1	Full title: Clinical and laboratory features of COVID-19 illness and outcomes in
2	immunocompromised individuals during the first pandemic wave in Sydney, Australia
3	
4	Short title: COVID-19 illness and outcomes in immunocompromised individuals in Sydney,
5	Australia
6	
7	Nila J. Dharan ^{1*} , Sarah C. Sasson ^{1,2,3*} , Golo Ahlenstiel ^{4,5} , Christopher R. Andersen ^{6,7} , Mark
8	Bloch ^{1,8} , Griselda Buckland ¹ , Nada Hamad ^{9,10,11} , Win Min Han ¹ , Anthony D. Kelleher ^{1,9} ,
9	Georgina V. Long ^{6,12,13} , Gail V. Matthews ^{1,9} , Michael M. Mina ¹⁴ , Emmanuelle Papot ¹ , Kathy
10	Petoumenos ¹ , Sanjay Swaminathan ^{3,4,5} , Barbara Withers ⁹ , James Yun ^{11,15} and Mark N.
11	Polizzotto ^{1,9,16} , on behalf of the CORIA Study Group#
12	
13	¹ Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
14	² NSW Health Pathology, New South Wales, Australia
15	³ Westmead Hospital, Westmead, New South Wales, Australia
16	⁴ Blacktown Hospital, Blacktown, New South Wales, Australia
17	⁵ Western Sydney University, Penrith, New South Wales, Australia
18	⁶ Royal North Shore Hospital, St Leonards, New South Wales, Australia
19	⁷ The George Institute for Global Health, Newtown, New South Wales, Australia
20	⁸ Holdsworth House Medical Practice, Darlinghurst, New South Wales, Australia
21	⁹ St Vincent's Hospital, Darlinghurst, New South Wales, Australia
22	¹⁰ School of Clinical Medicine, Faculty of Medicine and Health, University of New South
23	Wales Sydney, Sydney, New South Wales, Australia
24	¹¹ School of Medicine, Sydney, University of Notre Dame, Chippendale, New South Wales,
25	Australia

- 26 ¹²Melanoma Institute Australia, Wollstonecraft, New South Wales, Australia
- ¹³The Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales,
- 28 Australia
- 29 ¹⁴Northern Beaches Hospital, Frenchs Forest, New South Wales, Australia
- 30 ¹⁵Nepean Hospital, Kingswood, New South Wales, Australia
- 31 ¹⁶Australian National University, Canberra, Australian Capital Territory, Australia
- 32
- 33 *NJD and SCS contributed equally
- 34 #CORIA Study Group: see Acknowledgements
- 35
- 36 **Corresponding authors:**
- 37 Dr Nila J. Dharan
- 38 Kirby Institute
- 39 Level 6, Wallace Wurth Building
- 40 UNSW SYDNEY 2052
- 41 E: <u>ndharan@kirby.unsw.edu.au</u>
- 42 T: 02 9385 0967
- 43
- 44 Dr Sarah C. Sasson
- 45 Kirby Institute
- 46 Level 6, Wallace Wurth Building
- 47 UNSW SYDNEY 2052
- 48 E: <u>ssasson@kirby.unsw.edu.au</u>
- 49 T: 02 9385 0967

51 Keywords: SARS-CoV-2; COVID-19; Immunocompromised

52 Abstract:

53	People with immunocompromising conditions are at increased risk of SARS-CoV-2 infection
54	and mortality, however early in the pandemic it was challenging to collate data on this
55	heterogenous population. We conducted a registry study of immunocompromised individuals
56	with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection from March -
57	October 2020 in Sydney, Australia to understand clinical and laboratory outcomes in this
58	population prior to the emergence of the Delta variant. 27 participants were enrolled into the
59	study including people with a haematologic oncologic conditions (n=12), secondary
60	immunosuppression (N=8) and those with primary or acquired immunodeficiency (i.e. HIV;
61	N=7). All participants had symptomatic COVID-19 with the most common features being
62	cough (64%), fever (52%) and headache (40%). Five patients demonstrated delayed SARS-
63	CoV-2 clearance lasting three weeks to three months. The mortality rate in this study was
64	7% compared to 1.3% in the state of New South Wales Australia during the same period.
65	This study provides data from the first eight months of the pandemic on COVID-19 outcomes
66	in at-risk patient groups.

