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1 Abstract

2 Biological age may be estimated by proteomic aging clocks (PACs). Previous published PACs were 

3 constructed either in smaller studies or mainly in White individuals, and they used proteomic measures 

4 from only one-time point. In the Atherosclerosis Risk in Communities (ARIC) study of about 12,000 

5 persons followed for 30 years (around 75% White, 25% Black), we created de novo PACs and compared 

6 their performance to published PACs at two different time points. We measured 4,712 plasma proteins by 

7 SomaScan in 11,761 midlife participants, aged 46-70 years (1990-92), and 5,183 late-life pariticpants, 

8 aged 66-90 years (2011-13). All proteins were log2-transformed to correct for skewness. We created de 

9 novo PACs by training them against chronological age using elastic net regression in two-thirds of 

10 healthy participants in midlife and late life and compared their performance to three published PACs. We 

11 estimated age acceleration (by regressing each PAC on chronological age) and its change from midlife to 

12 late life. We examined their associations with mortality from all-cause, cardiovascular disease (CVD), 

13 cancer, and lower respiratory disease (LRD) using Cox proportional hazards regression in all remaining 

14 participants irrespective of health. The model was adjusted for chronological age, smoking, body mass 

15 index (BMI), and other confounders. The ARIC PACs had a slightly stronger correlation with 

16 chronological age than published PACs in healthy participants at each time point. Associations with 

17 mortality were similar for the ARIC and published PACs. For late-life and midlife age acceleration for the 

18 ARIC PACs, respectively, hazard ratios (HRs) per one standard deviation were 1.65 and 1.38 (both 

19 p<0.001) for all-cause mortality, 1.37 and 1.20 (both p<0.001) for CVD mortality, 1.21 (p=0.03) and 1.04 

20 (p=0.19) for cancer mortality, and 1.46 and 1.68 (both p<0.001) for LRD mortality. For the change in age 

21 acceleration, HRs for all-cause, CVD, and LRD mortality were comparable to those observed for late-life 

22 age acceleration. The association between the change in age acceleration and cancer mortality was 

23 insignificant. In this prospective study, the ARIC and published PACs were similarly associated with an 

24 increased risk of mortality and advanced testing in relation to various age-related conditions in future 

25 studies is suggested. 
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26 Introduction

27 In the United States the average human life expectancy has increased by 30 years during the 20th century. 

28 This increased life expectancy has given rise to the number of individuals living with age-related diseases 

29 and disabilities and has inevitably led to an increased risk of mortality, reduced health span, lower quality 

30 of life, and increased healthcare costs in the United States. Research is needed to understand the 

31 biological mechanisms of aging as we develop and target preventions and interventions that prolong 

32 healthy lifespan (1, 2).

33 An individual’s extent of aging, i.e., how far they are into the aging process, cannot be 

34 sufficiently measured by chronological age as individuals develop physiological dysregulations at 

35 different chronological ages (1, 2). To better understand the extent of aging, researchers introduced a term 

36 called “biological age” to capture how far individuals are into their aging process independent of 

37 chronological age. Biological age, according to the definition proposed by Baker and Sprott, is 

38 characterized by the “biological parameter[s] of an organism, either alone or in some multivariate 

39 composite that will, in the absence of disease, better predict functional capability at some late age than 

40 will chronological age” (3). 

41 To estimate a person’s biological age, researchers have developed metrics called aging clocks 

42 using epigenetic, transcriptomic, metabolomic, proteomic, and other biomarkers (4). Aging clocks are 

43 strongly correlated with chronological age in healthy individuals. However, in individuals with 

44 comorbidities or predisposing conditions, aging clocks deviate from chronological age because these 

45 conditions impact levels of age-associated biomarkers (5, 6). Studies show that aging clocks may be used 

46 to identify individuals who have a positive deviation of biological age from their chronological age 

47 (called age acceleration) that may predict their future risk of age-related conditions (5-7). In addition, 

48 aging clocks may also track the effectiveness of anti-aging interventions in clinical trials (5, 8-10). 

49 The most studied aging clocks are epigenetic clocks, such as the Horvath clock, Hannum clock, 

50 DNAm PhenoAge, and GrimAge (11-14). However, there is a lack of understanding of the underlying 

51 mechanisms of aging-related changes in DNA methylation sites. It remains unclear what aspects of aging 
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52 those clocks reflect (15). Recently, new assays that measure thousands of proteins in a small blood sample 

53 simultaneously have been developed. For instance, the SomaScan assay, a modified aptamer-based 

54 technology (16-18). These assays make it possible to construct proteomic aging clocks (PACs) (5-7, 19). 

55 The strength of PACs is that they include proteomic-based biomarkers, an intermediate phenotype that is 

56 most proximal to age-related diseases, and thus may provide more accurate information on aging and age-

57 related pathologies (5, 20). Importantly, proteins serve as a target in 96% of FDA-approved drugs (21). 

58 Therefore, in addition to predicting biological age and risk of diseases, proteins comprising PACs, if 

59 causal, hold promise as targets of anti-aging drugs. Targeting age-related processes or pathological 

60 manifestations instead of a single disease is advantageous as this approach may simultaneously reduce 

61 the development or progression of multiple age-related diseases and potentially prolong healthy 

62 lifespan. 

63 Several PACs have been developed using SomaScan assays, such as the PACs created by 

64 Lehallier [2020] (N = 3,301, aged 18-76 years) (6), Tanaka [2018] (N = 240, aged 22-93 years) (5), and 

65 Sathyan [2020] (N = 1,025, aged 65-95 years) (19). The descriptions of those published PACs, including 

66 the number of proteins used to construct those PACs, are presented in S1 Table. Although those 

67 published PACs showed high correlations with chronological age, they were developed either in relatively 

68 small studies or in studies included individuals of European descent (5, 6, 19, 22). However, proteins 

69 associated with age and age-related diseases vary by race and socioeconomic status (23-25). Moreover, 

70 previously published PACs were constructed using a one-time measure. Thus, it is necessary to develop 

71 PACs in a large longitudinal study of diverse individuals and examine if the change in PACs over time is 

72 associated with mortality independent of chronological age, smoking, and other lifestyle factors and 

73 behaviors.

74 In this study, we developed new PACs in participants followed from midlife and late life and 

75 examined their associations with mortality within a large population-based prospective cohort of White 

76 and Black, men and women, in the Atherosclerosis Risk in Communities (ARIC) study. In ARIC, about 

77 5,000 plasma proteins were measured using the SomaScan assay (v.4) from plasma samples collected at 
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78 two different times (20 years apart). We aimed to compare the midlife and late-life ARIC PACs 

79 developed in healthy participants (without major age-associated diseases) with the published Lehallier’s, 

80 Tanaka’s, and Sathyan’s PACs. Comparing their correlation with chronological age and their associations 

81 with mortality from all-cause, cardiovascular disease (CVD), cancer, and lower respiratory disease 

82 (LRD). In addition, using protein data measured at two different time points, we examined whether the 

83 change in PACs from midlife to late life was associated with premature mortality.

84
85 Methods

86 Study population

87 This study included White and Black, men and women, participants of the ongoing ARIC study 

88 (RRID: SCR_021769), which was initiated in 1987 (26, 27). At Visit 1 (1987-89), 15,792 volunteers aged 

89 45-64 years were recruited from four U.S. study centers, Washington County, Maryland; the northwest 

90 suburbs of Minneapolis, Minnesota; Jackson, Mississippi; and Forsyth County, North Carolina. 

