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Highlights 

• Bayesian hierarchical models could enhance precision and reduce uncertainty of estimates 

derived from basket trial evidence, potentially improving confidence in tumor-agnostic decision 

making, despite small sample sizes in some tumor types.  

• Our study highlights high variability in treatment effects of pembrolizumab across tumor types 

with respect to survival endpoints, although treatment effects appear more consistent when 

judged by objective response rate at approval. Understanding heterogeneity in treatment effects 

following accelerated approvals based on surrogate endpoint is crucial for clinical and coverage 

decision making.  

• This article demonstrates the use of Bayesian methods to estimate posterior distributions of 

tumor-specific and aggregated treatment effects (ORR, median PFS, and median OS) from basket 

trials. Choosing between fixed-effect or random-effects model to evaluate pooled treatment 

effects depends on the level of heterogeneity in effect sizes across tumor types.   
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Abstract 

Purpose: 

Treatment effect heterogeneity across tumor types remains a challenge to evidence interpretation 

and implementation of tumor-agnostic drugs (TADs), which are typically approved based on 

basket trial evidence. We sought to use Bayesian hierarchical models (BHM) to assess 

heterogeneity and improve estimates of tumor-specific treatment outcomes, which are crucial for 

healthcare decision-making. 

 

Methods: 

We fitted BHMs and Bayesian fixed-effect models to evaluate the objective response rate 

(ORR), the median progression-free survival (mPFS), and the overall survival (mOS). We 

estimated the posterior distribution of outcomes for each tumor type, the pooled effects, and 

intra-class correlations (ICC). Using published basket trial evidence for pembrolizumab 

(KEYNOTE-158/KEYNOTE-164), we obtained the predictive outcomes in a new cancer type 

drawn from the same population. In the base case, we assumed non-informative priors with 

uniform distributions for between-tumor standard deviation. We performed sensitivity analyses 

with various priors to account for uncertainty in the prior specification.  

 

Results: 

The BHMs shrunk the original tumor-specific estimates toward a pooled treatment effect. The 

borrowing of information across tumor types resulted in less variability in the posterior tumor-

specific estimates compared to the original trial estimates, reflected in narrower 95% credible 

intervals (CrLs). We found low heterogeneity for ORR but high heterogeneity for mPFS and 

mOS across cancers (ICC: 0.22, 0.87, 0.7). The predicted posterior means and 95%CrLs were 

0.37 (0.15-0.64) for ORR, 3.75 months (0.24-50.45) for mPFS, and 13.76 months (0.42-276.49) 

for mOS, respectively.  

 

Conclusions: 

Borrowing information through BHM can improve the precision of tumor-specific estimates, 

thereby facilitating more robust policy decisions regarding TADs. Our analysis revealed high 

heterogeneity and uncertainty in survival endpoints. Both pooled and tumor-specific estimates 

are informative for clinical and coverage decision making.  
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Introduction 

Precision medicine has enabled the development of drugs that target specific molecular targets. In oncology, 

tumor-agnostic drugs (TADs) have begun to shift the therapeutic paradigm from organ-based treatment to 

a molecular target-based approach.1-3 In 2017, the Food and Drug Administration (FDA) granted an 

accelerated approval for the first TAD, pembrolizumab, for the treatment of adult and pediatric patients 

with unresectable or metastatic, microsatellite instability–high (MSI-H) or mismatch repair–deficient 

(dMMR) solid tumors that have progressed after prior treatment.4 As of 2022, FDA has approved five 

medicines for tumor-agnostic indications, with many more in the drug development pipeline.5-8 This 

paradigm shift in drug development has driven the field of precision medicine to consider the molecular 

details of cancer biology to identify opportunities to improve the treatment of patients with cancer.9, 10 

Histology-independent treatments have the potential to provide substantial benefits to patients who 

currently have few or no therapeutic alternatives. 

 

The accelerated approvals for pembrolizumab and other TADs were based on basket trials characterized by 

a small number of multi-cohort, single-arm studies.11 Basket trials simultaneously evaluate the effect of a 

targeted agent in various disease subtypes that harbor the same genetic or molecular alteration.12 Planning 

a basket trial is administratively more efficient than conducting separate trials for each cancer type. It has 

predominantly been used for early-phase oncology drug development, with a recent review finding 37 

ongoing basket trials registered in ClinicalTrials.gov.2, 13 The emergence of TADs and basket trials has 

created substantial innovation and unique challenges for drug approval and value assessment for regulatory 

and health technology assessment (HTA) agencies. One major concern of analyzing early phase basket 

trials is the potential for heterogeneity of the treatment effect in various tumor types.14, 15 For example, the 

Phase II KEYNOTE-158 study enrolled 233 patients with advanced MSI-H/dMMR cancers and 37 different 

tumor types previously treated.16, 17 The study showed the objective response rate (ORR) ranging from 18.2% 

in pancreatic cancer to 48% in endometrial cancer. Moreover, even though it is approved for use in all solid 
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tumors, it is difficult to extrapolate these results to a tumor type not included in the basket trial with the 

same biomarker or genetic mutation. 