67 Introduction:

68	Early in the COVID-19 pandemic, male sex, advanced age and certain comorbidities were
69	identified as risk factors for death following SARS-CoV-2 infection [1-4]. Large international
70	studies with data on immunocompromising conditions identified that patients with
71	haematological malignancies, connective tissue disease, solid organ transplantation and those
72	on immunosuppressive therapies for other indications were also at increased risk of death [4].
73	A study of 310 immunocompromised individuals with SARS-CoV-2 infection in the United
74	Kingdom reported that, compared with the general population, mortality among hospitalised
75	immunocompromised individuals was greater (38% vs. 26%) and immunocompromised
76	individuals were younger at time of death [5]. In Australia, chronic immunosuppression was
77	also identified to be associated with increased risk of death in patients in intensive care units
78	early in the pandemic [6].
79	
80	The Coronavirus Outcomes Registries in Immunocompromised Individuals Australia
81	(CORIA) was a clinical registry study of adults with immunocompromising conditions and
82	SARS-CoV-2 infection acquired between March – October 2020, prior to COVID-19
83	vaccines, specific therapies and the emergence of variants of concern (VOCs). The aim of
84	this study was to determine the clinical and laboratory COVID-19 outcomes of adult patients
85	with immunocompromising conditions.
86	
87	Methods:
88	The study included individuals with specified immunocompromising conditions aged 18
89	years or older with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 infection
90	between March 1, 2020 – October 31, 2020. Participants had been tested after developing
91	symptoms consistent with COVID-19 and/or being identified as a close contact of a

92	confirmed case. Participants were enrolled from nine clinical sites in Sydney, Australia:
93	seven major teaching hospitals with high caseloads of immunocompromised individuals; one
94	primary care centre with a high caseload of people with HIV; and one specialist melanoma
95	centre. Eligible immunocompromising conditions included: primary immunodeficiency,
96	defined as a predisposition to infection associated with a genetic or inherited deficit of
97	immune function; current receipt of immunosuppressive therapy (excluding inhaled
98	corticosteroids); HIV infection; undergoing active management for cancer diagnosed within
99	36 months of enrolment (excluding superficial basal cell and squamous cell carcinomas;
100	including treatment with immune checkpoint inhibitors); and solid organ transplantation. All
101	eligible cases from the nine enrolling sites were included.
102	
103	All data were sourced from the participants' medical record. At enrolment, the following data
104	were collected: demographic and clinical characteristics; epidemiologic risk factors for
105	infection; medical history; presenting clinical symptoms; clinical status; COVID-19
106	treatments; and clinical test results including SARS-CoV-2 and respiratory pathogen PCR
107	testing, haematology, hepatic and renal chemistry, and inflammatory biomarkers. Follow-up
108	data on clinical symptoms, clinical status, laboratory results and treatment history were
109	collected on Days 3, 7, 14, 21, 28 and 3 months.
110	
111	Three main groups of immunocompromising conditions were categorised as: 1) haematologic
112	and oncologic conditions; 2) primary or acquired immunodeficiency (i.e. HIV); and 3)
113	secondary immunosuppression (including immunosuppressive therapy and solid organ
114	transplantation). The time to end of clinical isolation was defined as the time from initial
115	SARS-CoV-2 positive PCR to either a negative SARS-CoV-2 PCR or resolution of all

symptoms after a certain timepoint according to local guidance at the time [7]. Descriptive

117 st	atistics were used	to calculate the	proportions of	participants	with various	clinical and
--------	--------------------	------------------	----------------	--------------	--------------	--------------

- 118 laboratory characteristics at presentation and follow up, overall and across
- 119 immunocompromising conditions group.
- 120
- 121 The study was reviewed by the St Vincent's Hospital Human Research Ethics Committee and
- 122 granted a waiver of the need for individual consent for data collection as per the National
- 123 Statement on Ethical Conduct in Human Research. The study was registered at
- 124 Clinicaltrials.gov (NCT04354818).
- 125

126 **Results:**

- 127 Of the 27 participants enrolled, 58% were male and the median age was 66 years. Twelve
- 128 (44%) of the participants had haematologic (n=7) or oncologic conditions (n=5), 8 (30%) had
- secondary immunosuppression and 7 (26%) had primary or acquired immunodeficiency (i.e.
- HIV), as shown in Table 1 (further detail in Supplemental Table 1). Of the total cohort with
- available data, 41% had a history of hypertension, 26% had diabetes and 19% had
- 132 cardiovascular disease. Among the 25 participants with clinical symptom data, all had
- symptomatic disease with the most common presenting symptoms being cough (64%), fever
- 134 (52%) and headache (40%) (Table 1). Two patients, both in the haematology/oncology group,
- received treatments for COVID-19 as part of clinical trials (remdesivir n=1;
- 136 hydroxychloroquine n=1).

