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Abstract 

Multiple attempts at intracranial hemorrhage (ICH) detection using deep-learning techniques 

have been made and plagued with clinical failures. Most studies for ICH detection have 

insufficient data or weak annotations. We sought to determine whether a deep-learning 

algorithm for ICH detection trained on a strongly annotated dataset outperforms that trained 

on a weakly annotated dataset, and whether a weighted ensemble model that integrates 

separate models trained using datasets with different ICH subtypes is more accurate. We used 

publicly available brain CT scans from the Radiological Society of North America (27,861 

CT scans, 3,528 ICHs) and AI-Hub (53,045 CT scans, 7,013 ICHs) for training datasets. For 

external testing, 600 CT scans (327 with ICH) from Dongguk University Medical Center and 

386 CT scans (160 with ICH) from Qure.ai were used. DenseNet121, InceptionResNetV2, 

MobileNetV2, and VGG19 were trained on strongly and weakly annotated datasets and 

compared. We then developed a weighted ensemble model combining separate models 

trained on all ICH, subdural hemorrhage (SDH), subarachnoid hemorrhage (SAH), and small-

lesion ICH cases. The final weighted ensemble model was compared to four well-known 

deep-learning models. Six neurologists reviewed difficult ICH cases after external testing. 

InceptionResNetV2, MobileNetV2, and VGG19 models outperformed when trained on 

strongly annotated datasets. A weighted ensemble model combining models trained on SDH, 

SAH, and small-lesion ICH had a higher AUC than a model only trained on all ICH cases. 

This model outperformed four well-known deep-learning models in terms of sensitivity, 

specificity, and AUC. Strongly annotated data are superior to weakly annotated data for 

training deep-learning algorithms. Since no model can capture all aspects of a complex task 

well, we developed a weighted ensemble model for ICH detection after training with large-

scale strongly annotated CT scans. We also showed that a better understanding and 
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management of cases challenging for AI and human is required to facilitate clinical use of 

ICH detection algorithms. 

 

Key Points 

Question Can a weighted ensemble method and strongly annotated training datasets develop 

a deep-learning model with high accuracy to detect intracranial hemorrhage? 

Findings A deep-learning algorithm for detecting ICH trained with a strongly annotated 

dataset outperformed models trained with a weakly annotated dataset. After ensembling 

separate models that were trained with only SDH, SAH, and small-lesion ICH, a weighted 

ensemble model had a higher AUC. 

Meaning This study suggests that to enhance the performance of deep-learning models, 

researchers should consider the distinct imaging characteristics of each hemorrhage subtype 

and use strongly annotated training datasets. 
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Introduction 

Intracranial hemorrhage (ICH) occurs in the intracranial space and encompasses the 

following six types: epidural hemorrhage (EDH), subdural hemorrhage (SDH), subarachnoid 

hemorrhage (SAH), intraparenchymal hemorrhage (IPH), intraventricular hemorrhage (IVH), 

and mixed hemorrhage. A timely and accurate diagnosis of ICH and its subtypes is critical for 

treatment, because of the high mortality and morbidity. In addition, assessing the location and 

extent of ICH is important for outcome prediction. However, neuroradiology training requires 

a significant investment of time and resources; accordingly, neuroradiologists are scarce in 

many countries.1 Without neuroradiologists’ assistance, doctors who see ICH patients often 

misdiagnose.2 

Deep-learning algorithms have recently made progress in accurately detecting ICH on 

CT scans.3 However, their clinical use is limited due to challenges in identifying SDH or 

SAH.4 In contrast to other ICH subtypes, SDH is more likely to present in the subacute stage 

and has reduced CT attenuation, similar to that of brain tissue. SAH may also appear 

isoattenuating if there is only a small amount of blood mixed with cerebrospinal fluid.5 

Moreover, a pseudo-SAH is not an uncommon finding; it manifests as high-attenuation areas 

along the basal cisterns, Sylvian fissure, tentorium cerebelli, or cortical sulci. These point out 

the importance of lesion location information for a more accurate diagnosis of ICH, 

particularly when the hemorrhage is difficult to detect due to its tiny volume or faint 

attenuation. 