 

Bayesian hierarchical models (BHM), or Bayesian random-effects models, are particularly well-suited for 

handling issues related to heterogeneity and information from varying sample sizes. They are adept in 

borrowing information on treatment effects across tumors, thereby increasing the precision of tumor-

specific estimates while down-weighting extreme results in cohorts with small sample sizes.18-20 It has 

advantages over conventional stand-alone subgroup analyses (also known as the approach of no borrowing), 

which often lack sufficient power to detect treatment effects because of the small sample size of each 

stratum.21 At the other extreme, a simple pooled analysis, i.e., complete pooling, would not account for 

systematic patient-to-patient differences across tumor types.19, 22-24 BHMs are unique in that they are able 

to simultaneously account for heterogeneity in treatment outcomes between tumor types and patient-to-

patient variability. The uncertainty in between-tumor heterogeneity can also be directly modeled.25 BHMs 

are justified under the assumption of exchangeable treatment effects, which means that it is unknown a 

priori which subgroups perform better than others or that the subgroups are drawn from the same underlying 

overall population.26  

 

BHMs have served an important role in multiple settings in health sciences research, including basket trial 

design, trial efficacy evaluation, observational studies, comparative effectiveness research, meta-analysis, 

and evaluation of disease subtypes.27-31 Studies using BHMs have only evaluated ORR and no other 

commonly used primary endpoints in clinical trials, such as median progression-free survival (mPFS) and 

median overall survival (mOS). The objective of this study was to estimate the treatment outcomes for 

each tumor type based on data from the KEYNOTE-164 [NCT02460198] and KEYNOTE-158 

[NCT02628067] trials, using Bayesian random-effects models.16, 17, 32 Compared to a random-effects 

model that allow the true effect sizes to differ, a fixed-effect model assumes that there is one true effect 

size, and that all difference in observed effects are due to within-group error, and thus no between-group 
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variance.33 We implemented BHMs and Bayesian fixed-effect models to obtain the tumor-specific and 

pooled treatment effects across all tumor types, and the predictive distributions in an unrepresented, new 

cancer type from the same overall population. The study findings will provide improved tumor-specific 

estimates for pembrolizumab using early-phase basket trial evidence and insights into the methods to 

consider when assessing the clinical benefits of TADs. The methods presented in this study can be 

applied to the future assessment of TADs.  

 

Methods 

Overview of study methods and outcomes 

We fitted three types of models to evaluate the ORR, mPFS, and mOS: (1) Bayesian hierarchical model, 

which assumes varying true effect sizes, (2) Bayesian fixed-effect model, which assumes one true effect 

size, and (3) Bayesian fixed-effects model, assuming no between-tumor variation but with varying mean 

effects (hence the plural term fixed-effects). Posterior distributions summarized with the posterior mean, 

median, and 95% posterior credible intervals (CrLs) were obtained for treatment effects in each tumor 

type. The posterior distribution can be expressed as: 𝑝(𝜃1, … , 𝜃𝑁 , 𝜙|𝐷𝑎𝑡𝑎) =

∏ 𝑝(𝐷𝑎𝑡𝑎𝑖|𝜃𝑖 , 𝜙)𝑝(𝜃𝑖|𝜙)𝑝(𝜙)𝑁
𝑖=1 . Datai refers to data from tumor site i and Data refers to the data from 

all tumor sites. 

 

Metrics of heterogeneity were calculated to quantify total variation across tumor types.25 Posterior 

distributions for the between-tumor standard deviation (SD) and 95% CrLs were computed and summarized. 

Intra-class correlation (ICC) provides a measure of the proportion of total variation that is explained by 

between-tumor variability, expressed as 𝐼𝐶𝐶 =  
τ2

τ2+τ𝜀
2 . ICC is the ratio of the between-cluster variance 

(τ2) to the total variance (τ2 + τ𝜀
2) , which ranges from 0 to 1.34, 35 Therefore, low ICC indicates less 

variation in treatment effects between tumor types, which means a tumor-aggregated decision may be more 

appropriate, and vice versa.  
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Setting 

Pembrolizumab was approved for treating previously treated adult and pediatric patients with 

unresectable or metastatic MSI-H/dMMR (i.e., MSI-H in this paper) cancers based on tumor response rate 

and durable clinical benefit in two Phase II studies. A total of 63 patients (cohort B) with MSI-H 

colorectal cancer (CRC) and 233 patients (cohort K) with MSI-H non-CRC were included in this analysis. 

