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One Sentence Summary: Genetic analyses of circulating serum amyloid P component (SAP) values 

suggest that depletion of plasma SAP may decrease the risk of Alzheimer’s disease and Lewy body 

dementia. 
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Abstract:  

The direct causes of neurodegeneration underlying Alzheimer’s disease (AD) and many other 

dementias, are not known. Here we identify serum amyloid P component (SAP), a constitutive plasma 

protein normally excluded from the brain, as a potential drug target. After meta-analysis of three 

genome-wide association studies, comprising 44,288 participants, cis-Mendelian randomization 

showed that genes responsible for higher plasma SAP values are significantly associated with AD, 

Lewy body dementia and plasma tau concentration. These genetic findings are consistent with 

experimental evidence of SAP neurotoxicity and the strong, independent association of neocortex 

SAP content with dementia at death. Depletion of SAP from the blood and from the brain, as is 

provided by the safe, well tolerated, experimental drug, miridesap, may therefore contribute to 

treatment of neurodegeneration. 

 

Keywords: Alzheimer’s disease; dementia; genome-wide association study; Lewy body dementia; 

Mendelian randomization; miridesap; neurodegeneration; serum amyloid P component. 
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Main Text: 

INTRODUCTION 

The direct causes and mechanisms of neuronal cell death responsible for the cognitive loss in 

Alzheimer’s disease (AD) and many other dementias, are not known. Serum amyloid P component 

(SAP) is an almost invariant, constitutive, normal plasma glycoprotein produced exclusively in the 

liver. It circulates at a mean (SD) concentration of about 24 (8) mg/l in women and 32 (7) mg/l in 

men1 but it is normally rigorously excluded from the central nervous system (CNS). Cerebrospinal 

fluid (CSF) concentrations of SAP are one thousand-fold lower than the plasma concentration,2,3 

presumably reflecting relative impermeability of the blood brain barrier (BBB). There is also evidence 

for an active transport mechanism exporting SAP from the CSF back into the blood4. SAP is named 

for its universal presence in all human amyloid deposits, which reflects the avid but reversible 

calcium dependent binding of SAP to all types of amyloid fibrils regardless of their protein 

composition5,6. Thus, although CSF and brain content of SAP are normally extremely low, SAP is 

nonetheless always present in the intracerebral Aβ amyloid plaques, cerebrovascular Aβ amyloid 

deposits and the majority of neurofibrillary tau tangles in AD. The binding of SAP stabilises amyloid 

fibrils7 and promotes their formation8,9, thereby contributing to amyloid deposition and persistence10. 

Furthermore, accumulation of SAP on intracerebral amyloid plaques, cerebrovascular amyloid 

deposits and neurofibrillary tangles also increases exposure of cerebral neurones to SAP. 

 

Cerebral Aβ amyloid is a defining feature of AD, is also often present in Lewy body dementia (LBD) 

and is present in chronic traumatic encephalopathy. It is still not known how amyloid pathology 

contributes to neurodegeneration but recent reports of cognitive benefit from antibody treatments that 

reduce the Aβ amyloid burden in AD are encouraging11,12. Typical AD neuropathology is often seen 

in the brains of individuals who were cognitively normal at death, raising the possibility of other 

pathogenetic factors in dementia. It is therefore interesting that, unrelated to its contribution both to 

Aβ amyloid formation and persistence, human SAP is itself directly neurotoxic to cerebral neurones in 

vitro13–16 and in animal models in vivo17. Furthermore, neocortical SAP content is significantly 

associated with dementia at death, independently of neuropathological severity, consistent with a 
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more direct, amyloid-independent, pathogenetic role of SAP in neurodegeneration18. Indeed, many of 

the risk factors for dementia, including cerebral and cerebrovascular amyloid deposition, traumatic 

brain injury, cerebral haemorrhage and even ‘normal’ ageing, with its associated impairment of the 

BBB19, are characterised by increased exposure of the brain to SAP. 