One of the challenges to increasing the accuracy of ICH detection algorithms is the 

lack of a large dataset with expert annotations, which would take a lot of effort and resources 

to produce.6 Thus, insufficient data or weak annotations have been employed in the majority 

of published research;3,7,8 In the weakly-supervised settings such as classification-based deep 
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learning using images with annotations that are relatively easy to obtain (presence vs. absence 

of ICH), saliency maps could not locate the exact location of lesions.9 

In this study, we hypothesized that a deep-learning model performs better if it is 

trained on a large annotated dataset with slice-wise manual segmentation, compared to the 

one trained on a weakly annotated dataset. To improve performance and robustness across all 

ICH subtypes and sizes, we also designed a weighted ensemble model to integrate multiple 

models trained on distinct strongly annotated datasets reflecting ICH features to minimize the 

prediction errors of each individual model. In addition, six experts reviewed challenging ICH 

cases after external testing of the final model. 
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Methods 

1. Model development with weakly and strongly annotated datasets 

1.1. Datasets 

Weakly annotated dataset We used open data from the Radiological Society of North 

America (RSNA) comprising 27,861 brain CT scans (3,528 hemorrhages). Per slice, the 

neuroradiologists labeled the presence/absence of a hemorrhage without spatial annotation.7 

Strongly annotated dataset We used 53,045 brain CT scans (7,013 with and 46,032 without 

ICH) from the AI-Hub directed by the Korean National Information Society Agency 

(https://aihub.or.kr/aidata/34101). The AI-Hub dataset was collected from six Korean 

university hospitals in 2020 as part of a large-scale data collection initiative for 

cerebrovascular disease. Each hospital's neuroradiologist interpreted the CT scans, labeled 

the presence of hemorrhage per slice, and manually segmented the outline of the hemorrhage. 

A total of 7,013 CT scans with hemorrhages included 2,424 SAHs, 2,738 SDHs, 371 EDHs, 

1,266 IVHs, 3,367 IPHs, and 2,833 mixed hemorrhage.  

 

1.2. Training and validation dataset 

To compare the performance of the deep-learning models trained on weakly and strongly 

annotated datasets, and to account for different data sizes, we randomly selected the same 

number of slices with and without hemorrhage (n = 6,500 each) from the RSNA and AI-Hub 

datasets. For CT scans with hemorrhage, the same number of slices as those of IPH, IVH, 

SDH, EDH, and SAH (n = 1,300) were included, i.e. the hemorrhagic types were balanced. 

All training dataset images were pre-processed into four-channel input data (eMethods and 

eFigure 1). 
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1.3. External test dataset 

Two datasets were used for the external testing of the deep-learning models. The first dataset 

comprised 600 brain CT scans (327 with and 273 without ICH) from a tertiary hospital in 

Korea (Dongguk University Medical Center (DUMC)). The second was an open dataset 

(Qure.ai) comprising 386 CTs (160 with and 226 without ICH). A vascular neurologist and 

neuroradiologist performed consensus labeling for the DUMC dataset, and three 

neuroradiologists labeled the Qure.ai dataset using a majority vote. This study was approved 

by the institutional review board of DUMC and JLK Inc. (No. DUIH 2018-03-018 and 

20220407-01). 

 

1.4. Comparison of models trained with weakly and strongly annotated datasets 

DenseNet121,10 InceptionResNetV2,11 MobileNetV2,12 and VGG1913 were used for model 

development to compare deep-learning models trained on datasets with weak and strong 

annotations. For models using weakly annotated datasets, we used slice-wise hemorrhage 

labeling for both the RSNA and AI-Hub datasets (eFigure 2A-B). For classification loss, we 

compared the slice-wise model output and ground-truth labeling. The same input image was 

fed into the deep-learning model trained on the strongly annotated AI-Hub dataset (eFigure 

2C). We extracted the saliency map from the last convolutional layer of each deep-learning 

model, compared it to the ground-truth hemorrhage segmentation, and computed the 

segmentation loss in addition to the classification loss to train the hemorrhage location. 