The data cut-off date was September 4, 2018 for KEYNOTE-164 and October 5, 2020 for KEYNOTE-

158 studies.16, 17, 32, 36 The ORR, mPFS, and mOS data for eight tumors (colorectal, endometrial, gastric, 

cholangiocarcinoma, pancreatic, small intestine, ovarian, and brain) are summarized in Table 1. Due to 

the nature of the study, which involved no direct contact with human participants, the ethical approval 

was not obtained.  

 

Model specification  

Objective response rate 

We fitted a Bayesian hierarchical model to the ORR data. The first unit of the hierarchical model is the 

patient, and the second unit of analysis is the tumor type, with patients grouped or nested within tumor 

types. For each tumor type, the observed response rates are modeled using a binomial distribution, where 

𝑦𝑗 is the number of responses for tumor j, 𝑛𝑗 is the number of patients for tumor type j, and 𝑝𝑗 is the 

probability of response. A logit transformation is applied to the probability of response, expressed as 𝜃𝑗 =

l n (
𝑝𝑗

1−𝑝𝑗
), and is assumed to be normal. The hyperparameters are the overall mean log-odds of response 

(𝜙), average across all possible tumor types, and the between-tumor SD (𝜏). The two hyperparameters are 

treated as unknown random variables. Specifically, we assumed the following probability distributions. 

𝑦𝑗 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑗 , 𝑛𝑗) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑗) = 𝜃𝑗 

𝜃𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜙, 𝜏2) 
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𝜙 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,  10) 

𝜏 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,  3) 

In sensitivity analysis, we repeated our analysis using other prior distributions for the square root of the 

hypervariance (𝜏): (i) the exponential (0.3) distribution (that is, exponential with rate 0.3), another 

common non-informative prior distribution but with longer tail compared to a uniform distribution; (ii) a 

truncated normal (0, 100)T(0, ) distribution (100 is the variance), which restricted all values to be 

positive; (iii) a uniform (0, 5) distribution, which assumes equally likely values between 0 and 5; and (iv) 

an exponential (1) distribution.   

 

All tumor types were included in the analysis except for brain tumor due to the extremely small sample size 

(i.e., 13 patients). 

 

Median Progression-free Survival and Median Overall Survival 

Two hierarchical models were fitted separately to model mPFS and mOS. Data from all eight tumor types 

were included. Due to the positive nature of survival endpoints, we performed a log transformation to 

median PFS and OS data in the base case and assumed normal distribution for the log-transformed data. 

The model structure of mPFS and mOS are outlined below, where 𝑦𝑗 is the log-transformed mPFS or 

mOS for tumor j and is assumed to be normal.  

 

Due to the lack of individual-level survival data, we computed the within-tumor variance using the 

following methods. Note first that under an exponential distribution for the PFS and OS at the individual 

level data in each tumor type with parameter 𝜆 (with density function 𝑓(𝑥;  𝜆) = 𝜆 exp(−𝜆𝑥)),  we can re-

express this parameter considering the median survival as λ =
log(2)

Median
 . According to Laplace, the 

distribution of the sample median from a population with a density function 𝑓(𝑥) is asymptotically normal 

with variance 
1

4𝑛𝑓(𝑚)2 , where m is the median  and n is the sample size.37, 38 Thus, we were able to compute 
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the sample variance for each tumor type by using this  result. Finally, we use the delta method to obtain the 

variance of log (𝑦𝑗), which were denoted as 𝜎𝑗
2 in the model specification above.  

 

The hyperparameters are the overall mean log-mPFS or log-mOS (𝜙), average across all possible tumor 

types, and the between-tumor SD (𝜏). The two hyperparameters are assumed to be normally and 

uniformly distributed, respectively.  

log (𝑦𝑗) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃𝑗 , 𝜎𝑗
2) 

𝜃𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜙, 𝜏2) 

𝜙 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,  2) 

𝜏 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,  5) 

 

Due to unobserved median OS among several tumor types by the end of the study period, our model also 

accounted for right-censored observations. This required us to assume that the unobserved outcome value 

would be greater than a certain value (e.g., end of the study period). In addition, we initialized our Markov-

chain Monte Carlo (MCMC) algorithms by setting a value that was larger than the censoring limit.  