91 Participants in the Minnesota and Maryland centers were primarily White and the recruitment in 

92 Mississippi was restricted to Black residents. ARIC was approved by institutional review boards at each 

93 participating center and all study participants provided written informed consent. To date, nine visits have 

94 been completed (26). ARIC participants have received follow-up telephone calls annually from 1987 to 

95 2012 and semi-annually after 2012, with response rates of 90%-99% for the annual follow-up calls and 

96 83%-90% for semi-annual follow-up calls among living participants who have not withdrawn consent to 

97 be contacted (27). There is also continuous surveillance of local hospitals and linkage to the National 

98 Death Index (NDI). 

99 Plasma collection

100 In this study, we used plasma samples collected at Visit 2 (1990-92) from 11,761 participants 

101 aged 46-70 years (midlife) and at Visit 5 (2011-13) from 5,183 participants aged 66-90 years (late life). 

102 The blood sample collection, processing, and storage in ARIC was designed to minimize the spontaneous 

103 biochemical reactions after blood collection and is consistent with the recommended practice for 
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104 proteomics data analysis in epidemiological studies (16, 28, 29). After venipuncture, blood samples were 

105 put immediately in an ice water bath. Centrifugation was performed within 10 min after venipuncture at 

106 room temperature (15-25 °C). After centrifugation, the aliquots were stored at −80 °C within 90 min from 

107 venipuncture and were unthawed before this analysis. 

108 Protein measurement and quality control

109 Plasma samples were analyzed using a SOMAmer (Slow Off-rate Modified Aptamers) based 

110 capture array called SomaScan by Somalogic, Inc. (Boulder, CO, USA) (18, 30-32). The SomaScan 

111 platform uses single-stranded modified DNA-based aptamers to capture conformational protein epitopes. 

112 The description of the SomaScan assay and the data normalization process have been described 

113 previously (16, 17, 32).

114 Among the 5,284 available aptamers, we excluded aptamers with a Bland-Altman coefficient of 

115 variation (CVBA) greater than 50% or a variance of less than 0.01 on the log scale, or binding to mouse 

116 Fc-fusion, contaminants, or non-proteins (33). After the exclusion, 4,955 aptamers were included (at Visit 

117 2 and Visit 5) which corresponded to 4,712 proteins. About 5% of proteins had more than one aptamer 

118 binding to the same protein. Each aptamer was treated as a variable in the construction of PACs. The 

119 CVBA for split samples was 6% at Visit 2 and 7% at Visit 5. Protein measures were reported as relative 

120 fluorescent units (RFU) and were log2-transformed to correct for skewness. 

121 Identifying healthy participants

122 In this study, we created the midlife (Visit 2)  and late-life (Visit 5) ARIC PACs in “healthy 

123 participants” defined as participants without major age-associated diseases that are linked to premature 

124 mortality. Specifically, abnormal kidney function (i.e., estimated glomerular filtration rate (eGFR) less 

125 than 60 mL/min/1.73m2), cancer, chronic obstructive pulmonary disease (COPD), CVD (heart failure, 

126 definite or probable stroke, or coronary heart disease (34, 35)), diabetes, and hypertension (or 

127 uncontrolled hypertension for late-life participants at Visit 5). The definitions and assessments of these 

128 major diseases in ARIC and the detailed process of identifying healthy participants are described in the S1 

129 Appendix. We identified 4,489 midlife healthy participants at Visit 2 (38.2% of all Visit 2 participants, 
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130 Fig 1) and 945 late-life healthy participants at Visit 5 (18.2% of all Visit 5 participants, Fig 2). 

131 Assessment of mortality and other characteristics of interest

132 Deaths were ascertained through annual (semi-annual since 2012) follow-up telephone calls to 

133 participants or their proxies, surveillance of local hospitals, state records, and linkage to NDI through 

134 December 31, 2017 for participants in Mississippi or through December 31, 2019 for participants in other 

135 centers (36). All-cause mortality was defined as death resulting from any cause. CVD mortality, cancer 

136 mortality, and LRD mortality were defined based on the underlying cause of death using International 

137 Classification of Diseases, Ninth Revision, codes (ICD-9 codes) 390–459 or International Classification 

138 of Diseases, Tenth Revision, codes (ICD-10 codes) I00–I99 for CVD deaths, ICD-9 codes 140-239 or 

139 ICD-10 codes C00-C97 for cancer deaths, and ICD-9 codes 466 and 480-519 or ICD-10 codes J10-J98 

140 for LRD deaths.

141 Other characteristics of interest included demographic, lifestyle, and medical characteristics. 

142 Namely chronological age, sex, race, study center, education, smoking status, pack-years of smoking, 

143 alcohol intake, body mass index (BMI), physical activity, aspirin use, hormone replacement therapy 

144 (HRT) in females (only at Visit 2; this variable is not available at Visit 5), and eGFR (26). Education 

145 attainment was collected at Visit 1. Physical activity was collected at Visit 1 (used as physical activity at 

146 Visit 2 in this study), and Visit 5. The other variables listed above were collected at both Visit 2 and Visit 

147 5. Detailed procedures for assessing these characteristics are described in the S1 Appendix.

148 Statistical analysis

149 Development of PACs

150 To construct ARIC PACs in midlife (Visit 2) and late life (Visit 5), we randomly selected two-

151 thirds of healthy participants at each visit and used them as the training set at the corresponding visit. The 

152 remaining one-third of healthy participants were used as the test set (Fig 1 and Fig 2). We utilized the 

153 training set to train PACs against chronological age and obtain the appropriate hyperparameter values and 

154 weight for each aptamer: 𝑐ℎ𝑟𝑜𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑎𝑔𝑒 = 𝛽0 + ∑𝑛
𝑖=1 𝛽𝑖 × 𝑎𝑝𝑡𝑎𝑚𝑒𝑟𝑖, where 𝑎𝑝𝑡𝑎𝑚𝑒𝑟𝑖 is the level 
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155 of the ith aptamer. We used the test set to examine the Pearson correlation (r) between PAC and 

156 chronological age and median absolute error (MAE) to validate each PAC.

157 Construction of midlife PACs in the Visit 2 training set

158 Using the Visit 2 training set, we constructed the midlife ARIC PAC using elastic net regression 

159 (alpha=0.5) and with log2-transformed proteins. Lambda value was selected based on 10-fold cross-

160 validation. We chose elastic net regression because it combines the penalties from both Lasso and Ridge 

161 regressions, and most previous aging clocks, including PACs and epigenetic clocks, were constructed 

162 using elastic net regression. Using the Visit 2 proteomics data, we also trained four other midlife PACs by 

163 applying different penalized regression methods and various protein transformations (described in S2 

164 Table). For instance, one of the created PACs accounted for the potential nonlinear associations between 

165 proteins and chronological age by including both the square term and cubic term of each aptamer. Those 

166 four PACs were strongly correlated (r≥0.97) with the midlife ARIC PAC that was constructed using the 

167 simplest protein transformation (S3 Table). Therefore, the simplest ARIC PAC was used for further 

168 investigation.

169 In addition to the ARIC PAC, we also computed three published PACs in midlife: Lehallier’s (6), 

170 Tanaka’s (5), and Sathyan’s PACs (19). In our study, we computed Sathyan’s PAC using the published 

171 weights (19). For Lehallier’s and Tanaka’s PACs, we had to estimate ARIC weights specific to these 

172 PACs using Ridge regression in the training set because ARIC did not include all the aptamers reported in 

173 these PACs (S1 Table). The lambda value for Ridge regression was selected based on 10-fold cross-

174 validation. 