We tested each model on an external test dataset and calculated sensitivity, specificity, 

and AUC and the threshold of 0.5 as the model’s performance. We used 500 bootstrap 

replications to calculate 95% confidence intervals. We used the DeLong test for AUC 

comparison.14 
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2. Ensemble model  

2.1. Training and test dataset 

Considering class imbalance, we randomly selected an equal number of brain CT scans with 

and without ICH from the AI-Hub dataset (6,963 each). We trained five U-net based 

segmentation models (eFigure 3): Lesion segmentation model using all training datasets 

(Model 1), lesion subtype pre-trained segmentation model using all training datasets (Model 

2), SDH model (Model 3), SAH model (Model 4), and small lesion (≤ 5 mL) model (Model 

5). A summary of each model and the training dataset is shown in Figure 1. The DUMC and 

Qure.ai datasets were used for external testing. 

 

2.2. Ensemble base models 

Five deep-learning models were trained using 2D U-net with the Inception module (eFigure 

3).15,16 For the lesion subtype pre-trained segmentation model (Model 2), a pre-trained model 

in which down-sampling layers of U-net were pre-trained using hemorrhage subtype labeling 

was used. The Dice loss function, Adam optimizer, and a learning rate of 1e-4 were used for 

model training. 

To determine whether the ensemble of base models (Models 1–5) improved the 

performance of hemorrhage detection in SAH, SDH, and small hemorrhage cases, we 

combined the base models and evaluated the performance of each combination model. From 

the two external test datasets, we extracted SAH, SDH, and small hemorrhage cases (with the 

same number of normal CT scans) to test the combination model. 

 

2.3. Weighted ensemble model 

To ensemble the five base models using distinct datasets, their outputs needed to be assigned 

appropriate weight values according to the input data. Hence, we developed an additional 
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weight model using input data comprising five-channel segmentation results from five base 

models, ranging from zero to one. Using random initiative weight values, the model was 

trained to select the weight values that minimized the Dice loss between the predicted 

segmentation at the pixel probability threshold of 0.5 and ground-truth segmentation 

(eMethods and eFigure 4 and 5). 

 

3. Review of “difficult” ICH cases 

After external testing of the weighted ensemble model, we defined the difficult ICH cases for 

expert reviews. “Difficult-for-AI” cases were chosen from the DUMC dataset when a) the 

probability of lesion ≤ 0.6 among cases annotated as hemorrhage or b) the probability of 

lesion ≥ 0.4 among cases annotated as no hemorrhage. “Difficult-for-humans” cases were 

selected from the Qure.ai dataset if the three annotators had not unanimously agreed with the 

ground truth during the initial labeling process. 

Six neurology experts with six to eighteen years of clinical experience re-annotated 

the presence vs. absence of ICH in these two types of difficult images. The sensitivity, 

specificity, and accuracy of the weighted ensemble model and each expert were calculated. 

The inter-rater agreement among the experts was also calculated. If the ground truth and the 

opinions of six experts did not concur, a consensus meeting was held to amend the ground 

truth with a majority (4 or higher) vote. After the consensus meeting, the sensitivity, 

specificity, and accuracy of the weighted ensemble model and those of the six experts were 

re-calculated. Cases where the weighted ensemble model made incorrect predictions were 

subjected to qualitative assessments. 
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Results 

Baseline characteristics of the datasets 

The AI-Hub dataset, in which the presence of each hemorrhage subtype was labeled per slice 

and the hemorrhage was manually segmented, had 53,045 cases (mean 57.5 years, 47.5% 

female), and 13.2% (7,013) had ICH. In the RSNA dataset with the presence of each ICH 

subtype being labeled per slice, 39.6% (7,449) of 18,938 cases had ICH. Table 1 shows the 

proportion of each ICH subtype in the AI-Hub and RSNA datasets. The baseline 

characteristics of the external datasets from DUMC (n = 600) and Qure.ai (n = 386) are 

presented in Table 1. 