137 **Table 1**. Demographic characteristics, medical history, clinical symptoms and laboratory results at time of presentation, by primary

		Primary diagnostic category		
Baseline	Haematologic/oncologic	Secondary immunosuppression ²	Primary and acquired	Total
characteristics	conditions ¹	N=8	immunodeficiency ³	N=27
	N=12	n (%)	N=7	
	n (%)		n (%)	
Demographics				
Age, median	74 (62-75)	63 (42-75)	55 (39-55)	66 (54-74)
(range)				
Gender				
Female	5 (42%)	4 (50%)	2 (29%)	11 (41%)
Male	7 (58%)	4 (50%)	5 (71%)	16 (58%)
Ethnicity				
Caucasian	9 (75%)	6 (75%)	7 (100%)	22 (81%)
Asian	0 (0%)	1 (13%)	0 (0%)	1 (4%)
Other	3 (25%)	1 (13%)	0 (0%)	4 (15%)

138 immunocompromising diagnostic category

BMI, available	9 (75%)	6 (75%)	5 (71%)	20 (74%)
data				
Median (range)	28 (25-32)	32 (31-35)	36 (28-36)	31 (25-35)
BMI group				
<30	6 (50%)	1 (13%)	2 (29%)	9 (33%)
<u>≥</u> 30	3 (25%)	5 (63%)	3 (43%)	11 (41%)
Missing	3 (25%)	2 (25%)	2 (29%)	7 (26%)
Medical History				
Smoking status				
Never	7 (58%)	6 (75%)	3 (43%)	16 (59%)
Past (>12 months)	3 (25%)	1 (13%)	1 (14%)	5 (19%)
Recent (within 12	0 (0%)	0 (0%)	1 (14%)	1 (4%)
months, but not				
now)				
Current	0 (0%)	0 (0%)	1 (14%)	1 (4%)
Unknown	2 (17%)	1 (13%)	1 (14%)	4 (15%)
Chronic disease				

history				
Diabetes mellitus ⁴	3 (25%)	2 (25%)	2 (29%)	7 (26%)
Unknown	2 (17%)	1 (13%)	0 (0%)	3 (11%)
Hypertension	3 (25%)	4 (50%)	4 (57%)	11 (41%)
Unknown	2 (17%)	1 (13%)	0 (0%)	3 (11%)
Cardiovascular	4 (33%)	1 (13%)	0 (0%)	5 (19%)
disease ⁵				
Unknown	2 (17%)	1 (13%)	0 (0%)	3 (11%)
Respiratory	3 (25%)	1 (13%)	5 (71%)	9 (33%)
disease ⁶				
Unknown	2 (17%)	1 (13%)	0 (0%)	3 (11%)
Presenting clinical				
symptoms				
Available data, n (%)	11 (92%)	7 (88%)	7 (100%)	25 (93%)
Any symptoms	11 (100%)	7 (100%)	7 (100%)	25 (100%)
Any symptoms (fever,				
cough, headache and	10 (91%)	6 (86%)	7 (100%)	23 (92%)

shortness of breath)				
Fever	7 (64%)	3 (43%)	3 (43%)	13 (52%)
Cough	8 (73%)	5 (72%)	3 (43%)	16 (64%)
Sore throat	1 (9%)	3 (43%)	4 (57%)	8 (32%)
Myalgia	1 (9%)	4 (57%)	0 (0%)	5 (20%)
Rhinorrhoea	2 (18%)	2 (29%)	0 (0%)	4 (16%)
Fatigue	1 (9%)	3 (43%)	1 (14%)	5 (20%)
Shortness of breath	0 (0%)	2 (29%)	3 (43%)	5 (20%)
Headache	2 (18%)	4 (57%)	4 (57%)	10 (40%)
Diarrhoea	3 (27%)	1 (14%)	2 (29%)	6 (24%)
Alteration of sense of	0 (0%)	1 (14%)	0 (0%)	1 (4%)
smell				
Alteration of sense of	0 (0%)	1 (14%)	0 (0%)	1 (4%)
taste				
Oxygen saturation (pulse				
oximetry), median	93% (n=1)	N/A	N/A	93% (n=1)
(range)				