175 Construction of late-life PACs in the Visit 5 training set

176 Because hypertension is one of the most common conditions in older persons in the United States 

177 (37), to construct the late-life ARIC PAC, we additionally included participants with controlled 

178 hypertension as healthy participants. Controlled hypertension was defined as the measured diastolic blood 

179 pressure being below 90 and the measured systolic blood pressure being below 140 while the participant 
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180 is on medication (38). Adding these participants increased the number of healthy participants by 95% 

181 (462 participants) but did not change the PAC’s performance as shown in S4 Table.  

182 Using the Visit 5 training set, we constructed the late-life ARIC PAC using elastic net regression 

183 (alpha=0.5), the same approach as for the midlife ARIC PAC. Lambda value was selected based on 10-

184 fold cross-validation. In addition to the late-life ARIC PAC, we computed the late-life Lehallier’s and 

185 Tanaka’s PACs using ARIC weights estimated using the Visit 5 training set by applying Ridge regression 

186 as discussed above and we computed the Sathyan’s PAC using the published weights. 

187 Internal validation of PACs and examining associations with mortality

188 In the remaining 8,768 participants at Visit 2 (Fig 1) and 4,553 participants at Visit 5 (Fig 2) after 

189 excluding the training set, we computed PACs at the corresponding visits using the weighted sum of 

190 proteins determined in the training set. We internally validated each PAC in the test set of healthy 

191 participants at the corresponding visits by computing the Pearson correlation between PAC and 

192 chronological age at that visit and MAE. 

193 In all the remaining participants at each visit, to capture the PACs’ effects independent of 

194 chronological age, we created age acceleration for each PAC as residuals after regressing PAC on 

195 chronological age (39). Demographic, lifestyle, and medical characteristics were examined across 

196 quartiles of age acceleration as mean (SD) or percentage (%). To further investigate PACs, we examined 

197 the associations between PACs and mortality. We used Cox proportional hazards regression to calculate 

198 hazard ratios (HRs) and 95% confidence intervals (CIs) for mortality from all-cause, CVD, cancer, and 

199 LRD with age acceleration. For the associations with CVD mortality, cancer mortality, and LRD 

200 mortality, deaths from other causes were treated as competing events using the Fine and Gray method (40, 

201 41). We modeled age acceleration as a continuous variable because there was no evidence of nonlinearity 

202 observed when we applied cubic splines. For each participant, the total person-years were determined 

203 from the date of blood collection (at Visit 2 or Visit 5, depending on the analysis) until death, censoring, 

204 or the end of follow-up (either December 31, 2017 for participants from Mississippi or December 31, 

205 2019 for participants from other centers), whichever occurred first. The proportional hazards assumption, 
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206 examined by the graphical methods using log-log survival curves with age acceleration dichotomized at 

207 the median, was not violated in any regression models. The model was adjusted for chronological age, 

208 sex, joint terms for race and study center (Black participants from Mississippi; Black participants from 

209 any other centers; White participants from Maryland; White participants from North Carolina; and White 

210 participants from Minnesota), education, BMI, smoking status, pack-years of smoking, alcohol intake, 

211 physical activity, HRT (at Visit 2 only), diabetes, hypertension, and prevalent CVD, and eGFR (fully-

212 adjusted model). These variables were associated with either age acceleration or risk of mortality. To 

213 confirm these variables as potential confounders, we computed the magnitude of R squared by regressing 

214 age acceleration for both the midlife and late-life ARIC PACs on these variables at the corresponding 

215 visits in the model adjusted for chronological age (S6 Table). We did not adjust for aspirin use because 

216 aspirin use had no association with midlife or late-life age acceleration for ARIC PACs and aspirin use 

217 explained <0.0015 of variance in both midlife and late-life age acceleration (S6 Table). In this study, we 

218 found that HRs (95% CIs) for mortality were the same in the age-adjusted and fully-adjusted models. 

219 Thus, we reported results for the fully adjusted model. 

220 We also examined whether the change in age acceleration from midlife (Visit 2) to late life (Visit 

221 5), computed as the age acceleration for the late-life ARIC PAC minus the age acceleration for the midlife 

222 ARIC PAC, was associated with all-cause mortality and cause-specific mortality types using Cox 

223 proportional hazard regression. For each participant, the total person-years was determined from Visit 5 

224 date until death, censoring, or the end of follow-up. For this analysis, we additionally adjusted for midlife 

225 age acceleration. Also, we examined whether the associations with mortality were modified by midlife 

226 age acceleration (continuous variable) using a multiplicative term between the change in age acceleration 

227 and midlife age acceleration. For the change in age acceleration, we only examined the change based on 

228 the ARIC PACs because the ARIC and published PACs showed similar associations with all mortality 

229 types at each visit.

230 In addition to studying the associations with mortality, we examined if midlife lifestyle and 

231 medical characteristics (Visit 2) were associated with late-life age acceleration (Visit 5). This analysis 
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232 was conducted using multivariable linear regression and midlife participants’ characteristics including: 

233 chronological age, sex, race, education, BMI, smoking status, pack-years of smoking, alcohol intake, 

234 physical activity (at Visit 1), HRT use, diabetes, hypertension, CVD, and eGFR were included into the 

235 model simultaneously.

236 Finally, we tested whether or not the exclusion of the training set influenced the associations 

237 between PACs and mortality. We examined this by comparing the associations for Sathyan’s PAC in all 

238 participants and in participants after excluding the training set. We used Sathyan’s PAC rather than other 

239 published PACs because all the proteins reported in Sathyan’s PAC were measured in ARIC and we were 

240 able to calculate Sathyan’s PAC using published weights.

241 Exploratory analyses

242  In an exploratory analysis, we examined whether sex, race, or chronological age (in tertiles) 

243 modified the associations of age acceleration with all-cause mortality, CVD mortality, and cancer 

244 mortality by including a multiplicative term between age acceleration and the variable of interest in the 

245 corresponding models. We did not examine LRD mortality due to the limited number of LRD deaths.

246 In the second exploratory analysis, we examined the association between age acceleration for the 

247 midlife ARIC PAC and the 10-year risk of death as this may be important for clinical screening. We 

248 tested the 10-year risk for midlife PAC only, because the follow-up period starting from late life was less 

249 than 10 years. Here we examined the midlife ARIC PAC only, because ARIC and published PACs 

250 showed similar associations with all mortality types. 

251 In this study, PACs were constructed using R (version 4.1.2, package “glmnet”), and all the other 

252 analyses were performed using SAS 9.4 (RRID: SCR_008567). 

253 Results

254 Midlife PACs

255 After excluding the Visit 2 training set, the remaining participants at Visit 2 (midlife) were on 

256 average 58.1±5.7 years old, 54.6% were female, and 27.1% were identified as Black.

257 Pearson correlation coefficients between PACs and chronological age in midlife
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258 Elastic net regression selected 788 aptamers for the midlife ARIC PAC (Table 1). In the Visit 2 

259 test set, the midlife ARIC PAC was correlated with chronological age (r=0.80, MAE=2.19 years, Table 1 

260 and Fig 3a). Of the three midlife published PACs, Lehallier’s PAC (r=0.76, Table 1 and Fig 3b) had a 

261 slightly higher correlation with chronological age than Tanaka’s (r=0.66) and Sathyan’s PACs (r=0.58) 

262 (S5 Table and S1 Fig). The midlife ARIC PAC was strongly correlated with the midlife Lehallier’s 

263 (r=0.89), Tanaka’s (r=0.77), and Sathyan’s PACs (r=0.71) (S3 Table). 

