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SUMMARY  

 

Background Preeclampsia is a pregnancy-specific disease characterized by new onset 

hypertension after 20 weeks of gestation that affects 2-8% of all pregnancies and contributes to 

up to 26% of maternal deaths. Despite extensive clinical research, current predictive tools fail to 

identify up to 66% of patients who will develop preeclampsia. We sought to develop a tool to 

longitudinally predict preeclampsia risk. 

 

Methods In this retrospective model development and validation study, we examined a large 

cohort of patients who delivered at six community and two tertiary care hospitals in the New 

England region between 02/2015 and 06/2023. We used sociodemographic, clinical diagnoses, 

family history, laboratory, and vital signs data. We developed eight datasets at 14, 20, 24, 28, 32, 

36, 39 weeks gestation and at the hospital admission for delivery. We created linear regression, 

random forest, xgboost, and deep neural networks to develop multiple models and compared 

their performance. We used Shapley values to investigate the global and local explainability of 

the models and the relationships between the predictive variables. 

 

Findings Our study population (N=120,752) had an incidence of preeclampsia of 5.7% 

(N=6,920). The performance of the models as measured using the area under the curve, AUC, 

was in the range 0.73-0.91, which was externally validated. The relationships between some of 

the variables were complex and non-linear; in addition, the relative significance of the predictors 

varied over the pregnancy. Compared to the current standard of care for preeclampsia risk 
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stratification in the first trimester, our model would allow 48.6% more at-risk patients to be 

identified. 

 

Interpretation Our novel preeclampsia prediction tool would allow clinicians to identify 

patients at risk early and provide personalized predictions, as well as longitudinal predictions 

throughout pregnancy. 

 

Funding National Institutes of Health, Anesthesia Patient Safety Foundation. 
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RESEARCH IN CONTEXT 

 

Evidence before this study 

Current tools for the prediction of preeclampsia are lacking as they fail to identify up to 66% of 

the patients who develop preeclampsia. We searched PubMed, MEDLINE, and the Web of 

Science from database inception to May 1, 2023, using the keywords “deep learning”, “machine 

learning”, “preeclampsia”, “artificial intelligence”, “pregnancy complications”, and “predictive 

models”. We identified 13 studies that employed machine learning to develop prediction models 

for preeclampsia risk based on clinical variables. Among these studies, six included biomarkers 

such as serum placental growth factor, pregnancy-associated plasma protein A, and uterine artery 

pulsatility index, which are not routinely available in our clinical practice; two studies were in 

diverse cohorts of more than 100 000 patients, and two studies developed longitudinal 

predictions using medical records data. However, most studies have limited depth, concerns 

about data leakage, overfitting, or lack of generalizability.  

 

Added value of this study 

We developed a comprehensive longitudinal predictive tool based on routine clinical data that 

can be used throughout pregnancy to predict the risk of preeclampsia. We tested multiple types 

of predictive models, including machine learning and deep learning models, and demonstrated 

high predictive power. We investigated the changes over different time points of individual and 

group variables and found previously known and novel relationships between variables such as 

red blood cell count and preeclampsia risk.  
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Implications of all the available evidence 

Longitudinal prediction of preeclampsia using machine learning can be achieved with high 

performance. Implementation of an accurate predictive tool within the electronic health records 

can aid clinical care and identify patients at heightened risk who would benefit from aspirin 

prophylaxis, increased surveillance, early diagnosis, and escalation in care. These results 

highlight the potential of using artificial intelligence in clinical decision support, with the 

ultimate goal of reducing iatrogenic preterm birth and improving perinatal care. 
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NON-STANDARD ABBREVIATIONS AND ACRONYMS 

AUC, area under the receiver operating characteristic curve 

BMI, body mass index 

DBP, diastolic blood pressure 

IUGR, intrauterine growth restriction  

SBP, systolic blood pressure 

SGA, small for gestational age  

XGB, xgboost 
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INTRODUCTION 

 

Preeclampsia is a pregnancy-specific disorder characterized by new onset hypertension and 

proteinuria after 20 weeks gestation1 that complicates 2-8% of pregnancies.2,3 In addition to 

elevated systolic (>140 mmHg) or diastolic (>90 mmHg) blood pressure, patients can develop 

progressive end-organ damage characterized by proteinuria, elevated liver enzymes, pulmonary 

edema, seizures, and death. The only definitive treatment is delivery, and as a result, 

preeclampsia is the leading cause of iatrogenic preterm birth with associated neonatal morbidity 

and mortality. 