Dequiring ournlementel	1 (00/)	0 (00/)	0 (00/)	1 (40/)
Requiring supplemental	1 (9%)	0(0%)	0(0%)	1 (4%)
O2				
Vital signs, median				
(range)				
Available data, n (%)	5 (42%)	3 (38%)	5 (71%)	13 (48%)
Pulse	97 (79-108)	85 (85-85)	118 (81-122)	85 (81-108)
Systolic Blood	125 (117-147)	141 (128-170)	128 (121-161)	128 (121-150)
Pressure				
Diastolic Blood	79 (79-81)	73 (63-104)	86 (81-90)	81 (73-90)
Pressure				
Haematology				
Available data, n (%)	3 (25%)	3 (38%)	3 (43%)	9 (33%)
White blood cell count	5.4 (3.0-10.1)	4.4 (3.8-10.9)	10.8 (6.8-10.8)	6.8 (4.4-10.8)
%Neutrophils	3.3 (1.5-7.2)	3.3 (3.1-7.3)	5.7 (6.7-6.7)	5.7 (3.3-6.7)
%Lymphocytes	1.1 (0.9-1.4)	0.7 (0.4-2.2)	2.9 (1.7-2.9)	1.4 (0.9-2.2)
Haemoglobin	124 (121-145)	137 (123-140)	164 (142-164)	140 (124-145)
Platelets	235 (183-266)	144 (108-180)	192 (192-202)	192 (181-218)

139 BMI=body mass index

- ¹Haematologic and oncologic conditions (n=12); melanoma on immune checkpoint inhibitors (N=4), ovary, breast, immunoproliferative disease
- 141 (HSCT), unspecified lymphoid or haematpoietic tissue malignancy, lymphoma, leukemia (N=2), oesophagus.
- ²Immunosuppressive therapy (n=7), solid organ transplant recipients (n=1)
- ³Primary immunodeficiency (n=3) and HIV (n=4; three had available data on most recent CD4 lymphocyte count; all > 500 cells/mm³)
- ⁴Diabetes treatment: lifestyle modifications (n=1) and oral medication (n=2) in the Haematologic/oncologic conditions group; oral medications (n=2) in the
- 145 Secondary Immunosuppression group; and lifestyle modifications + oral medication (n=1) and oral medication + insulin (n=1) in the Primary and Acquired
- 146 Immunodeficiency group
- ⁵Cardiovascular disease history: arrhythmia (n=2), pulmonary embolism (n=1) and missing data (n=1) in the Haematologic/oncologic conditions group; and
- 148 coronary artery disease requiring coronary artery bypass grafting (n=1) in the Secondary Immunosuppression group
- ⁶Respiratory disease history: chronic obstructive pulmonary disease (n=1), productive cough (n=1) and obstructive sleep apnoea (n=1) in the
- 150 Haematologic/oncologic Conditions group; Obstructive sleep apnoea (n=1) in the Secondary Immunosuppression group; and Asthma (n=5) in the Secondary
- 151 Immunosuppression group

152	At Days 7 and 28, 47% and 22% of participants, respectively, were still reporting symptoms
153	(Figure 1). The median (interquartile range [IQR]) time to release from isolation for the total
154	cohort was 16 (15-27) days: 15 (11-29) days for the haematologic/oncologic group, 26 (17-
155	27) days for the secondary immunosuppression group, and 14 (14-14) days for the
156	primary/acquired immunodeficiency group. Nine (33%) of participants were tested for
157	SARS-CoV-2 by PCR after their entry date test ("Day 0"; see Supplemental Table 2). Of
158	these nine participants, three (33%) tested positive at Day three, one (11%) at Day seven, two
159	(22%) at Day 21, one (11%) at Day 28 and two (22%) at three months. Of the two
160	participants that tested positive at three months, one had melanoma and one had an
161	autoinflammatory condition.
162	
163	Figure legend. Proportion of participants reporting symptoms of SARS-CoV-2 infection
164	over time, by primary immunocompromising diagnostic category. Panel A. Fever; Panel B.
165	Cough; Panel C. Headache; Panel D. Shortness of breath. E. Any symptom
166	
167	Where available, laboratory results were recorded over three months (Supplemental Figure
168	1). The platelet count peaked at Day 14, while the neutrophil and lymphocyte counts were
169	highest at baseline and the C-reactive protein was highest at Day three.
170	
171	Clinical illness outcomes are shown in Supplemental Table 3. Among the total cohort, nine
172	(33%; n=3 from each group) required hospitalisation with the median time from enrolment to
173	hospital admission of three days. Three (11%) participants (two in the secondary
174	immunosuppression group and one in the hematological/oncological group) required
175	mechanical ventilation with the median time from enrolment to initiation of mechanical
176	ventilation of three days. Overall, two (7%) participants died; one was a female in her 60s in

