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62 Abstract
63
64 Considering sex as a biological variable in modern digital health solutions, we investigated sex-specific 

65 differences in the trajectory of four physiological parameters across a COVID-19 infection. 

66 A wearable medical device measured breathing rate, heart rate, heart rate variability, and wrist skin 

67 temperature in 1163 participants (mean age = 44.1 years, standard deviation [SD]=5.6; 667 [57%] 

68 females). Participants reported daily symptoms and confounders in a complementary app. A machine 

69 learning algorithm retrospectively ingested daily biophysical parameters to detect COVID-19 

70 infections. COVID-19 serology samples were collected from all participants at baseline and follow-up. 

71 We analysed potential sex-specific differences in physiology and antibody titres using multilevel 

72 modelling and t-tests.

73 Over 1.5 million hours of physiological data were recorded. During the symptomatic period of 

74 infection, men demonstrated larger increases in skin temperature, breathing rate and heart rate as 

75 well as larger decreases in heart rate variability than women. The COVID-19 infection detection 

76 algorithm performed similarly well for men and women. 

77 Our study belongs to the first research to provide evidence for differential physiological responses to 

78 COVID-19 between females and males, highlighting the potential of wearable technology to inform 

79 future precision medicine approaches.

80 This work has received support from the Princely House of the Principality of Liechtenstein, the 

81 government of the Principality of Liechtenstein, the Hanela Foundation in Switzerland, and the 

82 Innovative Medicines Initiative (IMI) 2 Joint Undertaking under grant agreement No 101005177. This 

83 Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation 

84 programme and EFPIA.
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85 Introduction
86
87 On March 11, 2020, the WHO declared the fast spreading coronavirus disease (COVID-19) a global 

88 pandemic [1]. This novel viral disease was first detected in Wuhan, China in December 2019 and is 

89 caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) [2]. Increasing knowledge 

90 about risk factors and symptoms, as well as the implementation of mass reverse transcription 

91 polymerase chain reaction (RT-PCR), serological tests, vaccines and social restrictions have helped 

92 control its spread [3,4]. However, asymptomatic virus transmissions and emerging virus mutations 

93 pose ongoing challenges in dealing with the pandemic. Today, more than two years after the first case 

94 was detected, many countries worldwide continue to experience waves of rising infections, with 

95 numerous unknowns remaining in our understanding of SARS-CoV-2. In particular, consistent data 

96 about the role of sex in relation to COVID-19 are lacking [5,6]. Significant changes in physiological 

97 parameters as breathing rate, heart rate, heart rate variability, and wrist skin temperature during a 

98 COVID-19 infection [7] raise the question about sex-specific differences within the trajectory of these 

99 parameters. A better understanding of sex-specific trajectories in physiological responses to the 

100 infection may support early detection and treatment of COVID-19. 

101

102 A meta-analysis found that men with COVID-19 were globally almost three times more likely than 

103 women to be admitted to an intensive treatment unit [8]. Furthermore, the disease’s mortality rates 

104 were higher in men [9], potentially due to sex-specific differences in angiotensin converting enzyme 2 

105 (ACE2) expression [10,11]. On the other hand, women were found to more frequently experience 

106 persistent symptoms such as dyspnoea and fatigue several months after the acute phase of the illness 

107 [12]. The infection rates were similar between the sexes [8], although this observation may differ 

108 between countries [13]. Moreover, initial analyses of eumenorrheic women’s susceptibility to SARS-

109 CoV-2 among a real-world sample are in line with previously shown immune function fluctuations 

110 across the menstrual cycle [14] and suggest increased susceptibility during the luteal phase [15]. 

111 Research on sex-specific differences in immune responses that underlie COVID-19 disease outcomes 
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112 showed higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust 

113 induction of non-classical monocytes in male patients, whereas female patients showed higher T cell 

114 activation during SARS-CoV-2 infection [16]. Also, higher levels of innate immune cytokines were 

115 associated with worse disease progression in female patients [16].  

116

117 To the best of our knowledge, our work represents the first investigation of sex-specific differences in 

118 SARS-CoV-2 affected physiological parameters as measured by a medical device. Previous studies have 

119 shown that direct-to-consumer and easy to use products with wide market availability such as Fitbit 

120 [17], smartwatches [18], the Ava bracelet [7,19], and other wearable devices [20] could be used for 

121 surveillance of changes in physiological parameters to give the user an early warning before COVID-

122 19 symptom occurrence [21] or during asymptomatic infection [22]. The COVI-GAPP study 

123 investigated the applicability of the Ava bracelet for pre-symptomatic detection of COVID-19 [23]. 

