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Summary 19 

COVID-19 has become endemic, with dynamics that reflect the waning of immunity and re-exposure, 20 
by contrast to the epidemic phase driven by exposure in immunologically naïve populations. Endemic 21 
does not, however, mean constant. Further evolution of SARS-CoV-2, as well as changes in behaviour 22 
and public health policy, continue to play a major role in the endemic load of disease and mortality. In 23 
this paper, we analyse evolutionary models to explore the impact that newly arising variants can have on 24 
the short-term and longer-term endemic load, characterizing how these impacts depend on the 25 
transmission and immunological properties of variants. We describe how evolutionary changes in the 26 
virus will increase the endemic load most for persistently immune-escape variants, by an intermediate 27 
amount for more transmissible variants, and least for transiently immune-escape variants. Balancing the 28 
tendency for evolution to favour variants that increase the endemic load, we explore the impact of 29 
vaccination strategies and non-pharmaceutical interventions (NPIs) that can counter these increases in 30 
the impact of disease. We end with some open questions about the future of COVID-19 as an endemic 31 
disease. 32 

Introduction 33 

Early in the global pandemic, COVID-19 levels rose and fell steeply, displaying rapid exponential 34 
growth and leading to widespread lockdowns and other public health measures to slow transmission 35 
(Ogden et al. 2022; Talic et al. 2021). The vaccination campaigns of 2021, followed by the nearly-36 
uncontrolled Omicron waves in early 2022 (Figure 1, BA.1 and BA.2 peaks), have now led to almost 37 
100% immunological exposure in many countries. In Canada, for example, 100% of blood donors had 38 
developed antibodies to the spike protein from previous exposure to the virus by June 2023, with 80% 39 
also showing antibodies to nucleocapsid, indicating prior infection (Canadian Blood Services 2023). The 40 
number of immunologically naïve individuals that fed COVID-19 dynamics throughout the pandemic 41 
has now greatly decreased, but in its place is a continual flow of newly susceptible individuals as 42 
humoral immunity wanes. For the past year, COVID-19 levels have ebbed and flowed in response to this 43 
waning immunity, new variants, and to changing public health measures. These peaks and troughs are 44 
more subdued wavelets, compared to earlier Omicron peaks (Figure 1).  45 

 46 
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FIGURE 1: COVID-19 trends across four provinces in Canada. Major waves in early 2022 47 
were driven by the rise and spread of Omicron, whose immune-evasive properties allowed 48 
widespread infection at a time when public health measures were largely relaxed (peak in January 49 
2022: BA.1, April: BA.2, July: BA.4 & BA.5). A year later, Omicron variants have continued to 50 
spread rapidly (peak in December 2022: BQ.1; April 2023: XBB.1.5), but they no longer cause 51 
major waves in cases. PCR-confirmed cases per 100,000 individuals aged 70+ (green dots) are 52 
used to illustrate case trends, as testing practices changed dramatically over this time period but 53 
this age group remained eligible for testing. To guide the eye, a cubic spline fit (lambda =3) was 54 
applied (top curves in each panel), and the frequency changes of each variant under this curve were 55 
fitted by maximum likelihood using duotang (CoVaRR-Net’s CAMEO 2023). Genomic sequence 56 
data from each province were obtained from the Canadian VirusSeq Portal (VirusSeq 2023) and fit 57 
by maximum likelihood to a model of selection in two periods: first 9 months using BA.1 as a 58 
reference (left of dashed line); second 9 months using BA.4/5 as a reference (right of dashed line), 59 
grouping all clades within a family together except when a sub-clade is also mentioned (e.g., BQ.1 60 
separated from BA.5). See supplementary Mathematica file for scripts and duotang (CoVaRR-61 
Net’s CAMEO 2023) for methodological details and finer resolution of lineages and time periods. 62 

COVID-19 is now considered an endemic disease, being both widespread and persistent, adding to the 63 
respiratory infectious diseases with which we must routinely contend. Its now-endemic nature reflects a 64 
balance between waning immunity and on-going transmission, leading to a turnover of cases across the 65 
globe. Endemic does not mean “constant”, as new variants and behavioral shifts drive change. Endemic 66 
also does not mean “rare”, as waning and transmission rates have remained high (e.g., Figure 1). Here 67 
we explore mathematical models to improve understanding of how the ongoing evolution of SARS-68 
CoV-2, as well as our behavioural responses, will shape endemic COVID-19 and similar diseases.  69 

When most individuals in a population are susceptible (epidemic phase), any variant or behavioural 70 
measure that affects the transmission rate will have a direct effect on the number of new infections over 71 
the short term, as exposures determine the spread of disease. When a disease first appears, the 72 
reproductive number describing the number of new infections per infection, R0, is given by the 73 
transmission rate	divided by the clearance rate of the infection in the classic SIR epidemiological model 74 
(Keeling and Rohani 2011). Thus, variants that increase transmission or behavioural changes that reduce 75 
transmission directly reduce new infections and the rate of exponential growth, but these new infections 76 
have little immediate effect on the large pool of susceptible individuals. Models of this epidemic phase 77 
(e.g., (Day et al. 2020)) also typically ignore waning of immunity or the possibility that variants may 78 
evade any such immunity earlier. 79 

By contrast, when a disease is endemic and most individuals have some degree of immunity, waning 80 
must be explicitly considered and modeled in a manner that allows variants to infect earlier (as in the 81 
SIRn model, with multiple recovered classes, that we consider here). Furthermore, any change in the 82 
transmission rate has a more complex effect on the number of infections in the near future, because 83 
higher transmissibility depletes the number of susceptible individuals whose immunity has waned (by 84 
“refreshing” that immunity through exposure), while lowering transmission allows susceptible 85 
individuals to accumulate.  86 

Indeed, this kind of reasoning about endemic disease has been used as an argument against non-87 
pharmaceutical measures like masking: 88 

Masks “can delay transmission, they can reduce transmission, but they’re not actually effective 89 
measures at a population level,” because “exposure is essentially universal now to COVID-19.” 90 
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Public Health Officer, November 2, 2022 in Today in BC podcast 91 

This argument assumes that transmission is so common that reducing risks of exposure no longer 92 
matters, as another exposure will occur soon thereafter. This is a strong claim, with major implications 93 
for both individual and public health decisions. It is essentially a claim that endemic levels of a disease 94 
such as COVID-19 are not under our control. 95 

Mathematical models can help evaluate such claims and determine whether and to what extent our 96 
actions affect the endemic load of disease and mortality. Models can also predict how this load would 97 
change in the face of new variants and how this depends on the properties of those variants. Here, we 98 
tailor standard epidemiological models to the current phase of COVID-19 to better understand the risks 99 
posed by new variants and our ability to control endemic diseases. 100 

 101 

Model background 102 

We use a classic compartment model, SIRn, as illustrated in Figure 2, measuring the fraction of the 103 
population that is in the susceptible class (S), the infectious class (I), or in one of several recovered 104 
classes (Rj). These sequential recovered classes allow for different stages of waning immunity (i, 105 
ranging from 1 to n) and capture the dynamics of neutralizing antibodies that help protect against 106 
infection (Andrews et al. 2022; Khoury et al. 2021). When measured on a log scale, neutralizing 107 
antibodies rise to a high level soon after infection or vaccination and then decline linearly over time 108 
since vaccination and/or infection (e.g., (E. H. Lau et al. 2021; Evans et al. 2022; C. S. Lau et al. 2022; 109 
Jacobsen et al. 2023). We thus consider the Rj classes to fall along different stages of this linear decline 110 
(R1 being highest and Rn lowest), with antibody levels falling over time (modeled as movement of 111 
individuals from Rj to Rj+1) until levels are so low that infection is no longer prevented (Rn waning to S).  112 
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FIGURE 2: Epidemiological model used to predict impact of changing variants, behaviour, 114 
and policy on endemic levels of disease. We consider populations that have a high level of 115 
immunity due to prior infection and/or vaccination and that consist of S: a susceptible fraction, I: 116 
an infected fraction, and Rj: a recovered fraction with immunity at different stages of waning. 117 
Parameters are 𝛽: transmission rate, 𝜅: recovery rate, 𝛿!: per-class waning rate per day, and v: 118 
vaccination rate at the population level, all measured in the present-day population with prior 119 
exposure. Movement between adjacent recovered classes is set equal to 𝛿! = 𝑛𝛿, so that the 120 
expected time between first recovering and returning to the susceptible state is 1/𝛿 days. 121 

As we are modelling the long-term epidemiological dynamics in a population previously exposed to the 122 
virus via vaccinations and/or infections, we emphasize that the susceptible class, S, consists of 123 
individuals who have had previous exposure but are currently susceptible due to waning immunity. 124 
Throughout this paper, we are thus describing the epidemiological dynamics in a previously challenged 125 
population.  126 

When we model vaccination, vaccines move individuals from the susceptible (S) to the first recovered 127 
class (R1) at rate v per population (Figure 2). We consider v to be the total fraction of the population 128 
moved (rather than the rate per susceptible individual) to align with data on observed or target 129 
vaccination rates within a country. Vaccination is therefore protective against infection in this model 130 
until vaccine-induced immunity wanes, which occurs at the same rate that infection-induced immunity 131 
wanes (although we do extend the model to consider the possibility that vaccination does not elicit an 132 
immune reaction in some individuals). We do not separately model disease or severity, or vaccine’s 133 
effectiveness against these as distinct from protection against infection.   134 