177	the hematological/oncological group and the other was a female in her 80s in the secondary
178	immunosuppression group. The time from SARS-CoV-2 diagnosis to death for both
179	participants was 90 days; both died primarily from their underlying disease, rather than
180	severe COVID-19.
181	
182	Discussion
183	We report demographic and clinical characteristics of individuals with conditions associated
184	with immune compromise who were diagnosed with COVID-19 from March - October 2020
185	prior to the introduction of SARS-CoV-2 vaccination, COVID-19 treatments, and the
186	emergence of VOCs. During this time, there were few data available on the clinical outcomes
187	of patients with COVID-19, particularly in rare and orphan disease groups, and there was
188	considerable concern that, similar to other respiratory viruses [8-13], immunosuppressed
189	individuals may be at risk for increased risk of mortality associated with SARS-CoV-2
190	infection and slower viral clearance. All patients in our study had symptomatic illness as well
191	as evidence of prolonged durations of viral shedding.
192	
193	The most common clinical presenting symptoms among all participants were cough, and
194	fever, which were of similar prevalence to that reported in another cohort of 55 patients (9%
195	were immunocompromised) studied during a similar period in Melbourne, Australia [14]
196	(cough 64% in our cohort vs. 66%; fever 52% in our cohort versus 47%). Other symptoms
197	were also similar including sore throat (32% in our cohort vs. 29%) and diarrhoea (24% in
198	our cohort vs. 29%), although headache was more common among our cohort (40% in our
199	cohort vs. 0.05%).

201	There is documented evidence of prolonged SARS-CoV-2 shedding in immunocompromised
202	people, which can increase the risk of outgrowth of novel viral variants. The median time to
203	de-isolation was 16 days in our cohort which is comparable to data published in the general
204	population during the pre-Delta phase of the pandemic (median 12-16 days [15, 16]. In our
205	study, the secondary immunosuppression group numerically had the longest median time to
206	viral clearance (26 days) and there was delayed viral clearance in five patients ranging from
207	three weeks to three months, in line with similar previous reports in immunocompromised
208	individuals [17, 18]. A recent case series of SARS-CoV-2 Delta strain infection in
209	immunocompromised individuals has demonstrated that immunocompromised patients can
210	shed infectious (culture-positive) virus for up to 33 days accompanied by low levels of
211	neutralising antibody [17]. These findings have implications for the risk of emergence of new
212	variants with resistance to SARS-CoV-2 therapeutics, as well as for infection control.
213	Additionally, for patients requiring allogeneic hematopoietic stem cell transplantation,
214	chimeric antigen T cell therapies or even chemotherapy, this delayed clearance can delay
215	therapy and potentially negatively a patient's cancer survival outcomes.
216	
217	Our findings suggest that patients in the secondary immunosuppression group may be
218	functionally more immunocompromised than the haematological/oncology and
219	primary/acquired immunodeficency groups. This may reflect the fact that four of the 12
220	patients in the heamatological/oncology group were on immunostimulatory checkpoint
221	inhibitor therapies, which have been associated with similar mortality rates to patients with
222	cancer [19]. In addition, three of the seven participants in the primary/acquired
223	immunodeficiency group were people with HIV on antiretroviral therapy with CD4
224	lymphocyte counts >500 cells/mm ³ .
225	

226	In this cohort of immunocompromised individuals, 33% required hospitalisation, 11%
227	required mechanical ventilation, and 7% died. At the end of October 2020 in New South
228	Wales (the end of our study period), among the total 4,237 reported COVID-19 cases, 55
229	(1.3%) had died [20].
230	
231	Conclusions:
232	Our data provide insights into COVID-19 illness and outcomes in immunocompromised
233	individuals in a resource-rich setting prior to COVID-19 vaccines and specific therapies, and
234	at a time when community transmission and healthcare strain was relatively low. These data
235	provide a benchmark for future work evaluating vulnerable populations including those with
236	heterogenous conditions affecting immune system function. We acknowledge several
237	limitations including the small sample size, which reflects the small and short peak of
238	COVID-19 in New South Wales in 2020, and limited data collection such as serial SARS
239	CoV-2 PCR results. Further understanding around which specific subgroups of
240	immunocompromised individuals are at greatest risk of SARS-CoV-2 infection, severe
241	COVID-19 illness outcomes and prolonged SARS-CoV-2 shedding, particularly in the post-
242	vaccination era and with the emergence of new variants, remains an important area of
243	research.