124 Developed as a fertility tracker, the bracelet measures physiological parameters including wrist skin 

125 temperature, breathing rate, heart rate, heart rate variability and skin perfusion [24]. The previously 

126 published interim analysis of the COVI-GAPP dataset demonstrated significant changes in skin 

127 temperature, breathing rate, heart rate and heart rate variability during a COVID-19 infection [7]. 

128 These parameters were used to develop a machine learning (ML) algorithm for detection of pre-

129 symptomatic SARS-CoV-2 infection which successfully detected 68% of COVID-19 cases up to two days 

130 before symptom onset. The algorithm is currently being tested and validated in a larger population 

131 with real-time access to the algorithm’s predictions [19].    

132

133 The current work analyzed the same physiological parameters collected in the COVI-GAPP study to 

134 quantify sex-specific differences before, during and after a COVID-19 infection. We examined 

135 differences in trajectories of physiological parameters over five defined phases (baseline, incubation, 

136 pre-symptomatic, symptomatic, recovery) between female and male participants. Furthermore, we 

137 evaluated the performance of our ML algorithm for female and male participants separately with the 
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138 goal to assess and correct a potential sex bias in its functionality. 
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139 Materials and Methods

140 Study design and participants
141
142 Since 2010, the observational population-based Genetic and Phenotypic Determinants of Blood 

143 Pressure and Other Cardiovascular Risk Factors (GAPP) study aims to better understand the 

144 development of cardiovascular risk factors in the general population of healthy adults aged 25 to 41 

145 years [25]. From 2170 GAPP participants, 1163 individuals were enrolled in the COVI-GAPP study with 

146 inclusion and exclusion criteria published previously [23]. Data were collected from April 14, 2020, 

147 until January 31, 2022. The local ethics committee (KEK, Zürich, Switzerland) approved the study 

148 protocol, and written informed consent was obtained from each participant prior to enrolment (BASEC 

149 2020-00786).

150 Data collection 
151
152 Physiological parameters of interest for this analysis were breathing rate, heart rate, heart rate 

153 variability, and wrist skin temperature, measured every 10 seconds by a wrist-worn bracelet while the 

154 user slept. The CE-certified and FDA-cleared Ava Fertility Tracker (version 2.0; Ava AG, Switzerland) 

155 was originally built to detect ovulating women’s fertile days in real time with 90% accuracy [26–28]. 

156 The bracelet’s three sensors can track biophysical changes regardless of the wearer’s sex [7] and was 

157 used in this study for detecting infection-based deviations from baseline parameters in both men and 

158 women (regardless of their menstruating status). Participants synchronized their bracelet each 

159 morning upon waking to a complementary smartphone app.

160 In addition to automatically collected physiological data, participants also provided information in the 

161 complementary app about their daily alcohol, medication, and drug intake (Fig 1A), as these 

162 substances can alter central nervous system functioning [29]. Furthermore, the app included a 

163 customized user functionality where participants reported COVID-19 symptoms in a daily diary (Fig 
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164 1B). Participants were also able to see and monitor changes in their physiological parameters in the 

165 app. 

166 This is the Fig 1A and Fig 1B Title. Participants wore a wrist-based medical device at night.

167 This is the Fig 1A and Fig 1B legend. Upon waking, participants synchronized the device with a 

168 complementary smartphone application and reported alcohol, medication, and drug intake (A) as well 

169 as potential COVID-19 symptoms (B) in the app.