 

Comparison of models trained with weakly vs. strongly annotated datasets 

A dataset with strong annotations (AI-Hub dataset with location information) and two 

datasets with weak annotations (AI-Hub dataset without location information and RSNA 

dataset) were utilized for the training of four well-known deep-learning networks: 

DenseNet121, InceptionResNetV2, MobileNetV2, and VGG19. We tested four trained 

models on a composite of the DUMC and Qure.ai datasets. When trained using the RSNA 

dataset, the accuracies of DenseNet121, InceptionResNetV2, MobileNetV2, and VGG19 was 

0.771 (95% C.I. 0.767–0.775), 0.770 (95% C.I. 0.766–0.774), 0.649 (95% C.I. 0.645–0.653), 

and 0.708 (95% C.I. 0.704–0.712), respectively. When trained using the AI-Hub dataset 

without location information, the accuracies were 0.812 (95% C.I. 0.809–0.816), 0.810 (95% 

C.I. 0.807–0.814), 0.645 (95% C.I. 0.641–0.650), and 0.707 (95% C.I. 0.705–0.711), 

respectively. When trained using the AI-Hub dataset with location information, the 

accuracies of all deep-learning networks except for DenseNet121 improved significantly, 

with the values being 0.756 (95% C.I. 0.753–0.761), 0.818 (95% C.I. 0.812–0.820), 0.658 (95% 

C.I. 0.655–0.664), and 0.862 (95% C.I. 0.859–0.865), respectively (Table 2 and eFigure 6). 
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Development of a weighted ensemble model 

To improve the detection of SDH, SAH, and tiny lesions, which is regarded to be challenging, 

we designed a weighted ensemble model using multiple distinct datasets that not only had 

strong annotations but also reflected the various ICH features. 

We first generated “Ensemble basic”, a weighted ensemble of two models, a lesion 

segmentation model (Model 1) and a subtype classification/segmentation model (Model 2), 

which were trained using CT images encompassing all ICH subtypes. Overall ICH detection 

accuracy measured by using a composite dataset of DUMC and Qure.ai, was 0.938 (95% C.I. 

0.922–0.953, Table 3). The accuracy for SDH and SAH cases was respectively 0.893 (95% 

C.I. 0.865–0.919) and 0.944 (95% C.I. 0.942–0.945). Next, to further increase the accuracy in 

the diagnosis of SDH, SAH, and small lesions, we additionally developed models 3, 4, and 5, 

which were respectively trained on only SDH cases, only SAH cases, and only small lesions 

≤ 5 mL. We then investigated whether the model performance was improved by combining 

Models 3, 4, or 5 with the weighted ensemble models for Models 1 and 2. “Ensemble SDH” 

showed an increased accuracy for SDH compared to “Ensemble basic”, from 0.893 (95% C.I. 

0.865–0.919) to 0.927 (95% C.I. 0.903–0.948; P for AUC difference = 0.0002). For SAH, 

“Ensemble SAH” showed a comparable accuracy to “Ensemble basic” (0.952 [95% C.I. 

0.951–0.954] vs. 0.944 [95% C.I. 0.942–0.945], P for AUC difference = 0.2439). “Ensemble 

small lesions” showed a comparable accuracy for total ICH compared to “Ensemble basic” 

(0.946 [95% C.I. 0.931–0.960] vs. 0.938 [95% C.I. 0.922–0.953], P for AUC difference = 

0.1180). Finally, we developed a final weighted ensemble model that ensembles all models 1 

to 5 and showed a significantly higher accuracy for total ICHs (0.951 [95% C.I. 0.937–0.964], 

P for AUC difference = 0.0379), compared to “Ensemble basic”. 
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Comparison of the final weighted ensemble model with AI models that were previously 

built 

We compared the performance of the final weighted ensemble model with that of 

DenseNet121, InceptionResNetV2, MobileNetV2, and VGG19 by using a test dataset that 

combines the DUMC and Qure.ai datasets. The weighted ensemble model significantly 

outperformed the other models in terms of sensitivity, specificity, and AUC (Figure 2 and 

eTable 1). Additional tests using either the DUMC or Qure.ai dataset showed similar results 

(eFigure 7). 