 

Despite extensive research, the upstream causative factors for preeclampsia remain unknown. It 

is hypothesized that abnormal placental development may be a large contributor.4 Current 

clinical practice is focused on identifying patients at risk based on established clinical criteria, 

which include demographic characteristics and medical history.1  Maternal risk can be mitigated 

by close surveillance using frequent home blood pressure monitoring and prophylaxis with low-

dose aspirin based on the presence of at least one high-risk or two moderate-risk factors.5 

However, more than half of pregnancies, in particular those in nulliparous individuals, end with 

preeclampsia in the absence of risk factors.6,7 In addition, little is known about the trajectory of 

risk and the rate of change in risk across pregnancy. 

 

As tools to predict preeclampsia are lacking, multiple predictive models have been developed. 

Most models utilize clinical risk factors combined with biomarkers, which may not be available 

in routine care.6,8 The majority of these models are also derived from well-curated datasets using 
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statistical methods. 6-9  Recently, a few accurate machine learning models have been developed;9 

however, the full potential of electronic health record (EHR) data has not been realized. Models 

developed to date have shown promise using small, constrained data sets but have been lacking 

in predictive power, accessibility, and generalizability. Machine learning models based on the 

entire EHR have outperformed the rule-based algorithm that relies on established clinical 

criteria.10,11 

 

The modern EHR stores a wealth of patient data and is in use across most health care institutions 

in the US. In large healthcare systems with multiple hospitals and outpatient offices, using 

uniform EHR software allows for the detailed aggregation of patient data collected at different 

encounters, sometimes across different hospitals or outpatient offices, longitudinally. Using the 

readily available rich data source of the EHR and machine learning to integrate data with 

complex relationships over time, we sought to develop accurate predictions of the risk for 

preeclampsia throughout pregnancy. We created a large patient cohort using longitudinal data 

from six hospitals from a large healthcare system in the Northeastern US. We developed a 

system of multiple machine-learning models throughout pregnancy and investigated their 

performance in preeclampsia prediction. Implementing this type of multi-model system to 

automatically operate within the EHR by ingesting data as it becomes available and generating 

predictions longitudinally during pregnancy would allow physicians to timely identify, triage, 

and modify surveillance and levels of care for the highest-risk patients. 
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METHODS 

 

Study population 

This study was approved by the Mass General Brigham Institutional Review Board, protocol # 

2020P002859, with a waiver of patient consent. We leveraged EHR data from eight hospitals in 

the New England region with deliveries between February 2015 (when our institution 

implemented single-vendor EHR across all outpatient offices and inpatient sites) and June 2023. 

Deliveries within the Mass General Brigham system were selected based on documentation of 

pregnancy greater than 20 weeks gestation and associated billing codes for cesarean or vaginal 

delivery.12 The final dataset included data from patients for whom longitudinal data starting from 

the first prenatal visit before 14 weeks of gestation was available, and we analyzed each 

pregnancy independently. 

 

Data processing 

All data were ingested and processed using our machine learning platform, Medical Record 

Longitudinal Information AI System (MERLIN),13 which extracts, transforms, and harmonizes 

data from the EHR. We censored our datasets at 14, 20, 24, 28, 32, 36, 39 weeks of gestation, 

and before the hospital admission for delivery. We selected these time points based on the timing 

of routinely scheduled outpatient visits when new laboratory and vital signs data are obtained. 

