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Abstract: 
 

Computer-aided systems can help the ophthalmologists in early detection of most of ocular 

abnormalities using retinal OCT images. The need for more accurate diagnosis increases the 

need for modifications and innovations to current algorithms. In this paper, we investigate the 

effect of different X-lets on the classification of OCT B-scans of a dataset with one normal 

class and two abnormal classes. Different transforms of each B-scan have been fed to the 

designed 2D-Convolutional-Neural-Network (2D-CNN) to extract the best-suited features. We 

compare the performance of them with MSVM and MLP classifiers. Comparison with   the 

accuracy of normal and abnormal classes reveals substantially better results for normal cases 

using 2D-Discrete-Wavelet-Transform (2D-DWT), since the structure of most normal B-scans 

follows a pattern with zero-degree lines, while for abnormalities with circles appearing in the 

retinal structure (due to the accumulation of fluid), the circlet transform performs much better. 

Therefore, we combine these two X-lets and propose a new transform named CircWave which 

uses all sub-bands of both transformations in the form of a multi-channel-matrix, with the aim 

to increase the classification accuracy of normal and abnormal cases, simultaneously. We show 

that the classification results obtained based on CircWave transform outperform those based 

on the original images and each individual transform. Furthermore, the Grad-CAM class 

activation visualization for B-scans reconstructed from half of the CircWave sub-bands 

indicates a greater focus on appearing circles in abnormal cases and straight lines in normal 

cases at the same time, while for original B-scans the focus of the heat-map is on some 

irrelevant regions. To investigate the generalizability of our proposed method we have applied 

it also to another dataset. Using the CircWave transform, we have obtained an accuracy of 

94.5% and 90% for the first and second dataset, respectively, while these values were 88% and 

83% using the original images. The proposed CNN based on CircWave provides not only 

superior evaluation parameter values but also better interpretable results with more focus on 

features that are important for ophthalmologists. 
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1. Introduction   
OCT is an imaging technique to provide information about the cross-sectional structure of 

tissues. This non-invasive method has been widely used in ophthalmology and the investigation 

of retinal diseases and glaucoma due to the layered structure of the retina(1). OCT is similar to 

ultrasound imaging technique, however it uses near-infrared light instead of sound beams(2).  

Identifying early symptoms of macular degeneration that affect central vision can prevent 

vision loss, and OCT images can play an important role in this identification since they can 

demonstrate structural changes in the retina. The most common retinal diseases are age-related 

macular degeneration (AMD) and diabetic macular edema (DME) (3, 4). AMD is a visual 

disorder caused by retinal abnormalities that reduces the central vision (5). DME is another 

retinal disease that is associated with diabetic retinopathy and a leading cause of vision loss for 

people with diabetes. In this abnormality excess blood glucose damages blood vessels in the 

retina, causing them to leak. This leakage causes an accumulation of fluid in the macula that 

makes it swell (4, 6). Figure 1 shows an example of normal, DME, and AMD B-scans.  

 

Figure 1. An example of (a) normal, (b) DME and (c) AMD B-scans 

Therefore, OCT can be regarded as a remarkable biomarker for the quantitation of AMD and 

DME disorders. Spectral Domain OCT (SD-OCT) and Swept-Source OCT (SS-OCT) are two 

newer generations of OCT that offer some advantages including a better rate of acquisition and 

resolution, less light scattering, providing more clear retinal structural information, and 

improved speed(7, 8). Notwithstanding these recent advances in OCT technology, still, manual 

analysis remains time-consuming and error-prone due to the similarity of different 

abnormalities in OCT images. To address these problems, artificial intelligence algorithms 

including machine learning and deep learning have been widely used in image processing for 

different applications such as classification, segmentation, denoising, and compressive 

sensing(9, 10). 

Models used in medical image processing are often based on suitable transforms which are able 

to exploit correlations of the image data and can therefore lead to sparse image representations 

(11). In other words, the significant information on the data can be stored already by a small 

amount of coefficients in the transform domain. Then the classification of this small number 

of coefficients is much easier and faster.  

Depending on the characteristics of the data and the intended application, the appropriate 

transform needs to be selected.  

As mentioned in (11), transform domain approaches can be grouped into data-adaptive and 

non-data-adaptive models. For classification, non-data-adaptive transforms have the advantage 

that the information in the transform domain stays to be comparable. Among non-data-adaptive 

models, X-let transforms based on multi-scale time/space-frequency analysis are very powerful 

since these transforms connect frequency and time information. 
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 X-lets have been recently used for various OCT image processing applications. Recent 

approaches that combine deep learning and X-let transforms are summarized in Table 1. 