 

To define the prior distributions of parameters 𝜙 and τ, we assume a normal distribution for 𝜙 and 

uniform distribution for τ in base-case analyses. In addition, sensitivity analyses assumed the following 

distributions for τ: exponential, uniform, and half-normal distributions.34, 39 A smaller value of τ implies 

that the parameters are more similar and results in greater shrinkage, and vice versa.40 The priors were 

selected to be relatively non-informative in the base case to allow the data to primarily determine the 

degree of similarity among the different tumor types. Weakly informative priors based on scientific 

knowledge were explored in the sensitivity analyses.  
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Intra-class Correlation 

Different methods were used to compute ICC for ORR and survival endpoints. To compute ICC for ORR, 

we adopted the analysis of variance (ANOVA) estimator approach, which appropriately accounted for the 

variable size of clusters.41, 42 The ANOVA estimator is given by 𝜌𝐴 =̂
𝑀𝑆𝐵−𝑀𝑆𝑊

𝑀𝑆𝐵+(𝑛𝐴−1)𝑀𝑆𝑊
, where MSB is the 

deviations from the group mean and the grand mean and MSW is the deviations of the individual scores 

from the group mean. Suppose that there are k clusters and that the ith cluster has ni individuals. Then  

𝑀𝑆𝐵 =
1

𝑘−1
{∑

𝑌𝑖
2

𝑛𝑖
−

(∑ 𝑌𝑖)2

𝑁
}, 

𝑀𝑆𝑊 =
1

𝑁−𝑘
{∑ 𝑌𝑖 − ∑

𝑌𝑖
2

𝑛𝑖
}, and 

𝑛𝐴 =
1

𝑘−1
(𝑁 −

∑ 𝑛𝑖
2

𝑁
). 

where 𝑌𝑖 = ∑ 𝑋𝑖  is the total number of successes in cluster i, and 𝑁 = ∑ 𝑛𝑖  is the total number of 

observations in the study.41, 42 For mPFS and mOS models, between-tumor variance was directly obtained 

from the posterior summaries after applying the exponentiation to transform back the posterior distributions  

to their original scales. Within-tumor variance was estimated using the observed data and the number of 

patients as described in the above sections. 

 

Bayesian Estimation and Inference  

A MCMC algorithm was used to generate samples from the  posterior distribution, using the likelihood and 

priors as discussed in previous sections. For each model, 3 parallel chains containing 65,000 samples from 

the posterior distribution were obtained after a burn-in of 5,000, using a thinning factor of 5. Convergence 

was assessed using the Gelman-Rubin statistic which evaluates MCMC convergence by analyzing the 

difference between multiple Markov chains. We also inspected the trace plots and autocorrelation plots for 

diagnostic checks. The autocorrelation measures how linearly correlated the current value of the chain is to 

the past values. In addition, prior predictive checks were conducted to assess the appropriateness of the 
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priors and the uncertainty. All Bayesian analyses were performed using R (version 4.1.2) and the package 

R2JAGS. 

 

Results 

A total of 290 patients with eight types of metastatic or advanced cancers were included in the analysis, 

including endometrial (n=79), colorectal (n=63), gastric (n=42), small intestine (n=25), ovarian (n=24), 

cholangiocarcinoma (n=22), pancreatic (n=22), and brain cancers (n=13). The clinical outcomes of ORR, 

mPFS, and mOS from the KEYNOTE-164 and KEYNOTE-158 trials were summarized in Table 1. We 

reported the mean and 95%CrLs for the posterior distribution of parameters of interest across three 

outcomes from Figure 1 to Figure 4. The posterior distributions for tumor-specific and pooled outcomes 

were plotted in Figure 5.  

 

Posterior Distributions of Objective Response Rate 

The highest mean posterior ORR was observed in endometrial (0.44, 95%CrL: 0.34-0.55), followed by 

small intestine (0.42, 95%CrL: 0.29-0.58), cholangiocarcinoma (0.39, 95%CrL: 0.25-0.54), ovarian (0.36, 

95%CrL: 0.22-0.49), colorectal (0.35, 95%CrL: 0.25-0.45), gastric (0.34, 95%CrL: 0.22-0.45), and 

pancreatic cancers (0.30, 95%CrL: 0.14-0.43). Using the random-effects model, the pooled mean 

posterior ORR across seven cancers was 0.37 (95%CrL: 0.26-0.47) and the predictive probability of 

response in a new, unrepresented MSI-H cancer was 0.37 (95%CrL: 0.16-0.63). Similar mean posterior 

ORR was obtained from the fixed-effect models with narrower 95% credible intervals (fixed-effect model 

with single mean effect: 0.38, 95%CrL: 0.32-0.44; fixed-effects model with varying mean effects: 0.35, 

95%CrL: 0.29-0.41) (Figure 1).  

