recall (Recall: 0.855; 95% CI: 0.842-0.882). The 

ROC curves for the different prediction models for the adverse outcomes are presented in 

Figure 2.  Based on the above observations, the CatBoost model was selected as the most 

consistent modelling approach. 

The derived CatBoost in-silico marker (Figure 3a) demonstrated good clarification ability 

to predict MACE events in men and women (Figure 3b), patients with/without prior MACE 
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(Figure 3d), and in subgroups of patients by age admission (Figure 3e), stratified by ten deciles. 

The observed MACE events in each decile of the CatBoost in-silico marker was well predicted 

(Figure 3c), with the largest number of MACE events predicted in the 10th decile.  The derived 

CatBoost in-silico marker had much better prediction performance for young patients (18-40 

years old at admission) and the elderly patients (80+ years old at admission), with average 

AUC as 0.83 and 0.85 (Figure 3f), respectively. And the prediction performance across 

different age subgroups decreases slightly for those with less than 3-year follow-up duration, 

while increases afterwards. 

 

The prediction strength of the CatBoost model based in-silico marker  

The distribution analysis demonstrated that the patients with new onset MACE had 

significantly higher risk threshold values in the CatBoost model compared to patients without 

new onset MACE (all P values <0.05) (Supplementary Table 4). The CatBoost model was 

evaluated on several partitions of the test population, including sex, age, history of prior 

MACE, and the follow-up duration. The results demonstrated that the CatBoost model was 

well-calibrated across both sexes. Meanwhile, the model was more well-calibrated amongst 

the older age group but less amongst patients younger than 60. Furthermore, the model was 

more well-calibrated amongst patients without prior MACE events. The predictive strength of 

the CatBoost model with different follow-up durations was calculated, and it was 

demonstrated that the risk of MACE prediction was significant across all years (all P 

value<0.05) (Supplementary Table 5). The AUC of the CatBoost model remained consistent 

across the follow-up durations (Figure 2e; Supplementary Figure 3). The predictive strength 

of the CatBoost model is illustrated in Figure 4. The increasing value of derived CatBoost in-
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silico marker indicate much predictive strength of future MACE events (and suboutcomes 

including cardiovascular mortality, myocardial infarction, heart failure, and stroke/TIA) and 

all-cause mortality by sex groups, which shows its usefulness in clinical practice as a good risk 

score system. 

 

Important features for MACE using the CatBoost models  

 The feature importance was calculated using CatBoost to identify the variables with 

optimal effect when determining the MACE risk. The feature importance indicates how each 

variable contributes to the model's accuracy. The 18 most influential predictors are presented 

in Figure 5. According to the result, baseline age was the most important feature of the model. 

The remaining top five important features included mean low-density lipoprotein, systolic 

blood pressure, creatinine level and mean triglyceride levels. The SHAP features importance 

for the CatBoost model was illustrated (Supplementary Figure 4). The relationship between 

age and MACE was demonstrated in the individual conditional expectation plot 

(Supplementary figure 5), which showed that most patients with the higher risk peaked at 80 

years old and no obvious interaction was observed.   

 

Dashboard for Model implementation 

The PowerAI-CVD model supports clinical decision making by presenting key 

information on a dashboard (Figure 6). The most important input variables from current 

diseases, blood pressure, laboratory tests and existing medications are used for calculating 

the risk of MACE at 3, 5, 10 and 20 years. The trends of the different risk factors can aid 

clinicians and patients to monitor the effectiveness of ongoing lifestyle modifications and/or 
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pharmacotherapy. The value of this dashboard is that appropriate recommendations for 

antihypertensive and lipid lowering drugs are available, with targets of blood pressure, lipid 

and glucose control. These functions can serve to facilitate guideline-directed treatment and 

improve adherence to best current practices to improve patient outcomes. 

 

Discussion  

In this study, we developed the first AI-powered CVD model (PowerAI-CVD) to 

incorporate physiological blood pressure measurements, existing diseases and medications, 

and laboratory tests for predicting incident MACE using a big data approach. The main 

findings are that CatBoost significantly outperformed other machine learning and regression-

based models. 