170 SARS-CoV-2 antibody testing and RT-PCR testing
171
172 SARS-CoV-2 antibody tests were performed by the medical laboratory Dr Risch Ostschweiz AG (Buchs 

173 SG, Switzerland) with an orthogonal test algorithm employing electrochemiluminescence (ECLIA) 

174 assays testing for pan-immunoglobulins directed against the N antigen and the receptor binding 

175 domain (RBD) of the SARS-CoV-2 spike protein, as described by Risch et al [30]. The enacted procedure 

176 ensures testing for actual SARS-CoV-2 infection independent of vaccine status. Baseline data were 

177 collected starting in April 2020 onwards (run 1; R1). Three follow-up blood samples (run 2, R2; run 3, 

178 R3; and run 4, R4) were collected within the scope of the study (Fig 2). The cut-off levels used for 

179 positive and negative values were ≥ 1.0 and ≤ 0.1, respectively. Values between 0.2 – 0.9 were 

180 considered as gray zone. Seroconversion was assumed if the first blood sample was negative for SARS-

181 CoV-2 antibodies, but a subsequent sample was positive. Follow-up calls with participants who tested 

182 positive were performed to discuss their symptoms and duration.

183 This is the Fig 2 Titel. Study flow chart of the 1,163 participants that are enrolled in the COVI-GAPP 

184 study. 

185 This is the Fig 2 legend. The cut-off levels used for positive and negative values were ≥ 1.0 and ≤ 0.1, 

186 respectively. Values between 0.2 – 0.9 were considered as gray zone * Successful bracelet 

187 synchronization on more than 50% of days around symptom onset.

188
189
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190 Questionnaires 
191
192 When visiting the study centre for SARS-CoV-2 antibody tests, participants were asked to answer a 

193 questionnaire about their personal information (age, sex), smoking status (current, past, never), as 

194 well as symptoms and hospitalizations during COVID-19 infection. Body mass index (BMI) based on 

195 height and weights were calculated with data from the GAPP database.

196 Statistical Analysis
197
198 Our primary objective was to examine sex differences in the trajectory of breathing rate, heart rate, 

199 heart rate variability, and wrist skin temperature across a SARS-CoV-2 infection. Secondarily, we 

200 evaluated a machine learning algorithm designed for early detection of COVID-19 separately in male 

201 and female participants to examine potential sex biases in algorithm performance. Furthermore, we 

202 assessed sex-specific differences in antibody titres after SARS-CoV-2 infections. We processed and 

203 analysed all data using R (version 4.1.1) [31] and Python (version 3.6) [32].

204 1. Sex-specific differences in COVID-19 related physiological parameters 

205 To examine the association between sex and physiological parameters during baseline, incubation, 

206 pre-symptomatic, symptomatic and recovery phases of a COVID-19 infection, we applied multilevel 

207 linear mixed models with random intercepts and slopes including residual maximum likelihood 

208 estimation (REML) and Satterthwaite degrees of freedom. A multiplicative interaction term tested the 

209 association between sex and infection phase. All signals measured more than 10 days before symptom 

210 onset via phone call confirmation with a study team member were categorized as occurring during 

211 the baseline period. The incubation period was defined as the time interval from 10 days up to 3 days 

212 before symptom onset. The pre-symptomatic period was defined as the two days before symptom 

213 onset, while the symptomatic period lasted from the day of symptom onset until the day symptoms 

214 ended. All signals measured after symptom end were categorized as occurring during the recovery 

215 period. We dummy coded four variables to indicate the period within which the signal occurred, with 
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216 baseline serving as the reference period. Each of the four multilevel models was compared to the 

217 corresponding null model (i.e., an intercept-only model) by means of an ANOVA. 

218

219 As a sensitivity analysis, we also tested potentially confounding variables as single terms in additional 

220 models to determine whether changes in physiological parameters occurred due to COVID-19 

221 infection over and above changes associated with participant age, BMI, hypertension, medication, 

222 alcohol, and recreational drugs. 

223 2. Sex-specific differences in algorithm’s performance

224 The retrospective ML algorithm, developed as described in previous papers, [7,19] aimed to detect a 

225 COVID-19 infection prior to symptom onset. The algorithm was designed to ingest trends in 

226 physiological signals across sets of days to detect deviations in these signals and predict a potential 

227 infection. The model was trained to predict infection two days and one day prior to symptom onset, 

228 as well as on the day of symptom onset. Here, we assessed the algorithm’s performance metrics 

229 separately for male and female COVI-GAPP participants to identify any potential sex bias in the model. 

230 Performance metrics were calculated per day in participants who tested positive where days from -40 

231 to -2 relative to the onset of the first symptoms were considered negative and days -2 to day 0 as 

232 positive. In other words, positive predictions of the algorithm prior to 2 days before symptom onset, 

233 these predictions were interpreted as false positives. The set of metrics selected for the evaluation of 

234 the algorithm included precision (number of true positives divided by sum of true positives and false 
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235 positives), recall (number of true positives divided by the sum of true positives and false negatives), 

236 and F-score (the harmonic mean of precision and recall). 