 

In order to rigorously explore the potential causative role of human SAP in human neurodegenerative 

diseases, we have now sought genetic epidemiological evidence. SAP is encoded by the gene APCS 

(ENSG00000132703) located on chromosome 1, in close proximity to CRP (ENSG00000132693) 

which encodes C-reactive protein (CRP). These two proteins comprise the pentraxin family, sharing 

54% strict residue for residue amino acid sequence homology, even higher genetic sequence 

homology and having the same secondary, tertiary and quaternary structural organisation. Despite 

notable phylogenetic conservation of gene and protein sequence and structure among pentraxins, there 

are marked biological differences between these proteins both within and between species20. Thus, 

human CRP is the classical acute phase protein that is among the most commonly used routine 

clinical chemistry analytes, whilst human SAP is a constitutive plasma protein, the assay of which has 

hitherto had no practical clinical significance. Human SAP is not an acute phase reactant although in 

chronic inflammatory conditions, in which there is sustained increased production of CRP, SAP 

values tend to be slightly higher, albeit within the reference range21. A few small studies in the elderly 

and subjects with impaired cognition have reported plasma and CSF SAP concentrations above the 

reference range of the healthy middle aged population2,22,23,24. Children under 10 years have 

circulating SAP concentrations below the adult range but reduced adult SAP values are seen only with 

severe hepatocellular impairment21. Unsurprisingly therefore, in contrast to CRP concentration, there 

have only been limited genome-wide association studies (GWAS) of plasma SAP concentration24–26. 

Recently, however, the SomaLogic aptamer-based proteomic platform has enabled large scale 

measurement of circulating SAP abundance, allowing for a growing number of GWAS identifying 

potential genetic instruments for plasma SAP concentration. 
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Cis-Mendelian randomization (MR) leverages genetic instruments associated with protein 

concentration to demonstrate the possible causal effects of a potential drug target and thus to 

anticipate safety and efficacy outcomes of specific therapeutic interventions. The random allocation of 

genes during gametogenesis crucially protects genetic associations against bias due to confounding 

and reverse causality27,28. Furthermore, through a two-sample design, MR can source aggregated data, 

that is point estimates and standard errors, from large scale studies, each designed to maximize the 

available sample size. This extensively validated MR approach can provide a precise and powerful 

overview of the likely causal consequences of target perturbation covering a large number of 

clinically relevant diseases and traits29–32. 

 

We confirmed that the SomaLogic SAP values reliably reflect the actual plasma concentration of the 

protein measured by rigorously calibrated SAP immunoassay. We then conducted a meta-analysis of 

three GWAS of circulating SAP values, combining information from 44,288 participants, followed by 

a drug target MR utilizing APCS cis-variants that were strongly associated with plasma SAP values. 

We primarily focused on the possible causal effect of SAP in AD and LBD. Given the close proximity 

of APCS to CRP, and the major involvement of CRP responses with almost all inflammatory, 

infective, traumatic and other tissue damaging processes33, we additionally utilized MR to rule out 

possible effects of plasma CRP concentration acting on the SAP signal through linkage disequilibrium 

(LD) between variants in APCS and variants in CRP. 

 

RESULTS  

Genome-wide meta-analysis of plasma SAP values 

Genetic variant-specific estimates of the association with SAP values, measured by SomaLogic 

SomaScan assay version 4.1, were available from three independent studies: Interval, comprising 

3,301 particpants24, AGES, with 5,36826, and DECODE with 35,55925. The combined data identified 

ten independent lead variants associating with SAP, including four cis-variants near APCS 

(rs140308485, rs13374652, rs1341664, rs78228389), as well as trans-variants on chromosomes 1, 2, 
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8 and 13 (Fig. 1-2, Table S1). Comparison of the genetic associations with plasma SAP and CRP 

values in the region around rs1341664, the APCS cis-variant with the strongest SAP association, 

indicated that these closely adjacent signals were independent (Fig. 2); the Pearson correlation 

coefficient comparing the -log10(p-value) for each trait was -0.06, p-value < 0.001. This was further 

confirmed by noting that the CRP association of the four SAP cis-variants did not reach genome-wide 

significance (Table S2), with the -log10(p-value) for CRP ranging between 0.04 and 6.26. Instead, the 

CRP signals were concordant with the SAP trans signals (Fig. S2; Table S2). 