Current risk models for CVD have been developed using Western cohort data. Yet, 

Chinese subjects have differing risks of different adverse events owing to differences in 

genetics, environment exposure, and disease status. For example, for stroke and TIA, the 

intracranial atherosclerosis more prevalent as an aetiology of stroke amongst Chinese46. Of 

the different risk factors, our analysis identified age, LDL and systolic blood pressure as the 3 

most important risk factors. These findings are in line with the notion that age is the most 

determinant of a person’s cardiovascular health 47. For LDL, its concentration in the 

bloodstream and longer duration of exposure are both important predictive factors of CVD 

risk 48. Blood pressure influence local hemodynamics in the brain and the heart, leading to a 

higher translesional pressure gradient which is directly associated with risk of plaque rupture.  

Accurate risk estimates are required to identify high-risk individuals who can benefit 

from treatment and prevent overtreatment of low-risk individuals. Given that prevention is 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 9, 2023. ; https://doi.org/10.1101/2023.10.08.23296722doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.08.23296722
http://creativecommons.org/licenses/by/4.0/


better than cure, our tool can be used in primary care settings. A limited number of CVD risk 

models based on Asian cohort data are available 49. These have the major limitations of not 

having undergone validation, and not AI driven. By contrast, our team overcomes both 

limitations by developing the first AI-powered risk model for predicting new CVD events using 

territory-wide data from Hong Kong. Such a big data approach has the advantage of being 

highly generalisable as it is based on the entire population of Hong Kong, with the ability of 

analysing multiple clinically relevant outcomes. Our model is capable of considering new 

information with dynamic risk assessment 50. For example, with updated blood pressure and 

laboratory measurements, our dashboard can provide updated risks to the clinicians.  

 

Clinical implications  

The majority of the risk factors are modifiable, and by extension, CVD events are 

largely preventable. The predictors used in our PowerAI-CVD model do not require specialised 

testing, but rather demographics, disease status, medication history and routine laboratory 

parameters reflecting inflammatory, renal, liver, glycemic and lipid levels. The AI-powered risk 

prediction tool can accurately forecast incident CVD events, allowing personalised risk 

prediction at the individual level. A dashboard for predictive analytics was developed, 

allowing real-time dynamic updates of risk estimates from new data. Patients are also 

empowered as the dashboard provides information that is easy-to-understand. The model 

can thus be easily incorporated into routine clinical use to aid clinicians and healthcare 

administrators to identify high-risk patients. Personalised recommendations for lifestyle 

changes and suggested medications are provided, facilitating decision making and 

collaborative care between patients and their clinicians. In the long-run, implementation of 
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this tool can reduce healthcare costs at the systems level, enabling sustainable development 

and healthy aging. 

 

Limitations 

As the aim of this the model was to provide long-term (>10 year) risk estimates, 

treatment effects from newer pharmacological agents such as proprotein convertase 

subtilisin/kexin type 9 (PCSK9) inhibitors and sodium-glucose cotransporter-2 (SGLT2) 

inhibitors are not considered. Future studies are underway to incorporate effects of these 

medication classes on CVD risk. Moreover, our team has previously reported the incremental 

value of incorporating visit-to-visit variability in blood pressure, lipid and glycaemic test 

results for improving risk stratification. Our subsequent studies will incorporate automated 

methods of considering such measures of variability to calculate not only the estimated future 

risks, but also likely trajectory of the risk estimates. 

 

Conclusion 

The first ever Chinese-specific, validated, CVD risk model with AI enhancement 

(PowerAI-CVD) was developed using a family medicine cohort of Chinese patients. It can 

accurately forecast incident CVD events, allowing personalised risk prediction at the individual 

level. A dashboard for predictive analytics was developed, allowing real-time dynamic 

updates of risk estimates from new data. It can be easily incorporated into routine clinical use 

to aid clinicians and healthcare administrators to identify high-risk patients. 
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Table 1. Baseline and clinical characteristics of family medicine patients with/without MACE after 
admission. 
MACE: Major adverse cardiovascular events; TIA: transient ischemic attack; BP: Blood pressure; 
IQR: Interquartile range. 