Before considering variants or NPI measures, the dynamics describing changes in the number of 135 
individuals in each compartment within the SIRn model are: 136 

 "#
"$
= 𝛿%𝑅% − 𝛽𝑆𝐼 − 𝑣  137 

 "&
"$
= 𝛽𝑆𝐼 − 𝜅𝐼   (1) 138 
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= 𝜅	𝐼 + 𝑣 − 𝛿(𝑅( 139 

 "'"
"$
= 𝛿!)(𝑅!)( − 𝛿!𝑅! for 2 ≤ 𝑗 ≤ 𝑛. 140 

We can find the equilibria of this system of equations by setting the derivatives to zero and solving, 141 
yielding two equilibria for the fraction of individuals in each class. One equilibrium corresponds to the 142 
disease being absent (𝑆0 = 1), and the other to the disease being endemic:  143 

 𝑆0 = *
+

 144 

 𝐼0 = 21 − *
+
3 ,
,-*

− .
,-*

 (2) 145 

 𝑅4! =
(
%
	521 − *

+
3 *
,-*

+ .
,-*

6  for 1 ≤ 𝑗 ≤ 𝑛. 146 

Importantly, because we are explicitly modelling endemic COVID-19 most individuals have previously 147 
been exposed to SARS-CoV-2, susceptibility and infectiousness may be lower in the current population 148 
than when the virus first appeared in humans because of cellular immunity, any residual humoral 149 
immunity among susceptible individuals (Tan et al. 2023), and/or due to any behavioural changes 150 
(including better ventilation, testing and self-isolation practices). For example, the rapid induction of 151 
cellular immunity reduces the viral load of typical breakthrough infections (Puhach et al. 2022), 152 
lowering transmission (𝛽) compared to a fully naïve population. The epidemiological dynamics in this 153 
endemic model thus depend on an "endemic basic reproductive number", 𝑅7/ ≡ β κ⁄ , which is the basic 154 
reproductive number in a population consisting entirely of currently susceptible, but previously 155 
vaccinated or infected, individuals whose immunity has waned. In contrast to the initial 𝑅/ for COVID-156 
19 at the time of its emergence, the parameters of the endemic model and in 𝑅7/ (transmission, β, and 157 
recovery, κ) refer to rates in this previously challenged population. Our estimates of 𝑅7/ range from 1 to 158 
6 (Appendix 1), depending on estimates used for recovery rates, waning, and the endemic level of 159 
infections within a population, with a value of 𝑅7/ ≈ 2 for the parameters considered typical (Table S1). 160 

If this previously challenged population were fully susceptible (𝑆0 near one), the disease would spread 161 

when rare as long as transmission rates were higher than recovery rates, R>/ =
0
1
> 1, which we assume 162 

to hold. In this case, the endemic equilibrium (2) exists and is stable for all examples considered here. 163 
The endemic equilibrium may, however, be unstable (Hethcote, Stech, and Van Den Driessche 1981), 164 
leading to sustained cyclic dynamics, outside of the parameters used here (e.g., for n large enough). 165 

The equilibrium can also be written in terms of 𝑅7/ as: 166 

 𝑆0 = (
'2#

 167 

 𝐼0 = 21 − (
'2#
3 ,
,-*

− .
,-*

 (3) 168 
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Also of relevance is the number of bouts of disease that an individual expects per year, which is 170 
365	𝛽	𝑆0	𝐼0 = 365	𝜅	𝐼0, assuming average behaviour (see Table S1). 171 

Given that recovery rates are higher than waning rates (𝛿 ≪ 𝜅), equation (3) shows that the number of 172 
infectious individuals at the endemic equilibrium is reduced by the number of vaccinations within a 173 
typical recovery period (𝑣/𝜅). If more vaccinations were to be given in a typical recovery period than 174 
the fraction of individuals expected to be infectious in the absence of vaccination, the disease could be 175 
driven extinct locally (though we note that in this model vaccination has a very high, if temporary, 176 
efficacy against infection, and that reintroductions are expected from importations, animal reservoirs, 177 
and chronic infections). Uptake of additional vaccine doses during 2023 has, however, been so low in 178 
many countries as to make little difference to the incidence and dynamics of SARS-CoV-2 (e.g., daily 179 
[annual] rates of 0.012% [4.7%] in France and 0.023% [8.8%] in the United States from 1 January – 30 180 
April, 2023; (Our World in Data 2023)). To simplify the discussion, we ignore ongoing vaccination for 181 
now, returning later to a discussion of the impact that vaccination uptake can have on individual risks of 182 
infection and on the overall incidence of disease. 183 

Spread of variants during the endemic phase 184 

A new variant may spread within the population if it is more transmissible (e.g., better binding to ACE2 185 
receptors on host cells), more immune evasive, or both (see (Cao et al. 2023) for empirical measures for 186 
SARS-CoV-2). We can calculate the rate of spread of a variant using the SIRn model by allowing 187 
different transmission rates for the resident variant (𝛽) and the new variant (𝛽∗ = 𝛽 + ∆𝛽) and by 188 
allowing immune evasive variants to infect earlier than the resident strain, while antibody levels are at 189 
intermediate levels. Specifically, we assume that an immune evasive variant can infect the last m 190 
recovered classes (each of which is at frequency 𝑅4! at the endemic equilibrium given by (3)), as well as 191 
susceptible individuals. 192 

As described in Appendix 1, a new variant introduced into a population at the endemic equilibrium has a 193 
selective advantage of: 194 

 𝑠 = ∆+
+
	𝜅GHHIHHJ

Transmission	advantage

+ 𝑚	𝑅4%	𝛽∗GHHHIHHHJ
Evasion	advantage

 (4) 195 

The selection coefficient, s, describes the rate at which the new variant spreads relative to the resident 196 
variant. Selection coefficients describing evolutionary changes in SARS-CoV-2 have been estimated in 197 
many jurisdictions using sequence information and are often relatively stable over time and space when 198 
measured consistently against the same reference strain (van Dorp et al. 2021; Otto et al. 2021). 199 

What are the consequences of spreading variants for the incidence of disease? The incidence is initially 200 
expected to rise exponentially at rate proportional to selection (specifically, 𝑠	𝐼0), but this is only transient 201 
as the new variant spreads through the susceptible population available to it. Over the long term, we 202 
show that the impact on the endemic level of disease depends strongly on whether the variant increases 203 
transmission rates and/or increases immune evasiveness, as well as the persistence of immune evasion 204 
during subsequent infections, even for variants with the same selective advantage. 205 
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In particular, when the population is comprised entirely of the new variant, the endemic level of disease 206 
changes to: 207 

 𝐼0∗ = 21 − *
+-∆+

3 ,-∆,
,-∆,-*

 (5) 208 

(found by solving equation (A1) for the endemic equilibrium when only the variant is present). The term 209 
∆𝛿 refers to how the variant changes the rate of complete waning, from first entering the recovered class 210 
to returning to the susceptible state (i.e.,	1/(𝛿 + ∆𝛿) is the mean number of days to return to 211 
susceptibility). [As short-hand, we refer to a variant’s impact on immune evasion as a change in the 212 
waning rate ∆𝛿, but the model actually assumes log-antibody levels wane at a constant rate but the 213 
variants can just infect earlier, becoming susceptible sooner.]  214 

Equation (5) allows us to evaluate the long-term impact of different types of variants. For immune 215 
evasive variants, the results are strongly dependent on the variant-specific immunity that develops after 216 
infection, even if the lineages have the same selective advantage and rate of spread (s, equation (4)). 217 
Consider two extreme possibilities:  218 

• Transient immune evasiveness: If the variant better evades the initial suite of antibodies but 219 
causes infections that generate variant-specific immunity, subsequent infections may no longer 220 
be immune evasive. In this case, subsequent infections would require the full waning period 221 
(returning to the S compartment and not the 𝑅D compartments), as for the resident strain. With 222 
only transient evasiveness, the long-term level of COVID-19 is unaffected (∆𝛿 = 0).  223 

• Persistent immune evasiveness: If the variant allows infections to occur earlier, both in the first 224 
and in subsequent infections, then the rate of return to susceptibility is consistently higher (∆𝛿 =225 
E

%)E
𝛿). With waning slow relative to recovery (𝛿 + ∆𝛿 ≪ 𝜅), persistently immune evasive 226 

variants cause the incidence of disease to rise in proportion to the increased rate of waning, 𝐼0∗ ≈227 
𝐼0	(1 + ∆𝛿/𝛿). 228 