 

Review of “difficult” 161 ICH cases 

A total of 91 cases from the DUMC dataset were selected as difficult-for-AI cases: 17 cases 

from those classified as ICH that AI identified with a lesion probability of ≤ 0.6 and 74 cases 

from those classified as normal that AI identified with a lesion probability of ≥ 0.4 in external 

testing. A total of 70 cases from the Qure.ai datasets were selected as difficult-for-humans 

based on the three annotators’ disagreement. Six experts re-annotated these 161 cases for the 

presence vs. absence of ICH; there was complete agreement among the six experts for 81 

cases, whereas there was at least one disagreement for 80 cases. For all 161 cases, the final 

weighted ensemble model showed an accuracy of 0.441, sensitivity of 0.431, and specificity 

of 0.462. The accuracies of the six experts were 0.671, 0.764, 0.708, 0.640, 0.683, and 0.714, 

with the interrater agreement (the Fleiss’ kappa value) being 0.536. 

Among 95 cases where one or more experts disagreed with the initial ground truth, 80 

were unanimous, five were disagreed upon by one expert, seven were disagreed upon by two 

experts, and three were disagreed upon by three experts. In 48 cases, the ground truth was 

changed following discussion and majority voting in the consensus meeting. The accuracy, 

sensitivity, and specificity of the weighted ensemble model for the revised ground truth was 
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respectively 0.491, 0.457, and 0.525, without showing significantly differences when 

compared with those for the original ground truth. eTable 2 shows the qualitive assessments 

of the cases where the weighted ensemble model predicted incorrectly. 
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Discussion 

This study demonstrated that a) a deep-learning algorithm for detecting ICH trained with a 

strongly annotated dataset outperformed models trained with a weakly annotated dataset, and 

b) a weighted ensemble model that integrated separate models trained using SDH, SAH, or 

small-lesion (≤ 5 mL) ICH datasets achieved a higher AUC than four previous deep-learning 

models on external testing. 

Medical image segmentation requires a lot of labor and resources.17 Although many 

transfer learning methods for weakly or partially annotated data have been developed,18 there 

is still a need for large-scale annotated data. To the best of our knowledge, no deep-learning 

algorithm for ICH detection has been developed using large-scale CT scans with 

segmentation annotation. We found that the accuracy of three of the four previously reported 

deep-learning models improved after training with strongly annotated datasets, compared to 

weakly annotated datasets. 

Compared with magnetic resonance imaging, CT is less expensive, faster, and better 

at detecting ICH. However, some ICHs are more likely to be misdiagnosed due to their varied 

location and shape, small lesion size, and similar attenuation to adjacent tissue.19 For example, 

SDH an SAH are often difficult to distinguish from adjacent tissue,4 despite their distinct 

locations and shapes. Although there are classification methods for small lesions,20 a new 

deep learning strategy based on more comprehensive feature data may improve ICH detection 

performance. We achieved higher ICH detection accuracies using ensemble models that 

combined multiple separate models trained with datasets specialized for SDH, SAH, or small 

lesions. Employing the ensemble models, we also observed an increasing trend in specificity. 

Despite recent development of many deep-learning algorithms for imaging diagnosis 

of ICH, their clinical application has yet to be accomplished. In addition to technical 

challenges such as the domain shift problem and the shortcut problem, there are also 
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instances where determining the ground truth is difficult or inter-physician agreement is 

limited.21-23 After our expert meeting, as high as 30% (48/161) of difficult ICH cases, which 

however represented only 4.9% of the total test dataset cases (n = 986), required re-labeling 

of their ground truth. This may explain why it is challenging for AI to learn medical images 

that are difficult for experienced clinicians. Moreover, the re-labeling did not improve the 

accuracy of ICH detection by our weighted ensemble model trained with a total of 13,926 

strongly annotated CT data. Further studies are required to investigate if fine-tuning a model 

after training with a larger high-quality training dataset, where difficult data are augmented, 

could increase the robustness, generalization, and discriminative power of the deep-learning 

algorithm. 

