1	SARS-CoV-2 variants Omicron BA.4/5 and XBB.1.5 significantly escape T cell recognition
2	in solid organ transplant recipients vaccinated against the ancestral strain
3	
4	Torin Halvorson ^{1,2,3} , Sabine Ivison ^{2,3} , Qing Huang ^{2,3} , Gale Ladua ^{1,4} , Demitra M. Yotis ⁵ , Dhiraj
5	Mannar ⁶ , Sriram Subramaniam ⁶ , Victor H. Ferreira ⁷ , Deepali Kumar ⁷ , Sara Belga ^{1,4,*} , and Megan
6	K. Levings ^{2,3,8,*} , on behalf of the PREVenT study group
7	
8	¹ Department of Medicine, University of British Columbia, Vancouver, BC, Canada
9	² Department of Surgery, University of British Columbia, Vancouver, BC, Canada
10	³ BC Children's Hospital Research Institute, Vancouver, BC, Canada
11	⁴ Vancouver Coastal Health Research Institute, Vancouver BC, Canada
12	⁵ Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
13	⁶ Department of Biochemistry and Molecular Biology, University of British Columbia,
14	Vancouver, BC, Canada
15	⁷ Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
16	⁸ School of Biomedical Engineering, University of British Columbia, Vancouver BC, Canada
17	*These authors contributed equally
18	
19	
20	Correspondence information: <u>mlevings@bcchr.ca</u>
21	Megan Levings: BC Children's Hospital Research Institute, 950 West 28th Ave, Vancouver BC,
22	
23	Word count for the abstract: 248/250
24 25	word count for the main text: 38/3/4000
25 26	Number of figures: 6
27	Number of references: 67

29	Keywords: vaccine, COVID-19, T cell, solid organ transplantation, activation-induced marker
30	assay
31	
32	
33	
34	

36 AUTHORSHIP PAGE

37

38 Author Contributions

- 39 TH research design, paper writing, performance of the research, data analysis, statistical analyses
- 40 SI research design, paper writing, data analysis
- 41 **QH** research design, performance of the research
- 42 GL performance of the research, data analysis
- 43 **DY** performance of the research, data analysis
- 44 **DM** research design, performance of the research, paper writing
- 45 SS research design, paper writing
- 46 VHF data analysis, research design
- 47 **DK** research design
- 48 **SB** research design, performance of the research
- 49 MKL research design, paper writing
- 50
- 51
- 52 **Disclosures:** D.K. has received consulting fees from Roche, GSK, Exevir and clinical trials
- 53 grants from GSK. S. B. has received consultant fees from AstraZeneca and GSK, honoraria from
- 54 Merck and research funding from Takeda. The remaining authors have no relevant conflicts to 55 disclose.
- 56

57 **Funding**:

- 58 This work was supported by a grant from Public Health Agency of Canada / COVID-19
- 59 Immunity Task Force (AWD-019932 PHACA 2021) and the Canadian Institutes of Health
- 60 Research (HUI-159423). MKL holds a salary award from the BC Children's Hospital Research
- 61 Institute and a Tier 1 Canada Research Chair in Engineered Immune Tolerance. This study was
- 62 coordinated by the Canadian Donation and Transplantation Research Program (CDTRP).
- 63
- 64
- 65
- 66
- 67
- 68

69 Abbreviations

- 70 AIM, activation-induced marker
- 71 BA.4/5, Omicron BA.4 and BA.5 variants
- 72 COVID-19, coronavirus disease of 2019
- 73 DMSO, dimethyl sulfoxide
- 74 ICS, intracellular cytokine staining
- 75 IQR, interquartile range
- 76 IFN- γ , interferon- γ
- 77 IL-2, interleukin-2
- 78 mRNA, messenger RNA
- 79 nAb, neutralizing antibody
- 80 PBMCs, peripheral blood mononuclear cells
- 81 RBD, receptor-binding domain
- 82 SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- 83 SOTR, solid organ transplant recipient

85 Abstract

86 Background

- 87 Immune-suppressed solid organ transplant recipients (SOTRs) display impaired humoral
- responses to COVID-19 vaccination, but T cell responses are incompletely understood. The
- highly infectious SARS-CoV-2 variants Omicron BA.4/5 and XBB.1.5 escape neutralization by
- antibodies induced by vaccination or infection with earlier strains, but T cell recognition of these
- 91 lineages in SOTRs is unclear.