 

The sensitivity of the BHM results was assessed using alternative prior distributions. The models 

rendered similar estimates to those obtained with a uniform (0, 3) distribution in the base case. The results 
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showed low estimated heterogeneity between tumors irrespective of the prior distribution, with the 

intraclass correlation being 0.02 in eTable 1.  

 

Posterior Distributions of Median Progression-free Survival  

When different types of tumors were compared for the mean mPFS, small intestine cancer had the longest 

posterior mean mPFS at 20.47 months (95%CrL: 11.53-35.94), followed by endometrial cancer (12.7, 

95%CrL: 9.24-17.41), cholangiocarcinoma (4.18, 95%CrL: 2.34-7.42), colorectal (4.1, 95%CrL: 2.87-

5.83), gastric (3.23, 95%CrL: 2.11-4.96), ovarian (2.29, 95%CrL: 1.3-4.02), pancreatic (2.21, 95%CrL: 

1.22-3.95), and brain cancers (1.29, 95%CrL: 0.6-2.76). The pooled mean mPFS was 3.7 months 

(95%CrL: 1.46-8.19) with the random-effects model, with the predictive mean of 3.75 months (95%CrL: 

0.24-50.45). The fixed-effect model assuming one mean effect across tumor types yielded higher pooled 

estimates than those obtained from the fixed-effect model assuming varying mean effects (5.35, 95%CrL: 

4.53-6.31; vs. 4.38, 95%CrL: 3.73-5.17) (Figure 2).  

 

The sensitivity of the BHM results was assessed by assuming various prior distributions for between-

tumor variance (𝜏). The models rendered similar tumor-specific and pooled estimates to those obtained 

when assuming a uniform distribution (0, 5) in the base case. The results showed high estimated 

heterogeneity between tumors irrespective of the prior distribution. This can be seen in the intraclass 

correlation value (0.87) in eTable 1 and the considerably wide 95%CrLs around the predicted estimate 

(Figure 2). 

 

Posterior Distributions of Median Overall Survival 

Small intestine cancer was estimated to have the longest posterior mean mOS at 75.48 months with wide 

95% credible intervals (25.57-782.82) due to its right censoring at the end of study period. The posterior 

mean mOS was 45.34 months for endometrial cancer (95%CrL: 33.08-62.2), 32.39 months for colorectal 

cancer (95%CrL: 22.78-46.08), 32.01 for ovarian cancer (95%CrL: 18.2-56.07), 19.15 for 
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cholangiocarcinoma (95%CrL: 10.7-34.37), 11.15 for gastric cancer (95%CrL: 7.2-17.2), 6.26 for brain 

cancer (95%CrL: 2.91-13.35), and 4.09 for pancreatic cancer (95%CrL: 2.22-7.49). The pooled mean 

mOS was 13.9 months (95%CrL: 4.02-34.49) with the random-effects model, with the predictive mean of 

13.76 months (95%CrL: 0.42-276.49). Similar to mPFS models, the fixed-effect model with a single 

mean effect across tumor types provided higher pooled estimates than those obtained from the fixed-

effect model with varying mean effects (23.43, 95%CrL: 19.8-27.74; vs. 19.06, 95%CrL: 16.14-22.57) 

(Figure 3). The posterior distributions obtained from models excluding small intestine cancer were 

summarized in Figure 4, with similar tumor-specific estimates but lower pooled mean effects compared 

to models with small intestine cancer.  

 

Sensitivity analysis results were summarized in eTable 4. When compared to the base case model, some 

differences were manifested in the posterior mean estimates for small intestine cancer, the predicted and 

pooled outcomes, indicating that using BHM for evaluating median OS with censored observations is 

sensitive to the distribution of between-tumor variance under this setting with limited information about 

the censored data. The results also showed high estimated heterogeneity between tumors irrespective of 

the distribution of the data and the prior. The intraclass correlation value was 0.7 (eTable 1) and the 

95%CrLs around the predicted estimate were wide in both models with and without small intestine cancer 

(Figure 3; Figure 4).  

 

Model diagnostics 

Gelman-Rubin diagnostics estimates were near 1 for all parameters in all models. The trace plots or 

autocorrelation plots did not suggest convergence failure of the MCMC algorithm.   