 

GWAS Catalog look-ups for the effects of genetic variants in APCS identified a previously reported 

association with white-matter microstructure34 (Fig. S3; Table S9). Using Open Target’s V2G 

algorithm the six SAP trans-variants were mapped to the putative causal genes: C4BPB, ZNF644, 

IL1RN, KRTCAP3, TRIB1, RNASEH2B (Fig. 1; 3, Tables S3-S8).  Look-ups for the variants within 

and around the putative trans-genes for SAP, provided links with a diverse range of pathophysiology 

without known connections to SAP biology (Fig. S3, Table S9). 

 

Cis-MR results for plasma SAP values and dementia outcomes 

Cis-MR analysis detected significant associations of higher plasma SAP values with increased risk of 

dementia outcomes: AD (35,274 cases, odds ratio (OR) 1.07, 95%CI 1.02; 1.11, p=1.8×10-3), and 

LBD (2,981 cases, OR 1.37, 95%CI 1.19; 1.59, p=1.5×10-5) (Fig. 4, Table S10). A similar analysis for 

plasma CRP values did not identify links with these outcomes (Table S10). 

 

Cis-MR results for plasma SAP values and other outcomes 

Cis-MR analysis suggested that higher plasma SAP value was associated with increased coronary 

heart disease (CHD) risk (OR 1.03, 95%CI 1.01; 1.05), greater total brain volume (0.06 SD, 95%CI 

0.02; 0.10), lower systolic blood pressure (SBP) (-0.16 mm Hg, 95%CI -0.26; -0.07) and lower 

diastolic blood pressure (DBP) (Fig. 5, Table S11).  In contrast, the MR analysis of plasma CRP 
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values showed a distinct effects profile in which higher CRP concentrations were associated with 

serum concentrations of hepatocellular enzymes, with osteoarthritis, and with total plasma tau 

concentration (Fig. 5, Table S12).  

 

Multivariable MR results for outcomes linked to both SAP and CRP 

APCS and CRP are closely co-located on chromosome 1, potentially challenging the recognition of, 

and discrimination between, more subtle apparent independent effects. We therefore identified 

outcomes significant at the more liberal value of p<0.05 for both plasma SAP and CRP values, 

specifically, total brain volume, plasma total tau concentration and osteoarthritis. Application of 

multivariable MR (MVMR) to identify the mutually independent effects of both proteins, and 

accounting for potential influence of LD, then showed that higher values of each increased circulating 

total tau concentration: (0.06 log2(ng/L), 95%CI 0.03; 0.08) for higher plasma SAP value, and (0.20 

log2(ng/L), 95%CI 0.14; 0.25) for higher plasma concentration of CRP. The MVMR analysis did not 

confirm significant associations for osteoarthritis, and total brain volume (Table S13).  

 

DISCUSSION  

We report here a large-scale meta-analysis of GWAS of SomaLogic values for plasma SAP 

comprising 44,288 participants. We confirmed that the SomaLogic intensity scores for plasma SAP 

agree with immunoassay of actual SAP concentrations.  The GWAS results then enabled MR analysis 

sourcing cis-acting variants within and around APCS, the gene encoding SAP, to explore potential 

involvement of SAP in pathogenesis of dementia. We found that higher plasma SAP values increased 

the risk of AD (OR 1.07, 95%CI 1.02; 1.11, p=1.8×10-3) and LBD (OR 1.37, 95%CI 1.19; 1.59, 

p=1.5×10-5), implying that pharmaceutical depletion of SAP might reduce the risk of both diseases. 