Noisy labels have a negligible effect on the model performance in large datasets. In a 

handwritten number dataset, increasing the accuracy of random labels by only 1% 

significantly improved the model performance.24,25 However, if difficult cases are mixed at a 

low frequency across a dataset, noisy labels may affect ICH detection. There is a high 

demand in the medical profession for a model that can accurately diagnose both easy and 

complex cases. False positives and negatives may result in unnecessary and missed therapy, 

respectively. Future research should investigate if a) using ensemble models and b) expert 

review of difficult cases and adding them to a training dataset could overcome these 

challenges. 

Our study has limitations. First, except for age and sex, no clinical information was 

available. Second, the classification and segmentation of some training data may not be 

accurate, because of the inclusion of difficult cases. Third, the proportions of mixed 

hemorrhages were high in the RSNA and AI-Hub datasets. 

 In conclusion, we developed a weighted ensemble model for ICH detection by 

training with strongly annotated CT scans obtained from multiple centers. Although 
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challenging cases existed, external testing with a dataset from different ethnic origins 

demonstrated excellent performance of our model. We also showed that a better 

understanding and management of cases that are challenging for AI and humans is required to 

facilitate clinical use of ICH detection algorithms.  
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Figure Legends 

 

Figure 1. Summary of each deep-learning model and the training dataset used. EDH, 

epidural hemorrhage; IPH, intraparenchymal hemorrhage; IVH, intraventricular hemorrhage; 

SAH, subarachnoid hemorrhage; SDH, subdural hemorrhage. 

 

Figure 2. Receiver Operating Characteristic (ROC) curves representing the 

performance of the deep-learning models. DenseNet121, InceptionResNetV2, 

MobileNetV2, VGG19 trained on strongly annotated datasets and the final weighted 

ensemble model were applied to a test dataset combining the DUMC and Qure.ai datasets. 
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Tables 

 Training dataset Test dataset 

 AI-Hub RSNA DUMC Qure.ai 

Country South Korea Unites States South Korea India 

Number of cases 53,045 18,938 600 386 

Age 
(mean ± S.D.) 

57.5 ± 19.9 N/A 65.7 ± 14.9 N/A 

Female Sex 25,185 (47.5%) N/A 213 (35.5%) N/A 

Normal 46,032 (86.8%) 11,439 (60.4%) 273 (45.5%) 226 (58.5%) 

ICH 7,013 (13.2%) 7,499 (39.6%) 327 (54.5%) 160 (41.5%) 

IPH 1,744 (24.9%)† 1,008 (13.4%)† 221 (67.6%)† 45 (28.1%)† 

IVH 135 (1.9%)† 239 (3.2%)† 8 (2.4%)† 0 (0%)† 

EDH 159 (2.3%)† 73 (1.0%)† 1 (0.3%)† 0 (0%)† 

SDH 1,442 (20.6%)† 1,298 (17.3%)† 15 (4.6%)† 0 (0%)† 

SAH 700 (10.0%)† 456 (6.1%)† 82 (25.1%)† 0 (0%)† 

Mixed 2,833 (40.4%)† 4,425 (59.0%)† 0 (0%)† 115 (71.9%)† 

 
Table 1. Baseline characteristics of the datasets. †The percentages indicate the proportion 

of each subtype to the total number of lesions. RSNA, Radiological Society of North America; 

DUMC, Dongguk University Medical Center; ICH, intracranial hemorrhage; IPH, 

intraparenchymal hemorrhage; IVH, intraventricular hemorrhage; EDH, epidural hemorrhage; 