244 Acknowledgements

- 245 #CORIA Study Group: Nila J. Dharan, Sarah C. Sasson, Golo Ahlenstiel, Christopher R.
- 246 Andersen, Mark Bloch, Griselda Buckland, Nada Hamad, Win Min Han, Anthony D.
- 247 Kelleher, Georgina V. Long, Gail Matthews, Michael M. Mina, Emmanuella Papot, Kathy
- 248 Petoumenos, Tri Phan, Sanjay Swaminathan, Barbara Withers, James Yun, Mark N.
- 249 Polizzotto, David A. Brown, Rowena A. Bull, Matthew S. Carlino, Jennifer Curnow, Sarah
- 250 Davidson, Dominic E. Dwyer, Prudence N. Gatt, Yuvaraj Ghodke, Sally Hough, Peter
- 251 MacDonald, Susan Maddocks, Marianne Martinello, Deborah Marriott, Alexander M.
- 252 Menzies, Tania Sorrell.
- 253
- 254 Supplemental Figure Legend. Markers of infection and inflammation over time among the
- total cohort (N=27)

256 **References**

- 257 1. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81
- 258 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis.
- 259 2020;20(4):425-34. Epub 2020/02/28. doi: 10.1016/S1473-3099(20)30086-4. PubMed
- 260 PMID: 32105637; PubMed Central PMCID: PMCPMC7159053.
- 261 2. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical
- 262 characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a
- 263 descriptive study. Lancet. 2020;395(10223):507-13. Epub 2020/02/03. doi: 10.1016/s0140-
- 264 6736(20)30211-7. PubMed PMID: 32007143.
- 265 3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients
- 266 infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England).
- 267 2020;395(10223):497-506. Epub 2020/01/28. doi: 10.1016/s0140-6736(20)30183-5. PubMed
- 268 PMID: 31986264.
- 269 4. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors
- associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-
- 271 6. doi: 10.1038/s41586-020-2521-4. PubMed PMID: 32640463; PubMed Central PMCID:
- 272 PMCPMC7611074.
- 5. Shields AM, Anantharachagan A, Arumugakani G, Baker K, Bahal S, Baxendale H,
- et al. Outcomes following SARS-CoV-2 infection in patients with primary and secondary
- immunodeficiency in the UK. Clin Exp Immunol. 2022;209(3):247-58. Epub 2022/06/01.
- doi: 10.1093/cei/uxac008. PubMed PMID: 35641155; PubMed Central PMCID:
- 277 PMCPMC8807296.
- 278 6. Burrell AJ, Pellegrini B, Salimi F, Begum H, Broadley T, Campbell LT, et al.
- 279 Outcomes for patients with COVID-19 admitted to Australian intensive care units during the

- 280 first four months of the pandemic. Med J Aust. 2021;214(1):23-30. Epub 2020/12/17. doi:
- 281 10.5694/mja2.50883. PubMed PMID: 33325070.
- 282 7. Australian Government Department of Health and Aged Care. Coronavirus (COVID-
- 283 19) CDNA National Guidelines for Public Health Units. Available at:
- 284 <u>https://www.health.gov.au/resources/publications/coronavirus-covid-19-cdna-national-</u>
- 285 guidelines-for-public-health-units. Access date July 22, 2023.
- 8. Kim YJ, Lee ES, Lee YS. High mortality from viral pneumonia in patients with
- 287 cancer. Infect Dis (Lond). 2019;51(7):502-9. Epub 2019/05/14. doi:
- 288 10.1080/23744235.2019.1592217. PubMed PMID: 31081422.
- 289 9. Manuel O, Estabrook M, American Society of Transplantation Infectious Diseases
- 290 Community of P. RNA respiratory viral infections in solid organ transplant recipients:
- 291 Guidelines from the American Society of Transplantation Infectious Diseases Community of
- 292 Practice. Clin Transplant. 2019;33(9):e13511. doi: 10.1111/ctr.13511. PubMed PMID:
- 293 30817023.
- 294 10. Gooskens J, Jonges M, Claas EC, Meijer A, Kroes AC. Prolonged influenza virus
- 295 infection during lymphocytopenia and frequent detection of drug-resistant viruses. The
- 296 Journal of infectious diseases. 2009;199(10):1435-41. Epub 2009/04/28. doi:
- 297 10.1086/598684. PubMed PMID: 19392620.
- 298 11. Hill-Cawthorne GA, Schelenz S, Lawes M, Dervisevic S. Oseltamivir-resistant
- 299 pandemic (H1N1) 2009 in patient with impaired immune system. Emerging infectious
- 300 diseases. 2010;16(7):1185-6. Epub 2010/07/01. doi: 10.3201/eid1607.091579. PubMed
- 301 PMID: 20587208; PubMed Central PMCID: PMCPMC3321897.
- 302 12. Shalhoub S, AlZahrani A, Simhairi R, Mushtaq A. Successful recovery of MERS
- 303 CoV pneumonia in a patient with acquired immunodeficiency syndrome: a case report.
- 304 Journal of clinical virology : the official publication of the Pan American Society for Clinical