Furthermore, using multivariable MR to account for possible horizontal pleiotropy by plasma CRP 

concentration, we also detected a significant association of higher plasma SAP values with higher 

total plasma tau concentration (0.06 log2(ng/L), 95%CI 0.03; 0.08), which is itself also associated 

with AD dementia35. 
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The presence of SAP in all cerebral Aβ plaques and on most neurofibrillary tangles in AD, long 

known from immunohistochemical studies, has recently been shown to strongly discriminate between 

AD brains and cognitively normal brains36. However, the present finding of significant associations 

between genetically determined higher plasma SAP values and increased risk of AD and LBD, is 

more specifically consistent with the association between neocortex SAP content and cognitive status 

at death that was recently observed in the Cognitive Function and Ageing Study18. In this unselected, 

population-representative, elderly brain donor population, the OR for dementia at death, between the 

top tertile and the lowest tertile of neocortical SAP content, was 5.24 (95%CI 1.79; 15.29). 

Furthermore the association of dementia with SAP content was independent of Braak stage, Thal 

phase and all other classical neuropathological hallmarks of dementia18. It was thus specific for 

abundance of SAP itself in the neocortex rather than SAP content just being a surrogate for the Aβ 

amyloid and neurofibrillary tau tangle pathology which is always present in AD and also frequently 

found in LBD. This SAP-dementia association, which is consistent with a possible pathogenetic role 

of SAP in neurodegeneration, is now directly supported by the present MR results. 

 

In contrast to a previously reported MR study, which did not detect an association between SAP 

values and AD37, our analysis was improved in multiple ways. First and foremost, instead of simply 

taking a single SAP GWAS, we meta-analysed combined data from three independent studies to 

produce the largest GWAS of SAP values to date. This resulted in an AD MR analysis using 53 SAP 

variants instead of the 14 used by Yueng et al37. The larger number of variants allowed us to consider 

outlier and leverage statistics, identifying and removing variants with possible horizontal pleiotropic 

effects, further ensuring the robustness of the present findings. Furthermore, we performed 

confirmatory analyses to refute possible bias due to the location of the CRP gene closely adjacent to 

APCS, and we found no meaningful overlap between the effect profiles of plasma SAP and CRP 

values. Similar to the analysis by Yueng et al37, we conducted a two-sample MR analysis, where the 

exposure GWAS did not, or only partially, overlapped with the outcome GWAS.  Any potential weak 

instrument bias will thus, on average, act towards a null effect, hence our results are conservative. 
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This, however, also implies that non-significant findings should not be over-interpreted as providing 

proof of absence38. Finally, we note that, under the null hypothesis and accounting for the number of 

evaluated outcomes, the probability of finding an effect of plasma SAP value on AD as well as on 

LBD is equal to the square of the alpha: (2.78×10-3)2 =7.73×10-6. The concordant findings thus 

strongly imply that SAP contributes to pathogenesis of dementia. 

 

Increased duration and/or intensity of brain exposure to SAP may be pathogenic through its direct 

cytotoxicity for some cerebral neurones, as has been demonstrated experimentally in vitro and 

in vivo13–16, and potentially also by promoting the formation and the persistence of Aβ amyloid fibrils 

and neurofibrillary tau tangles. However, SAP is produced only by the liver; it is not in the brain 

transcriptome39. Normally the brain is strongly protected against exposure to SAP by the BBB and by 

active transport back to the plasma of any SAP that leaks through4, so that the CSF SAP concentration 

is about one thousandth of that in the plasma2,3. It is therefore striking that even modestly higher 

plasma SAP concentrations are associated with dementia risk. There have been very few studies of 

SAP concentration in paired samples of plasma or serum and CSF but in addition to the circulating 

SAP concentration, BBB integrity and the efficiency of the SAP active export mechanism must affect 

brain exposure to SAP. Nevertheless, across the large populations studied here, there was a significant 

effect of higher plasma SAP concentration on clinical dementia outcomes.  