In either case, immune-evasive variants spread in the short-term because of the selective advantage, s, 229 
gained by infecting susceptible individuals earlier, but the subsequent dynamics and long-term impact 230 
differ greatly, depending on whether variant-specific immunity builds (Figure 3). The extent to which 231 
exposure to a variant elicits variant-specific humoral or cellular immunity almost certainly falls between 232 
these two extremes. Metanalyses suggest, for example, that infections with Omicron are less protective 233 
against reinfection with Omicron, compared to the protective effects of pre-Omicron variants, 234 
suggesting some persistence in its immune-evasive properties (Arabi et al. 2023).  235 
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FIGURE 3: Impact of the spread of immune evasive variants depends on whether a variant-236 
specific immune response is elicited. Plots illustrate the dynamics over time of a more immune 237 
evasive variant, which is able to infect earlier in the waning period (by m = 2 out of n = 5 238 
recovered classes), giving the variant an s = 8.3% selective advantage per day, which lies in the 239 
range of the faster spreading variants observed in the past year (CoVaRR-Net’s CAMEO 2023). 240 
While the short-term spread of the variant (dark shading taking over from light shading) and rise in 241 
cases are nearly identical (given s is the same), the long-term consequences differ substantially 242 
depending on whether the variant’s evasive properties are (panel A) transient or (panel B) 243 
persistent. The endemic equilibrium rises only if evasiveness persists in subsequent infections 244 
(panel B). We illustrate the dynamics in younger (under 70) and older (70+) individuals, who are 245 
more prone to severe cases. Parameters: 𝜅 = 0.2, 𝛿 = 0.008, 𝐼0 = 2%, 𝛽 = 0.42, the nominal 246 
parameter estimates given in Appendix 1 for all age classes. 247 

By contrast, more transmissible variants change the endemic equilibrium to: 248 

 𝐼0∗ = 𝐼0	21 + (
'2#)(

	 ∆+
+-∆+

	3. (6) 249 

As a consequence: 250 

• More transmissible variants: If the variant increases transmission rate, spread in the short term 251 
depends directly on the change in transmission (𝑠 = (∆𝛽 𝛽⁄ )	𝜅; equation (4)), while the long-252 
term impact on the incidence of disease exhibits diminishing returns (𝐼0∗/𝐼0	depends on 253 
∆𝛽 (𝛽 + ∆𝛽⁄ )). Thus, more transmissible variants have a less than proportionate influence on 254 
the number of cases in the long term, unless the susceptible pool is large and 𝑅7/ small (𝑆0 =255 
1/𝑅7/ > 1/2).  256 

While more immune evasive variants increase the pool of susceptible individuals available to them (in 257 
our model, by adding the last m recovered classes to the susceptible class), more transmissible variants 258 
deplete the susceptible pool. This can be seen by the effect on the susceptible class at equilibrium, which 259 
decreases from 𝑆0 = 𝜅 𝛽⁄  for the resident virus to 𝑆0∗ = 𝜅 (𝛽 + ∆𝛽)⁄  for a more transmissible virus. For 260 
this reason, more transmissible viruses are, to some extent, self-limiting and often have less of an effect 261 
on the long-term number of cases than seen for a permanently immune evasive variant. Thus is 262 
illustrated in Figure 4, which shows that the equilibrium rises less for a given % increase in 263 
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transmissibility (panel C) than for the same % increase in waning rate for a permanently immune 264 
evasive variant (panel B), unless 𝑅7/ is so small that most individuals in the population are susceptible. 265 
Of course, variants may combine features affecting transmissibility and immune evasiveness (Cao et al. 266 
2023), as explored in Figure S1. 267 

FIGURE 4: Impact of the spread of a more transmissible variant. Plot illustrates the dynamics 268 
over time of a more transmissible variant, which increases 𝛽 (and hence 𝑅7/) by 42%, chosen to 269 
give the variant the same selective advantage as in Figure 3 (s = 8.3%). While exhibiting a similar 270 
short-term rise in cases as in Figure 3, the long-term impact is intermediate. Parameters are 271 
identical to Figure 3, with 𝛽∗ = 0.59. 272 

This model predicts, as seen in the data over the past year (Figure 1), only modest rises and falls in case 273 
numbers, despite substantial evolutionary change in the frequency of different variants. This occurs 274 
because of the substantial population-level immunity that persists in the population at the endemic 275 
equilibrium. With a mixture of susceptible, infectious, and recovered individuals, the effective 276 
reproductive number at the endemic equilibrium must be one (𝑅F,$ = 1) for the resident and 𝑅F,$ = 1 +277 
∆𝛽 𝛽⁄  for a more transmissible variant (e.g., 𝑅F,$ = 1.42 in Figure 4). Thus, only a modest drop in the 278 
susceptible population is needed (1/𝑅F,$) before the infectious class peaks and falls again.  279 

The robustness of these conclusions is explored in Appendix 2, considering different models of 280 
immunity (including leaky immunity) and the inclusion of features such as an exposed class and failure 281 
to seroconvert.  The strength of selection (equation (4)) and the long-term impact on endemic levels of 282 
disease (equation (5)) are robustly observed. The speed at which the waves dissipate over time, however, 283 
is sensitive to model assumptions, stabilizing faster than observed above in many cases (Figure S2), so 284 
we caution that the nature of subsequent wavelets caused by the spread of a variant is hard to predict.  285 

We conclude that variants may have dramatically different long-term impacts on the level of disease 286 
depending on the nature of the advantage (transiently or persistently immune evasive and/or more 287 
transmissible), despite exhibiting the same selective advantage and hence spreading at the same rate 288 
(e.g., with selection of s = 8.3% per day in Figures 3 and 4). Indeed, a variant that is transiently immune 289 
evasive but less transmissible can spread and would be expected to reduce the equilibrium level of 290 
disease, except that once immunity to this variant has built, the previous resident reemerges because of 291 
its higher transmissibility (Figure S1B). 292 
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Figure 5 shows these long-term impacts on disease incidence at the endemic equilibrium across the 293 
range of plausible parameters (Appendix 1). Transiently immune evasive variants have no long-term 294 
impact (panel A), whereas the rise in cases is nearly proportional to the ability of a variant to evade 295 
immunity, if that evasiveness is persistent, regardless of the exact parameter values (panel B). By 296 
contrast, the long-term impact of a more transmissible variant depends strongly on the current 297 
transmissibility, as measured by the endemic reproductive number. The larger 𝑅7/ is, the smaller the 298 
long-term impact of more transmissible variants is on disease levels (Figure 5C), essentially because the 299 
pool of susceptible individuals is then smaller and rapidly depleted by more transmissible variants (𝑆0 =300 
1/𝑅7/). That said, for given waning (𝛿) and recovery (𝜅) rates, the endemic level of disease is higher 301 
when 𝑅7/ is higher (equation (3)), so a small percentage increase in disease incidence can still have a 302 
numerically important impact on the burden of disease.  303 

 304 

FIGURE 5: Long-term impact of a variant. The percent change in the endemic equilibrium is 305 
shown as a function of the percent by which the variant increases the rate at which recovered 306 
individuals become susceptible again (∆𝛿, panels A,B) or transmissibility (∆𝛽, panel C). 307 
Transiently immune evasive variants have no long-term impact, while persistently immune evasive 308 
variants cause the endemic incidence of disease to rise nearly in proportion (dashed curve) across 309 
all parameters considered plausible (purple shading, with the nominal parameter values illustrated 310 
by a thick purple curve; see Appendix 1 and Table S1). By contrast, the impact of a more 311 
transmissible variant that increases 𝛽 depends strongly on 𝑅7/ (but none of the other parameters), 312 
leading to a less than proportional rise in cases whenever 𝑅7/ ≥ 2 (see equation (6)).  313 

Controlling an endemic disease – In the face of variants that are increasingly transmissible and/or 314 
persistently immune evasive, the endemic level of disease is expected to rise over time, but these 315 
increases can be countered by protective measures at the individual and population level. Protective 316 
measures range from vaccination to NPI measures, such as testing and self-isolation, avoiding crowded 317 
indoor spaces, improving ventilation, and the wearing of well-fitting and high-quality masks (The Royal 318 
Society 2023). Here we explore the impact of these protective measures at both the individual level, 319 
modulating the frequency of infections, and the population level, modulating the endemic incidence of 320 
disease. 321 

Vaccination – Vaccination allows individuals to short-circuit the disease cycle by boosting antibody 322 
levels and immunity by another dose rather than by infection. Globally, 65% of people have had the 323 
primary series of COVID-19 vaccines but an average of only 0.35 booster doses have been distributed 324 
per person ((Our World in Data 2023); accessed 22 August 2023). Jurisdictions vary widely in 325 
recommended vaccine schedules and access to vaccines. For example, only individuals at higher risk of 326 
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serious illness are eligible for COVID-19 vaccinations in the United Kingdom (NHS 2023). In Canada, 327 
the National Advisory Committee on Immunization recommends that all adults be offered vaccines six 328 
months after the last dose or infection (NACI 2023). The Centre for Disease Control in the USA, 329 
however, recommends that individuals stay up to date with important vaccine updates (e.g., the updated 330 
mRNA vaccines providing protection against BA.4 and BA.5 in the fall of 2022 and against XBB in the 331 
fall of 2023 (CDC 2023)).  332 

There is substantial uncertainty and confusion in both public and public health circles about the value of 333 
regular vaccinations against COVID-19 (Lin et al. 2023). Here, we explore one aspect: how much do 334 
regular vaccinations reduce the burden of disease expected at an endemic equilibrium? 335 

We consider the impact of policies aimed at future vaccine uptake, encouraging vaccination of a portion 336 
of the population (v) per day. Given that vaccines are recommend only after a substantial amount of time 337 
has passed since the previous dose or infection, these vaccinees are assumed to target individuals in the 338 
susceptible class, moving them into the first recovered class (S to R1; equation (1)). Unlike many 339 
previous epidemiological models (reviewed in (Scherer and McLean 2002), we assume that the target 340 
vaccination rate is set by policy, adjusting public health campaigns, vaccine cost, and availability to 341 
meet these targets (i.e., 𝑑𝑆 𝑑𝑡⁄  in equation (1) declines by a fixed daily rate, v, rather than a per capita 342 
rate, v S). 343 