 

Table.1. Recent researches on using combination of deep learning and different X-lets for image processing 

Author year Application Dataset X-let Combination method X-let Advantages 

Nur et, al.(12) 2023 Classification CT Contourlet 

Application of Contourlet transform 

and CNN to extract features 

individually from segmented images 

and combining them in one feature 

vector. 

Overcoming the limitations of the 

tensor-product discrete wavelet 

transform (DWT) by trying to 

capture curves rather than points 

singularities 

Tian et, al.(13) 2023 Denoising 
Natural images 

(BSD) 
Wavelet 

Multi-stage image denoising CNN 

with the wavelet transform via three 

stages, i.e., a Dynamic Convolutional 

Block (DCB), two cascaded Wavelet 

transforms, Enhancement Blocks 

(WEBs) and a Residual Block (RB). 

Improved results compared to some 

popular denoising methods 

Darooei et, al 

.(14) 
2022 Segmentation OCT 

Dual Tree 

Complex 

Wavelet 

(DTCW) 

Application of DTCW sub bands as 

the input of a U-net. 

1) More robust 

2) An improved time-frequency 

analysis of data that has been 

successfully applied to deep 

learning segmentation tasks 

Wang et, 

al.(15) 
2022 Classification 

Natural images 

(Caltech-256) 

DTCW 

& 

WPT 

Application of a CNN model with 

wavelet domain inputs 

Improvement of the network's 

classification performance 

significantly 

Sarhan et, 

al.(16) 
2020 Classification MRI 

Wavelet 

(Haar) 

Extraction of features from images 

by utilizing the strong energy 

compactness property exhibited by 

the Discrete Wavelet Transform and 

application in  a CNN 

High reduction of the dimensions of 

the input image simplifies the work 

of the CNN classifier 

Lakshmanapra

bu et, al.(17) 
2019 Classification CT images 

Discrete 

Wavelet 

Transform 

(DWT) 

Utilizing wavelet features along with 

histogram and texture features. Then, 

using the reduced features by Linear 

Discriminant Analysis (LDA) as the 

input of Optimal Deep Neural 

Network (ODNN) which is 

optimized with Modified 

Gravitational Search Algorithm 

(MGSA). 

Time saving 

Mohsen et, 

al.(18) 
2018 Classification MRI 

DWT 

(Haar) 

Application of  DWT to extract the 

features of the segmented tumors and 

use them as Deep Neural Network 

(DNN) input 

1) Requires fewer hardware 

specifications 

2) Takes a convenient time for 

processing large-size images 

Khatami et, 

al.(19) 
2017 Classification 

Radiography 

images 

2D-DWT 

(Haar) 

Application of 2D-DWT to capture 

the highly discriminative coefficients 

that represent the complex structure 

of original data. Then, using the best 

selected coefficients by Kolmogorov 

Smirnov (KS) Test as the input of 

Deep Belief Network (DBN) feature 

extractor 

1) Time-consuming reduction 

2) Increasing Accuracy 

Rezaeilouyeh 

et, al.(20) 
2016 Classification 

histopathology 

images of breast 

& prostate 

tissues 

shearlet 

Extraction of the magnitude and 

phase of shearlet coefficients and 

feeding these extra features along 

with the original images to the CNN 

Application of shearlet transform as 

a general mathematical tool and 

extracting features without any 

hand-crafting 

Williams et, 

al.(21) 
2016 Classification 

Natural images 

(MNIST 

& 

CIFAR-10) 

Wavelet 

Application of preprocessed data in 

the wavelet domain as the input of 

CNN 

Substantial increase in accuracy 

compared to the spatial domain 

processing 
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In the current study, we will investigate the suitability of different X-let transforms in CNN for 

the classification of AMD, DME, and Normal OCT B-scans. To find the most efficient X-let 

transform, first, all the B-scans are transformed to the different sparse multi-scale X-let 

domains and all the sub-bands have been fed to a CNN model in parallel to extract and select 

the best features. These features then have been utilized as the input of a Multi-Layer 

Perceptron (MLP) and a Support Vector Machine (SVM) individually as classifiers. 

The rest of this paper is arranged as follows: Section 2 describes the utilized datasets, X-let 

transforms, proposed CNN, and classifiers. Section 3, and 4 present experimental results and 

gives some discussions, respectively. Our work is concluded in Section 5. 

 

2. Materials and Methods 

2.1. Database 

2.1.1. Heidelberg Dataset 

The first dataset (Dataset-A) used in this study was acquired and collected by Heidelberg SD-

OCT imaging systems at Noor Eye Hospital in Tehran(22). This dataset consists of 50 normal 

(1535 B-scans), 48 AMD (1590 B-scans), and 50 DME (1054 B-scans) subjects. The data 

information is summarized in the supplementary, Table 1.  