305 Virology. 2015;62:69-71. Epub 2014/12/30. doi: 10.1016/j.jcv.2014.11.030. PubMed PMID:

306 25542475.

307	13.	Weinstock DM,	Gubareva LV,	Zuccotti C	3. Prolonged	shedding	g of multidrug	g-resistant
-----	-----	---------------	--------------	------------	--------------	----------	----------------	-------------

- 308 influenza A virus in an immunocompromised patient. N Engl J Med. 2003;348(9):867-8.
- 309 Epub 2003/02/28. doi: 10.1056/nejm200302273480923. PubMed PMID: 12606750.
- 310 14. Copaescu A, James F, Mouhtouris E, Vogrin S, Smibert OC, Gordon CL, et al. The
- 311 Role of Immunological and Clinical Biomarkers to Predict Clinical COVID-19 Severity and
- Response to Therapy-A Prospective Longitudinal Study. Front Immunol. 2021;12:646095.
- doi: 10.3389/fimmu.2021.646095. PubMed PMID: 33815405; PubMed Central PMCID:
- 314 PMCPMC8009986.
- 315 15. Mallett S, Allen AJ, Graziadio S, Taylor SA, Sakai NS, Green K, et al. At what times
- during infection is SARS-CoV-2 detectable and no longer detectable using RT-PCR-based
- tests? A systematic review of individual participant data. BMC Med. 2020;18(1):346. doi:
- 318 10.1186/s12916-020-01810-8. PubMed PMID: 33143712; PubMed Central PMCID:
- 319 PMCPMC7609379.
- 320 16. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-
- 321 CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a
- 322 systematic review and meta-analysis. Lancet Microbe. 2021;2(1):e13-e22. doi:
- 323 10.1016/S2666-5247(20)30172-5. PubMed PMID: 33521734; PubMed Central PMCID:
- 324 PMCPMC7837230.
- 325 17. Kim KW, Wang X, Adhikari A, Yeang M, Jenkins F, Naing Z, et al. Persistent high-
- 326 level shedding of cultivable SARS-CoV-2 Delta virus 33 days after onset of COVID-19 in a
- hospitalized patient with pneumonia. J Med Virol. 2022;94(9):4043-6. doi:
- 328 10.1002/jmv.27832. PubMed PMID: 35509147.

- 329 18. Zhu L, Gong N, Liu B, Lu X, Chen D, Chen S, et al. Coronavirus Disease 2019
- 330 Pneumonia in Immunosuppressed Renal Transplant Recipients: A Summary of 10 Confirmed
- 331 Cases in Wuhan, China. Eur Urol. 2020;77(6):748-54. doi: 10.1016/j.eururo.2020.03.039.
- PubMed PMID: 32317180; PubMed Central PMCID: PMCPMC7166037.
- 19. Rogiers A, Pires da Silva I, Tentori C, Tondini CA, Grimes JM, Trager MH, et al.
- 334 Clinical impact of COVID-19 on patients with cancer treated with immune checkpoint
- inhibition. J Immunother Cancer. 2021;9(1). Epub 2021/01/21. doi: 10.1136/jitc-2020-
- 336 001931. PubMed PMID: 33468556; PubMed Central PMCID: PMCPMC7817383.
- 20. New South Wales Government. COVID-19 weekly surveillance in NSW
- epidemiological week 44, ending 31 October 2020. Available at:
- 339 https://www.health.nsw.gov.au/Infectious/covid-19/Documents/covid-19-surveillance-report-
- 340 <u>20211111.pdf</u>. Access date July 22, 2023.