 

In addition to the four cis-loci, our GWAS results identified variants mapping to genes outside APCS, 

including C4BPB, ZNF644, IL1RN, KRTCAP3, TRIB1 and RNASEH2B. SAP binds specifically to 

C4-binding protein, encoded by C4BPB, under particular experimental conditions in vitro40, though 

no functional effect of the interaction has been reported. IL1RN, which encodes the IL-1 receptor 

antagonist (IL-1RA) might have a functional effect on SAP via the acute phase response, which is 

mediated by IL-1 both directly and via other pro-inflammatory cytokines. Even though human SAP is 

not an acute phase reactant, its concentration does tend to rise modestly within the reference range in 

chronic inflammatory diseases with a sustained acute phase response21. TRIB1 has diverse, wide 

ranging effects across many different physiological systems. 
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The putatively mapped SAP trans-genes have previously been variously linked to a broad range of 

different metabolic, cardiac and haematological traits and to increased plasma concentrations of liver 

enzymes. Inclusion of these traits in our cis-MR analysis identified an association of higher SAP 

values with increased CHD and decreased SBP and DBP, but, since there is no known functional 

connection between these cardiovascular features and SAP, the protein itself is unlikely to be directly 

involved. Potential pathogenetic connections have been suggested between SAP and two different, 

unrelated diseases, osteoarthritis41 and systemic lupus erythematosus42. Plasma SAP concentrations 

were not strongly associated with lupus but there were apparent associations between increased SAP 

values and some osteoarthritis outcomes (Fig. 5), perhaps reflecting our conservative analyses. We 

also found a significant positive association between SAP and idiopathic pulmonary fibrosis, 

suggesting that SAP may also have a pathogenetic role in this condition (Fig. 5). In contrast, 

osteoarthritis43 and lupus44, respectively, have well established positive and negative clinical links 

with CRP, and, interestingly, both were associated with circulating CRP concentrations in the 

corresponding directions in the current analysis (Fig. 5). 

 

Potential limitations to our study comprise, firstly, our use of SomaLogic values for plasma SAP, 

which are only relative intensities not actual SAP concentrations. SomaLogic assays alone therefore 

cannot enable precise determination of the effect magnitude relevant for potential pharmaceutical 

intervention, even though we rigorously demonstrated that the SomaLogic values are in acceptably 

close agreement with the actual SAP concentrations measured by precise, rigorously standardised 

electroimmunoassay.  

 

Secondly, previous GWAS studies of AD and other types of dementia have not reported APCS as a 

potential gene for disease onset. However, GWAS is deliberately designed to limit detection of false 

positive results and may accordingly leave additional signals undiscovered27. It is therefore important 

to emphasize that drug target MR does not require the GWAS data used for the outcome trait to reach 

GWAS significance28.  
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Thirdly, while the present results imply that SAP depletion might reduce dementia risk, they do not 

indicate optimal timing for the intervention. Neuropathological changes are well known to long 

precede clinically detectable cognitive loss in AD and other dementias, so SAP depletion might be 

most effectively introduced prophylactically. Nevertheless, in view of the present evidence for a 

causal relationship between increased circulating SAP and risk of dementia, prompt SAP depletion 

may protect residual cognition at any stage. 

 

Fortunately, the experimental drug, miridesap, (CPHPC; hexanoyl bis-D-proline; (R)-1-[6-[(R)-2-

carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid))45, safely provides extremely 

effective SAP depletion. It reduces plasma SAP concentration by more than 95% for as long as the 

drug is administered46 and thereby removes all detectable SAP from the CSF in patients with AD3 and 

from the brain in human SAP transgenic AD model mice47. DESPIAD, a small, academic, phase 2b 

clinical trial of SAP depletion by miridesap in established AD, is now in progress (EudraCT number 

2016-003284-19) and will report in 2025. Meanwhile, our present genetic analysis indicates that 

depletion of plasma SAP is expected to decrease the risk of AD and LBD. 