 

2.1.2. Basel Dataset 

The second dataset (Dataset-B) utilized in this research was collected in Didavaran eye clinic, 

Isfahan, Iran using an SS-OCT imaging system designed and built in Dep. of Biomedical 

Engineering, University of Basel(23). According to the classification application that is the 

main goal of our investigation, the “Aligned-Dataset QA” was chosen which has been obtained 

after image contrast enhancement, denoising, and alignment of raw data, respectively(23).  

In this study, 17 DME (2338 B-scans), 15 Non-diabetic (2492 B-scans), and 19 normal (2169 

B-sacns) cases were selected manually among 40, 50, and 34 available subjects, respectively, 

because their B-scans are almost clear and suitable for classification application.  

 

2.2. Data Preprocessing  

According to Rasti et al. (22) which provides a proper preprocessing algorithm for Dataset-A, 

the following steps were applied in this study, with the difference that here the investigations 

are based on a B-scan not a volume.  We added a denoising step to this preprocessing algorithm 

since it was shown experimentally that this leads to better results. Figure 2 (a) displays the 

different steps of the preprocessing algorithm. 

1) Normalization: First, all B-scans were resized to 496×512×1 pixels to make the field of 

view of OCT images unique. Then, data normalization was applied by dividing of each 

B-scan into 255, such that all pixel intensities are in [0, 1]. 

2) Retinal Flattening: Next, a curvature correction algorithm (35) was used, where the 

hyper-reflective-complex (HRC) is detected as the whole retinal profile, and then 

localized using the graph-based geometry.  

3) Region of Interest (ROI) Selection: Then each B-scan was cropped vertically by 

selecting 200 pixels above and 100 pixels below the detected HRC. These values were 

chosen manually in order to focus on the region of the retina containing the main 

morphological structures while preserving all retinal information. Next, cropped B-

scans were resized to 128 × 512 pixels and the ROI for each one was selected by 

cropping a centered 128 × 470 pixel subimage. Finally, each selected ROI was resized 

to 128 × 256 pixels for further processes. 
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4) Noise Reduction: Noise Reduction: Ultimately, denoising of the data was achieved 

using a non-local means algorithm with a deciding filter strength of 10.  

 

For the “Aligned-Dataset QA” that was employed as Dataset-B, some steps of preprocessing 

algorithm such as Retinal Flattening and Noise Reduction were already done. The size of each 

B-scan was 300 × 300 pixels. Therefore, each B-scan was divided by 255, then it was cropped 

horizontally by omitting the first 50 pixels (since they have no remarkable information) and 

finally resized to 128 × 256 pixels. 

Example B-scans of each class for both datasets, before and after preprocessing, are presented 

in the supplementary file Figure 1. 

 

2.3. Splitting Training-set and Test-set  

Any correlation between test and train images can cause bias and affect the results. Hence, to 

avoid this unwanted leakage, all the images belonging to one subject should be considered as 

only the test-data or training-data. Ultimately, test data and train data were divided using 5-

fold nested-cross-validation. 

 

2.4. Classification Strategy  

2.4.1. X-let Transforms: 

The main purpose of this study is to compare the effect of different geometrical X-let 

transforms, in two or higher dimensions, for OCT classification. These transforms are provided 

by directional time-frequency dictionaries(24), and they give powerful insight into an image’s 

spatial and frequency characteristics. X-lets are available mathematical tools that provide an 

intuitive framework for the representation and storage of multi-scale images(21).  

 Therefore, in this study several geometrical X-let transforms including 2D-DWT (11, 25, 26) 

(Note that Haar wavelet was taken in current study), DTCWT (14, 27) (Note that just the real 

parts of this transform are utilized in this research to reduce the complexity and redundancy), 

shearlets (28, 29), contourlets (30), circlets (31), and ellipselets (24) were applied to decompose 

each B-scan a linear combination of basis functions or dictionary atoms. The non-subsampled 

(NS) (32) form of the multi-scale X-let transforms was employed to build a multi-channel 

matrix for each B-scan using all the sub-bands in parallel. Each multi-channel matrix was 

ultimately resized to (64×64×number of channels) pixels in order to reduce computational 

complexity and save time. The details of all utilized X-lets are summarized in the 

supplementary file, Table 2. 