Disclaimer

This publication was funded by the Australian Government Department of Health. The views

expressed in this publication do not necessarily represent the position of the Australian

Government.

Supplemental Tab	e 1. N	Medication list	(data available for 19	particit	pants)
------------------	--------	-----------------	------------------------	----------	--------

Participant	Primary diagnostic	Underlying	Medications
	criteria	immunosuppressive	
		condition	
1	Haematologic/oncologic	Cutaneous	Anti-PD-1, Anti-PDL1
	conditions	melanoma	
2	Haematologic/oncologic	Cutaneous	Anti-PD-1, Anti-CTLA-4
	conditions	melanoma	
3	Haematologic/oncologic	Cutaneous	Anti-PD-1, Anti-CTLA-4
	conditions	melanoma	
4	Haematologic/oncologic	Follicular lymphoma	Rituximab, Intravenous immunoglobulin (IvIg)
	conditions		
5	Haematologic/oncologic	Refractory myeloma	Methylprednisolone
	conditions		
6	Haematologic/oncologic	Malignant neoplasm	Anti-PD-1
	conditions	of other connective	
		and soft tissue	
7	Haematologic/oncologic	Malignant	Ruxolitinib
	conditions	immunoproliferative	
		diseases	

8	Haematologic/oncologic	Chronic transfusion	Ruxolitinib
	conditions	dependent	
		myelofibrosis	
9	Haematologic/oncologic	Malignant neoplasm	Trastuzumab (Herceptin), Capecitabine
	conditions	of oesophagus	
10	Primary/acquired	HIV infection	Elvitegravir/cobicistat/emtricitabine/tenofovir
	immunodeficiency		alafenamide
11	Primary/acquired	HIV infection	Dolutegravir+darunivir/cobicistat
	immunodeficiency		
12	Primary/acquired	HIV infection	Dolutegravir+darunivir/cobicistat
	immunodeficiency		
13	Primary/acquired	HIV infection	Not on HIV treatment
	immunodeficiency		
14	Primary/acquired	Unknown	Mycophenolate Mofetil, Prednisone
	immunodeficiency		
15	Primary/acquired	Autoinflammatory	Methotrexate
	immunodeficiency	Disorders	
16	Primary/acquired	Autoinflammatory	Etanercept, Prednisone
	immunodeficiency	Disorders	
17	Secondary	Psoriasis	Secukinumab
	immunosuppression		

18	Secondary	Multiple sclerosis	Fingolimod
	immunosuppression		
19	Secondary	Rheumatoid arthritis	Methotrexate, Sulfasalazine
20	Secondary	MOG Antibody	Tecifidera,
	immunosuppression	Demyelinating	Ocrelizumab
		Syndrome	

Supplemental Table 2. Number of participants with positive COVID-19 PCR positive results over time, by primary immunocompromising diagnostic category*

	Primary diagnostic category					
	Haematologic/oncologic conditions N=5	Secondary Immunosuppressive/immunomodulatory treatment N=3	Primary/Acquired Immunodeficiency N=1	Total N=9		
Last time point with positive PCR test						
Day 3	1	2	-	3		
Day 7	1	-	-	1		
Day 14	-	-	-	-		
Day 21	1	1	-	2		
Day 28	1	-	-	1		
Month 3	1	-	1	2		

*Only positive PCR results are reported.

	Hospitalisation		Invasive mechanical ventilation		Death	
	Month 3 n (%)	Time from enrollment to outcome (median, IQR), days	Month 3 n (%)	Time from enrollment to outcome (median, IQR), days	Month 3 n (%)	Time from enrollment to outcome (median, IQR), days
Haematologic/oncologic	3 (25%)	3 (1-7)	1 (8%)	14	1 (8%)	90
conditions						
Secondary Immunosuppression	3 (38%)	7 (1-28)	2 (25%)	3 (3-3)	1 (13%)	90
Primary/acquired	3 (43%)	3 (3-3)	0 (0%)	NA	0 (0%)	NA
immunosuppression						
Total	9 (33%)	3 (1-5)	3 (11%)	3 (3-14)	2 (4%)	90 (90-90)