 

Discussion 

In this study, we demonstrated the use of Bayesian methods to improve tumor-specific estimates of 

pembrolizumab using phase II basket trial evidence and obtain posterior distributions of pooled and 
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predicted outcomes, including ORR, median PFS, and median OS. The revised estimates demonstrated 

markedly less variability than the original estimates for all outcomes, with narrower 95% credible 

intervals compared to the original CIs (the original trial estimates were obtained using frequentist 

approach). We also found high heterogeneity in median PFS and median OS across eight tumor types and 

low heterogeneity in ORR across seven tumor types, excluding brain tumor. The BHM approach shrunk 

the original tumor-specific ORR estimates towards a pooled treatment effect and the resultant estimates in 

all tumor types were above 30%. This value is greater than the commonly used regulatory target of 30% 

with tumor shrinkage used for single-agent anticancer therapies to demonstrate breakthrough activity and 

for monitoring in phase II basket trials.43, 44 The pooled ORR across seven tumor types was 35%-37% 

using Bayesian random-effects and fixed-effect models, meaning that at least 35% of cancer patients had 

tumor shrinkage. The BHM approach allows for prediction of outcomes in tumor types outside of the 

studied types; however, the wide 95%CrLs around these predicted estimates indicate substantial 

uncertainty, especially for the predicted median PFS and median OS estimates.  

 

Implications 

Our study demonstrated that a Bayesian hierarchical approach could reduce the uncertainty in estimates 

from available evidence, providing more confidence in tumor-agnostic decision making, given the small 

sample sizes in some tumor types. This flexible approach can incorporate censored observations of 

survival endpoints available at trial completion. Moreover, metrics such as ICC can be used to quantify 

the variation between groups, which can inform a recommendation of pembrolizumab for use in all tumor 

types or a restricting subset of patients. In addition, BHM can be used to inform many different types of 

research questions. It has been used in meta-analysis and economic evaluation of healthcare 

interventions.40, 45 For instance, Kwok et al. demonstrated the use of BHM to incorporate all available 

information from multiple sources, including a meta-analysis of immunosuppressive therapy in idiopathic 

dilated cardiomyopathy using data from related trials, and a subgroup analysis of the National Institute of 

Neurological Disorders and Stroke intravenous tissue plasminogen activator stroke trial. Future TAD 
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assessments can benefit from applying Bayesian hierarchical models, such as estimating the posterior 

probability that patients with each type of cancer demonstrate the largest treatment effect among all 

cancer patients or the probability of response rate higher than a certain threshold. Such information would 

provide additional evidence on tumor-specific treatment outcomes, which would inform the approval and 

coverage decisions.  

 

A high ORR with a long duration of response has been used for accelerated approvals under the 

assumption that they are highly predictive of longer-term survival outcomes. Our analyses did not support 

this assumption for pembrolizumab. Specifically, even though the posterior mean ORR in all tumor types 

was above 30%, we observed low mPFS and mOS in certain tumor types, such as pancreatic and brain 

tumors. Furthermore, although homogenous ORR outcomes were shown across tumor types, there was 

high variability for the survival endpoints (i.e., median PFS and OS). In this context, confirmatory trials 

or post-marketing evidence generation should be considered following accelerated approvals, and could 

be targeted towards the tumor types with the greatest discordance and/or uncertainty. Future studies can 

model the correlation of median PFS and OS outcomes in the BHM and explore additional survival 

endpoints such as 12-month/24-month survival rates to generate more evidence regarding long-term 

treatment efficacy. In addition, alternative approaches that allow tailored or partial borrowing across 

strata can be employed when there is high between-tumor heterogeneity in the basket trial setting.46  

 

Considerations for choosing random-effects vs fixed-effect models 

Similar to a meta-analysis, we derived the distribution of the pooled treatment outcomes to quantify the 

overall clinical benefit across tumor types. We explored both Bayesian random-effects and fixed-effect 

models to obtain a pooled effect size across subgroups, and thus, it is crucial to determine the optimal 

choice of model for a given scenario. The typical fixed-effect model assumes that there is no between-

tumor heterogeneity, or that patients with different tumors are part of a homogenous population, and the 

only cause for differences in observed effects is the sampling error of tumor sites. To relax the assumption 
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of one true effect size, we further employed a fixed-effects (plural term) model which allows some 

variation in effect sizes (i.e., FE2 in Figure 1-4). In contrast, the random-effects model has the advantage 

of assuming there is a pre-specified distribution of true effect sizes and can explicitly quantify between-

tumor heterogeneity (τ). The caveat is that this assumption may fail if an outlying group is inconsistent 

with a certain type of distribution for the between-group variability, potentially resulting in biased 

estimates for that outlying group. Therefore, it is important to consider sensitivity analyses that verify the 

robustness of the results to changes in the choices of prior distributions. 