For each of the eight datasets, we verified by inspecting the time stamps that only data obtained 

up to the selected time point were included to minimize the risk of data leakage. Regardless of 

the time point, all data on or after the date of delivery and date of diagnosis (if relevant) were 

also excluded. 
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Model Features and Preeclampsia Phenotype Definition 

All demographic, family history, medical history, laboratory studies, medications, insurance, 

vital signs, and procedural information data were extracted. The demographic features included 

maternal age, self-reported race and ethnicity, substance use, prenatal care, and insurance 

information. Features missing over 95% of entries were removed. We selected established risk 

factors associated with preeclampsia risk in published studies and guidelines. 7,9-11,14,15 As 

International Classification of Diseases (ICD) codes have well-documented limitations, including 

overall low accuracy in identifying preeclampsia,4 we developed a combination of laboratory 

values, blood pressure measurements, and ICD codes based on the established guidelines14 to 

define the preeclampsia phenotype in our datasets. We validated this approach using 400 records 

of patients with ICD codes for preeclampsia, which were reviewed by clinical experts (V.K., 

K.G.); of those, our algorithm correctly identified 94.0% of the cases.  

 

Model Development 

As data were available from eight hospitals, we developed all models using data from six 

hospitals, two tertiary and four community hospitals (Cohort 1) and reserved the data from two 

community hospitals (Cohort 2) for external validation; the latter were chosen because they 

contain a representative sample of the entire population both in size and amount of data 

available. Additional information about external validation is provided in appendix (p 2). 

 

The remaining cases were again split into training (80%) and testing sets (20%) based on patient 

identifiers to ensure that a single patient would not have pregnancies in different sets, which 
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could artificially enhance performance metrics. A five-fold cross-validation was performed over 

the training set to determine hyperparameters. The best combination was then used to calculate 

testing metrics on the testing set.  

 

We developed the following models, which have been used in prior research.9-11,16-19: xgboost, 

deep neural networks (appendix p 2), elastic net, random forest, and linear regression. Using 

Optuna’s TPE sampler,20 we ran ten iterations over the hyperparameter space to determine the 

best-fitting combination. These parameters were then used to train the model on the entire 

training dataset and tested on the testing and external validation sets. We investigated bias, 

including racial bias, and followed established strategies for mitigation.21 

 

We employed Shapley values,22 a game theoretic approach to explain the output of any machine 

learning model. It connects optimal credit allocation with local explanations using the classic 

Shapley values from game theory and their related extensions. This method allows for both local 

(for individual patients) and global (for the model) interpretations. We used the SHAP Python 

package 0.41.0. 

 

Statistical Analyses and Definitions 

For the descriptive analyses, we used all available EHR data from before conception to up to 6 

weeks postpartum. Variables were expressed as median with interquartile range (IQR). 

Significance was determined using the Student’s t-test and one-way ANOVA for parametric 

variables, the Kruskal-Wallis rank sum test for non-parametric variables, and Fisher’s exact or 

Chi-squared test for categorical variables. A P-value of less than 0.05 was considered significant. 
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Role of the funding source  

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the manuscript. 
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RESULTS 

 

Population characteristics and outcomes 

 

We identified 122,147 deliveries between February 2015-June 2023 in our healthcare system. Of 

those, 120,752 met the additional selection criteria of having at least one visit with recorded 

information before 14 weeks of pregnancy and were subsequently used in our analysis.  All eight 

hospitals provided data for this study (appendix p 3) and 62.7% of pregnancies (N=75,740) were 

in patients receiving care at a tertiary care hospital.   

 

The overall incidence of preeclampsia was 5.7%, N=6,920 (Table 1). Compared to normotensive 

patients, those with a diagnosis of preeclampsia included a significantly higher proportion of 

individuals with self-reported Black race (17% vs. 9%), and self-reported Hispanic ethnicity 

(19% vs 15%), respectively. In addition, patients with preeclampsia were more likely to have a 

family history of hypertension, higher maximal systolic and diastolic blood pressures, and higher 

weight gain during pregnancy, compared with patients who did not develop preeclampsia, 

P<0.01. The remaining characteristics of both groups are summarized in Table 1. 

 

Longitudinal development of multiple predictive models 

 

To develop predictive models of the preeclampsia risk over time, eight datasets were created at 

multiple time points in pregnancy from two tertiary and four community hospitals (Cohort 1); the 

patients from two community hospitals were reserved for external validation (Cohort 2) and 
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those data were excluded from model training (Fig. 1A). The characteristics of both cohorts and 

all datasets are summarized in the appendix (pp 4-23). For all datasets that were used for model 

development, data were only included if recorded before the respective cut-off gestational age or 

before the diagnosis of preeclampsia. The data from patients without preeclampsia were 

censored at the respective timepoint in pregnancy or before delivery. 