264 Distributions of midlife characteristics across quartiles of midlife age acceleration 

265 Distributions of midlife characteristics (Visit 2) across quartiles of midlife age acceleration are 

266 shown in Table 2 and S7 Table. Among the 8,768 participants in midlife (all Visit 2 participants after 

267 excluding the Visit 2 training set), the range of age acceleration was from -14.0 to +24.2 years for the 

268 midlife ARIC PAC. The distributions of characteristics including HRT use, prevalent CVD, and eGFR 

269 were in the same direction across age acceleration for the midlife ARIC and published PACs (Table 2 

270 and S7 Table). However, the distributions of gender, race, education, BMI, current smoking, aspirin use, 

271 prevalent hypertension, and prevalent diabetes were different across different PACs (Table 2 and S7 

272 Table). The difference may be because different PACs capture different aspects of aging.

273 Association between midlife age acceleration and mortality

274 Among the 8,768 participants at Visit 2, 5,294 died by 2019 with a median follow-up of 23.8 

275 years. Age acceleration for the midlife ARIC PAC and published PACs showed associations of similar 

276 magnitude with all mortality types (Table 3 and S8 Table). For the midlife ARIC PAC, a one SD (SD = 

277 2.94 years) increase in age acceleration was associated with a 38% increased risk of all-cause mortality 

278 [95% CI: 1.34-1.42], a 20% increased risk of CVD mortality [95% CI: 1.14-1.27], and a 36% increased 

279 risk of LRD mortality [95% CI: 1.22-1.51] (Table 3). Neither age acceleration for the midlife ARIC PAC 

280 nor published PACs was associated with cancer mortality (Table 3).

281 Late-life PACs 

282 After excluding the Visit 5 training set, the remaining participants at Visit 5 (late life) were on 

283 average 76.5±5.3 years old, 56.3% were female, and 19.7% were identified as Black.
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284 Pearson correlation coefficients between PACs and chronological age in late life

285 Elastic net regression selected 135 aptamers for the late-life ARIC PAC (Table 1). In the Visit 5 

286 test set, the late-life ARIC PAC was correlated with chronological age (r=0.71, MAE=2.36 years, Table 1 

287 and Fig 4a). The late-life Lehallier’s PAC had a correlation of 0.63 with chronological age (Table 1 and 

288 Fig 4b) and the late-life Tanaka’s and Sathyan’s PACs had correlations of 0.59 and 0.69 with 

289 chronological age, respectively (S5 Table and S2 Fig). In the Visit 5 test set, the late-life ARIC PAC was 

290 strongly correlated with the late-life Lehallier’s (r = 0.84), Tanaka’s (r = 0.79), and Sathyan’s PACs (r = 

291 0.84) (S9 Table).

292 Distribution of characteristics in late life across quartiles of late-life age acceleration 

293 Distribution of late-life characteristics (Visit 5) across quartiles of late-life age acceleration are 

294 shown in Table 4 and S10 Table. Among the 4,553 participants in late life (all Visit 5 participants after 

295 excluding the Visit 5 training set), the range of age acceleration was from -7.5 to +17.0 years for the late-

296 life ARIC PAC. The distributions of characteristics including having a college-level education, physical 

297 activity, prevalent CVD, and eGFR were in the same direction across age acceleration for the late-life 

298 ARIC and published PACs (Table 4 and S10 Table). However, the percentages of White participants, 

299 never smokers, and never drinkers, and the prevalences of  hypertension and diabetes were different 

300 across different PACs (Table 4 and S10 Table). 

301 Association between late-life age acceleration and mortality

302 Among the 4,553 participants at Visit 5, 1,123 died by 2019 with a median follow-up of 6.53 

303 years. Age acceleration for the late-life ARIC and three published PACs were similarly associated with all 

304 mortality types (Table 5 and S11 Table). For the late-life ARIC PAC, a one SD (SD=2.61 years) 

305 increase in age acceleration was associated with an increased risk of all-cause mortality [HR (95% CI) = 

306 1.65 (1.52-1.79)], CVD mortality [HR (95% CI) = 1.37 (1.18-1.58)], cancer mortality [HR (95% CI) = 

307 1.21 (1.02-1.44)], and LRD mortality [HR (95% CI) = 1.68 (1.32, 2.12)] (Table 5). 

308 Associations of the change in age acceleration from midlife to late life with mortality
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309 The median timespan between Visit 2 and Visit 5 was 20.8 years, ranging from 18.6 to 23.5 

310 years. Among the 2,707 participants who survived up to Visit 5 (after excluding the training sets at Visit 2 

311 and Visit 5), the midlife and late-life ARIC PACs were correlated with each other (r=0.69) and 48.4% of 

312 participants had a greater age acceleration in late life compared to midlife. In the fully adjusted model 

313 (additionally adjusted for midlife age acceleration), the change in age acceleration from midlife to late life 

314 was associated with all-cause mortality, CVD mortality, and LRD mortality, but not cancer mortality. 

315 HRs (95% CIs) per one SD of the change in age acceleration were 1.71 (1.52-1.94) for all-cause 

316 mortality,1.38 (1.13-1.68) for CVD mortality, 1.46 (1.05-2.04) for LRD mortality, and 1.30 (0.98-1.71) 

317 for cancer mortality (Table 5). Midlife age acceleration did not modify the associations between the 

318 change in age acceleration and all-cause mortality (p-interaction for the multiplicative term=0.26), CVD 

319 mortality (p-interaction=0.64), LRD mortality (p-interaction=0.26), or cancer mortality (p-

320 interaction=0.58).

321 Association between midlife participants’ characteristics and late-life age acceleration 

322 In the multivariable analysis of midlife participants’ characteristics (Visit 2), we found that being 

323 current smokers, never drinkers, or having diabetes, hypertension, CVD, a higher BMI, higher pack-years 

324 of smoking, lower eGFR or lower physical activity in midlife were associated with higher late-life age 

325 acceleration (Table 6).

326 Comparison of the associations between age acceleration and mortality in the full cohort and the cohort 

327 subset after excluding the training set

328 The magnitudes of associations of age acceleration for Sathyan’s PAC in both midlife and late 

329 life with mortality in all participants at each visit were comparable to the magnitudes of those associations 

330 in participants after excluding the training set (S12 Table).

331 Proteins included in PACs

332 There are 49 common aptamers included in both the midlife and late-life ARIC PACs, accounting 

333 for 6.2% of all proteins in the midlife ARIC PAC and 36.4% of all proteins in the late-life ARIC PAC (S3 

334 Fig). Four proteins were found in common across both the midlife and late-life ARIC PACs as well as the 
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335 three published PACs: pleiotrophin (PTN), A disintegrin and metalloproteinase with thrombospondin 

336 motifs 5 (ADAMTS-5), macrophage metalloelastase (MMP12), and cell adhesion molecule-related/down-

337 regulated by oncogenes (CDON).

338 We also identified 20 proteins in each ARIC PAC (midlife and late-life) based on the largest 

339 absolute weights of their constituting aptamers (S13 Table). We found six proteins whose corresponding 

340 aptamers had the largest absolute weights in both ARIC PACs: transgelin (TAGL), WNT1-inducible-

341 signaling pathway protein 2 (WISP-2), chordin-like protein 1 (CRDK1), collagen alpha-1(XV) chain 

342 (COF1), complement component C1q receptor (C1QR1), and pleiotrophin (PTN).

343 Exploratory analyses

344 Associations between age acceleration and mortality stratified by sex, race, and chronological age

345 The results for the associations between midlife PACs and mortality stratified by sex, race, and 

346 chronological age are presented in S14 Table and S4 Fig. Notably, chronological age (in tertiles) 

347 statistically modified the associations of age acceleration for both the midlife ARIC and three published 

348 PACs with CVD mortality (p-interactions<0.01), and the association was strongest among participants 

349 aged 47–54 years (first tertile) (S14 Table and S4 Fig). 