 

The selection of a fixed-effect or a random-effects model depends on how heterogeneous the effect sizes 

are across tumor types. For example, the fixed-effect pooled estimate of the ORR model might be closer 

to the true effect size if we believe that patients with different tumor types but sharing the same molecular 

biomarker respond similarly to the pembrolizumab. However, the assumptions of the fixed-effect model 

may seem too simplistic in many real-world populations and for long-term outcomes. When there is high 

heterogeneity across subgroups, such as median PFS and OS models, it may be more plausible to use the 

pooled effect size from a random-effects model rather than a fixed-effect model.  

 

Degree of shrinkage  

The original tumor-specific estimates were shrunken towards a pooled treatment effect in BHMs which is 

consistent with prior studies. For example, Chugh and others evaluated the ORR of a phase II trial of 

Imatinib in 10 histologic subtypes of sarcoma using a BHM. The posterior estimates based on the BHM 

shrunk the estimates of the subgroup-specific ORR toward the population mean, thus reducing extreme 

estimates for subtypes with few patients.47 We found that greater shrinkage of posterior estimates toward 

the overall mean occurred for tumor subgroups with relatively smaller sample sizes or less precision. For 

example, posterior mean ORR of ovarian cancer (raw: 0.33 vs revised: 0.36; n=24 patients) has shrunken 

to a greater degree than that of colorectal cancer (raw: 0.33 vs revised: 0.35; n=63 patients). In other 

words, because there is fewer underlying data (i.e., when there is greater uncertainty), the ovarian cancer 
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estimate borrows more information from the other tumor subgroups than the colorectal cancer estimate. In 

addition, the degree of shrinkage also depends on how far the estimate is from the overall mean. For 

example, more shrinkage was observed for cholangiocarcinoma (raw: 0.41 vs. revised: 0.39) than for 

pancreatic cancer (raw: 0.18 vs. revised: 0.3), with equal sample size (n=22 patients). Similar findings are 

shown in mPFS and mOS models. Prior studies have demonstrated that shrinkage and borrowing of 

information across subgroups can improve the accuracy of estimates overall than if we were to use the 

naïve estimates from individual subgroups.21, 48  

 

Prior distributions 

Between-tumor variance (𝜏2), the shrinkage parameter, estimates the variation across subgroups and 

controls the strength of information borrowing, was treated as an unknown parameter following a non-

informative prior in our study. A small value of 𝜏2 indicates less heterogeneity across subgroups and thus 

induces strong information borrowing, whereas a large value of 𝜏2 induces little information borrowing.49 

Therefore, it is important to consider prior distributions for 𝜏2. In our study, we chose non-informative 

uniformly distributed priors in the base case to allow data rather than prior knowledge to primarily 

determine the degree of borrowing. This is consistent with previous investigation around the priors in the 

literature. Furthermore, when more prior information is desired, for instance to restrict 𝜏 away from very 

large values, Gelman et al. recommended working within the half-t family of prior distributions, which 

are more flexible. However, the inverse-gamma family of non-informative prior distributions is not 

recommended due to the sensitive resulting inferences when 𝜏 is estimated to be near zero.34, 39 

 

In a fully Bayesian approach, the third level of the hierarchical model consists of the prior distributions of 

the hyperparameters which quantify knowledge based on external information. Vague, non-informative 

prior distributions may be used in the absence of relevant external information, or to permit inferences to 

depend exclusively on the present data.40 In an empirical Bayes approach, in contrast, the 
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hyperparameters are derived from the data and then treated as known values.50 However, this often results 

in overly precise estimates of the first-level parameters as it ignores the uncertainty in the values of the 

hyperparameters.51  

 

Limitation 

Our study is not without limitations. The main assumption of this approach is exchangeability that 

efficacy is similar across baskets, with different tumors not determining a particular ordering of 

effectiveness a priori. It is unknown whether the exchangeability assumption will apply to unrepresented 

tumors. Furthermore, our results may be dependent on the data distribution and the priors. To address the 

uncertainty, we used the existing literature and knowledge to come up with prior distributions that make 

clinical sense and tested a few to examine whether the results change significantly. In the absence of 

individual patient data, we computed the within-tumor variance for mPFS and mOS models using above-

mentioned methods. We also used published Kaplan-Meier curves to estimate median OS for colorectal 

and endometrial cancers, assuming an exponential distribution. The assumption of exponential 

distribution for time-to-event outcomes is also a potential limitation since it is assuming constant hazard. 