 

2.4.2. Intelligent Feature Extraction: 

Using a large amount of features for a large number of training-set as the input of NN-models 

can cause high computational complexity. Therefore, using a proper feature reduction 

algorithm can reduce the training time, improve the accuracy by decreasing the redundant data 

and thereby reduce the over-fitting (33).  

According to the 2D nature of the data and, it is essential to employ using an algorithm that is 

able to extract 2D features is essential. Most neural networks and deep learning algorithms 

convert the 2D input into a vector of neurons. In contrast, 2D-CNNs are optimized for 2D 

pattern recognition problems and pay attention to the 2D nature properties of images (34), 

which makes them best suited for image classification (21, 35). 2D-CNN itself has the ability 
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to extract all the features of OCT images in all directions but using the X-let transformed datas 

as  its input can control the feature extraction effectively and make it more intelligent.  

Therefore, we designed a 2D-CNN where the last convolutional layer was flattened and 

employed as final features which were fed into the classifiers. 

As shown in the Figure 2 (b) and (c), multi-channel images obtained using each X-let transform 

were used as the proposed CNN input. The architecture of this CNN (as shown in Figure 2 (c)) 

consists of 4 blocks including the 2D-convolution-layer (CL), Batch-Normalization (BN), and 

Maximum-pooling layers. The filter size of each CL was set to 25, 50, 100, and 200 for blocks 

1 to 4, respectively, while “ReLU” activation function (AF), zero padding, and the kernel size 

of 3×3 were utilized in each CL. The optimizer and the loss function were tuned to “Adam” 

and “categorical-cross-entropy”, respectively. The hyper-parameters in this model were tuned 

manually on learning-rate of 10-3, batch-size of 8, and maximum-epoch of 100, with the aim of 

achieving the highest possible accuracy in the training phase. 

 

2.4.3. Classifiers: 

Next, a Multi-Class Support Vector Machine (MSVM) and a Multi-Layer Perceptron (MLP) 

were applied as classifiers separately. MSVM was used because it is known as a simple 

classifier that can help to investigate the importance and the direct effect of each X-let 

transform in results. On the other hand, deep-learning-based architectures have been 

successfully applied recently in the field of biomedical image processing (9, 36-38). Since a 

2D-CNN was used for feature extraction, subsequently an MLP algorithm for OCT B-scans 

classification can be used in order to apply a fully deep-learning method. 

 

 

 MSVM: 

SVM is a simple classifier and can give some perspective on the performance of different X-

lets, that predicts two classes by finding a hyper-plane that best separates the two classes (39, 

40). When the data is perfectly linearly separable, Linear SVM is suitable. Otherwise, kernel 

tricks can help for classification. A kernel function (such as a radial-basis-function (RBF), 

polynomial (poly), or sigmoid) tries to convert the lower dimension space (which is not linearly 

separable) to a higher dimension, where a decision boundary can be found more easily. 

Although, the SVM technique inherently was developed to classify just two classes, it can be 

upgraded to a multi-class classifier using some techniques. One of these techniques is known 

as the One Versus One (OVO) strategy, which was applied in this study. The OVO strategy 

divides the dataset into one dataset for each class versus every other class as shown in the 

supplementary file, Figure 2.  Ultimately, a voting system, determines which class is accurate 

for each B-scan (41). 

 

The Grid Search algorithm was used to find the best hyper-parameters for each kernel. This 

algorithm calculates the accuracy of each combination of hyper-parameters in each kernel and 

selects the values which provide the best accuracy. These tuned values are summarized in the 

supplementary file, Table 3.  
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Figure. 2. The framework of the proposed classification methods. Where parts (a) to (d) indicate the steps of 

preprocessing, transformation, feature extraction, and classification respectively. 
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 MLP: 

MLP is a nonlinear multi-layer feed-forward neural network that follows a supervised learning 

technique known as the backpropagation learning algorithm (42). In this study, the output of 

CNN was fed into MLP as the input layer. Three hidden layers (fully connected (FC)-BN) with 

1000, 100, and 10 neurons, respectively, were used. With the purpose of reducing over-fitting 

probability, an optimized dropout factor of 70%, 60%, and 60% were considered for the hidden 

layers, respectively. For hidden layers, “ReLU” AF was employed, however, for the output 

layer, an FC layer with 3 neurons and “Softmax” AF was utilized. The optimizer and loss 

function and hyper-parameters were selected similarly to those in the proposed CNN.  

Figure 2 (d) indicates the MLP classifier architecture. 