Characteristics 
All (N=154569) 
Median (IQR);N 
or Count(%) 

MACE 
(N=31601) 
Median (IQR);N 
or Count(%) 

No MACE 
(N=122968) 
Median (IQR);N 
or Count(%) 

P value 

Outcomes     
Cardiovascular 
mortality 

11190(7.23%) 11190(35.41%) - - 

New onset 
myocardial 
infarction 

6704(4.33%) 6704(21.21%) - - 

New onset heart 
failure 

13826(8.94%) 13826(43.75%) - - 

Stroke/TIA 10446(6.75%) 10446(33.05%) - - 

Demographics     

Male gender 65627(42.45%) 13615(43.08%) 52012(42.29%) 0.1105 
Female gender 88942(57.54%) 17986(56.91%) 70956(57.70%) 0.1912 

Baseline age, year 
65.85(52.64-
76.0);n=154569 

72.08(64.53-
78.36);n=31601 

63.19(50.62-
74.86);n=122968 

<0.0001*** 

Comorbidities     

Diabetes mellitus 10982(7.10%) 4050(12.81%) 6932(5.63%) <0.0001*** 
Hypertension 49920(32.29%) 16313(51.62%) 33607(27.32%) <0.0001*** 
Chronic obstructive 
pulmonary disease 

721(0.46%) 
248(0.78%) 473(0.38%) <0.0001*** 

Ischemic heart 
disease 

2245(1.45%) 
1171(3.70%) 1074(0.87%) <0.0001*** 

Heart failure 1056(0.68%) 846(2.67%) 210(0.17%) <0.0001*** 
Myocardial 
infarction 

244(0.15%) 
132(0.41%) 112(0.09%) <0.0001*** 

Atrial fibrillation 945(0.61%) 654(2.06%) 291(0.23%) <0.0001*** 
Stroke/TIA 771(0.49%) 459(1.45%) 312(0.25%) <0.0001*** 

Medications     
Anticoagulants 64162(41.51%) 18607(58.88%) 45555(37.04%) <0.0001*** 
Antiplatelets 14183(9.17%) 6243(19.75%) 7940(6.45%) <0.0001*** 
Antihypertensive 
drugs 

33032(21.37%) 10703(33.86%) 22329(18.15%) <0.0001*** 

Statins 11043(7.14%) 3821(12.09%) 7222(5.87%) <0.0001*** 

Laboratory tests     

Neutrophil-to-
lymphocyte ratio 

2.53(1.74-
4.44);n=18392 

2.92(1.95-
5.32);n=5937 

2.37(1.67-
4.06);n=12455 

<0.0001*** 

Creatinine, umol/L 
84.0(72.0-
100.0);n=64104 

90.0(77.0-
107.0);n=18696 

82.0(71.0-
97.0);n=45408 

<0.0001*** 

Alkaline 
phosphatase, U/L 

79.0(64.0-
96.0);n=35903 

82.0(67.0-
100.0);n=10456 

77.0(63.0-
95.0);n=25447 

<0.0001*** 
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Aspartate 
transaminase, U/L 

20.0(15.0-
29.0);n=25894 

20.0(14.0-
28.0);n=8239 

21.0(15.0-
29.0);n=17655 

<0.0001*** 

Alanine 
transaminase, U/L 

20.0(14.0-
29.0);n=31129 

19.0(14.0-
28.0);n=9130 

20.0(14.0-
30.0);n=21999 

<0.0001*** 

BP (Systolic)-mean 
135.41(126.93-
143.84);n=111302 

139.0(131.33-
147.29);n=27517 

134.21(125.5-
142.5);n=83785 

<0.0001*** 

BP (Diastolic)-mean 
73.0(67.5-
78.6);n=111302 

71.74(66.55-
77.25);n=27517 

73.38(67.85-
79.0);n=83785 

<0.0001*** 

Mean HbA1C, % 
7.1(6.33-
7.95);n=15483 

7.2(6.4-
8.1);n=5560 

7.01(6.3-
7.9);n=9923 

<0.0001*** 

Mean fasting 
glucose, mmol/L 

5.97(5.2-
7.57);n=36406 

6.24(5.35-
7.91);n=11848 

5.8(5.13-
7.38);n=24558 

<0.0001*** 

Mean triglyceride, 
mmol/L 

1.3(0.97-
1.77);n=105550 

1.29(0.97-
1.74);n=26127 

1.3(0.97-
1.79);n=79423 

0.047* 

Mean low-density 
lipoprotein, mmol/L 

2.75(2.31-
3.28);n=97844 

2.58(2.17-
3.07);n=24949 

2.82(2.37-
3.34);n=72895 

<0.0001*** 

Mean high-density 
lipoprotein, mmol/L 

1.3(1.1-
1.56);n=90840 

1.25(1.05-
1.5);n=23942 

1.32(1.12-
1.58);n=66898 

<0.0001*** 
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Table 2. Model performance comparisons to predict MACE in family medicine cohort. 
MACE: Major adverse cardiovascular events; AUC: Area under the curve; CI: Confidence interval. 