350 The results for the associations between late-life PACs and mortality stratified by sex, race, and 

351 chronological age are presented in S15 Table and S5 Fig. Sex statistically modified the association 

352 between age acceleration and cancer mortality (p-interactions≤0.04) for the late-life ARIC PAC as well as 

353 the three published PACs, and the association was stronger and significant in women for all PACs (S15 

354 Table and S5 Fig). In addition, chronological age (in tertiles) significantly modified the association 

355 between age acceleration and CVD mortality (p-interaction=0.04) for the late-life ARIC PAC but not the 

356 published PACs (S15 Table and S5 Fig). 

357 Association between age acceleration for midlife ARIC PAC and 10-year risk of death

358 Among the 8,768 participants in midlife, a total of 1,137 participants died within 10 years, 

359 including 430 deaths attributed to CVD, 434 to cancer, and 85 to LRD. In the fully adjusted model, a one 

360 SD (SD=2.94 years) increase in age acceleration for the midlife ARIC PAC was associated with an 
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361 increased risk of all-cause mortality [HR (95% CI)=1.49 (1.41-1.58)], CVD mortality [HR (95% CI)=1.47 

362 (1.33-1.62)], cancer mortality [HR (95% CI)=1.21 (1.09-1.34)], and LRD mortality [HR (95% CI)=1.95 

363 (1.60-2.38)]. 

364 Discussion

365 In a large prospective community-based study of White and Black individuals, the ARIC study, 

366 we tested three published PACs (5, 6, 19) and constructed and validated de novo PACs in midlife (46-70 

367 years) and late life (66-90 years), using 4,955 aptamers measured by the SomaScan assay (v.4). Both the 

368 midlife and late-life ARIC PACs were developed in healthy participants and were strongly correlated with 

369 chronological age. Correlations between chronological age and the ARIC PACs were 0.80 in midlife and 

370 0.71 in late life, which were slightly stronger compared to the correlations between chronological age and 

371 the three published PACs (Lehallier’s, Tanaka’s, and Sathyan’s) respectively (r=0.58-0.76 in midlife and 

372 r=0.59-0.69 in late life). All the HRs for the associations with mortality, including mortality from all-

373 cause, CVD, cancer, and LRD, were very similar for the ARIC and published PACs in midlife and late 

374 life, respectively. Notably, the associations with all-cause mortality, CVD mortality, and LRD mortality 

375 were significant at each visit but stronger in late life than in midlife, and the associations with cancer 

376 mortality were significant in late life only. The change in age acceleration from midlife to late life had 

377 associations of similar magnitude with all-cause mortality and CVD mortality when compared to the 

378 associations for the late-life ARIC PAC. The HR estimate for LRD mortality was slightly lower for the 

379 change in age acceleration compared to the late-life ARIC PAC, but the confidence intervals for these two 

380 estimates largely overlapped. The change in age acceleration was not associated with cancer mortality.

381 In midlife we applied different penalized regressions and various transformations of proteins to 

382 develop five de novo ARIC PACs, including a PAC that accounted for non-linear associations between 

383 proteins and chronological age. These five PACs were highly correlated with each other. Thus, among 

384 these five PACs, we selected the midlife ARIC PAC, constructed using the simplest protein 

385 transformation, i.e., log2 transformation without any further transformation. We selected the PAC with 

386 the simplest protein transformation because, if validated, it would be easier to use this PAC in future 
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387 studies. We also constructed the late-life ARIC PAC using the same method as employed for the midlife 

388 ARIC PAC. In our study, elastic net regression selected 788 aptamers for the midlife ARIC PAC and 135 

389 aptamers for the late-life ARIC PAC. The smaller number of aptamers for the late-life ARIC PAC may be 

390 because of the smaller training set at Visit 5 (N=630) compared to the Visit 2 training set (N=2,993). 

391 With a larger training set, penalized regressions have more power to select more aptamers. This is in 

392 agreement with Sathyan’s PAC of 162 proteins, which was developed using the same SomaScan assay as 

393 in our study with a training set of 500 participants (19).

394 We compared associations of midlife and late-life ARIC and published PACs with mortality. 

395 Although different PACs included different proteins, the age acceleration for both ARIC and published 

396 PACs showed comparable associations with mortality at each time point. Our findings for all-cause 

397 mortality in midlife participants were similar to the findings in the InCHIANTI study (N=459, 

398 chronological age: 21-98 years) by Tanaka et al. In their study, they reported a significant association 

399 between age acceleration for Tanaka’s PAC and all-cause mortality after adjusting for chronological age, 

400 sex, and study site [HR (95% CI) per 1 SD = 1.29 (1.11-1.50)] (22). Our findings suggest that PACs 

401 consisting of different proteins may be used for predicting mortality. It will be important to understand 

402 this phenomenon in future studies. 

403 In our study, for both ARIC and published PACs, their late-life age acceleration showed stronger 

404 associations with all mortality types than midlife age acceleration. This may be because PACs that used 

405 proteins measured in late life capture information for some biological function closer to mortality than 

406 proteins measured in midlife. It is also possible that the longer follow-up of up to 29.9 years since midlife 

407 introduced regression dilution bias (42), resulting in weaker associations with midlife PACs. Potential 

408 regression dilution bias may also explain our stronger findings in the analysis of the midlife ARIC PAC 

409 and mortality with a follow-up period restricted to 10 years compared to a total follow-up of up to 29.9 

410 years until 2019. The association between the midlife ARIC PAC and cancer mortality became significant 

411 when participants were followed for a maximum of 10 years. The associations with all-cause mortality, 

412 CVD mortality, and LRD mortality were stronger compared to the associations observed for participants 
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413 followed up to 2019. In summary, our results underscored the potential of PACs to predict both biological 

414 age and mortality in midlife and late life. Our results also suggested that PACs may be useful to predict 

415 the 10-year risk of death in a clinical context.

416 Our findings showed that midlife individuals who were current smokers (compared to never 

417 smokers), as well as those with higher (vs. lower) BMI, lower (vs. higher) eGFR, and age-related 

418 diseases, such as CVD, hypertension, and diabetes in midlife, were associated with higher age 

419 acceleration in late life. In addition, a larger change in age acceleration from midlife to late life was 

420 associated with an increased risk of all-cause mortality, CVD mortality, and LRD mortality. Future 

421 studies should incorporate multiple time points in applying PACs to model the change in age acceleration 

422 over time.

423 The strengths of this population-based observational study include its prospective design with a 

424 follow-up of more than 20 years and detailed demographic and lifestyle information. Furthermore, the 

425 ARIC cohort includes a diverse sample comprising both White and Black individuals, while previous 

426 studies of PACs either had small sample sizes or included mainly White individuals (5, 6, 19). Also, we 

427 compared multiple PACs regarding their correlation with chronological age and their associations with 

428 mortality. In addition, with the availability of proteomics data from two distinct visits, we were able to 

429 examine the association between the midlife to late-life change in age acceleration and mortality. 