92 Methods

- 93 We characterized Spike-specific T cell responses to ancestral SARS-CoV-2, Omicron BA.4/5 and
- 34 XBB.1.5 peptides in a prospective study of kidney, lung and liver transplant recipients (n = 42)
- 95 throughout a three- or four-dose ancestral Spike mRNA vaccination schedule. Using an
- 96 optimized activation-induced marker assay, we quantified circulating Spike-specific CD4+ and
- 97 CD8+ T cells based on antigen-stimulated expression of CD134, CD69, CD25, CD137 and/or
- 98 CD107a.
- 99 Results
- 100 Vaccination strongly induced SARS-CoV-2-specific T cells, including BA.4/5- and XBB.1.5-
- 101 reactive T cells, which remained detectable over time and further increased following a fourth
- dose. However, responses to Omicron BA.4/5 and XBB.1.5 were significantly lower in
- 103 magnitude compared to ancestral strain responses. Antigen-specific CD4+ T cell frequencies
- 104 correlated with anti-receptor-binding domain (RBD) antibody titres, with post-second dose T cell
- 105 responses predicting subsequent antibody responses. Patients receiving prednisone, lung
- 106 transplant recipients and older adults displayed weaker responses.
- 107 *Conclusions*
- 108 Ancestral strain vaccination stimulates BA.4/5 and XBB.1.5-cross-reactive T cells in SOTRs, but
- 109 responses to these variants are diminished. Antigen-specific T cells can predict future antibody
- 110 responses and identify vaccine responses in seronegative individuals. Our data support
- 111 monitoring both humoral and cellular immunity in SOTRs to track effectiveness of COVID-19
- 112 vaccines against emerging variants.
- 113

114 Introduction

- 115 COVID-19 vaccines effectively reduce infections, hospitalizations and mortality from SARS-
- 116 CoV-2¹⁻³. However, immune-suppressed populations such as solid-organ transplant recipients
- 117 (SOTRs), who require lifelong immune-suppressive therapy to prevent allograft rejection, remain
- at elevated risk from COVID-19 despite vaccination⁴. SOTRs display impaired humoral
- immunity to COVID-19 vaccination, with decreased anti-Spike binding and neutralizing
- 120 antibody (nAb) responses compared to the general population 5-8. However, a third or fourth
- 121 'booster' dose significantly increases seropositivity and nAbs in SOTRs^{6,9,10}.
- 122 As SARS-CoV-2 continues to evolve, emerging variants, including Omicron lineages and their
- derivatives, continue to challenge global COVID-19 immunity^{11–15}. The Omicron BA.4 and
- BA.5 (henceforth BA.4/5) subvariants display over 40 Spike protein mutations and enhanced
- affinity for the ACE2 receptor^{13,16}. More recently, recombinant BA.2-derived XBB lineages have
- emerged, with XBB.1.5 the latest to dominate globally^{14,15,17,18}. These subvariants are highly
- 127 infectious and evade neutralization by vaccination- or infection-induced nAbs targeting the
- ancestral strain¹⁶. Neutralization of XBB lineages is reduced more than 100-fold relative to
- ancestral SARS-CoV-2, even after vaccination with BA.4/5 bivalent vaccines¹⁷⁻²⁰.
- 130 Cellular immunity to SARS-CoV-2 in SOTRs is less well understood. SARS-CoV-2-specific T
- 131 cell responses are widely recognized to be critical in mitigating severe COVID-19 disease $^{21-23}$,
- 132 with CD4+ and CD8+ responses correlating negatively with disease severity²⁴ and breakthrough
- infection risk post-vaccination²⁵. Furthermore, memory T cells cross-recognize emerging
- variants, including Omicron and the BA sublineages^{18,25–27}. However, SOTRs display poor
- 135 cellular responses to vaccination, with lower Spike-specific CD4+ and CD8+ T cell frequencies
- 136 compared to healthy controls two weeks and six months after two-dose vaccination 25,28 .
- 137 Vaccination also induces comparatively weaker Spike-specific IFN- γ + and/or IL-2+ T cell
- 138 responses than natural infection in $SOTRs^{29,30}$.
- 139 While it is well-established that BA.4/5 and XBB.1.5 escape antibody neutralization, whether
- 140 vaccination against the ancestral strain induces T cell responses cross-recognizing these variants
- 141 is unclear in SOTRs. A recent study assessed T cell responses to a fourth mRNA vaccine dose by
- 142 intracellular cytokine staining (ICS) in a small cohort of SOTRs, finding that a fourth dose
- significantly increased frequencies of IFN- γ +/IL-2+ BA.4/5-specific CD4+, but not CD8+, T
- 144 cells⁹. Only one study has directly compared ancestral SARS-CoV-2- and BA.4/5-specific T cell
- responses in SOTRs, showing no differences in magnitude by ICS³¹. However, ICS does not
- 146 quantify the full diversity of antigen-specific T cells^{32,33}. Alternatively, activation-induced marker
- 147 (AIM) assays leverage T cell surface protein upregulation in response to antigen-specific
- stimulation, broadly quantifying antigen-specific T cells independently of proliferation or
- 149 cytokine production³²⁻³⁵. Indeed, AIM assays are increasingly used to assess T cell responses to
- 150 SARS-CoV-2 infection and vaccination 24,27,28,36 .
- 151 Here, we used the AIM method to characterize vaccine-induced SARS-CoV-2-specific T cells in 152 a prospective cohort of 42 liver, kidney and lung transplant recipients. Of specific interest was