237 3. Sex-specific differences in antibody titres of SARS-CoV-2 Nucleocapsid 

238 after COVID-19 infection

239 To enable a reliable comparison of antibody titres after a COVID-19 infection, antibody titres (values 

240 > 1.0) against the SARS-CoV-2 Nucleocapsid were compared between sex. Blood was collected four 

241 times over the course of the study with varying sample sizes (Fig 2). Normally distributed continuous 

242 variables were compared using unpaired t-tests, and non-parametric continuous variables were 

243 compared using Mann-Whitney U tests.

244
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245 Results
246

247 Participants
248
249 A total of 1163 participants (mean age = 44.1 years, standard deviation [SD] = 5.6; 667 [57%] females) 

250 were enrolled in the study. During the study period, 127 participants (10.9%; [9.3,12.8]) contracted 

251 COVID-19. Eighty-two participants (mean age = 42.6 ± 5.3 years; 56 [68%] females) testing positive for 

252 SARS-CoV-2 had worn and synchronized their bracelet successfully on more than 50% of days around 

253 symptom onset (i.e., at least 20 days before and 20 days after symptom onset), thereby ensuring 

254 sufficient quality of data to be included in analyses. The number of days with successfully synchronized 

255 bracelet data did not differ (p = 0.967) between females (range 67 to 511 days; mean = 239.6 ± 71.8 

256 days) and males (range 45 to 508 days; mean = 238.8 ± 86.4 days). With regards to the reported 

257 symptom duration, values for four participants (2 females) were missing and imputed based on the 

258 median across the sample.

259 Blood samples and questionnaire data were available from 1,144 participants. Mean age and BMI of 

260 these participants were 45 (± 5.5) and 24.7 (± 3.9), respectively. At baseline, male participants had 

261 significantly higher BMIs (26.17 ± 3.41) than female participants (23.70 ± 3.96; t(1079) = 10.71, 

262 p<0.001). They also reported significantly higher rates of hypertension (7.74%) than female 

263 participants (3.15%; X2(1) = 11.23, p<0.001). Analyses did not reveal any significant sex-based 

264 differences in smoking status, age, or hospitalization rate (Table 1). 
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265 Table 1. This is the Table 1 Title. Baseline characteristics stratified according to sex were collected 

266 by questionnaires completed within the GAPP study.

Variables Total 
n = 1,144

Male
n = 478

Female
n = 666

Test statistics Significance 
(p value)

Smoking status, N
(never: current: past 
smoker)

658: 167: 
319

265: 68: 
145

393: 99: 
174 Χ2 (2) = 2.46 0.292

Hypertension, N (yes: no) 58: 1086 37: 441 21: 645 Χ2 (1) = 11.23 <0.001
Age, years (±SD) 43.99 (± 

5.51)
44.3 
(±5.35)

43.77 
(±5.61)

t (1057) = 
1.53

0.1449

BMI, kg/m2 (±SD) 24.72 
(±3.94)

26.17 
(±3.41)

23.7 
(±3.96)

t (1079) = 
10.71

<0.001

Hospitalization 01, N (yes: 
no)

0:10 0:4 0:6 Fisher’s exact 
test

1

Hospitalization 02, N (yes: 
no)

11:113 7:44 4:69 Χ2 (1) = 2.52 0.2047

Hospitalization 03, N (yes: 
no)

2:23 0:12 2:11 Χ2 (1) = 0.46 0.4973

Hospitalization 04, N (yes: 
no)

3:47 0:24 3:23 Χ2 (1) = 1.25 0.2625

267

268 This is the Table 1 legend. Information about hospitalization were collected 4 times (01 – 04) as part 

269 of a questionnaire for SARS-CoV-2 positive participants within the COVI-GAPP study. Data are 

270 presented as mean ± SD, or number.