430 Moreover, we adjusted for a broader range of confounders while previous studies of PACs only 

431 adjusted for demographic factors (19, 22). Our study has several possible limitations. First, the 

432 possibility of protein degradation during long-term storage cannot be excluded. However, the blood 

433 samples were frozen right after their collection and have never been thawed reducing the possibility of 

434 degradation. Further, no evidence of protein degradation across two visits in ARIC was shown by the 

435 similar precision of the assay from a split duplicate analysis at both visits (CVBA = 6% at Visit 2 and 7% 

436 at Visit 5) (16). Second, ARIC measured proteins in plasma, rather than other tissues, which limited the 

437 generalizability of our PACs to proteins from other tissues. 
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438 In conclusion, we developed de novo midlife and late-life PACs in a diverse population of White 

439 and Black individuals and showed that these PACs were associated with mortality risk. The magnitude of 

440 these associations is similar to the associations observed for previously published PACs, both in midlife 

441 and late life. Moreover, the change in age acceleration from midlife to late life showed comparable 

442 associations with mortality as the late-life PAC. Future studies are recommended to investigate the 

443 potential use of these PACs as biomarkers for biological age and risk stratification for age-related 

444 disease. If validated in external studies, these PACs may serve as surrogate endpoints in clinical 

445 trials of anti-aging interventions and inform physicians about the implementation of anti-aging 

446 lifestyle and therapeutic interventions.

447
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Figure 1. Study population at Visit 2 (midlife, 1990-1992, the chronological age of participants is 46-
70 years); ARIC. The midlife ARIC PAC was constructed in a group of health participants in the 
training set and its asssociation with mortality was examined in all remaining pariticpants irrespective of 
health.

Figure 2. Study population at Visit 5 (late life, 2011-2013, the chronological age of participants is 
66-90 years); ARIC. The late-life ARIC PAC was constructed in a group of health participants in the 
training set and its asssociation with mortality was examined in all remaining pariticpants irrespective of 
health.

Figure 3. Pearson correlation (r) between the midlife ARIC and Lehallier’s PACs and 
chronological age in the Visit 2 test set of healthy participants. The x-axis depicts chronological age. 
The y-axis represents proteomic aging clock (PAC). (A) The midlife ARIC PAC was constructed using 
healthy participants from ARIC. The correlation between the midlife ARIC PAC and chronological age 
was 0.80. (B) Lehallier’s PAC was computed using ARIC weights obtained from Ridge regression based 
on proteins available in ARIC. The correlation between midlife Lehallier’s PAC and chronological age 
was 0.76. 

Figure 4. Pearson correlation (r) between the late-life ARIC and Lehallier’s PACs and 
chronological age in the Visit 5 test set of healthy participants, ARIC. The x-axis depicts 
chronological age. The y-axis represents proteomic aging clock (PAC). (A) The late-life ARIC PAC was 
constructed using healthy participants from ARIC. The correlation between the late-life ARIC PAC and 
chronological age was 0.71. (B) Lehallier’s PAC was computed using ARIC weights obtained from Ridge 
regression based on proteins available in ARIC. The correlation between late-life Lehallier’s PAC and 
chronological age was 0.63.
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Table 1. Pearson correlation between the midlife and late-life ARIC and Lehallier’s PACs and chronological 
age and MAE, ARIC

The midlife ARIC and published PACs; Visit 2 (N = 2,993 in training set, N = 1,496 in test set)
midlife ARIC PAC midlife Lehallier’s PAC

Number of aptamers in PAC 788 415
Hyperparameter value (lambda) 0.11 1.03
Correlation in the training seta 0.92 0.82
Correlation in the test seta 0.80 0.76
MAE in the training seta 1.50 2.13
MAE in the test seta 2.19 2.39

The late-life ARIC and published PACs; Visit 5 (N = 630 in training set, N = 315 in test set)
late-life ARIC PAC late-life Lehallier’s PAC 

Number of aptamers in PAC 135 415
Hyperparameter value (lambda) 0.46 4.42
Correlation in the training seta 0.84 0.84
Correlation in the test seta 0.71 0.63
MAE in the training seta 1.47 1.71
MAE in the test seta 2.36 2.37
Abbreviations: MAE – median absolute error; PAC – proteomic ageing clock.
aAmong healthy participants at Visit 2 and Visit 5, we randomly selected two-thirds of healthy participants at 
each visit and used them as the training set at the corresponding visit; the remaining one-third of healthy 
participants at each visit was used as the test set at the corresponding visit.
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Table 2. Midlife participants’ characteristics across quartiles of age acceleration for the midlife ARIC and Lehallier’s PACs; ARIC
 midlife ARIC PAC midlife Lehallier's PAC

Q1 
(N=2,192)

Q2 
(N=2,192)

Q3 
(N=2,192)

Q4 
(N=2,192)

Q1 
(N=2,192)

Q2 
(N=2,192)

Q3 
(N=2,192)

Q4 
(N=2,192)

Age acceleration, years -14.0 to -
1.9 -1.8 to -0.2 -0.3 to +1.7 +1.8 to 

+24.2

P-valuec
-15.1 to -

2.0 -1.9 to -0.2 -0.1 to +1.8 +1.9 to +26.5

P-
valuec

Chronological age, years 
(SD) 58.3 (5.8) 57.9 (5.8) 57.8 (5.7) 58.3 (5.6) 0.07 58.2 (5.8) 58.1 (5.8) 58.1 (5.6) 58.1 (5.6) 0.88

Female, % 55.6 51.6 55.4 55.8 0.01 53.2 53.2 55.5 56.5 0.06
White, % 72.8 75.7 75.2 67.9 <0.0001 69.8 75.6 74.2 72.2 <0.0001
Education, %
    Less than high school 21.8 21.8 22.9 30.0 22.0 22.9 24.9 26.6
    High school/vocational 41.1 40.9 43.2 40.6 39.8 42.4 40.9 42.6
    College 37.1 37.4 33.9 29.3

<0.0001
38.2 34.6 34.1 30.7

<0.0001

BMI, kg/m2 (SD) 28.2 (5.1) 28.3 (5.1) 28.3 (5.6) 28.6 (6.3) 0.13 28.5 (5.3) 28.4 (5.4) 28.2 (5.5) 28.4 (5.9) 0.58
Smoking status, %
    Current smoker 22.3 23.2 22.4 24.2 21.6 23.3 23.6 23.4
    Former smoker 36.6 38.4 39.1 39.6 36.8 38.3 38.5 39.9
    Never smoker 41.1 38.4 38.6 36.2

0.06
41.5 38.4 37.8 36.5

0.05

Pack-years of smoking 
among ever smokers, pack-
years (SD)

28.5 (22.8) 30.4 (23.4) 29.9 (22.0) 32.5 (24.1) 0.0003 28.4 (22.3) 29.5 (23.1) 30.3 (23.0) 32.9 (23.7) <0.0001

Alcohol intake, %
    Current drinker 57.4 58.2 54.9 48.3 54.8 56.8 55.9 51.2
    Former drinker 21.6 20.9 20.8 26.5 22.7 20.4 21.2 25.3
    Never drinker 20.9 20.9 24.3 25.2

<0.0001
22.5 22.6 22.7 23.5

0.002

Physical activity a, scores 
(SD) 2.48 (0.8) 2.45 (0.8) 2.42 (0.8) 2.33 (0.8) <0.0001 2.46 (0.8) 2.44 (0.8) 2.41 (0.8) 2.38 (0.8) 0.03

Aspirin use in the preceding 
two weeks, % 51.1 51.2 54.5 52.7 0.07 48.7 53.1 52.4 55.3 0.0002