 

2.5. Classification Evaluation 

K-fold cross-validation is a powerful means for testing the performance of machine learning 

models (43). A reliable accuracy estimation will have a relatively small variance across folds 

(44). However, one drawback of this method is that the split in each fold is done completely 

randomly. To address this problem, Stratified-K-fold cross-validation can be employed in 

which instead of a random split, the division is done in the way that the ratio between the target 

classes in each fold is the same as in the full dataset (45, 46). In the current study, a nested form 

of Stratified-K-fold was used in order to split test, validate and train data in each fold. We have 

chosen K=5, therefore, the experiment was conducted 5 times, the evaluation parameters were 

calculated in each fold on the test dataset, and the average values of all folds were reported as 

the final results. 

The following evaluation parameters including accuracy (ACC), sensitivity (SE), specificity 

(SP), precision (PR), F1-score, and area-under-the-Receiver-Operating-Characteristic (ROC) 

curve (known as ROC-AUC) were calculated for each X-let transform. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                         (1) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                     (2) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                                             (3) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                  (4) 

𝐹1 =  
2 × 𝑇𝑃

2 × 𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                                                                                   (5) 

AUC = ∫ 𝑇𝑃𝑅(𝑡) 𝐹𝑃𝑅(𝑡) 𝑑𝑡
+∞

−∞
                                                                                                              (6) 

 

Here TP is the true positive, FN is the false negative, TN is the true negative, and FP is the 

false positive. TPR and FPR define the true positive rate and the false positive rate respectively.  

 

3. Experimental Results  

In the current study, MATLAB R2020a software was used to extract contourlet, circlet, and 

ellipselet representations and the Keras and Tensorflow platform backend in python 3.7 

software environment was employed to extract 2D-DWT, DTCW, and shearlet coefficients. 

Classification models were also implemented in this environment. 

In order to find the best kernel of MSVM, the precision-recall curves for all classes using 

different kernels were plotted in Figure 3, where the original Dataset-A was considered as input 
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of MSVM. The P-R curve shows the tradeoff between precision and recall for different 

thresholds. The average of the area under these curves for all classes is written below the curves 

in each subplot. A high P-R-AUC represents both high precision and high recall which are 

related to a low false negative rate and a low false positive rate, respectively.  As shown in 

Figure 3, the average P-R-AUC of classes for sigmoid, polynomial, and linear is equal to 0.89, 

0.9, and 0.9, respectively, while it is equal to 0.92 for RBF kernel which indicates the better 

performance of this kernel in the classification of this dataset. 

As the next step, we examined the performance of different stages of each X-let transform for 

the classification of Dataset-A using the MLP. Considering RBF as the best kernel of MSVM, 

evaluation parameters were also reported using the RBF-MSVM and the best number of stages 

for X-lets. This step was repeated using the proposed MLP and RBF classifier and the best 

number of X-let levels for Dataset-B. Table 2 shows these results. As mentioned in Section 

2.4.1, for the contourlet transform, the decomposition level were shown in a vector.  

 

 

Figure. 3. P-R curves of classes for each kernel of MSVM using original Dataset-A. (a) to (d) represent the 

polynomial, linear, RBF, and sigmoid kernel respectively. 

 

(a) (b) 

(c) (d) 
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Table. 2. Evaluation criteria for different numbers of levels for each X-let transform using MLP classifier and the 

combination of the best number of X-let levels and RBF as the best kernel of MSVM classifier. Black bold values 

show the best number of levels for each X-let while red bold values indicate the best values, the best classifier, 

and the best X-let for OCT classification. 

Dataset 
Input of 

classifier 
classifier Kernel 

X-let 

levels 

ACC 

(%) 

SP 

(%) 

SE 

(%) 

PR 

(%) 

F1-score 

(%) 

ROC-AUC 

(%) 