SDH, subdural hemorrhage; SAH, subarachnoid hemorrhage.
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95% C.I. 
RSNA dataset AI-Hub without location dataset AI-Hub with location dataset 

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity 

DenseNet121 
0.771 

(0.767 - 0.775) 

0.616 

(0.611 - 0.620) 

0.754 

(0.745 - 0.765) 

0.812 

(0.809 - 0.816) 

0.554 

(0.548 - 0.558) 

0.887 

(0.880 - 0.895) 

0.756 

(0.753 - 0.761) 

0.693 

(0.688 - 0.698) 

0.657 

(0.647 - 0.668) 

P for AUC difference Reference P = 0.0003 (*0.0039) P < 0.0001 (*0.0030) 

InceptionResNetV2 
0.770 

(0.766 - 0.774) 

0.623 

(0.618 - 0.628) 

0.724 

(0.716 - 0.736) 

0.810 

(0.807 - 0.814) 

0.658 

(0.654 - 0.663) 

0.825 

(0.817 - 0.834) 

0.818 

(0.812 - 0.820) 

0.745 

(0.741 - 0.750) 

0.725 

(0.715 - 0.735) 

P for AUC difference Reference P < 0.0001 (*0.0031) P < 0.0001 (*0.0031) 

MobileNetV2 
0.649 

(0.645 - 0.653) 

0.599 

(0.595 - 0.605) 

0.600 

(0.589 - 0.611) 

0.645 

(0.641 - 0.65) 

0.599 

(0.595 - 0.605) 

0.608 

(0.598 - 0.620) 

0.658 

(0.655 - 0.664) 

0.708 

(0.704 - 0.713) 

0.499 

(0.488 - 0.510) 

P for AUC difference Reference P = 0.4221 (*0.0047) P = 0.0227 (*0.0040) 

VGG19 
0.708 

(0.704 - 0.712) 

0.569 

(0.564 - 0.574) 

0.754 

(0.745 - 0.764) 

0.707 

(0.705 - 0.711) 

0.460 

(0.455 - 0.465) 

0.876 

(0.869 - 0.884) 

0.862 

(0.859 - 0.865) 

0.816 

(0.812 - 0.820) 

0.731 

(0.721 - 0.741) 

P for AUC difference Reference P = 0.6526 (*0.0032) P < 0.0001 (*0.0029) 

 

Table 2. Comparison of models trained with weakly and strongly annotated datasets. Area under the curve (AUC), sensitivity, and 

specificity of four deep-learning networks trained on RSNA dataset, AI-Hub dataset without location information, and AI-Hub dataset with 

location information were shown. The AUC of each of the four deep-learning networks trained on the RSNA dataset was set as a reference, 

and the AUCs of the remaining models were compared using the DeLong test. C.I., confidence interval. *Standard error.  
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Combination 
of the 
models 

All 
(492 ICH, 494 normal) 

SDH 
(43 SDH, 494 normal) 

SAH 
(117 SAH, 494 normal) 

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity 

Ensemble 
basic 

1 + 2 0.938 
(0.922 - 
0.953) 

0.982 
(0.966 - 
0.992) 

0.702 
(0.662 - 
0.744) 

0.893 
(0.865 - 
0.919) 

0.977 
(0.877 - 
0.999) 

0.702 
(0.662 - 
0.744) 

0.944 
(0.942 - 
0.945) 

0.992 
(0.953 - 
1.000) 

0.702 
(0.662 - 
0.744) 

P for AUC difference Reference Reference Reference 

Ensemble 
SDH 

1 + 2 + 3 0.936 
(0.920 - 
0.951) 

0.957 
(0.935 - 
0.973) 

0.781 
(0.757 - 
0.830) 

0.927 
(0.903 - 
0.948) 

0.977 
(0.877 - 
0.999) 

0.781 
(0.757 - 
0.830) 

0.941 
(0.940 - 
0.943) 

0.992 
(0.953 - 
1.000) 