whether vaccination against the SARS-CoV-2 ancestral strain would stimulate T cells with cross-153 154 reactivity to Omicron BA.4/5 and/or XBB.1.5.

Methods (see also Extended Methods) 155

156

Study Design and Enrollment 157

The PREVenT-COVID study is a Canadian prospective study of vaccine immunogenicity in 158 SOTRs across seven tertiary care transplant centres^{9,37}. This study of cell-mediated immunity 159 was conducted at the University of British Columbia (UBC) with approval from the UBC 160 Research Ethics Board (H21-01269). Adult SOTRs provided informed consent and were enrolled 161 162 at first dose of an approved monovalent COVID-19 mRNA vaccine, BNT162b2 (Pfizer-BioNTech,) or mRNA-1273 (Moderna), beginning January 2021. Whole blood was drawn from 163 participants within 2 weeks prior to the second dose, 3-6 weeks post-second dose, 6 months post-164 first dose, 3-6 weeks post-third dose and one year post-first dose. One-year samples served as 165 post-fourth dose (3-6 weeks) samples in a subset of patients. PBMCs were collected from blood

166

- samples and cryopreserved at -80°C. Participants were to inform the study team if they 167
- 168 developed COVID-19 for confirmation via PCR or rapid antigen test.
- 169

Activation-Induced Marker Assays 170

- SARS-CoV-2 ancestral strain (PM-WCPV-S-1, JPT) and Omicron BA.4/5 (PM-SARS2-171
- SMUT10-1, JPT) overlapping peptide pools corresponding to the complete Spike proteins were 172
- aliquoted in 30% DMSO and stored at -80°C. Cryopreserved PBMCs were thawed into 37°C 173
- 174 Immunocult XF (10981, STEMCELL) with 1% penicillin/streptomycin and 50 U/mL benzonase
- (70664-3, Novagen). PBMCs were rested overnight at 37°C in Immunocult XF with 1% 175
- penicillin/streptomycin and stimulated for 20 h at 4-5x10⁵ cells per condition in 200 uL with 1 176
- µg/mL SARS-CoV-2 ancestral strain or BA.4/5 Spike peptides, equimolar dimethyl sulfoxide 177
- (DMSO, 0.12%), Fluzone® Quadrivalent influenza vaccine (2.5%) (Sanofi-Pasteur) or Cytostim 178 (0.05%) (130-092-172, Miltenyi). CD4 and CD107a staining antibodies were added during
- 179 stimulation, with surface staining for CD3, CD4, CD8, CD25, CD69, CD134, and CD137 after 180
- stimulation. Data were acquired on an LSR Fortessa (BD) flow cytometer on high-throughput 181
- sampler (HTS) mode. Antigen-specific CD4+ T cells were defined as CD134+/CD25+, 182
- CD134+/CD69+ or CD137+/CD69+ while antigen-specific CD8+ T cells were defined as 183
- CD107a+/CD69+, CD107a+/CD137+ or CD137+/CD69+, as previously described^{24,38-46}. 184
- 185
- Whole protein stimulations were performed with protein isolates (Extended Methods) from 186

ancestral SARS-CoV-2 or XBB1.5 at 0.5 µg/mL, equivolumetric PBS, 1 µg/mL ancestral strain 187 peptides or 0.05% Cytostim for 44 h. 188

189

190 Data Analysis

Data were analyzed using FlowJo v10.8.1 and GraphPad Prism v10.0.0. Antigen-specific T cells 191

were quantified as the percentage of CD4+ or CD8+ T cells expressing each AIM marker, after 192

subtracting the frequency of AIM+ cells in the equivalent unstimulated condition. Net AIM 193