We consider vaccination rates in Canada as typical of what can be achieved when vaccines are available 344 
at regular intervals (every six months). From April-July 2023, vaccination rates in Canada have 345 
averaged only 0.012% of the population per day (annual rate of 4.5% (Health Infobase Canada 2023)). 346 
While these vaccinations help those individuals receiving a dose, this level has a negligible impact on 347 
the endemic level of cases (decreasing 𝐼0 from 2% to 1.94% for the nominal parameter values). Many 348 
public health agencies have encouraged COVID-19 vaccine updates in the fall (Mahase 2023). For 349 
example, vaccination rates in Canada during September-December 2022 were 14 times higher (0.174% 350 
of the population per day, an annual rate of 63.5% (Health Infobase Canada 2023)), a rate that 351 
substantially lowers the endemic equilibrium level if maintained (from 2% to 1.16% for the nominal 352 
parameter values).   353 

At an individual level, vaccination reduces the number of infections that one expects to have. 354 
Individuals on a regular six-month vaccination schedule are expected to be protected from neutralizing 355 
antibodies for 1/𝛿 out of every 180 days. Calculating the probability of waning and infection before 356 
their next vaccine (equation (A2); Appendix 1), a regularly vaccinated individual expects to have about 357 
60% as many infections per year (0.88 vs 1.46) for the nominal parameter values (Appendix 1). Across 358 
the range of parameters considered plausible, vaccination every six months leads to only 40%-66% as 359 
many infections annually (supplementary Mathematica file). 360 

At a population level, in our model, vaccination reduces the endemic level of infections to 𝐼0. = 𝐼0 − .
,-*

 361 

(equation (2)). That is, the endemic level of infections is reduced by approximately the number of 362 
vaccinations conducted during the infectious period (𝑣/𝜅, given that waning is considerably slower than 363 
recovery). Figure 6 illustrates the impact of increasing and maintaining the vaccination rate at the higher 364 
levels observed in Canada in the fall of 2022 (v = 0.174%). In this case, the long-term incidence of 365 
infection can be driven down by ~42% (panel A). Across the range of parameters considered in 366 
Appendix 1, this population-level benefit ranging from a 12-100% decline in incidence of disease, 367 
falling at the lower end of the benefit when disease incidence is high without vaccination (𝐼0 = 4%) but 368 
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at the higher end and allowing complete eradication when disease incidence is low without vaccination 369 
(𝐼0 = 0.5%). 370 

One policy option considered in many jurisdictions is to regularly vaccinate only the more vulnerable 371 
segment of the population. Figure 6B illustrates, however, that limiting vaccination to the more 372 
vulnerable population (shown here as vaccinating only those over 70 at a rate v = 0.174%) has less 373 
impact on the frequency of infections experienced by this vulnerable population (reduced by only 24%), 374 
because the incidence of COVID-19 remains high overall, increasing their risk of exposure. 375 

That said, the additional protection provided by COVID-19 vaccines against severe disease, above and 376 
beyond the protection provided against infection, means that the risk of hospitalization and death can be 377 
lowered by vaccinating the vulnerable (Nyberg et al. 2022; Chemaitelly et al. 2022). Further reducing 378 
the risk of infection and severe disease, however, requires a broader vaccination campaign. Broad 379 
vaccination campaigns provide additional protection for the vulnerable, while also reducing the number 380 
of sick days, risks of long COVID, and severe disease among those not known to be vulnerable. 381 

 382 

FIGURE 6: Impact of vaccination strategies. Plots illustrate the dynamics over time when 383 
vaccination is increased to 0.174% of the population per day (annual rate of 63.5%), either (A) 384 
within the entire population or (B) limited to a more vulnerable population (illustrated as 70+ in 385 
age). Parameters are identical to Figure 3, with 𝑣 = 0.00174. 386 

As noted in Appendix 2, seroconversion rates upon vaccination are high (Wei et al. 2021), so we do not 387 
correct v for the small fraction of doses that fail to elicit an immune response. Not all individuals will, 388 
however, achieve high levels of immunity following vaccination and not all will be protected from 389 
infection. A mixture of induced immunity could be modelled by moving vaccinated individuals into a 390 
distribution of 𝑅! classes. Additionally, some individuals being vaccinated may have been exposed in 391 
the recent past (i.e., coming from the infectious or recovered compartments, not solely from the 392 
susceptible classes). These possibilities are not explicitly modeled, although they would lower the 393 
protection offered by vaccination, akin to lowering v, and so require higher vaccination uptake to 394 
achieve the benefits described above. 395 

NPI measures – A wide variety of non-pharmaceutical interventions have been deployed to counter the 396 
spread of SARS-CoV-2, including testing and self-isolation, enhancing ventilation and air filtration, and 397 
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wearing of high quality masks (see evaluation of evidence in the report (The Royal Society 2023)). 398 
Here, we consider the individual-level and population-level benefits of NPIs, as a function of their 399 
impact on preventing transmission of the virus, modelled by NPIs preventing a portion p of 400 
transmissions both from and to NPI users. Specifically, we assume that the NPI measures reduce 401 
transmission from 𝛽 to (1 − 𝑝)	𝛽 if one member in an interaction practices the measures and to 402 
(1 − 𝑝)H	𝛽 if both do. The population is assumed to be heterogenous, as illustrated in Figure S4, 403 
consisting of a fraction 𝑓 who regularly engage in NPI measures and are denoted by a ‡ (compartments 404 
𝑆‡, 𝐼‡, 𝑅!

‡ for j = 1 to n, which sum to 𝑓) and a fraction 1 − 𝑓 who do not (compartments 𝑆, 𝐼, 𝑅!, which 405 

sum to 1 − 𝑓). See Appendix 3 for model details. 406 

We first determine the benefit to an individual who adheres to NPI measures (e.g., masking). At the 407 
endemic equilibrium, an individual engaging in the NPI measure has a lower risk of being infected at 408 
any given point in time of:  409 

 Relative risk of infection:  &J‡	/L
&J	/(()L)

= (
(-	#J	 %

(!'%)(!'))
, (7) 410 

where 𝑆0	 is the fraction of the population at the endemic equilibrium who are susceptible and do not 411 
engage in the NPI measure (given by (A11), 𝑆0 	≈ 𝜅/𝛽 when f is small). This relative risk is 412 
mathematically equivalent to the relative rate at which individuals become infected for those who do 413 
versus do not engage in the NPI measure, as well as the relative number of infections expected per year.  414 

Figure 7 illustrates the relative risk of infection (equation (7)). As expected, the more effective the NPI 415 
measure is (the higher p) the lower the relative risk to individuals who engage in the NPIs (panel A).  416 
This individual-level benefit is only weakly dependent on the fraction of the population currently 417 
engaging in these measures (f = 10%, 50%, and 90% shown as solid, dashed, and dotted curves), with 418 
the relative risk rising slightly as 𝑓	increases because non-practitioners gain a slight benefit from those 419 
who do practice the NPI measure.  420 

The individual benefits depend strongly, however, on the endemic reproductive number of the disease 421 
(𝑅7/). At the nominal value of 𝑅7/ = 2 and assuming low population-level uptake (f small), a person’s 422 
relative risk of infection can be substantially reduced for NPIs that provide fairly modest protection (by 423 
14% and by 33% for p = 25% and 50%, respectively). For 𝑅7/ = 6 (on the high end of the range 424 
considered plausible; Appendix 1), however, these individual-level benefits diminish (to 5% and 14% 425 
for p = 25% and 50%, respectively), because individuals are exposed so often that modestly protective 426 
NPIs only moderately delay infection. 427 

Not only is a susceptible individual who regularly engages in NPI measures less likely to become 428 
infected when in contact with an infectious individual (by a factor 1 − 𝑝), but they are also less likely to 429 
pass the infection on to one of their contacts (by another factor 1 − 𝑝), compared to a non-practicing 430 
individual who is currently susceptible. Accounting for the proportion of time that practicing and non-431 
practicing individuals are susceptible (as in equation (7)), the risk per unit time of being infectious and 432 
infecting a contact is substantially lowered for those engaging in NPI measures relative to those who do 433 
not (Figure 7B). This validates the approach used by many who adhere to NPI measures, such as 434 
masking, in order to protect vulnerable relatives and close contacts. 435 
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 436 

FIGURE 7: Risk of infection for individuals regularly engaging in an NPI measure such as 437 
masking, relative to unmasked individuals. Coloured lines illustrate different levels of 438 
protection, p, provided by the NPI measure, in a population where the fraction of individuals 439 
engaging in the NPI measure is f = 10% (solid), 50% (dashed), and 90% (dotted). Panel A shows 440 
the risk of infection and panel B the risk of becoming infected and infecting a contact for an 441 
individual engaging in NPI measures, relative to those who do not. The x-axis gives the endemic 442 
reproductive number in this heterogeneous population, 𝑅7/ = ((1 − 𝑓) + 𝑓(1 − 𝑝)H) 𝛽 𝜅⁄ . 443 
Parameters: Relative risk depends on the parameters only through 𝑅7/, f, and p. 444 

The curvature of the relative risks in Figure 7 highlights the utility of multiple complementary 445 
interventions: other policies that reduce transmission (lowering 𝑅7/) make masking more effective to 446 
individuals, because those individuals are less repeatedly exposed. 447 