 

We developed five types of models: xgboost, deep neural networks, elastic net, random forest, 

and linear regression at each of the eight different time points: 14, 20, 24, 28, 32, 36, 39 

gestational weeks, and on admission (Fig 1B and 1C). The earliest timepoint for which we 

developed each of the models was 14 weeks, as most patients had their first prenatal visit at that 

time, and commonly, new vital signs, detailed history, and baseline laboratory tests were 

obtained. We used the area under the curve (AUC), a widely used metric in machine learning 

that balances sensitivity and specificity, to evaluate the predictive power of the models.  

 

We analyzed the AUC of each model using the test dataset, which included 20% of the patients 

in Cohort 1, whose data was not used in the process of model development (Fig. 2A). Overall, 

the models had AUC 0.73-0.76 at 14 gestational weeks. With the advancement of the gestational 

age, more data is collected from every patient visit, and the performance of each model type 

increased; the highest AUC was on admission, range 0.88-0.91. The detailed performance 

metrics are listed in the appendix (p 24). We externally validated the performance using data 

from two community hospitals (Fig. 2B and appendix pp 25-26). We also investigated racial bias 

and optimized the performance of the models (appendix pp 27-28). 
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Time course and relationships of the most predictive variables 

Using Shapley additive explanations method, we evaluated the most predictive variables in the 

xgboost model, over the eight time points (Fig 3A). In early pregnancy, at 14 weeks, the most 

predictive features were chronic hypertension and long interpregnancy interval. With advancing 

gestational age, the highest contributing features become systolic and diastolic blood pressure. 

Similarly, in early pregnancy, the category that contributed the most to the model predictions 

was medical history; with advancing gestational age, the vital signs and laboratory results 

became more contributory (Fig. 3B). This approach can be used to highlight individual patient 

predictions and the associated factors (appendix pp 29-30). 

 

In addition to exploring the contribution of individual features to the model’s prediction, Shapley 

values can highlight the interactions between different variables (appendix p 31). For example, 

the presence of proteinuria is unlikely to be associated with a diagnosis of preeclampsia if the 

maximal systolic blood pressure during pregnancy is <140 mmHg; however, above that 

threshold, proteinuria becomes highly predictive. The relationships between some variables 

follow non-linear patterns; for example, age is a risk factor if the patient is <20 years or >35 

years old, especially if associated with higher parity or higher gravidity. A similar J-shaped 

relationship is also present between age and short or long interpregnancy intervals. Interestingly, 

higher SBP is likely to be associated with a higher risk of preeclampsia at age <35 years old. A 

higher red blood cell count during the second trimester is associated with a higher risk for 

preeclampsia.  

 

Comparison to the current standard of care 
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Although there is no universally accepted model for the prediction of preeclampsia, the ACOG 

risk stratification criteria are widely accepted in clinical practice1. The preeclampsia xgboost 

model outperformed a model created using the ACOG risk factors based on AUC across all time 

points (Fig 4A). Moreover, as ACOG guidelines recommend aspirin prophylaxis for all patients 

at high risk for preeclampsia before 16 weeks, we evaluated how many additional patients would 

have benefitted from aspirin who would not have been identified by ACOG risk criteria. We 

compared the performance of our xgboost model with ACOG risk criteria in the test dataset. 

Using our xgboost model predictions at 14 weeks on the test dataset, 25.0% (N=5624) 

individuals would be eligible for aspirin prophylaxis, while only 14.6% (N=3295) would be 

eligible using ACOG criteria. Using the novel preeclampsia model, an additional 2,329 

individuals would have been eligible. If aspirin prophylaxis prevents 62% of early-onset 

preeclampsia in high-risk patients,23 an additional 28 cases (total of 66 cases) of early-onset 

preeclampsia per 10,000 pregnant individuals would have the potential to be prevented with 

updated risk prediction.  
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DISCUSSION 

 

We developed an accurate artificial intelligence (AI) tool consisting of eight longitudinal models 

for preeclampsia prediction using machine learning. With the advancement of pregnancy and the 

increase in the gestational weeks, the models get progressively more accurate, from area under 

the curve (AUC) 0.76 to 0.91; the highest predictive value, AUC 0.91, was achieved before 

delivery. The most predictive features were systolic and diastolic blood pressure and 

interpregnancy interval. As gestational age advanced, the relative significance of systolic and 

diastolic blood pressure compared to other predictors increased significantly. Compared with the 

current standard of care, our models have higher predictive power and would allow earlier and 

more precise identification of patients at risk for preeclampsia. 