Model AUC [95% CI] CA [95% CI] 
Precision [95% 

CI] 
Recall [95% CI] 

CatBoost 
0.867[0.839-

0.938] 
0.895[0.855-

0.926] 
0.827[0.735-

0.889] 
0.856[0.846-

0.882] 

XGBoost 
0.822[0.802-

0.879] 
0.809[0.783-

0.818] 
0.779[0.712-

0.834] 
0.809[0.726-

0.817] 

Gradient Boosting 
0.811[0.731-

0.881] 
0.815[0.759-

0.834] 
0.784[0.712-

0.795] 
0.814[0.794-

0.82] 
Multilayer 
Perceptron 

0.776[0.678-
0.784] 

0.803[0.799-
0.842] 

0.771[0.68-
0.837] 

0.803[0.798-
0.814] 

Random Forest 
0.746[0.671-

0.807] 
0.792[0.755-

0.807] 
0.763[0.685-

0.824] 
0.792[0.709-

0.849] 

Logistic Regression 
0.749[0.679-

0.838] 
0.803[0.801-

0.859] 
0.767[0.702-

0.799] 
0.803[0.778-

0.902] 

Naive Bayes 
0.728[0.63-

0.788] 
0.711[0.707-

0.741] 
0.815[0.806-

0.872] 
0.611[0.542-

0.664] 

Decision Tree 
0.702[0.656-

0.725] 
0.796[0.767-

0.887] 
0.759[0.723-

0.769] 
0.796[0.707-

0.824] 

k-Nearest Neighbor 
0.675[0.666-

0.758] 
0.778[0.755-

0.807] 
0.739[0.682-

0.794] 
0.778[0.737-

0.796] 

AdaBoost 
0.635[0.58-

0.728] 
0.779[0.778-

0.78] 
0.749[0.672-

0.789] 
0.779[0.777-

0.826] 

SVM-Sigmod 
0.575[0.552-

0.635] 
0.252[0.209-

0.329] 
0.687[0.681-

0.715] 
0.252[0.243-

0.325] 

Dummy classifier 
0.555[0.499-

0.58] 
0.396[0.374-

0.814] 
0.433[0.211-

0.694] 
0.396[0.257-

0.87] 
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Figure 1. Procedures of data processing. 
MACE: Major adverse cardiovascular events; TIA: transient ischemic attack. 
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Figure 2. AUROC curve analysis of machine learning algorithms for prediction of MACE in family 
medicine patients.  
AUC: Area under the curve; ROC: Receiver operating characteristic; CatBoost: Categorical boosting; 
XGboost: Extreme gradient boosting; kNN: k-nearest neighbour. 
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Figure 3. a. The number of patients cross the developed CatBoost model based in-silico marker and 
the cutoff. b. The number of MACE events amongst patients with different decile of CatBoost risk 
threshold values stratified by sex. c. Observed v.s. predicted number of MACE events by different 
decile of CatBoost risk threshold values. d. The number of MACE events amongst patients with 
different decile of CatBoost risk threshold values stratified by history of prior MACE. e. The number 
of MACE events amongst patients with different decile of CatBoost risk threshold values stratified 
by age. f. The AUC of the Catboost risk threshold values across the follow-up duration.  
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Figure 4. Prediction strength of the developed CatBoost model based in-silico marker (predicted 
probability within [0-1], with baseline and clinical characteristics) to predict future MACE in family 
medicine patients. 
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Figure 5. Importance ranking of the different features for the best machine learning model 
(CatBoost) to predict MACE in Hong Kong Chinese patients attending public family medicine clinics. 
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Figure 6. Model implementation. The dashboard shows the real-time risks using physiological blood 
pressure measurements, disease status, medications and laboratory findings.  
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