The individual-level benefits of NPI measures diminish with 𝑅7/ (x-axis of Figure 7) because individuals 448 
practicing NPI measures are more likely than non-practitioners to have remained uninfected and so are 449 
more often susceptible at the time of exposure, which increases their relative risk of infection as 𝑅7/ 450 
increases. Different results are obtained if individuals frequently switch their behaviour (e.g., masking 451 
some days and not others). Modifying the model as described by equation (A12), all individuals are then 452 
equally likely to be susceptible on any given day, and the NPI measure always reduces the risk of 453 
infection by a factor (1 − 𝑝) for each practicing individual in an interaction. That is, the benefits remain 454 
at their maximal value of (1 − 𝑝) in panel A and (1 − 𝑝)H in panel B, regardless of 𝑅7/ and f (Appendix 455 
3).  456 

We next evaluate the population-level advantages of NPI measures by calculating the fraction of 457 
infected individuals expected at the endemic equilibrium (𝐼0 + 𝐼0‡) when a fraction f of the population 458 
upholds these measures, relative to a population in which nobody does: 459 

 Relative fraction of population infected:  &J-&J‡	
(&J-&J‡))*#

= (1 − 𝑆0 − 𝑆0‡) '2#
'2#)(

, (8) 460 

using the equilibrium values given by equation (A11). The right-hand side of equation (8) emphasizes 461 
that the population-wide benefits increase (fewer people will be infected) when there are more 462 
susceptible individuals available (𝑆0 + 𝑆0‡ larger). 463 
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While the population-level impact is small when few individuals mask (left panel of Figure 8), there are 464 
substantial benefits to having moderate to high adherence to the NPI measures (central and right panel). 465 
These benefits are strongest when the endemic reproductive number is small, potentially moving the 466 
population away from the endemic case, where COVID-19 persists, to the disease-free equilibrium 467 
(when the curves cross the x-axis), again emphasizing the added benefits that come from combining 468 
interventions.  469 

The reduction in cases caused by NPI measures is expected to result in a proportionate reduction in 470 
severe cases and deaths.  Even a modest reduction (say 20%) can have non-linear benefits when 471 
hospitals are at capacity, improving care for all (Wichmann and Wichmann 2023). Achieving such 472 
benefits at a population level, however, requires that there be clear messaging and incentives to obtain 473 
the moderate to high levels of uptake required to impact population-wide infection rates. 474 

 475 

FIGURE 8: Reduction in cases at the endemic equilibrium when a fraction f of the 476 
population engages in an NPI measure, relative to when none do. Coloured curves illustrate 477 
different levels of protection, p, provided by the NPI measure. Panels show the fraction of the 478 
population practicing the NPI measure: (A) f = 10%, (B) 50%, and (C) 90%. The x-axis gives the 479 
endemic reproductive number in a population that is not engaging in the NPI measure, given by 480 
𝑅7/ 	= 𝛽 𝜅⁄ . Parameters: Reduction in cases depends on the parameters only through 𝑅7/, f, and p. 481 

Discussion – 482 

This paper aims to expand our understanding of the impact of variants, as well as behavioural and public 483 
health measures, on endemic diseases like COVID-19. Widespread measures, both by individuals and 484 
public health agencies, repeatedly “flattened the curve” of COVID-19 during the first two years of the 485 
pandemic, reducing viral transmission to save lives and avoid collapse of health care systems (Ogden et 486 
al. 2022; Talic et al. 2021). Since mid-2022, however, COVID-19 has persisted at high levels throughout 487 
the world, becoming endemic with no sign of abating even during summer months. The mantra to 488 
“flatten the curve” is no longer relevant, as endemic levels are already fairly flat, and we lack a 489 
compelling guide to govern our collective behaviour in its place. 490 

For COVID-19, endemic does not mean constant, with wavelets caused by variants, changing behaviour, 491 
and varying vaccination rates. Nor does endemic mean rare, as on-going high levels of COVID-19 492 
health impacts remain. Nor does endemic mean out of our control, as protective measures continue to 493 
have important benefits, boosting immunity through vaccination and reducing transmission through 494 
effective NPI measures. The goal of this paper is two-fold: to explore the impact of evolutionary 495 
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changes in the virus on disease incidence and to discuss how protective measures can counteract these 496 
rises, reducing disease risks.   497 

Variants of endemic diseases that increase transmissibility and/or immune evasion are selectively 498 
favoured, with rises in frequency that can be measured empirically, yielding estimates of the strength of 499 
selection (s). While the strength of selection accurately predicts the speed with which one variant 500 
replaces another, it does not predict the long-term impact on endemic levels of disease. For a given 501 
selection coefficient, we have shown that the long-term impact on disease is negligible for variants that 502 
are more immune evasive, but only transiently so, eliciting variant-specific antibodies that protect from 503 
reinfection (Figure 5A). By contrast, immune evasive variants that fail to elicit variant-specific 504 
antibodies have a persistent advantage, leading to a nearly proportional increase in cases in the long term 505 
(Figure 5B). In Appendix 2, we also consider variants that cause immunity to become leakier, increasing 506 
the risk of infection for all recovered classes, which are particularly problematic (Figure S3), causing a 507 
high long-term rise in cases because all individuals remain prone to infection if leakiness is persistent. 508 
Variants that are more transmissible generally have an intermediate impact on disease incidence (Figure 509 
5C). Thus, depending on the exact properties of new variants, we may see smaller or larger rises in cases 510 
over the long term, even for variants initially spreading at the same rate.  511 

Lab assays of SARS-CoV-2 have dramatically sped up phenotypic assessment of new variants (Cao et 512 
al. 2023). Within days of new variants emerging, information has been shared by groups around the 513 
world, evaluating immune evasiveness (e.g., the titer of neutralizing antibodies in convalescent plasma 514 
required to prevent infection of cell lines) and efficiency of binding to ACE-2 receptors (e.g., via twitter, 515 
@yunlong_cao). These assays often find that infection with one variant (e.g., BA.1) builds higher 516 
neutralizing capacity against that variant than other variants (e.g., BA.2), indicating some loss of 517 
immune evasiveness following infection with a variant (Cao et al. 2023). The impact on long-term 518 
immune evasion and reinfection rates for different variants remains an open question, and one whose 519 
answer determines the impact on endemic incidence of disease (Figure 5A,B). 520 

We can counter variant-induced rises in cases, however, by encouraging higher uptake rates of vaccines 521 
and other non-pharmaceutical interventions. These measures always help individuals reduce their own 522 
risk of infection and the risk of infecting those around them (Figure 7). Widespread, but not universal, 523 
uptake is needed to substantially reduce levels of disease (Figure 8), except if the disease is near 524 
eradication (𝑅7/ near 1). The benefits could be enhanced by encouraging NPI measures around those who 525 
are most at risk of adverse outcomes and in places and times where risks of infection and/or the health 526 
care burden are high. Particularly valuable are investments in measures that protect all, regardless of 527 
uptake (such as improved air filtration and ventilation, adequate testing and job security to stay home 528 
when sick). 529 

The models explored herein lack many important epidemiological details, including spatial and age 530 
structure in contact rates and seasonal variation in transmission risk. As such, the results are meant to 531 
guide expectations rather than provide precise predictions. Details were sacrificed in an effort to help us 532 
better understand how the endemic level of disease is likely to change in the future, in response to our 533 
efforts as well as further evolution of the virus. 534 

Supplementary Materials (FOR REVIEW) 535 

All proofs and code needed to generate the figures are available in Mathematica and PDF versions at 536 
https://www.zoology.ubc.ca/~otto/Research/Endemic (to be deposited in Dryad). 537 
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Appendix 1: Modelling the spread of variants 552 

Dynamics – We include infections by a resident variant (I) and a new variant (𝐼∗) in the SIRn 553 
epidemiological model illustrated in Figure 1. By allowing for multiple recovered classes, we can model 554 
new variants that are more immune evasive by allowing them to infect earlier in the waning period 555 
(infecting individuals in the last m recovered compartments 𝑅!), when antibody levels are high enough 556 
to prevent infection by the resident virus but not the new variant.  The dynamics are then described by 557 
the following set of differential equations:  558 

 "#
"$
= 𝛿%𝑅% − 𝛽𝑆𝐼 − 𝛽∗𝑆𝐼∗  559 

 "&
"$
= 𝛽𝑆𝐼 − 𝜅𝐼 "&∗

"$
= 𝛽∗[𝑆 + ∑ 𝑅!%

!O(-%)E ]	𝐼∗ − 𝜅	𝐼∗ (A1) 560 

 "'!
"$

= 𝜅	𝐼 + 𝜅	𝐼∗ − 𝛿(𝑅( 561 

 "'"
"$
= 𝛿!)(𝑅!)( − 𝛿!𝑅! for 2 ≤ 𝑗 ≤ 𝑛 −𝑚 562 

 "'"
"$
= 𝛿!)(𝑅!)( − 𝛿!𝑅! − 𝛽∗𝑅!𝐼∗ for 𝑛 −𝑚 < 𝑗 ≤ 𝑛 563 

Setting all waning rates between recovered classes equal to 𝛿D = 𝛿/𝑛 ensures that the average time from 564 
first recovering to returning to the susceptible class has a mean of 1/ 𝛿 days. The distribution of waning 565 
times is then given by a gamma distribution with a coefficient of variation (CV) of 1/√𝑛, becoming 566 
more bell shaped with higher n (Hethcote, Stech, and Van Den Driessche 1981). 567 