271 Sex-specific differences in COVID-19 related physiological parameters

272 We show the trajectory each of the four analysed physiological parameters during a SARS-CoV-2 

273 infection separated by sex (Fig 3). The multilevel models revealed significant differences between male 

274 and female participants in all parameters during the symptomatic period (Table 2). We observed a 

275 larger increase in skin temperature, breathing rate and heart rate as well as a larger decrease in heart 

276 rate variability in males compared to females during this period. Moreover, male participants’ 

277 breathing rate and heart rate remained at significantly higher levels during the recovery period as 

278 compared to their female peers (Table 2). Each of the four models provided a significantly better fit 

279 to the data than the corresponding null model (p<0.0001). 

280
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281 This is the Fig 3 Title. Trajectory of the four analysed physiological parameters across the course of 

282 a confirmed COVID-19 infection, centred around participant-reported symptom onset. 

283 This is the Fig 3 legend. The values of each physiological parameter (with 95% CIs) were normalized 

284 according to each individual’s baseline measurements and collapsed across females (n=56) and males 

285 (n=26).

286

287 Table 2. This is the Table 2 Title. Results from multilevel linear mixed models showing the main 

288 effects of infection phase and sex as well as the interactions between the two with regards to 

289 changes in physiological signals.

Skin temperature Breathing rate Heart rate Heart rate 
variability

Intercept 35.01 (<0.0001) 13.51 (<0.0001) 46.98 (<0.0001) 4.3 (<0.0001)
Infection phase

Baseline Reference Reference Reference Reference
Incubation 0.18 (0.15) 0.33 (0.13) 1.49 (0.12) -0.25 (0.12)
Pre-symptomatic 0.23 (0.26) 0.71 (0.17) 1.26 (0.41) -0.18 (0.42)
Symptomatic 0.74 (<0.0001) 2.93 (<0.0001) 6.88 (<0.0001) -0.93 (<0.0001)
Recovery 0.22 (0.0006) 0.38 (0.004) 2.17 (0.003) -0.28 (0.09)

Sex, female 0.45 (<0.0001) 0.91 (0.06) 4.96 (0.001) -1.35 (<0.0001)
Interaction

Sex*Incubation -0.02 (0.74) -0.2 (0.11) -0.36 (0.5) 0.09 (0.34)
Sex*Pre-
symptomatic

-0.01 (0.92) -0.26 (0.38) 0.07 (0.93) 0.04 (0.78)

Sex*Symptomatic -0.28 (<0.0001) -1.31 (<0.0001) -3.09 (0.0001) 0.43 (<0.0001)
Sex*Recovery -0.04 (0.23) -0.25 (0.001) -0.96 (0.02) 0.11 (0.25)

290

291 This is the Table 2 legend. Unstandardized beta coefficients are presented, with p-values in 

292 parentheses and in bold if lower than 0.05. Sex was coded such that positive coefficients represent 

293 larger values in females.

294

295 When including age, BMI, hypertension diagnosis, medication, alcohol and drug intake, the 

296 interactions between sex and phase of infection remained unchanged indicating that they cannot be 

297 explained by the influence of these confounding variables (S1 Table). 
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298

299 Sex-specific differences in algorithm’s performance

300 Table 3 provides a by-sex breakdown for the algorithm’s performance. Sensitivity score can be found 

301 as the recall of the positive class (days with an existent SARS-CoV2 infection), while specificity is the 

302 recall of the negative class (days without a SARS-CoV2 infection). The algorithm showed the same 

303 precision (i.e., 92) when giving a SARS-CoV2 positive alert, across participant sex. Cross-class recall 

304 was more balanced among females than males in our sample. Detecting 53% of SARS-CoV-2 positive 

305 days in females, the algorithm performed less well in males (26% of SARS-CoV2 positive cases 

306 detected).  

307
308
309 This is the Table 3 Title. Performance metrics of the machine learning algorithm for female and male 

310 participants.

311

Participant Sex Class Precision Recall F-score 
0 12.36 68.421 19.048All
1 91.599 41.509 78.331
0 12.977 60.69 20.859Female 
1 92.147 53.125 73.181
0 10.811 80.0 15.385Male
1 92.308 26.667 85.714

312

313 This is the Table 3 legend. Sensitivity score can be found as the recall of the positive class (i.e., days 

314 with an existent SARS-CoV2 infection), while specificity is the recall of the negative class (i.e., days 

315 without a SARS-CoV2 infection).