 

MATERIALS AND METHODS 

Validation of SomaLogic SAP assay 

The read out from the SomaLogic aptamer-based mass spectrometric method is relative reagent 

intensity, a proxy for SAP concentration rather than actual mass per volume. We therefore used the 

robust electroimmunoassay method, rigorously standardised with isolated, pure human SAP1, to 

measure the actual concentration of SAP in 100 human plasma samples from a random sub-cohort of 

the EPIC-Norfolk study (https://www.epic-norfolk.org.uk/) in which SAP had been quantified by the 

SomaLogic method. The electroimmunoassay confirmed that the SomaLogic results accurately 

reflected plasma SAP concentrations: for the two sets of results, the Pearson correlation coefficient 

was 0.86 (p< 0.001) and Spearman correlation was 0.84 (p<0.001) (Fig. S1). 
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GWAS of SAP plasma values 

Three independent studies with plasma SAP values determined by the SomaLogic method: Interval 

(n: 3,301)24, AGES (n: 5,368)26, and DECODE (n: 35,559)25, were used to provide aggregate genetic 

data. To account for potential heterogeneity in genetic associations, due to difference in participants 

and/or environment, we performed a DerSimonian-Laird random effects meta-analysis using 

METAL48. 

 

Independent lead genetic variants were identified by filtering associations on a genome-wide 

significant p-value of 5.8×10-8 and clumping to an R-squared of 0.01 based on LD reference data from 

a random 5,000 participant subset of the UK Biobank (UKB). The nearest protein coding genes were 

identified by querying the GRCh37 assembly via Ensembl REST API49. Lead variants within 2 

megabase pairs (MB) of APCS, the gene encoding SAP, were assigned to this gene; trans-variants 

(outside ±2 MB of APCS) were mapped to putative causal genes using the V2G algorithm offered by 

Open Targets50. The V2G algorithm ranks putative causal genes based on integrated information on 

molecular traits, such as, information on splice-sites, mRNA expression, chromatin interaction, 

functional predictions and distance from the canonical transcription start site. Potential pleiotropic 

associations of these putative causal genes were explored by querying the author-assigned gene in 

GWAS Catalog, which comprises the largest source of gene to phenotype information51. 

 

Drug target Mendelian randomization 

Drug target MR was employed to ascertain the possible causal effects that a unit increase in standard 

deviation (SD) of mean plasma SAP concentration had on clinically relevant traits, with a primary 

focus on AD52 and LBD53. 

 

To limit the potential for bias due to pre-translational horizontal pleiotropy, variants were extracted 

from within and around APCS, applying a ±1 MB pairs flank54. Variants were filtered to a minor 

allele frequency of 0.01 or larger, and clumped to an R-squared of 0.40. Residual LD was modelled 

using generalized least square (GLS) solutions55 and a 5,000 random sample of UKB participants. To 
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reduce the risk of weak-instrument bias56, we selected genetic variants with an F-statistic of 15 or 

higher. Furthermore, due to the absence of sample overlap between the SAP GWAS dataset and the 

GWAS used for many of the outcome traits, any potential weak-instrument bias would act towards a 

null effect, reducing power rather than increasing type 1 errors56,57. 

 

Estimates of the potential causal effect of higher plasma SAP value were obtained using the GLS 

implementation of the inverse-variance weighted (IVW) estimator and the MR-Egger estimator, the 

latter being unbiased in the presence of horizontal pleiotropy at the cost of lower precision58. To 

minimize the potential influence of horizontal pleiotropy, variants beyond 3 times the mean leverage 

or an outlier Chi-square statistic larger than 10.83, were pruned59. Finally, a model selection 

framework was applied to select the most appropriate estimator, IVW or MR-Egger59,60. This model 

selection framework61 utilizes the difference in heterogeneity between the IVW Q-statistic and the 

Egger Q-statistic to decide which method provides the best model to describe the available data and 

hence optimizes the bias-variance trade-off. 

 

Given the close proximity of CRP to APCS we additionally conducted an MR analysis of CRP 

concentration, taking advantage of availability of the largest CRP GWAS conducted to date62. The 

MR effect estimates of SAP and CRP were compared to identify outcomes which seemingly were 

affected by both proteins using a p-value of 0.05. For the subset of outcomes which were affected by 

both SAP and CRP, we additionally conducted MVMR to analytically control any influence of CRP 

on the SAP signal and vice versa. MVMR is similar to standard multiple regression, where multiple 

variables, in our case two, are included in the same model, resulting in estimates that are mutually 

independent of one another63. Importantly, MVMR allowed us to account for any horizontal 

pleiotropy that might act through CRP concentration63. In addition, to correct for any potential 

remaining horizontal pleiotropy acting through non-CRP pathways, we applied the same model 

selection framework to decide between MVMR with and without Egger correction. Where relevant, 

we differentiate between MVMR and regular MR results by referring to the latter as univariable MR. 
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Effect estimates and multiple testing 