A 

Original 
MLP -- -- 88 91 83 85 83 94 

MSVM RBF -- 89 93 85 86 85 95 

2D-DWT 
MLP -- 

1 88 91 83 84 84 95 

2 89 92 84 85 85 95 

3 88 91 82 84 83 94 

MSVM RBF 2 90 92 86 87 86 96 

DTCW 
MLP -- 

1 88 91 83 84 83 94 

2 89 92 84 85 84 95 

3 87 90 81 82 81 94 

MSVM RBF 2 89 91 84 85 84 95 

Shearlet 
MLP -- 

1 86 89 80 82 79 92 

2 88 91 82 83 82 94 

MSVM RBF 2 88 91 82 83 83 95 

Contourlet 
MLP -- 

[0 1] 88 91 81 83 82 93 

[0 1 3] 88 91 82 84 82 94 

[0 1 2] 88 91 82 84 82 94 

[1 2] 88 92 83 85 83 95 

MSVM RBF [1 2] 89 92 84 85 85 95 

Ellipselet 
MLP -- 

1 89 92 84 86 84 95 

2 87 90 82 83 82 94 

3 90 92 85 86 85 95 

4 91 93 86 87 86 96 

MSVM RBF 4 92 94 87 88 87 97 

Circlet 
MLP -- 

3 90 92 85 86 85 96 

4 88 91 83 84 83 94 

5 91 93 86 86 86 96 

6 92 94 87 87 87 97 

7 89 92 84 85 84 94 

MSVM RBF 6 93 95 88 89 88 97 

B 

Original 
MLP -- -- 83 87 77 79 76 90 

MSVM RBF -- 84 87 78 80 77 91 

2D-DWT 
MLP -- 2 85 89 80 82 80 93 

MSVM RBF 2 86 90 81 82 79 93 

DTCW 
MLP -- 2 86 89 80 82 81 94 

MSVM RBF 2 87 90 81 82 81 94 

Shearlet 
MLP -- 2 81 85 73 73 72 89 

MSVM RBF 2 83 87 75 80 74 91 

Contourlet 
MLP -- [1 2] 84 88 77 80 75 92     

MSVM RBF [1 2] 85 89 79 80 79 93 

Ellipselet 
MLP -- 4 88 91 82 83 82 94 

MSVM RBF 4 88 91 83 84 84 95 

Circlet 
MLP -- 6 89 91 83 83 83 94 

MSVM RBF 6 89 92 84 85 84 95 

 

 

4. Discussion  

According to Table 2, it is evident that the circlet transform performs better than the other X-

let transforms. The best confusion matrices related to RBF-MSVM classifier and circlet 

transform for both datasets are shown in the supplementary file, Figure 3.  
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The accuracy achieved for each X-let transform in classification of each class individually, is 

presented in Figure 4, where the circlet transform achieves the best performance for the DME 

class while the 2D-DWT provides a better result for Normal class. It seems that the appearing 

circles on DME B-scans can be detected much better using the circlet transform (Figure 5 

shows some of these appearing circles caused by the accumulation of fluid). Moreover, Figure 

6 shows the ROC curves of classes for the circlet transform and the 2D-DWT. We observe that 

the ROC-AUC of the DME class is better using circlet transform whereas the Normal class has 

a better ROC-AUC using the 2D-DWT because most of the B-scan layers belonging to this 

class are aligned at 0 degrees.  

  

 

Figure. 4. The accuracy of DME, AMD, and normal classes using MSVM with RBF kernel and different X-lets. 

These values are expressed as a percentage. 

 

Figure. 5. Appearing circles on B-scans of DME subjects. Because of the fluid accumulation. 

 

AMD

DME

Normal

original 2D DWT DTCW Shearlet Contourlet Ellipselet Circlet

90 90 90

88
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87 87
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91 91
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Figure. 6. The ROC curves of different classes for (a) 2D-DWT, and (b) circlet transform. Where the ROC 

curve of normal, DME, and AMD classes are shown in dark red, purple, and turquoise color respectively. 

 

In order to compare the classification results achieved by employing the two transforms 

(2D_DWT, and circlet) with classification using the original image, the B-scans were 

reconstructed using half of the sub-bands of each transform individually. The reconstructed B-

scans were again utilized as the input of proposed models. Finally, the Grad-CAM class 

activation visualization was plotted in Figure 7 for several B-scans using the original B-scans 

and the reconstructed ones using circlet transform bases (for DME cases) and the 2D-DWT 

(for Normal cases), respectively. This heat map can give some perspective of the parts of an 

image with most impact for the classification score. For the reconstructed B-scans using the 

circlet transform these image parts concentrate on appearing circles on DME B-scans, for the 

reconstructed B-scans using 2D-DWT, these image parts contain lines in Normal B-scans, 

while these  image parts in original B-scans do not focus on these characteristics. Note that for 

all B-scans shown in Figure 7, the classifier predicted the class correctly using either the 

original data or the X-let transforms, but the heat maps concentrations are totally different.    
  

 
Figure. 7. The Grad-Cam of the proposed CNN for several test data of Dataset-A. Where part (a) compares the 

heat maps of reconstructed B-scans using circlet bases (first row) and the associated original B-scans (second row) 

and part (b) compares the heat map of reconstructed B-scans using 2D-DWT bases (first row) and the associated 

original B-scans (second row). Note that part (a) shows DME B-scans and part (b) shows normal B-scans. 