- frequencies less than 0.005%, considered the limit of detection for the assay, were set to equal 194
- 0.005% to avoid negative or zero values. Samples with fewer than 10 000 total CD4+ or CD8+ T 195
- cells were excluded. AIM responses were compared across timepoints using a mixed-effects 196
- analysis (REML) on log₂-transformed data, assuming sphericity, with post-hoc Dunnett's 197

- 198 multiple comparisons test. Patients who received a fourth dose or contracted COVID-19 were
- 199 initially excluded to assess the duration of vaccine-induced T cell immunity.
- 200
- 201 Responses at one year were compared within (paired Wilcoxon tests) and between (Kruskal-
- 202 Wallis test with Dunn's multiple comparisons) control, post-fourth dose (within 3-6 weeks) and
- hybrid (fourth dose and contracted COVID-19) groups. Post-third dose BA.4/5 and XBB.1.5
- 204 responses were compared to the ancestral strain by paired Wilcoxon tests. Post-third dose AIM 205 responses between groups defined by clinical parameters were compared using Mann-Whitney
- and Kruskal-Wallis tests as appropriate. Semilogarithmic regression analysis modelled the
- 207 continuous effects of age and time since transplantation on post-third dose AIM responses.
- 208
- 209 Spearman's correlations assessed relationships between post-third dose T cell AIM responses
- and published serum anti-RBD titres from the same individuals⁹. In patients with undetectable
- anti-RBD antibodies post-second dose, log-log regression modelled the relationship between
- 212 post-second dose CD4+ AIM responses and post-third dose anti-RBD antibodies. Post-third dose
- BA.4/5-specific AIM responses were compared between individuals with and without detectable
- BA.4/5-neutralizing antibodies⁹ by paired t-tests on log₂-transformed AIM+ frequencies.
- 215

216 **Results**

- 217 *Study Population*
- The study cohort consisted of 42 SOTRs with a median age of 58 (IQR 47-56), of which 22
- 219 (52%) were female and 20 (48%) were male (Table 1, Figure S1). Subjects were recipients of
- kidney (n = 16), liver (n = 16) or lung (n = 10) transplants. Median time since transplantation
- 221 was 6.8 years (IQR 3.1-12.9). All subjects received at least two doses of monovalent Pfizer-
- BioNTech BNT162b2 or Moderna mRNA-1273 COVID-19 vaccines. As one-year samples were
- collected soon (3-6 weeks) after patients received a fourth dose, subjects were grouped as neither
- having contracted COVID-19 nor received a fourth dose (controls, n = 6), post-fourth dose (n = 6)
- 225 15), post-fourth dose and contracted COVID-19 ('hybrid', n = 7) or contracted COVID-19 only
- 226 (n = 4). At enrollment, all patients were receiving at least one immune-suppressive drug, with
- tacrolimus (35/42, 83%) mycophenolate mofetil or mycophenolate sodium (27/42, 64%) and
- prednisone (20/42, 48%) being the most frequent.
- 229 *COVID-19 vaccination induces significant and durable BA.4/5-specific T cell responses in solid-* 230 *organ transplant recipients*
- 231 We assessed T cell AIM responses following stimulation with SARS-CoV-2 ancestral strain or
- BA.4/5 peptides throughout a 3-4 dose COVID-19 vaccination schedule (Figure 1A). Antigen-
- 233 specific CD4+ T cells (CD134+/CD25+, CD134+/CD69+ or CD137+/CD69+) and CD8+ T cells
- 234 (CD107a+/CD69+, CD107a+/CD137+ or CD137+/CD69+) were quantified (Figure 1B, Figure
- 235 S2). Ancestral- and BA.4/5-specific CD4+ AIM responses increased significantly after a second
- dose (p < 0.0001) but trended lower at six months (Figure 1C). A third dose induced significant
- responses that remained elevated above pre-second dose levels at one year (p < 0.0001). Similar
- results were observed for CD8+ T cell responses, but with lower AIM+ frequencies and
- substantial heterogeneity between donors (Figure 1C). However, post-third dose responses to
- 240 ancestral SARS-CoV-2 were significant for all CD8 AIM markers analyzed, and BA.4/5-specific