Our proposed model, however, could be extended to consider other parametric distributions such as the 

Weibull distribution and eliciting other quantiles of the Kaplan-Meier curves instead of just the median 

OS.  

 

Conclusion 

Assuming exchangeable effects of tumor-agnostic therapies across cancers, BHM can be useful for 

studying treatment effects by reducing the variability around estimates and improving precision in 

estimates overall through borrowing of information, compared to stand-alone subgroup analyses with 

limited sample sizes in some strata. Our findings suggest that making tumor-agnostic drug indication and 

coverage decisions simply based on the pooled treatment outcomes in a basket trial may not be 

appropriate in some tumor types. Both pooled and tumor-specific ORR, mPFS, and mOS posterior 
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estimates may be useful in informing decision making. Finally, this approach permits quantifying the 

between-tumor heterogeneity across subgroups, characterizing the proportion of variance explained by the 

between-tumor variability, and offers further evidence on survival endpoints in an early-phase basket 

trial. 
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Tables and Figures 

Table 1. Trial-reported clinical outcomes by tumor types 

 
Tumor type Number of 

patients 

ORR, % (95%CI) Median PFS, 

months, (95%CI) 

Median OS, months, 

(95%CI) 

Colorectal 63 33 (22, 46) 4.1 (2.1, 18.9) 33* (19.2, NR) 

Endometrial 79 48.5 (36.2, 61) 13.1 (4.3, 34.4) 46.5* (27.2, NR) 

Gastric 42 31 (17.6, 47.1) 3.2 (2.1, 12.9) 11 (5.8, 31.5) 

Cholangiocarcinoma 22 40.9 (20.7, 63.6) 4.2 (2.1, 24.9) 19.4 (6.5, NR) 

Pancreatic 22 18.2 (5.2, 4.03) 2.1 (1.9, 3.4) 3.7 (2.1, 9.8) 

Small intestine 25 48 (27.8, 68.7) 23.4 (4.3, NR) NR (16.2, NR) 

Ovarian 24 33.3 (15.6, 55.3) 2.2 (2.0, 6.2) 33.6 (11.0, NR) 

Brain 13 0 (0, 24.7) 1.1 (0.7, 2.1) 5.6 (1.5, 16.2) 

 

Abbreviations: CI, confidence interval; ORR, objective response rate; PFS, progression-free survival; OS, 

overall survival; NR, not reached at the end of study follow-up period. 

* Estimated from the fitted exponentiation distribution to the digitized Kaplan-Meier curve data. 
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Figure 1. Summary of posterior distributions by tumor types for objective response rate 

 

 
Abbreviations: ORR, objective response rate; RE, random-effects model; FE1, fixed-effect model with 

single mean effect; FE2, fixed-effects model with varying mean effects; CrL, credible interval; CI, 

confidence interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 21, 2023. ; https://doi.org/10.1101/2023.09.19.23295807doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.19.23295807
http://creativecommons.org/licenses/by/4.0/


 27 

Figure 2. Summary of posterior distributions by tumor types for median progression-free survival 

 

 
 

Abbreviations: PFS, progression-free survival; RE, random-effects model; FE1, fixed-effect model with 

single mean effect; FE2, fixed-effects model with varying mean effects; CrL, credible interval; CI, 

confidence interval; NR, not reached. 
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Figure 3. Summary of posterior distributions by tumor types for median overall survival 

 

 
 

Abbreviations: OS, overall survival; RE, random-effects model; FE1, fixed-effect model with single mean 

effect; FE2, fixed-effects model with varying mean effects; CrL, credible interval; CI, confidence 

interval; NR, not reached; +, censored at the end of the study period. 
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Figure 4. Summary of posterior distributions by tumor types for median overall survival, excluding small 

intestine cancer 

 

 
 

Abbreviations: OS, overall survival; RE, random-effects model; FE1, fixed-effect model with single mean 

effect; FE2, fixed-effects model with varying mean effects; CrL, credible interval; CI, confidence 

interval; NR, not reached. 
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Figure 5. Posterior density plots by tumor types and treatment outcomes 

 
 

 

Note: The upper limit of median PFS and OS outcomes for small intestine cancers were not shown in the 

figure to allow better visualization for the other tumor types.  

Abbreviations: ORR: objective response rate; mPFS: median progression-free survival; mOS: median 

overall survival; RE: random-effects model.  
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