 

 

 

Accordingly, it seems that a combination of these two transforms can provide a better 

performance in the classification of these datasets because it can simultaneously emphasize the 

nature of circles in the DME class and straight lines in the Normal class. Results of this 

experiment are reported for both datasets in Table 3. In addition, in this table the performance 

of the proposed CNN is compared to VGG16 and VGG19 as two state-of-the-art models. Note 

that, these values are obtained using MSVM with RBF kernels as the best proposed classifier. 
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According to Table 3, the proposed CNN performs better than VGG19 and VGG16 in feature 

extraction (although it uses much fewer trainable parameters). Furthermore, the combination 

of the circlet transform and 2D-DWT provides better results than using only the circlet 

transform.  

Table. 3. Performance comparison of the proposed CNN and VGG19 and VGG16 as feature extraction models. 

These values were obtained using a combination of Circlet and 2D-DWT bases as the input to the models. Where 

Red Bold values represent the best-achieved ones for each dataset. 

Feature Extraction model Dataset 
ACC 

(%) 

SE 

(%) 
SP (%) PR (%) 

F1-score 

(%) 

ROC-

AUC 

(%) 

Proposed CNN A 94.5 96 89.5 90 90 98 

B 90 92 84.5 86 85 96 

VGG19 A 93 94.5 88 88 88 96.5 

B 88.5 91 83 84 84.5 95 

VGG16 A 91.5 93 87.5 87 87 96 

B 87 90 82 83 82.5 94 

 

We call our proposed transform and method the “CircWave” and the “CircWaveNet”, 

respectively. To demonstrate the advantages of CircWave compared to the Circlet and 2D-

DWT, three B-scans from each class were selected and the heat map was plotted in Figure 8 

for each one, where the reconstructed B-scans use half of the sub-bands of each of the three 

mentioned transforms, separately, were utilized as the CNN input.  That is clearly obvious that 

for the Normal case the 2D-DWT provides a more accurately focused heat map, while for the 

DME case, the Circlet performs better. However, the proposed CircWave transform can 

concentrate on the correct regions for both Normal and DME cases simultaneously, and 

provides a more suitable heat map for AMD cases as well. Note that these three B-scans were 

classified correctly using all three mentioned transforms. 

 

Figure. 8. The Grad-Cam of the proposed CNN for three test data of Dataset-A of each class, when reconstructed 

B-scans using 2D-DWT, Circlet, and CircWave transforms (in first to third rows), respectively are used as the 

input of the CNN. 
 

We also used Principal Component Analysis (PCA) plus T-distributed stochastic neighbor 

embedding (t-SNE) techniques to visualize the high-dimensional outputs of the proposed CNN, 

when original data, 2D-DWT transformed data, Circlet transformed data, and CircWave 
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transformed data were used as inputs, respectively. The proposed CNN has 3200 dimensions 

output for each mentioned input. First, the PCA reduction algorithm was employed to reduce 

the number of dimensions and created a new dataset containing the fifty dimensions. Then, 

they were reduced again to two dimensions using the t-SNE technique. Finally, the dataset 

created from each input was plotted in Figure 9. It can be noticed that when CircWave bases 

are used as CNN input, samples of all three classes are spaced apart and well grouped together 

with their respective cases. While the Circlet transform can cluster DME cases very clearly in 

their own class, it cannot space apart Normal and AMD cases well. Also, the 2D-DWT has the 

ability to group Normal cases well but cannot separate AMD and DME cases properly. 

Obviously, the original data is not efficient in providing separable features for this 3-class 

classification problem.  

 
Figure. 9. Visualization of the output of the proposed CNN using PCA plus t-SNE reduction algorithms for (a) 

The original data, (b) the Circlet bases, (c) the 2D-DWT bases, and (d) the CircWave bases. 

 

To the best of our knowledge, it was the first time that the Dataset-B was utilized for the 

classification application and we have shown that the proposed CircWaveNet is successful in 

classification of this dataset and outperforms the results obtained using the original data and 

other transforms. 

On the other hand, there are several research results that use the Dataset-A for classification 

application.  In Table 4, we summarize these results. 
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Table. 4. Results of other articles on Dataset-A. Results of the proposed CircWaveNet are shown in bold. 