316

317 Sex-specific differences in antibody titres of SARS-CoV-2 Nucleocapsid 

318 after COVID-19 infection

319 Antibody titres of the female and male sub-groups were not significantly different across runs. 
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320 Nucleocapsid antibody values in run 1 trended higher in male participants (Table 4). 

321

322 This is the Table 4 Title. SARS-CoV-2 Nucleocapsid (N) antibody (AB) values stratified according to 

323 sex. 

324
Variables Male (n = 7) Female (n = 7) Test statistics Significance (p 

value)
SARS-CoV-2 N AB 
run1

32.66 (± 
34.74)a

75.66 (± 46.87)a W = 13 0.14

Male (n = 51) Female (n = 68)
SARS-CoV-2 N AB 
run2

34.1 (1 – 
183.7)b

33.4 (1.7 – 
212.2)b

W = 1753 0.92

Male (n = 62) Female (n = 85)
SARS-CoV-2 N AB 
run3

40.05 (1 - 274) 29.7 (1.4 – 234.3) W = 2772 0.59

Male (n = 76) Female (n = 102)
SARS-CoV-2 N AB 
run4

17.95 (1.2 - 
221)

36.59 (1 – 266.4) W = 4280 0.235

325
326 This is the Table 4 legend. data are presented as mean ± SD, or median (interquartile range).
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327 Discussion
328
329 The presented study examined sex-specific differences in physiological parameters among 82 

330 individuals with a documented SARS-CoV-2 infection. We found that male participants experienced 

331 significantly larger increases in wrist skin temperature, breathing rate and heart rate as well as larger 

332 decreases in heart rate variability during the symptomatic period compared to females. In one of the 

333 first prospective cohort studies relying on wearable sensor technology to collect real-time continuous 

334 physiological signals, we provide evidence for sex-based differential physiological responses to COVID-

335 19.

336

337 Considering the higher mortality and hospitalization rates observed in male COVID-19 patients [9], our 

338 findings may reflect sex-specific biological responses to the infection. In line with previous work [16], 

339 we did not observe any differences between the sexes with regards to antibody titers. However, 

340 Takahashi et al. [16] observed a stronger acute T-cell response in female as compared to male COVID-

341 19 patients. The poorer T-cell response in men was associated with their worse disease progression. 

342 On the other hand, the authors measured higher levels of several pro-inflammatory innate immunity 

343 chemokines and cytokines in men as compared to women. They thus concluded that the early phase 

344 of COVID-19 is associated with key sex differences in immunological mechanisms potentially 

345 accounting for the differential disease progression between women and men.

346

347 Given that the sex differences in physiological signals in our study are most pronounced during the 

348 symptomatic phase, we propose that they reflect the above mentioned sex-specific immunological 

349 mechanisms [33]. Inflammatory markers (e.g., cytokines) have been shown to reflect disease severity 

350 in COVID-19 [34]. As the autonomic nervous system is known to modulate inflammation [35] and the 
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351 examined physiological signals reflect the function of the autonomic nervous system [36], our findings 

352 suggest support for differential immunological responses to COVID-19 between the sexes.

353

354 Importantly, altered physiological signals such as decreased heart rate variability and increased skin 

355 temperature have been proposed as prognostic markers for several disorders including cardiovascular 

356 disease [37] as well as infectious diseases like COVID-19 [18,38–40]. Modern wearable technology 

357 represents a unique and powerful framework to collect continuous real-time physiological data. The 

358 predictive value of physiological signals combined with the reliable history of measurements provided 

359 by wearables opens up new avenues to inform clinical actions and support future precision medicine 

360 approaches incorporating a variety of individual factors into clinical decisions (reviewed in Mitratza et 

361 al. [41]).

362

363 An important step towards precision medicine can be made by considering sex differences in modern 

364 digital health solutions. Historically, women have been underrepresented in clinical trials leading to 

365 medical solutions focusing on men at the risk to women’s health [42]. Many diseases differ between 

366 female and male patients with regards to the prevalence, progression or response to treatment [43]. 

367 For example, minor stroke is more often missed in female than male [44] patients, possibly due to 

368 definitions in clinical diagnosis reflecting typical manifestations in males [43]. More recently, a sex bias 

369 has been recognized in modern ML solutions that are often developed and trained on male data and 

370 thus result in better performance in men [45]. Therefore, in the presented work, we examined sex 

371 differences in the performance of our ML algorithm for early detection of COVID-19. The algorithm 

372 reached a higher sensitivity for female participants. We postulate this difference may be due to the 
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373 larger sample size in the female group. However, the algorithm’s precision was the same in both 

374 groups indicating that it is suitable for use in both men and women, as intended.