 

The importance of screening for preeclampsia throughout pregnancy has been emphasized,1 and 

to date, multiple predictive models have been developed.9-11,16-19 Most studies include clinical 

data as well as biomarkers, such as serum placental growth factor,8,19 pregnancy-associated 

plasma protein A,8,19 and uterine artery pulsatility index.6,8,19 However, these tests are not 

routinely performed in all clinical settings, and thus, the models that utilize these data can be 

applied only in limited cases. We aimed to develop an accurate tool that can be applied 

throughout pregnancy and utilizes EHR data routinely collected during prenatal visits. In this 

way, our AI system has the advantage of being developed using real-world clinical data and can 

be reproduced in any setting that utilizes EHR. 
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We achieved high predictive power using our models, which are comparable to or better than 

other studies using EHR.6,10,11,18 We developed multiple models and demonstrated that 

preeclampsia can be predicted with high performance. The model with highest AUC was 

xgboost; this type of model has a low risk of overfitting, high interpretability, and performs well 

in clinical structured data.24 In addition, this type of model was highly performant in prior studies 

predicting preeclampsia.10,11  However, these prior studies developed models from all available 

EHR data, which may lead to overfitting, 10,18 did not investigate multiple machine learning 

models, 10,11 and the datasets have high missingness.11  In addition, some prior results may 

display data leakage, for example, including oxytocin, an intra- or post-partum medication in an 

early antepartum model. We overcome the limitations of prior work by including only those 

variables which are clinically relevant for the diagnosis of preeclampsia in our models; we 

anticipate that this approach will improve cross-institutional reproducibility. The external 

validation and bias investigation are discussed in detail in the Supplemental Discussion 

(appendix p 32). 

 

The current study is the largest investigation to date based on the cohort size, time points, depth 

of predictor variables, and types of machine learning models. We demonstrate the strong effect 

on preeclampsia risk of known predictors, such as a past medical history of preeclampsia, 

diabetes, and chronic kidney disease.7,11,16 In addition, we also incorporated time-series variables 

in our models. This approach improves the accuracy of predictions,9,10 and we replicate prior 

findings of heightened preeclampsia risk with excessive weight gain9,25,26 and steep patterns of 

blood pressure increase9,10,27 during pregnancy. As evidence for the relative role of individual 
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risk factors and interaction between those risk factors is lacking,26 our study adds substantial 

results from clinical practice to inform future predictive tools and guidelines. 

 

The advantage of using Shapley values as an explainable AI approach is that we demonstrate the 

relative significance of individual factors and the temporal change as the gestational age 

advances. Not surprisingly, the most important features in early pregnancy are chronic 

hypertension and interpregnancy interval, which are part of the medical history. Later in 

pregnancy, the trajectory of the systolic and diastolic blood pressure becomes more important, 

which potentially may present a subclinical presentation of developing disease. While individual 

and groups of risk factors have been well investigated,26 only a few prior studies have analyzed 

all patient EHR data during pregnancy in its entirety.9,10 Our results offer a more granular look at 

the individual variables and demonstrate a higher significance of the patient history in early 

pregnancy, compared to other studies that rank higher vital signs and laboratory results.10 These 

differences likely represent variable institutional practices for early pregnancy screening and 

highlight the need for future large, multi-center studies. 