Unless otherwise specified, all point estimates, that is OR or mean differences, refer to a unit change 

of the independent variable, typically one standard deviation in plasma protein value for MR results or 

an increase in number of risk alleles for GWAS results, respectively. Results are provided with 95% 

confidence intervals (CI) and p-values. Significance in the GWAS analysis was evaluated using the 

standard multiplicity corrected alpha, that is the false positive rate, of 5.8×10-8, accounting for the 

estimated number of independent genetic variants in the genome64. The MR results were tested 

against a Bonferroni corrected alpha of 2.78×10-3, accounting for the 18 evaluated traits (Data 

availability section).  
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Figures  

Fig. 1. Manhattan plot of SAP genome-wide association study. The -log10(p-value) of genetic 

variants is shown on the y-axis and GRCh37 base pair position within chromosomes on the x-axis. 

The horizontal dashed line is at p-value 5.8×10-8. The lead variants are labelled with the putative 

causal genes assigned by V2G. 

 

Fig. 2. Stacked locus-view comparing the overlap between genetic variants for plasma SAP 

values and plasma CRP concentration. The -log10(p-value) of the genetic association with SAP and 

CRP plotted (y-axis) against the genomic location (x-axis). The lead variant for each trait is indicated 

by a purple diamond. Linkage disequilibrium with the lead variant is indicated by coloured dots, with 

the r-squared estimated from the UKB and 1000 genomes EUR reference. Gene locations were 

queried from Ensembl v109 (GRCh37).  

 

Fig. 3. Mapping of the trans signals for variants associated with plasma SAP value to putative 

causal genes. First column, the overall V2G score; second column, distance in base pairs from the 

lead variant to the canonical gene transcription start site (TSS). The other columns show the presence 

or absence of x-axis criteria, specifically, whether there were quantitative trait loci (QTL) linking the 

gene to proteomics, transcriptomics, or splice site QTL, and PCHi-C (Promoter Capture Hi-C) 

chromatin interaction experiments linking the genetic variant to the indicated gene, from Jung et al.65 

and Javierre et al.66. Tables S3-S8 show the whole V2G output. 

 

Fig. 4. Estimates of the cis Mendelian randomization effect of plasma SAP values on 

Alzheimer’s disease and Lewy body dementia. The univariable MR effects estimated from the 

GWAS meta-analysis of SomaLogic (SL) plasma SAP values from the Interval, AGES and DECODE 

studies are shown individually, together with the combined result of all three studies. We used the AD 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 16, 2023. ; https://doi.org/10.1101/2023.08.15.23293564doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.15.23293564
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

GWAS from Kunkle et al.52 which consisted of 35,274 cases and 59,163 controls, the LBD GWAS 

from Chia et al.53 consisted of 2,981 cases and 2,173 controls. OR, odds ratio; 95%CI, 95% 

confidence interval. The Figure illustrates the data in Table S10. 

 

Fig. 5 Comparison of the cis Mendelian randomization effect estimates of plasma SAP values 

and CRP concentration. Effect direction, magenta for positive and green for negative, is shown by 

the -log10(p-value) to 4 significant figures. Open diamonds, p<0,05; closed stars, p<2.38 x 10-5.. Left 

block, SAP; right column, CRP. Abbreviations: ALT, alanine transaminase; AST, aspartate 

transaminase; CHD, coronary heart disease; DBP, diastolic blood pressure; GGT, gamma-glutamyl 

transferase; IPF, idiopathic pulmonary fibrosis; SBP, systolic blood pressure; SLE, systemic lupus 

erythematosus; T2DM, type 2 diabetes; WMH, white matter hyperintensities. The Figure illustrates 

the data in Tables S11-S12. 
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