Spread of a new variant – The spread of a new variant into a population at the stable endemic 568 
equilibrium (equation (2)) is given by the leading eigenvalue, 𝜆P of the external stability matrix 569 
describing the dynamics of the variant (see details in the Supplementary Mathematica package), which 570 
equals:  571 

 𝜆P = 𝑆0𝛽∗ +𝑚𝑅4!𝛽∗ − 𝜅 (A2) 572 

If the new variant did not change the transmission rate (𝛽∗ = 𝛽) and was unable to infect any additional 573 
sector of the population (𝑚 = 0), it would be neutral (𝜆P = 0, plugging in (2)).  574 

The selection coefficient favouring a new variant is defined by the rise in frequency of the new variant 575 

relative to the old variant ("Q
"$
≡ 𝑠	𝑥, where 𝑥 =freq(new variant)/freq(old variant)), which predicts an 576 

exponential rise in the relative frequency of the new variant over time (𝑥$ = 𝑒R	$𝑥/). The strength of 577 
selection can thus be estimated empirically by the slope on a logit plot (plotting log of 𝑥$ over time). 578 
Near the endemic equilibrium, it can be shown that selection, defined in this way, equals 𝜆P (see 579 
Supplementary Mathematica package). Plugging in equation (2) for 𝑆0 into (A2) then gives the selection 580 
coefficient reported in equation (4). 581 
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Parameter values – We consider the following parameter values for the current endemic phase during 582 
which Omicron predominates, giving the nominal value considered typical and the plausible range in 583 
square brackets:  584 

• 𝜅 of 0.2 (mean of 5 days) [range of 3-10 days]. Source: Estimates of the infectious period for 585 
Omicron vary depending on the study design, but several studies are consistent with 586 
infectiousness for a couple of days prior to symptom onset and five days thereafter (UKHSA 587 
2023). We take into account some self-isolation upon infection and use a five-day average 588 
infectious period as a default.  589 

• 𝛿 of 0.008 (mean of 125 days) [range of 100-180 days]. Source: Waning rate depends on the 590 
exact sequence of vaccinations and infections. The half-life of protection against symptomatic 591 
infection with Omicron among studies summarized by Menegale et al. (Menegale et al. 2023) 592 
was 87 days without a booster and 111 days with a booster, yielding 𝛿 values ranging from 593 
0.0071 to 0.0094 per day. Waning rates were similar for older and younger individuals 594 
(Menegale et al.’s eFigure 14). 595 

• 𝐼0 of 2% [range of 0.5%-4%]. Sources: The last report of the Coronavirus (COVID-19) Infection 596 
Survey UK (Office for National Statistics 2023), which assayed nose and throat swabs from 597 
households, found 2.66% of England were infected (13 March 2023). In Canada, models suggest 598 
that 1 in 28 were infected the week of 16 April 2023, while 1 in 80 were infected the week of 9 599 
September 2023 (COVID-19 Resources Canada 2023). 600 

• Age structure for Canada: 13% of the population is 70+ in age (Statistics Canada 2023). 601 

Combining these estimates with equations (2) and (3) allows estimation of the transmission rate and 602 
reproductive number. The nominal parameters given above yield estimates of β = 0.42 and 𝑅7/ = 2.1, 603 
ranging from β = {0.11-2.27} and 𝑅7/ = {1.1,6.8} (Table S1), although some combinations are not 604 
possible (e.g., a mean waning time of 180 days is inconsistent with an incidence of 𝐼0 = 4% if mean 605 
clearance times are too short, 𝜅 > 0.13), and the disease is then expected to decline.  606 

The expected number of disease bouts per year is 1.46 for the nominal parameter values, ranging from 0 607 
(when the disease disappears) to 2.92 when incidence is high (𝐼0 = 4%), waning is fast (𝛿 = 1/100), and 608 
recovery is fast but not so fast that the disease disappears (𝜅 = 1/5). 609 

We can also calculate the expected number of infections per year for an individual who is vaccinated at 610 
regular intervals (every T days). For simplicity, we make the approximation that vaccinations are 611 
frequent enough and waning slow enough that we need only consider the chance of one infection 612 
between vaccinations. If waning times were exponentially distributed, then the probability of becoming 613 
infected in the period between vaccinations would be: 614 

 𝑃 = ∫ 𝛿	𝑒),$GHHIHHJ
Waning	at	time	t

∗ [1 − 𝑒)+&J(T)$)]	GHHHHHIHHHHHJ𝑑𝑡

Probability	of	infection	after	waning

T
/  (A3) 615 

 			= 1 − F',-+&J)F'./0-,
+&J),

.  616 

The approximate annual number of infections is then 365	𝑃/𝑇, which is 0.88 for those on a six-month 617 
vaccination interval (T = 365/2) and the nominal parameter values (𝜅 = 0.2, 𝛿 = 0.008, 𝐼0 = 2%, 𝛽 =618 
0.42). 619 
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 620 

Appendix 2: Model sensitivity and oscillatory behaviour 621 

Different choices about the number of recovered classes, movement among them, and whether immunity 622 
is leaky, as well as the inclusion of a latent period and incomplete seroconversion, were explored to 623 
determine sensitivity of the results to model assumptions (Supplementary Mathematica file). To 624 
simplify the presentation, we focus on the case where daily vaccination rates are low and are ignored 625 
(except where noted). 626 

Alternate models of recovery – In the main text, we used multiple recovered classes in the SIRn model to 627 
capture observed declines in neutralizing antibodies, measured on a log scale, over time since 628 
vaccination and/or infection. While this reflects the dynamics of neutralizing antibody levels, a side 629 
consequence is that the distribution for the total waning time becomes increasingly bell shaped as n rises 630 
(CV of 1/√𝑛). This synchronizes the recovery of individuals infected at the same time. If n is large 631 
enough, this synchronisation can destabilize the endemic equilibrium, leading to persistent cycles 632 
(Hethcote, Stech, and Van Den Driessche 1981). While the rise in frequency of a variant, as described 633 
by its selective advantage (equation (4)) and the long-term impact of the variant on the endemic 634 
equilibrium (equation (5)) are insensitive to the number of recovered compartments (n), the extent of 635 
oscillations following the initial spread of the variant are much stronger as n increases (Figure S2, panels 636 
A-C). Empirically, the distribution of waning times is close to exponential (CV = 1;  (Menegale et al. 637 
2023), suggesting that intrinsic oscillations are likely to be damped (like Figure S2A, where CV = 1).  638 

Similar behaviour to Figure S2A is seen in a model with only two recovered classes (n = 2), 639 
corresponding to high (R1) and low (R2) antibody levels, where an immune evasive variant (but not the 640 
resident virus) can infect the second class. By setting the waning rates to 𝛿( = 𝛿/𝑥 (from R1 to R2) and 641 
𝛿H = 𝛿/(1 − 𝑥) (from R2 to S), the equilibrium fraction of recovered individuals in the second class (x) 642 
can be adjusted to allow for more immune evasive variants, while keeping the average time from first 643 
recovering to susceptibility at 1/ 𝛿 days for the resident virus. This model has a nearly exponential 644 
waning time, with rapidly dampening oscillations, for more transmissible variants (Figure S2D), more 645 
immune evasive variants (Figure S2E), or both (Figure S2F). The selection coefficient and equilibrium 646 
remain unchanged, all else being equal (given by equations (4) and (5), respectively). 647 

Leaky immunity – In the main text, we considered immunity to be polarized: individuals are either 648 
susceptible to infection (S compartment) or not (Rj compartments, with j depending on the variant). 649 
There is evidence, however, that SARS-CoV-2 immunity is leaky, such that high viral exposure can lead 650 
to infection for those who would otherwise be immune (Lind et al. 2023). Furthermore, variants may 651 
differ in the extent of leaky immune (e.g., (Lind et al. 2023) found higher hazard ratios following close 652 
exposure for Delta than for Omicron). 653 

We thus explored variants that increased leakiness of immunity, 𝜉, in the SIR (n = 1) and SIRn (n = 5) 654 
models (exploring the latter numerically only in the Supplementary Mathematica file). Incorporating 655 
leaky immunity in the SIR model changes the dynamics to:  656 

 "#
"$
= 𝛿	𝑅 − 𝛽𝑆𝐼 − 𝛽∗𝑆𝐼∗  657 
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 "&
"$
= 𝛽𝑆𝐼 + 𝜉𝛽𝑅𝐼 − 𝜅𝐼 "&∗

"$
= 𝛽∗𝑆	𝐼∗ + 𝜉∗𝛽∗𝑅	𝐼∗ − 𝜅	𝐼∗ (A4) 658 

 "'
"$
= 𝜅	𝐼 + 𝜅	𝐼∗ − 𝜉𝛽𝑅𝐼 − 𝜉∗𝛽∗𝑅	𝐼∗ − 𝛿	𝑅 659 

The equilibrium is then: 660 

 𝑆0 = (
H
(−𝑏 + √𝑏H − 4𝑐) 661 

 𝐼0 =
,	(1.)#

J)