 

Preeclampsia risk factors can interact in a complex, non-linear fashion. For example, chronic 

hypertension is associated with early-onset preeclampsia in patients with weight < 69 kg, no 

diabetes, and no family history of preeclampsia.7 When analyzing the relationships between 

variables in our models, we demonstrate previously known, as well as new, interactions. The risk 

of preeclampsia is higher in the extremes of age,28 and also in pregnancies with short and long 

interpregnancy intervals.29 The connection with red blood cell count is novel and may be related 

to a higher hemoconcentration.30  As preeclampsia is a heterogeneous disorder, further exploring 
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the interaction between variables has the potential to identify sub-phenotypes of preeclampsia 

that may benefit from a more personalized approach to prophylaxis and treatment.31 

 

Our ability to utilize the Shapley method on an individual level highlights the clinical value of 

these predictive models to personalize patient management. Identifying the risk factors will 

allow visualization and potential modification of those factors, which can change the course of 

the disease and decrease risk. If implemented longitudinally during the pregnancy, for example, 

in the form of a dashboard, these individualized predictors would allow earlier detection and 

amelioration in high-risk patients or adjustment of surveillance in low-risk individuals. While 

individual Shapley values have inherent limitations, this approach can be used to evaluate bias 

and overall performance.32 Across the population, this strategy would allow efficiency and cost 

savings while maintaining high standards of care. 

 

There is no definitive therapy for preeclampsia (other than delivery); therefore, efforts are 

focused on prevention and early detection. Multiple studies have shown that aspirin prophylaxis 

started in early pregnancy in patients at high risk can decrease the incidence of early-onset 

preeclampsia, which is associated with the highest incidence of maternal and neonatal 

morbidity.23,33 As high-risk patients benefit from aspirin prophylaxis, accurate risk stratification 

is paramount. The current ACOG guidelines recommend prophylaxis and increased surveillance 

of high-risk patients;1  however, multiple studies have demonstrated that the predictive power of 

the current standard of care using established risk factors is limited. 10,11,26 Therefore, 

implementing our AI tool in clinical practice may offer substantial benefits for patient health. 
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Our study has several limitations. In some cases, the diagnosis of preeclampsia may be 

challenging to establish as there may be no clear tests that distinguish between gestational 

hypertension, chronic hypertension, and superimposed preeclampsia. There is also a degree of 

uncertainty in the diagnostic criteria definitions. 1,34 Traditionally, most retrospective and 

modeling studies have used disease codes,9 which may be inaccurate.35 To improve the accuracy 

of the outcome, we developed and manually validated an algorithm based on structured data. In 

addition, as some patients utilized home blood pressure measurements, those values were not 

available in the EHR and, thus, were not included in the models. In the future, integrating home 

blood pressure monitoring may improve the predictive power of models. We also acknowledge 

that ACOG risk factors1  may not be an ideal comparative model to our models; however, this 

approach has been used by others,10 and most modeling studies have insufficient data to 

reproduce the results.17 Lastly, we used retrospective data to test and externally validate our 

models, and further prospective validation is needed to evaluate the true predictive power. 

 

By using routinely collected data during scheduled prenatal visits, we demonstrate that accurate 

prediction of preeclampsia can be achieved. This design would allow risk assessment utilizing 

these models at every visit throughout pregnancy with updates in risk prediction, resulting in a 

more accurate ascertainment of individuals at risk who would benefit from prophylactic 

measures or increased surveillance. In the future, as better testing or prophylaxis become 

available, these AI tools can be used to select the group of individuals who would benefit the 

most.  
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Fig. 1 Overview of the data and model development. A. After excluding patients with no data at 
14 weeks, the final study patient cohort included 120,752 deliveries; of those, Cohort 1 was 
divided into training and testing groups used to develop the models, while Cohort 2 was reserved 
for external validation and did not participate in model development. B. We developed datasets 
at 14, 20, 24, 28, 32, 36, 39 weeks gestation, and on admission for delivery based on the timing 
of the routinely scheduled outpatient visits. C. After selecting relevant to the preeclampsia risk 
features, we developed linear regression, elastic net, random forest, xgboost, and deep neural 
network models to predict the risk of preeclampsia; the performance of those models was 
evaluated in the test datasets from Cohort 1 and external validation datasets from Cohort 2. 
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Fig. 2. Performance as defined by the area under the curve (AUC) of the xgboost, deep neural 
network, elastic net, random forest, and linear regression models to predict preeclampsia risk A. 
Performance on the test dataset from Cohort 1 B. Performance on the external Cohort 2.   
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Fig. 3. Change in relative contribution for model prediction over time A. Contribution of several 
feature groups B. The most predictive variables over every timepoint. Labs, laboratory results; 
bps, systolic and diastolic blood pressure measurements; htn, chronic and gestational 
hypertension. 
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Fig 4. Comparison between the xgboost model and the current standard of care as determined by 
ACOG guidelines. A. Comparison between AUC of the xgboost model and the ACOG criteria 
over all time timepoints. B. Venn diagram of all individuals at risk for preeclampsia in the test 
dataset (N=22,511); of those, individuals at risk predicted using the ACOG criteria (acog) are in 
pink, and the individuals at risk predicted using the xgboost model (model) at 14 weeks are in 
green. 
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Table 1. Characteristics of study patients (total N=120,752) 