Ever user of hormone 
replacement therapy 
(females only), %

50.2 47.0 41.2 36.3 <0.0001 48.8 45.9 42.7 37.3 <0.0001

Diabetesb, % 15.1 16.9 20.1 29.2 <0.0001 17.0 16.4 20.2 27.8 <0.0001
Hypertensionb, % 42.6 46.2 49.4 55.8 <0.0001 44.9 48.4 47.4 53.4 <0.0001
CVDb, % 11.8 13.9 16.4 21.5 <0.0001 11.8 13.7 15.6 22.8 <0.0001
eGFR, mL/min/1.73 m2 (SD) 98.0 (11.1) 97.3 (12.6) 96.3 (13.3) 90.9 (19.6) <0.0001 97.3 (12.1) 97.2 (12.5) 95.8 (14.1) 92.3 (19.2) <0.0001
Abbreviations: PAC – proteomic aging clock; SD – standard deviation; BMI – body mass index; CVD – cardiovascular disease; eGFR – estimated glomerular filtration rate.
aPhysical activity at Visit 1 was assessed using a leisure-time sprots index that ranged from 1 to 5. We assumed physcial activity scores remained the same at Vist 1 and Visit 2. 
We reported physical activity scores with two decimal places to illustrate the trend more effectively. 
bAll diseases were prevalent diseases. 
cP-values were calculated using chi-square tests for categorical variables and using ANOVA tests for continuous variables.
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Table 3. The associations between age acceleration for the midlife ARIC and Lehallier's PACs and mortality; ARIC (1990-2019)
HR (95% CI)a per one SD of age acceleration   
midlife ARIC PAC midlife Lehallier’s PACNo. of participants No. of 

deaths
Total person-

years (SD=2.94 years) (SD=3.00 years)
All-cause mortality 8,768 5,294 182,630 1.38 (1.34, 1.42) 1.34 (1.30, 1.38)
CVD mortality (Fine and Gray model) 8,768 1,734 182,630 1.20 (1.14, 1.27) 1.19 (1.13, 1.25)
Cancer mortality (Fine and Gray model) 8,768 1,516 182,630 1.04 (0.98, 1.10) 1.05 (0.99, 1.12)
LRD mortality (Find and Gray model) 8,768 522 182,630 1.36 (1.22, 1.51) 1.30 (1.17, 1.45)
Abbreviations: PAC – proteomic aging clock; BMI – body mass index; CVD – cardiovascular disease; LRD – lower respiratory disease; eGFR – estimated 
glomerular filtration rate; SD – standard deviation; HR – Hazard ratio; CI – confidence interval.
a The model was adjusted for chronological age, gender, joint terms for race and study center (Black participants from Mississippi; Black participants from any 
other centers; White participants from Maryland; White participants from North Carolina; and White participants from Minnesota), education, BMI, smoking 
status, pack-years of smoking, alcohol intake, physical activity (at Visit 1), hormone replacement therapy, diabetes, hypertension, CVD, and eGFR at Visit 2.
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Table 4. Visit 5 participants’ characteristics across quartiles of age acceleration for late-life ARIC and Lehallier's PACs; ARIC
 late-life ARIC PAC late-life Lehallier's PAC

Q1 
(N=1,138)

Q2 
(N=1,138)

Q3 
(N=1,139)

Q4 
(N=1,138)

Q1 
(N=1,138)

Q2 
(N=1,138)

Q3 
(N=1,139)

Q4 
(N=1,138)

Age acceleration  - 7.5 to -1.8  -1.7 to -0.2  -0.1 to +1.4 +1.5 to +17.0
P-valuec

-9.1 to -1.8 -1.7 to -0.2 -0.1 to 1.5 1.6 to 14.4
P-

valuec

Chronological age, years 
(SD) 76.9 (5.1) 75.9 (5.0) 76.1 (5.3) 76.7 (5.4) <0.0001 76.7 (5.2) 76.3 (5.1) 76.0 (5.2) 76.8 (5.5) 0.0009

Female, % 57.7 57.5 57.1 52.9 0.06 62.2 59.8 53.9 49.5 <0.0001
White, % 75.9 83.0 82.5 79.6 <0.0001 78.6 80.5 81.9 80.1 0.25
Education, %
    <High school 13.7 11.7 15.2 17.0 11.3 13.3 14.8 18.2
    High school/vocational 41.3 44.4 42.1 42.6 41.7 42.8 42.7 43.2
    College 44.9 43.8 42.7 40.4

0.01
47.0 43.9 42.5 38.6

<0.0001

BMI, kg/m2 (SD) 29.1 (4.9) 28.8 (5.2) 28.6 (5.7) 28.6 (6.7) 0.15 28.8 (5.0) 28.6 (5.3) 29.2 (6.2) 28.7 (6.1) 0.19
Smoking status, %
    Current smoker 4.0 5.1 6.8 10.0 3.6 6.7 6.4 9.2
    Former smoker 54.5 56.8 50.1 50.8 54.4 50.3 54.1 53.6
    Never smoker 41.4 38.1 43.2 39.1

<0.0001
42.0 43.0 39.5 37.2

<0.0001

Pack-years of smoking 
among ever smokers, 
pack-years (SD)

10.9 (16.3) 11.9 (19.0) 12.7 (21.8) 15.4 (22.3) <0.0001 10.5 (16.8) 12.1 (21.2) 12.2 (19.0) 16.0 
(22.2) <0.0001

Alcohol intake, %
    Current drinker 53.2 50.6 49.1 46.1 53.0 50.6 49.0 46.6
    Former drinker 28.3 30.8 28.4 31.0 28.7 29.0 29.7 31.2
    Never drinker 18.5 18.6 22.5 22.8

0.01
18.3 20.4 21.3 22.2

0.12

Physical activity a, scores 
(SD) 2.70 (0.8) 2.64 (0.8) 2.56 (0.8) 2.39 (0.8) <0.0001 2.71 (0.8) 2.64 (0.8) 2.54 (0.8) 2.39 (0.8) <0.0001

Aspirin use in the 
preceding two weeks, % 68.8 69.8 71.0 73.0 0.14 69.0 69.7 71.3 72.6 0.23

Diabetesb, % 40.5 36.3 34.0 39.2 0.01 32.4 35.3 38.5 43.8 <0.0001
Hypertensionb, % 75.5 74.9 75.6 82.1 <0.0001 72.7 76.2 77.0 82.2 <0.0001
CVDb, % 19.9 24.7 29.8 38.4 <0.0001 19.6 23.3 28.4 41.5 <0.0001
eGFR, mL/min/1.73 m2 
(SD) 77.9 (13.8) 73.6 (14.9) 70.6 (16.7) 59.9 (20.2) <0.0001 76.2 (14.3) 73.6 (15.9) 70.5 (16.8) 61.6 

(20.3) <0.0001

Abbreviations: PAC – proteomic aging clock; SD – standard deviation; BMI – body mass index; CVD – cardiovascular disease; eGFR – estimated glomerular filtration rate.
aPhysical activity was assessed using a leisure-time sprots index that ranged from 1 to 5. We reported physical activity scores with two decimal places to illustrate the trend 
more effectively.
b All the diseases were prevalent diseases.
c P-values were calculated using chi-square for categorical variables and using ANOVA for continuous variables.
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Table 5. The associations of age acceleration for the late-life ARIC and Lehallier’s PACs and the change in age acceleration from midlife to late life with 
mortality; ARIC (2011-2019)

HR (95%CI) a per one SD of age acceleration   No. of 
participants No. of deaths Total 

person-years late-life ARIC PAC
(SD = 2.61 years)

late-life Lehallier’s PAC 
(SD = 2.54 years)

All-cause mortality 4,553 1,123 29,356 1.65 (1.52, 1.79) 1.58 (1.46, 1.72)
CVD mortality (Fine and Gray model) 4,553 348 29,356 1.37 (1.18, 1.58) 1.38 (1.19, 1.62)
Cancer mortality (Fine and Gray model) 4,553 278 29,356 1.21 (1.02, 1.44) 1.19 (1.02, 1.40)
LRD mortality (Fine and Gray model) 4,553 128 29,356 1.68 (1.32, 2.12) 1.57 (1.21, 2.03)