#J\+
  (A5) 662 

where 𝑏 = − *	),)\+
(()\)+

 and 𝑐 = − *
+
	 ,
(()\)+

. Selection on a variant then becomes: 663 

 𝑠 = ∆+
+
	𝜅GHHIHHJ

Transmission	advantage

+ ∆𝜉	𝑅4	𝛽∗GHHHIHHHJ
Evasion	advantage

 (A6) 664 

Figure S3 illustrates cases where immunity was robust against the resident virus (𝜉 = 0) but leaky for 665 
the variant (𝜉∗ > 0), combined with some to no transmission advantage (panels A to C). Again we see 666 
that the same selective advantage (s) is consistent with substantially different long-term consequences 667 
for endemic disease levels. Variants that exhibit leakier immunity greatly increase the endemic 668 
equilibrium, more than seen in Figures 3 and 4 for a given selection coefficient, because all individuals 669 
are more prone to infection in the long term, not just those with low antibody levels. 670 

Latent period – Viral infections are characterized by a latent period between infection and detectible 671 
viral load, which is thought to indicate the onset of the infectious period (UKHSA 2023).  We can 672 
include this period by adding to the SIRn model a latent class (E), into which all new infections enter and 673 
then exit at rate 𝜖. Including this period, the equilibrium fraction of infected individuals changes to: 674 

 𝐼0 = 21 − *
+
3 ,	]
]	,-]	*-,	*

 (A7) 675 

Given that the rate of leaving the latent class is much faster than waning (𝜖 ≫ 𝛿), the last 𝛿	𝜅 term in the 676 
denominator is negligible, and 𝜖 cancels out of (A7). Thus, the equilibrium number of infections (𝐼0) is 677 
nearly unaffected by including a latent class.  678 

Recalculating the leading eigenvalue at this endemic equilibrium, the selection coefficient favoring the 679 
new variant (𝑠 = 𝜆P) changes slightly when a latent period is added, from s given by equation (4) to: 680 

 𝑠 = − ]-	*
H
+l2]-	*

H
3
H
+ 𝑠	𝜖 (A8) 681 

Assuming that the spread of the variant is slow relative to the latent and infectious periods (𝑠 ≪ 𝜖, 𝜅), 682 

adding a latent period causes selection to weaken slightly, with (A8) approaching 𝑠 (
(-	*/]

 . This occurs 683 

because only during a fraction (/*
(/]-(/*

= (
(-	*/]

 of the generation time of the virus is it infectious. Xin at 684 

al. (Xin et al. 2023) estimate a mean latent period of 3.1 days for Omicron. For the parameters 685 
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considered typical of Omicron (Appendix 1), selection would be ~70% as strong with a latent period. 686 
We ignore this correction to simplify the model presentation. 687 

Seroconversion – Another real-world complication is that not all individuals seroconvert following 688 
infection or vaccination (i.e., not all infections elicit a robust immune response). If a fraction q of 689 
infections boost immunity (meaning here that they recover to the R1 compartment in the SIRn model), 690 
while 1–q return become susceptible again (returning to the S compartment), the equilibrium fraction of 691 
infected individuals changes to: 692 

 𝐼0 = 21 − *
+
3 ,/^
,/^-*

. (A9) 693 

Thus, decreasing the seroconversion rate by a factor q has the same effect on the endemic equilibrium as 694 
increasing the waning rate by a factor 1/q (equation (5)), and the same holds for the selection coefficient 695 
of a variant, s (equation (4), supplementary Mathematica file). The temporal dynamics of the wavelets 696 
are slightly different, with immediate waning for those who do not seroconvert and slower waning for 697 
those who do (supplementary Mathematica file).  698 

Seroconversion rates for vaccines can also be included, changing the equilibrium to: 699 

 𝐼0 = 21 − *
+
3 ,/^
,/^-*

− .	^2/^
,/^-*

. (A9) 700 

where 𝑞. is the seroconversion rate for vaccination (here meaning the probability that a vaccine dose 701 
boosts antibodies and provides protection from infection). If seroconversion rates are similar following 702 
infection and vaccination (𝑞. = 𝑞), then the results for selection (equation (3)) and endemic incidence 703 
(equation (4)) are again the same if we replace 𝛿 (ignoring seroconversion) with 𝛿/𝑞 (including it). 704 

To simplify the presentation, we do not explicitly include seroconversion but consider a range of waning 705 
rates to cover both seroconversion and waning.  706 

Empirically, high seroconversion rates have been reported following vaccination with a single dose of 707 
Pfizer’s BNT162b2 (q = 99.5%) or AstraZeneca ChAdOx1 (q = 97.1%), leading to antibodies 708 
recognizing the spike protein (Wei et al. 2021). Slightly lower seroconversion (q = 93.5-95.3%) was 709 
observed following infection in early 2020 (Oved et al. 2020). An estimate following Omicron infection 710 
inferred even lower rates of seroconversion of q = 74-81% (here examining antibodies to nucleocapsid, 711 
as anti-spike antibodies were nearly universal in the highly vaccinated population examined; (Erikstrup 712 
et al. 2022)). 713 

Appendix 3: Non-pharmaceutical interventions 714 

We consider an expansion of the SIRn epidemiological model to allow heterogeneity in behaviour. As 715 
illustrated in Figure S4, we now allow two classes of individuals, those who regularly adhere to stronger 716 
NPI measures, such as masking (indicated by an ‡), and those who do not: 717 

 "#
"$
= 𝛿%𝑅% − 𝛽𝑆𝐼 − (1 − 𝑝)𝛽𝑆𝐼‡ 

"#‡

"$
= 𝛿%𝑅%

‡ − (1 − 𝑝)𝛽𝑆‡𝐼 − (1 − 𝑝)H𝛽𝑆‡𝐼‡ 718 
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"$
= (1 − 𝑝)𝛽𝑆‡𝐼 + (1 − 𝑝)H𝛽𝑆‡𝐼‡ − 𝜅	𝐼‡ (A10) 719 
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 722 

where the last line of equations is repeated for the remaining waning classes (j from 2 to n).  We again 723 
set all rates between waning classes to 𝛿D = 𝛿/𝑛 (mean waning time of 1/ 𝛿 days).  The new parameter p 724 
measures the protection provided when one individual in an interaction engages in NPI measures 725 
(reducing 𝛽 by a factor 1–p).  If both infected and susceptible individuals uphold these measures, 726 
transmission is reduced by (1– 𝑝)H. All variables are measured as proportions of the total population, 727 
with f being the fraction of the population carrying out NPI measures, such as masking (the sum of the ‡ 728 
variables).  729 

There are two equilibria of this system (A10), one where the disease is absent and one where the disease 730 
is endemic at:  731 

 𝑆0 = (
H
(−𝐵 + √𝐵H − 4𝐶) 𝑆0‡ =	 *)+	#J

(()_)3+
 732 

 𝐼0 = [1 − 𝑓 − 𝑆0] ,
,-*

 𝐼0‡ =	[1 − 𝑓 − 𝑆0] ,
,-*
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 (A11) 733 
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%
 𝑅4!

‡ = 𝑅4!)(
‡ = L)#J)&J

%
  for 1 ≤ 𝑗 ≤ 𝑛 734 

 735 

where 𝐵 = (()L)	(()_)	+-L	(()_)3+)*	_
_	+

 and 𝐶 = − (()L)	(()_)	*
_	+

.  The disease-absent equilibrium is locally 736 

stable when transmission rates are low relative to clearance, such that the endemic reproductive number 737 

if everyone were susceptible is less than one, 𝑅7/ =
(()L)	+-L	(()_)3+

*
< 1, in which case the endemic 738 

equilibrium does not exist (i.e., not all variables are positive).  Otherwise, when 𝑅7/ > 1, the endemic 739 
equilibrium exists and is stable for the parameters considered, but it may become unstable for large n 740 
(Hethcote, Stech, and Van Den Driessche 1981). 741 

At this equilibrium, the risk that an individual is in the infected class at any point in time is 𝐼0‡/𝑓 if they 742 
regularly mask and 𝐼0/(1 − 𝑓) if they do not, from which we calculate the relative risk in the main text.  743 
The population-level impact of NPI measures, such as masking, is determined by analysing the fraction 744 
of the population expected to be infected at any point in time, 𝐼0 + 𝐼0‡. 745 

The above assumes that an individual’s choice about engaging in NPI measures remains constant over 746 
time, but we also consider the opposite case (detailed in the Supplementary Mathematica file), where 747 
individuals rapidly switch between engaging or not in NPI measures. Assuming that the behaviour 748 
persists over the short time frame of an infection but that individuals switch often while in the longer 749 
susceptible or recovered phases, we can simplify the model by monitoring only those engaging in NPI 750 
measures at the time of exposure, with f then representing the probability that an individual engages in 751 
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the NPI measures at that time. We thus only sub-divide the infectious class into those who were or were 752 
not practicing the NPI measures at the time of infection (𝐼‡ or 𝐼, respectively). The dynamics are then: 753 

 "#
"$
= 𝛿%𝑅% − (1 − 𝑓)𝛽𝑆𝐼 − (1 − 𝑝)𝑓𝛽𝑆𝐼 − (1 − 𝑝)(1 − 𝑓)𝛽𝑆𝐼‡ − (1 − 𝑝)H𝑓𝛽𝑆𝐼‡ (A12) 754 
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"$
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Results using (A12) instead of (A10) are similar, except that practicing and non-practicing individuals 758 
are equally likely to be susceptible at the time of exposure, so that the individual-level protective effect 759 
of the NPI measure now depends only on p and not on 𝑅7/, as discussed in the text. 760 