 Preeclampsia 
(n=6,920) 

No preeclampsia 
 (n=113,832) P-value 

Maternal age at delivery, y 32.9 (29.5 - 36.6) 32.9 (29.9 - 35.8) 0.17 
Self-reported race, White 4240 (61.3) 77290 (67.9) < 0.01 
Self-reported race, Black 1172 (16.9) 10492 (9.2) < 0.01 
Self-reported race, other 1553 (22.4) 26626 (23.4) 0.11 
Self-reported ethnicity, Hispanic 1289 (18.6) 17096 (15.0)  < 0.01 
Self-reported ethnicity, non-Hispanic 5631 (81.4)  96736 (85.0) < 0.01 
Tertiary hospital 4712 (68.1) 71028 (62.4) < 0.01 
Community hospital 2208 (31.9) 42804 (37.6) < 0.01 
Gravidity 2.0 (1.0 - 3.0) 2.0 (1.0 - 3.0) 0.11 
Parity 1.0 (0.0 - 1.0) 1.0 (1.0 - 1.0) < 0.01 
Nulliparous 3207 (46.34%)  41882 (36.79%) < 0.01 
In vitro fertilization 414 (5.98%) 4299 (3.78%) < 0.01 
Multiple gestation 490 (7.08%) 2961 (2.6%) < 0.01 
Gestational age at delivery, weeks 37.7 (36.3 – 39.3) 39.3 (38.6 – 40.1) < 0.01 
BMI at delivery, kg/m2 33.3 (29.2 - 38.4) 29.9 (26.9 - 33.8) < 0.01 
Weight at delivery, kg 87.54 (76.66 - 102.06) 79.83 (71.21 - 90.72) < 0.01 
Maximal SBP during pregnancy, mmHg 150 (140 - 160) 129 (120 - 138) < 0.01 
Maximal DBP during pregnancy, mmHg 93 (86 - 99) 80 (74 - 86) < 0.01 
Family history of chronic hypertension 3075 (44.4) 41277 (36.3) < 0.01 
Family history of preeclampsia 142 (2.2) 2162 (1.9) 0.14 
Past history of chronic hypertension 1896(27.4) 5854 (5.1) < 0.01 
Past history of gestational hypertension 511 (7.4) 3528 (3.1) < 0.01 
Past history of preeclampsia 530 (7.7) 2205 (1.9) < 0.01 
Past history of preterm delivery  
(<37 weeks) 

2217 (32.0) 7747 (5.6) < 0.01 

Antihypertensive medications throughout 
pregnancy and 6 weeks postpartum 

4767 (68.9) 6355 (5.6) < 0.01 

Headaches during pregnancy and 6 
weeks postpartum 

1301 (18.8%) 12949 (11.38%) < 0.01 

Gestational diabetes 1247 (18.02%) 13888 (12.2%) < 0.01 
Proteinuria 4286 (61.9) 886 (0.78) < 0.01 
Maximal uric acid during pregnancy 5.6 (4.7 – 6.6) 4.6 (3.9 – 5.5) < 0.01 
SGA or IUGR 579 (8.4) 9763 (8.6) 0.56 
 

Median (IQR) for continuous variables; n (% need to convert to percent) for categorical 
variables; p-values for continuous variables based on Kruskal-Wallis rank sum test; for 
categorical variables based on Fisher’s exact or Chi-squared test.  
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure, BMI, body mass 
index, SGA, small for gestational age, IUGR, intrauterine growth restriction. 
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