Number Paper Dimension Method 
ACC 

(%) 

SE 

(%) 

PR 

(%) 

ROC-

AUC (%) 

1 Rasti et, al.(22) 3D Multi-scale Convolutional Mixture of Expert -- -- 99.39 99.8 

2 Fang et, al.(47) 3D Lesion-Aware CNN  -- 99.36 99.39 99.80 

3 Das  et, al(48) 3D B-scan Attentive CNN  93.2 -- -- 95 

4 Rasti et, at(49) 3D Wavelet-based Convolutional Mixture of Experts -- -- -- 99.3 

5 Wang e, al(50) 3D Volumetric OCT-Recurrent Neural Network 93.8 94.0 94.4 -- 

6 Wang et, al.(50) 2D CliqueNet 98.6 -- -- -- 

7 Das et, al.(51) 2D 
semi-supervised 

Generative Adversarial Network 
97.43 97.43 -- -- 

8 Xu et, al(52) 2D Multi-branch Hybrid Attention Network 99.7 -- 1 -- 

9 Nabijiang et, al(53) 2D Block Attention Mechanism 99.64 --  -- 

10 Out Method 2D CircWaveNet 94.5 96 90 98 

 

According to the Table 4, some of the results seem superior to those of CircWaveNet, but one 

should note that the first four mentioned articles worked on 3-D volumes. In their method, they 

use a specific threshold (like: τ =15 or τ =30) and if more than τ percentages of B-scans 

belonging to one subject are predicted as abnormal, the maximum probability of B-scans’ votes 

(according to AMD or DME likelihood scores) determines the type of patient retinal disease. 

The fifth article used volume-level labels for each subject (instead of labeling each B-scan 

separately).  By contrast, in this paper, the parameters are achieved based on the B-scan which 

is much more difficult than a subject-based one. 

The other articles (no. 6 to 9) mentioned in Table 4, as well as this paper, worked on 2D B-

scan classification. Although these papers obtained better results than our method, it should be 

noted that in these articles, the train and test sets are divided according to the ratio of 8:2, 

regardless of the possible leakage between test and train subjects, which causes bias and 

certainly increases the results that are classified wrongly. However, in this article, all the 

images belonging to one subject were considered as only the test-data or training-data. This 

data splitting strategy makes the test results more reliable for ophthalmologists. 

Besides, most of the mentioned methods need to train a large amount of training parameters 

(more than 100 million) while in CircWaveNet the total training parameters are approximately 

3.5 million which greatly reduces the computational complexity.    

 

5. Conclusion  

In this paper, we proposed to apply suitable X-let transforms of OCT B-scans rather than the 

original images as input for the 2D-CNN to achieve improved classification results while 

strongly reducing computational cost.  This is possible by transferring the data to a transform 

domain that allows a sparse image representation with a small amount of transform 

coefficients. Ice have shown that almost all X-let transforms can lead to more accurate 

classification results than the original B-scans. Among all utilized X-let transforms, the circlet 

transform performs better for both considered datasets obtaining 93% ACC, 95% SE, 88% SP, 

89% PR, 88% F1-score, and 97% ROC-AUC in Dataset-A and 89% ACC, 84% SE, 92% SP, 

85% PR, 84% F1-score and 95% ROC-AUC in Dataset-B. Concentrating on class-accuracy, 

we found that the 2D-DWT can perform better for the classification of Normal cases because 

most lines and boundaries in a normal B-scan almost follows a straight pattern with zero 

degrees which can be well detected using simple 2D wavelet transform that is able to extract 

lines with 0, 90 and ±45 degrees. However, in the retinal structure of DME cases, some circles 

appear due to fluid accumulation and an increase in retinal thickness. This characteristic 

changes the pattern of B-scans of DME cases that is extracted much better using the circlet 
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transform. Moreover, it has been shown in this paper that these two transformations not only 

provide a significant increase of evaluation parameters but also focus on the characteristics of 

each class that are very important for ophthalmologists. Since it is necessary but not sufficient 

for them to categorize each case, X-lets make this decision more reliable because they 

concentrate on the true discriminative features of each class. Despite the classifier can predict 

the class for most B-scans using even original data, the CNN based on the considered X-let 

transforms focuses exactly on the features that make a difference in classes, while for original 

data this is not the case. 

As the next step and in order to increase the accuracy of classification models, 2D-DWT and 

circlet transform coefficients were concatenated and fed to the models. This proposed 

algorithm increased the evaluation parameters by about 0.5 to 1.5 percent in both datasets. 

It has been shown in this paper that despite extensive progress of deep learning in image 

classification, there are limitations in some cases, including medical images, due to the lack of 

data or labeled data. Therefore, image processing techniques such as the application of time-

frequency transforms can help to make this application more accurate and reliable since it can 

analyze and interpret the data and make decisions based on the truth.  

In future research, data-adaptive transform models can be employed to match the non-data-

adaptive ones (X-lets) to classifiers as much as possible and extract adapted dictionaries for 

sparse image representation and feature selection for classification application. It is expected 

that data adaptive transforms that are fed with the best non-data adaptive transforms, increase 

the accuracy of classifiers. 
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