375 Limitations

376 While our study belongs to the first research to consider sex-based differences in COVID-19 

377 detection using digital health, future work could continue to build upon our findings by examining 

378 the casual mechanism underlying differences between SARS-Cov-2 infected men and women. In 

379 particular, inability to disentangle immunological versus menstrual-driven changes in physiological 

380 parameters among female participants limits our research’s generalizability. In menstruating 

381 women, a specific pattern has been recognized in the trajectory of physiological signals across the 

382 menstrual cycle. Goodale et al. have demonstrated increased skin temperature, heart rate and 

383 breathing rate in the postovulatory phase of the cycle, mirroring cycle-based shifts in sex hormones 

384 [26]. Sex differences in physiological signals measured in the current study may thus partly be due to 

385 hormonal impact. We cannot exclude such influence as we had limited information about female 

386 participants’ menstrual cycle or reproductive health (e.g., usage of hormonal birth control, 

387 menopausal status). Future researchers may wish to record participants’ menstrual status and 

388 measure hormone levels directly, to probe the relationship between sex hormones and physiological 

389 differences.

390

391 Nevertheless, we believe that menses-driven changes in physiology do not adequately explain the sex 

392 differences in our results, as the dynamics of the observed physiological signals are in line with 

393 previous reports regarding COVID-19 and include increased skin temperature, heart rate and 

394 breathing rate as well as decreased heart rate variability during infection [20]. Furthermore, the most 

395 pronounced sex differences in our study occurred during the symptomatic period, suggesting a 

396 disease-triggered disparity among males and females. Moreover, we do not expect that the 

397 distribution of menstrual cycle phases follows a specific pattern for our participants. We rather expect 

398 it to be random, and thus the hormonal effects to be cancelled out. Finally, 30% (n=17) of females in 
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399 the sample were older than 45 years; peri- or post-menopausal, they were beyond reproductive age 

400 and thus unlikely to experience menses-modulating effects on their physiological parameters.

401

402 Another limitation important to note is the potential effect of recall bias on our findings. The COVID-

403 19 symptom onset date was determined based on the participants’ retrospective reports, and the 

404 classification of the relevant infection periods (i.e., incubation, pre-symptomatic and symptomatic 

405 period) was based on this date. Therefore, an unreliable report would be associated with an inaccurate 

406 definition of the infection periods leading to shifts in trajectories of physiological signals. Furthermore, 

407 in the effort to smooth the data in the model, the abrupt changes in physiological signals after 

408 infection generated gradual alterations in the estimated trajectory. The deviations from the baseline 

409 during the first and last days may be reflective of such model artifacts (Fig 3). Finally, it is important to 

410 note that we did not adjust any parameters from our statistical tests to account for multiple testing. 

411 Therefore, we acknowledge chances for type 1 error in our findings. Nevertheless, we believe that our 

412 research provides important initial insights to be confirmed in future investigations.

413

414 Conclusion

415 For the first time, we show sex differences in physiological responses to COVID-19. Our results 

416 highlight the importance of taking sex into account in medical treatment and care of COVID-19 

417 patients, as well as when validating infection detection algorithms in digital health. Moreover, we 

418 reveal the potential of continuous real-time physiological signals as a clinical tool to inform future 

419 precision medicine approaches.

420

421

422

423
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591 Supporting information

592 S1 Table. This is the S1 Table Title. Results from multilevel linear mixed models showing the main 

593 effects of infection phase, sex, age, medication, drug and alcohol intake, BMI and hypertension as 

594 well as interactions between sex and infection phase with regards to changes in physiological 

595 signals. 

596 This is the S1 Table legend. Unstandardized beta coefficients are presented, with p-values in 

597 parentheses and in bold if lower than 0.05. Sex was coded such that positive coefficients represent 

598 larger values in females. Hypertension was a binary variable representing diagnosed hypertension. In 

599 addition to significant effects of infection phase and sex described in the main text, we observed a 

600 significant main effect of medication and alcohol intake on physiological signals. Nevertheless, these 

601 effects did not alter any of the multilevel model results reported in the main text.
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