The change in age acceleration from midlife to late lifeb

No. of 
participants No. of deaths Total 

person-years

HR (95%CI) per one SD of 
change in age acceleration   

(SD = 2.91 years)
All-cause mortality 2,707 736 17,081 1.71 (1.52, 1.94)
CVD mortality (Fine and Grey model) 2,707 239 17,081 1.38 (1.13, 1.68) NAc

Cancer mortality (Fine and Grey model) 2,707 172 17,081 1.30 (0.98, 1.71)
LRD mortality (Fine and Gray model) 2,707 94 17,081 1.46 (1.05, 2.04)
Abbreviations: PAC – proteomic aging clock; SD – standard deviation; BMI – body mass index; CVD – cardiovascular disease; LRD – lower respriatory 
disease; eGFR – estimated glomerular filtration rate. HR – Hazard ratio; CI – confidence interval.
a The model was adjusted for chronological age, gender, joint terms for race and study center (Black participants from Mississippi; Black participants from any 
other centers; White participants from Maryland; White participants from North Carolina; and White participants from Minnesota), education, BMI, smoking 
status, pack-years of smoking, alcohol intake, physical activity, diabetes, hypertension, CVD, and eGFR at Visit 5.
b The associations for the change in age acceleration was examined among the 2,707 participants who survived until Visit 5 after excluding the training sets at 
Visit 2 and at Visit 5 and the model was additionally adjusted for midlife age acceleration.  
cThe associations between the change in age acceleration and mortality were examined using the ARIC PACs only because the ARIC PACs and published 
PACs showed similar associations with all mortality types.
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Table 6. Associationa between midlife participants’ characteristics and late-life age acceleration, i.e., age 
acceleration for the late-life ARIC PAC; ARIC

Midlife participants’ Characteristicsb Coefficients P-value or P-trendc

Chronological age -0.03 <0.0001
Male 0.05 0.65
Black -0.67 <0.0001
Education
    <High school 0
    High school/vocational -0.21
    College -0.16

0.27

BMI 0.04 <0.0001
Smoking status
    Never smoker 0.00
    Former smoker -0.25
    Current smoker 0.32

<0.0001

Pack-years of smoking 0.01 0.0001
Alcohol intake
    Never drinker 0
    Former drinker -0.14
    Current drinker -0.27

0.04

Physical activity -0.08 0.13
Hormone replacement therapy
    Female never user 0
    Female ever user -0.23
    Male 0

0.04

Hypertension 0.45 <0.0001
CVD 0.45 0.006
Diabetes 1.04 <0.0001
eGFR   -0.03 <0.0001
Abbreviations: PAC – proteomic aging clock; BMI – body mass index; CVD – cardiovascular disease; eGFR – 
estimated glomerular filtration rate.
a The association was examined among the 4,553 participants who had information on the late-life ARIC PAC 
(after excluding the Visit 5 training set), and participants’ characteristics were included into model 
simultaneously. 
b Physical activity at Visit 1 was assessed using a leisure-time sprots index that ranged from 1 to 5. We assumed 
that physical activity scores remained the same at Visit 1 and Visit 2. All the other characteristics were collected 
at Visit 2. 
cP-value for continuous variables and P-trend for categorical variables 
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Supporting information

S1 Appendix: Assessment of diseases and characteristics of interests, as well as procedures for 
identifying healthy participants.

S1 Fig: Pearson correlation (r) between midlife Tanaka’s and Sathyan’s proteomic aging clocks 
(PACs) and chronological age in healthy participants of the Visit 2 test set, ARIC. The x-axis 
depicts chronological age. The y-axis represents proteomic aging clock (PAC). (A) Tanaka’s 
PAC was computed using ARIC weights obtained from Ridge regression based on proteins 
available in ARIC. The correlation between midlife Tanaka’s PAC and chronological age was 
0.66. (B) Sathyan’s PAC was calculated using the published weights. The correlation between 
midlife Sathyan’s PAC and chronological age was 0.58.

S2 Fig: Pearson correlation (r) between late-life Tanaka’s and Sathyan’s proteomic aging clocks 
(PAC) and chronological age in healthy participants of the Visit 5 test set, ARIC. The x-axis 
depicts chronological age. The y-axis represents proteomic aging clock (PAC). (A) Tanaka’s 
PAC was computed using ARIC weights obtained from Ridge regression based on proteins 
available in ARIC. The correlation between late-life Tanaka’s PAC and chronological age was 
0.59. (B) Sathyan’s PAC was calculated using the published weights. The correlation between 
late-life Sathyan’s PAC and chronological age was 0.69.

S3 Fig: Overlap of aptamers included in the midlife and late-life ARIC proteomic aging clocks 
(PACs). The gray circle shows the aptamers included in the midlife ARIC PAC and the yellow 
circle shows the aptamers included in the late-life ARIC PAC.

S4 Fig: Association between age acceleration for the midlife ARIC PAC and mortality stratified 
by race, gender, and chronological age (in tertiles); ARIC (1990-2019)

S5 Fig: Association between age acceleration for the late-life ARIC PAC and mortality stratified 
by race, gender, and chronological age (in tertiles); ARIC (2011-2019)

S1 Table: Description of the ARIC and published proteomic aging clocks (PACs)

S2 Table: Description of the de novo ARIC proteomic aging clocks (PACs) constructed in 
middle-aged healthy participants; ARIC

S3 Table: Pearson correlation coefficients between the de novo ARIC proteomic aging clocks 
(PACs) constructed in middle-aged healthy participants and midlife published PACs among the 
Visit 2 test set of healthy participants

S4 Table: Including/excluding participants with controlled hypertensiona for healthy participants 
at Visit 5 to construct proteomic aging clocks (PACs) using elastic net regression 



32

S5 Table: Pearson correlation and median absolute error (MAE) between the midlife and late-
life Tanaka’s and Sathyan’s proteomic aging clocks (PACs) and chronological age, ARIC

S6 Table: R squared after regressing age acceleration for the midlife and late-life ARIC 
proteomic aging clocks (PACs) on covariates at the corresponding visits

S7 Table: Visit 2 participants’ characteristics across quartiles of age acceleration for midlife 
Tanaka’s and Sathyan’s PACs; ARIC

S8 Table: The association between age acceleration for midlife Tanaka’s and Sathyan’s PACs 
and mortality; ARIC (1990-2019)

S9 Table: Pearson correlation coefficients between the late-life ARIC and published PACs in the 
Visit 5 test set of healthy participants

S10 Table: Visit 5 participants’ characteristics across quartiles of age acceleration for late-life 
Tanaka’s and Sathyan’s PACs; ARIC

S11 Table: The associations of age acceleration for the late-life Tanaka’s and Sathyan’s PACs 
with mortality; ARIC (2011-2019)

S12 Table: The associations of age acceleration for midlife and late-life Sathyan’s PAC with 
mortality in all ARIC participants

S13 Table: Top 20 proteins with the largest absolute weight in the midlife and late-life ARIC 
PACs

S14 Table: The association between age acceleration for the midlife ARIC and published PACs 
and mortality stratified by sex, race, and chronological age (in tertiles); ARIC (1990-2019)

S15 Table: The associations of age acceleration for the late-life ARIC and published PACs with 
mortality stratified by sex, race, and chronological age (in tertiles); ARIC (2011-2019)