0.781 
(0.757 - 
0.830) 

P for AUC difference P = 0.7612 (*0.0060) P = 0.0002 (*0.0092) P = 0.6537 (*0.0071) 

Ensemble 
SAH 

1 + 2 + 4 0.944 
(0.928 - 
0.958) 

0.963 
(0.943 - 
0.978) 

0.777 
(0.753 - 
0.826) 

0.868 
(0.837 - 
0.896) 

0.860 
(0.721 - 
0.947) 

0.777 
(0.753 - 
0.826) 

0.952 
(0.951 - 
0.954) 

0.983 
(0.940 - 
0.998) 

0.777 
(0.753 - 
0.826) 

P for AUC difference P = 0.3337 (*0.0057) P = 0.1695 (*0.0186) P = 0.2439 (*0.0069) 

Ensemble 
small 
lesions 

1 + 2 + 5 0.946 
(0.931 - 
0.960) 

0.970 
(0.950 - 
0.983) 

0.775 
(0.738 - 
0.813) 

0.874 
(0.843 - 
0.901) 

0.860 
(0.721 - 
0.947) 

0.775 
(0.738 - 
0.813) 

0.950 
(0.948 - 
0.951) 

0.983 
(0.940 - 
0.998) 

0.775 
(0.738 - 
0.813) 

P for AUC difference P = 0.1180 (*0.0053) P = 0.2023 (*0.0155) P = 0.3621 (*0.0063) 

Ensemble 
all 

1 + 2 + 3 + 4 
+ 5 

0.951 
(0.937 - 
0.964) 

0.943 
(0.919 - 
0.962) 

0.826 
(0.794 - 
0.862) 

0.893 
(0.864 - 
0.918) 

0.884 
(0.749 - 
0.961) 

0.826 
(0.794 - 
0.862) 

0.958 
(0.958 - 
0.960) 

0.974 
(0.927 - 
0.995) 

0.826 
(0.794 - 
0.862) 

P for AUC difference P = 0.0379 (*0.0064) P = 0.9845 (*0.0194) P = 0.0644 (*0.0077) 

 

Table 3. The structures of five weighted ensemble models and accuracies for all cases, SDH cases, and SAH cases. The area under the 

curves (AUCs) of “Ensemble basic” for total ICH, SDH, and SAH were set as references, and the AUCs of the remaining models were 

compared using the DeLong test. ICH, intracranial hemorrhage; SDH, subdural hemorrhage; SAH, subarachnoid hemorrhage. *Standard error.    
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53,045 total scans
- Normal 46,032 scans
- Lesion 7,013 scans

(Training Set 1) 13,926 scans
- Normal 6,963 scans
- Lesion 6,963 scans

- EDH 149 scans
- IPH 1,734 scans
- IVH 125 scans
- SAH 690 scans
- SDH 1,432 scans
- Mixed 2,833 scans

60 scans for validation
- Normal 10 scans
- EDH10 scans
- IPH 10 scans
- IVH 10 scans
- SAH 10 scans
- SDH 10 scans

Lesion Volume ≤ 5 mL 

SDH ScansSAH Scans

- (Model 1) Lesion segmentation model
- (Model 2) Lesion subtype 

classification and segmentation model

(Training Set 4) 2,284 scans for small 
lesion model training
- Normal 1,142 scans
- Lesion 1,142 scans

- EDH 37 scans
- IPH 514 scans
- IVH 24 scans
- SAH 204 scans
- SDH 209 scans
- Mixed 154 scans

(Training Set 3) 1,380 scans for SAH 
Model training
- Normal 690 scans
- Lesion 690 scans

- SAH 690 scans

(Training Set 2) 2,864 scans for SDH 
Model training
- Normal 1,432 scans
- Lesion 1,432 scans

- SDH 1,432 scans

- (Model 3) SDH classification and 
segmentation model

- (Model 4) SAH classification and 
segmentation model

- (Model 5) Small lesion (≤ 5 mL) 
segmentation model
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