Parameters: The protection (p) and uptake (f) depend on the NPI measure considered (The Royal 761 
Society 2023). Here we briefly review data on masking as a protective measure. One metaanalysis of 762 
randomized control studies prior to the COVID-19 pandemic found protection provided by masks was p 763 
= 16% for respiratory infections, rising to p = 24% in studies longer than two weeks (Li et al. 2022). 764 
Importantly, many individual studies were underpowered but the results were consistent across studies 765 
(see Figure 2 in Li et al. 2022).  766 

For COVID-19, a metaanalysis of the impact of mask mandates estimated a 25% reduction in 767 
transmission rates, comparing transmission levels predicted if everyone were in the class that self-report 768 
wearing masks “most of the time in some public places” to that if no one wore masks (Leech et al. 769 
2022). Importantly, the authors showed that the lifting or imposition of mandates rarely had dramatic 770 
immediate effects on mask wearing, emphasizing that mandates are a poor proxy for mask wearing. 771 
Their analysis thus benefited from a global analysis of trends in mask-wearing behavior around the time 772 
of mandates by incorporating data from a survey of masking behaviour among nearly 20 million 773 
individuals.  774 

As argued by Leech et al. (2022), this effect size is likely to be underestimated for a number of reasons.  775 
First, the study period (1 May – 1 September 2020) occurred when cloth masks predominated, because 776 
high-quality masks were largely unavailable outside of health care settings. Second, the definition of 777 
mask use was broad and included individuals who only occasionally mask and do so in few public 778 
places. We thus consider that p = 0.25 represents a lower bound on the protection provided by masking. 779 

Higher values are plausible when using high-quality masks and doing so consistently in indoor public 780 
spaces. For example, masks provided a stronger benefit, reducing the odds ratio of infection by an 781 
average of 50% among the studies summarized within healthcare settings (The Royal Society 2023). We 782 
thus consider p = 0.5 to represent a reasonable upper bound on the protection provided by masking 783 
attainable by consistent wearing of high-quality masks. Combinations of NPI measures, including 784 
improved ventilation, avoiding crowded indoor environments, testing and self-isolation, and masking 785 
may provide considerably stronger protection.  786 
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Table S1: Parameter estimates and inferred rates. The first three columns are estimated from the 787 
literature (Appendix 1). Using equation (2), these parameters provide estimates for the transmission rate 788 
(𝛽), the endemic reproductive number (𝑅7/ = 𝛽/𝜅), the fraction of susceptible individuals (𝑆0), and the 789 
estimated annual number of infections at the endemic equilibrium (inferred values are in italics). The 790 
first row gives the nominal parameter values used in the text. “NA” are parameter combinations that do 791 
not sustain an endemic equilibrium of the disease. Estimates are given without ongoing vaccination (v = 792 
0) but are nearly identical with low rates, as in Canada during the summer of 2023 (v = 0.00012, all 793 
differences <12%; see supplementary Mathematica file for estimates with higher rates of vaccination). 794 

Incidence 
(𝑰4) 

Waning rate 
 (𝜹) 

Recovery 
rate (𝜿) 

Transmission 
rate (𝜷) 

Reproductive 
number (𝑹>𝟎) 

Susceptible 
(𝑺x) 

Annual # of 
infections 

0.02 0.008 0.2 0.417 2.083 0.48 1.46 
0.02 0.008 0.333 2.273 6.818 0.147 2.433 
0.02 0.008 0.1 0.137 1.37 0.73 0.73 
0.02 0.01 0.2 0.345 1.724 0.58 1.46 
0.02 0.01 0.333 1.064 3.191 0.313 2.433 
0.02 0.01 0.1 0.128 1.282 0.78 0.73 
0.02 0.006 0.2 0.769 3.846 0.26 1.46 
0.02 0.006 0.333 NA NA NA NA 
0.02 0.006 0.1 0.161 1.613 0.62 0.73 

0.005 0.008 0.2 0.23 1.149 0.87 0.365 
0.005 0.008 0.333 0.424 1.271 0.787 0.608 
0.005 0.008 0.1 0.107 1.072 0.932 0.182 
0.005 0.01 0.2 0.223 1.117 0.895 0.365 
0.005 0.01 0.333 0.402 1.207 0.828 0.608 
0.005 0.01 0.1 0.106 1.058 0.945 0.182 
0.005 0.006 0.2 0.245 1.227 0.815 0.365 
0.005 0.006 0.333 0.48 1.439 0.695 0.608 
0.005 0.006 0.1 0.11 1.105 0.905 0.182 
0.04 0.008 0.2 NA NA NA NA 
0.04 0.008 0.333 NA NA NA NA 
0.04 0.008 0.1 0.217 2.174 0.46 1.46 
0.04 0.01 0.2 1.25 6.25 0.16 2.92 
0.04 0.01 0.333 NA NA NA NA 
0.04 0.01 0.1 0.179 1.786 0.56 1.46 
0.04 0.006 0.2 NA NA NA NA 
0.04 0.006 0.333 NA NA NA NA 
0.04 0.006 0.1 0.417 4.167 0.24 1.46 

 795 
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FIGURE S1: Variants combining immune evasiveness and changes in transmissibility. Panel A: 796 
Variant is persistently immune evasive (by half the amount shown in Figure 3B, able to infect m = 1 out 797 
of n = 5 recovered classes) and more transmissible (increasing 𝛽, and hence 𝑅7/, by 17%). Panel B: 798 
Variant is even more immune evasive (50% more than in Figure 3B, able to infect m = 3 out of n = 5 799 
recovered classes) and less transmissible (decreasing 𝛽, and hence 𝑅7/, by 17%), with immune evasion 800 
being transient. In both cases, 𝛽∗ was chosen to give the variant the same selective advantage as in 801 
Figure 3 (s = 8.3%), leading to the same initial rate of spread of the variant (dark shading) in a resident 802 
population of viruses (light shading). Because the variant is only transiently immune evasive in Panel B, 803 
the resident lineage, which is more transmissible, eventually takes over. Parameters: 𝜅 = 0.2, 𝛿 =804 
0.008, 𝐼0 = 2%, 𝛽 = 0.42. the nominal parameter estimates given in Appendix 1 for all age classes.  805 
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 806 

FIGURE S2: Robustness to model structure. Panels (A)-(C) illustrate the sensitivity of the dynamics 807 
to the number of recovery classes (n) for a more transmissible variant that increases 𝛽 by 42% (panel B 808 
is equivalent to Figure 3). Holding the expected waning period constant at 1/𝛿 = 125 days, increasing 809 
the number of compartments causes a more bell-shaped distribution of the waning period and increases 810 
oscillations following the spread of the variant (from panel A to C).  Panels (D)-(F) consider two 811 
recovered compartments (n = 2), corresponding to high and low neutralizing antibody levels. At the 812 
endemic equilibrium, either 40% (x = 0.4; panels D, E) or 20% (x = 0.2, panel F) of recovered 813 
individuals are in the low-immunity compartment, which can be infected by a more immune evasive 814 
variant (panels E and F). The variant in panel (D) is only more transmissible. In each case, the 815 
transmissibility of the variant is adjusted to hold its selective advantage constant at (s = 8.3%), 816 
increasing 𝛽 by (A)-(D) 42%, (E) 0%, and (F) 17%. Parameters: 𝜅 = 0.2, 𝛿 = 0.008, 𝐼0 = 2%, 𝛽 =817 
0.42, the nominal parameter estimates given in Appendix 1 for all age classes. 818 

  819 
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 820 

FIGURE S3: Robustness to model structure: allowing leaky immunity. Panels illustrate the standard 821 
SIR model (n = 1) when variants increase leakiness of immunity. Individuals infectious with the variant 822 
can infect all recovered individuals with a transmission rate that is (A) 𝜉 = 10%, (B) 20%, and (C) 40% 823 
times 𝛽, whereas individuals carrying the resident virus can only infect susceptible individuals (𝜉 = 0). 824 
In each case, the transmissibility of the variant is adjusted to hold its selective advantage constant at s = 825 
8.3%, which required increasing 𝛽 by (A) 28%, (B) 17%, and (C) 0%. Note that the y-axis has been 826 
increased relative to previous figures due to the greater long-term impact of variants able to infect all 827 
recovered classes by increasing the leakiness of immunity. Parameters: 𝜅 = 0.2, 𝛿 = 0.008, 𝐼0 = 2%, 828 
𝛽 = 0.42, the nominal parameter estimates given in Appendix 1 for all age classes.  829 
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 830 

FIGURE S4: Epidemiological model used to explore the benefits of NPI measures, such as 831 
masking. We include behavioural heterogeneity in SIRn model, where variables with a ‡ denote 832 
individuals engaging in the NPI measure(s). As before, S are susceptible individuals, I are infectious, 833 
and Rn are recovered, with immunity at different stages of waning. The fraction of individuals engaging 834 
in NPI measures is 𝑓 = 𝑆‡ + 𝐼‡ +∑ 𝑅%

‡%
DO( . See Supplementary Mathematica file for an alternative 835 

model where individuals rapidly switch behaviours (switching between the upper and lower row of 836 
circles). Parameters are 𝛽: transmission rate, 𝑝: protection provided by masking (modeled as a reduction 837 
in transmission by a factor (1-p) for each person in an interaction wearing a mask), 𝜅: recovery rate, and 838 
𝛿!: per-class waning rate.  839 
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