- CD137+/CD69+ responses were significant at post-second dose, post-third dose and one-year
 timepoints.
- As a control, we measured CD4+ and CD8+ responses to an inactivated influenza vaccine
- 244 (Fluzone® Quadrivalent, Sanofi-Pasteur) at the same timepoints (Figure S3A, B, C). COVID-19
- vaccination induced no changes in influenza-specific T cell responses, supporting the specificity
- of our assays. Furthermore, cryopreserved replicate PBMC aliquots from two healthy controls
- showed stable AIM responses over several months (Figure S4), demonstrating low technical
- variation of the assay. For simplicity, we focused further analyses on CD134+/CD69+ CD4+ T
- cell responses, and CD137+/CD69+ CD8+ T cell responses, as these AIMs are widely
- used $^{24,33,44,45,47-49}$ and showed the strongest trends across vaccination timepoints.
- 251 A fourth monovalent ancestral vaccine dose boosts BA.4/5-specific T cell responses
- A subset of patients received a fourth dose 3-6 weeks prior to one-year sample collection, with
- some additionally contracting COVID-19 (hereafter 'hybrid') (Figure 2A), allowing us to ask if
- a 4th dose further increased BA.4/5-specific T cell immunity. Indeed, fourth dose recipients and
- 255 hybrid patients showed trending or significant increases above post-third dose levels in ancestral-
- and BA.4/5-specific CD4+ responses (Figure 2B), with these increases being significantly
- 257 greater than observed in controls who received no fourth dose (Figure 2C). No significant
- differences were identified between the fourth dose and hybrid groups.
- 259 *T cell responses to Omicron BA.4/5 are lower in magnitude than responses to the ancestral strain*
- 260 Having established that second and third doses of the monovalent ancestral vaccine induce
- 261 BA.4/5-responsive CD4+ and CD8+ T cells, we next compared the magnitude of post-third dose
- 262 BA.4/5-specific AIM responses with ancestral strain responses. Among CD4+ T cells, responses
- to peptides from Omicron BA.4/5 were lower compared to ancestral SARS-CoV-2: median
- frequencies of CD134+/CD25+ (1.67-fold lower, Wilcoxon signed-rank test p < 0.0001),
- 265 CD134+/CD69+ (1.38-fold lower, p < 0.0001), and CD137+/CD69+ (1.34-fold lower, p = (1.34 1.34)
- 266 0.0022) were diminished (Figure 3A). Similar trends were observed among CD8+ T cells,
- particularly when comparing CD137+/CD69+ frequencies (1.45-fold lower, p = 0.0071) (Figure **3B**).
- Patients receiving prednisone, lung transplant recipients and older individuals display weaker T
 cell responses
- 271 We next sought to identify patient characteristics associated with weaker BA.4/5-specific AIM
- responses, using post-third dose data for its large sample size and clinical relevance. Compared
- to patients not receiving prednisone, patients on prednisone at baseline showed significantly
- lower CD4+ (1.53-fold lower, Mann-Whitney U-test p = 0.030) and CD8+ (3.36-fold lower, p = 0.030)
- 275 0.017) responses to BA.4/5, with similar trends for ancestral strain responses (Figure 4A). Since
- all lung and no liver recipients were receiving prednisone at baseline, we also compared
- responses by organ type (Figure 4B), showing trending or significantly lower BA.4/5-specific
- 278 CD4+ AIM responses in lung transplant recipients compared to liver (4.97-fold lower, p =
- 0.0017) and kidney (3.23-fold lower, p = 0.0877), with similar results for ancestral responses
- 280 (lung vs liver, 3.28-fold lower, p = 0.0029; lung vs kidney, 3.71-fold lower, p = 0.0161) (Figure
- **4B**). CD8+ AIM responses followed similar trends but were non-significant.

282 Using semilogarithmic regression to model the effect of age on AIM responses, we identified

- significant declines in AIM responses with age (Figure 4C). The regression line slope was
- significantly different from zero for CD4+ ancestral- (y = -0.0108x + 0.0100, p = 0.0390) and
- BA.4/5-specific responses (y = -0.0127x + 0.0100, p = 0.0238), with even stronger relationships
- 286 identified for CD8+ responses (ancestral, y = -0.0194x + 0.3949, p = 0.0146; BA.4/5, y = -0.0194x + 0.3949, p = 0.0146; BA.4/5, y = -0.0194x + 0.3949, p = 0.0146; BA.4/5, y = -0.0194x + 0.3949, p = 0.0146; BA.4/5, y = -0.0194x + 0.3949, p = 0.0146; BA.4/5, y = -0.0194x + 0.3949, p = 0.0146; BA.4/5, y = -0.0194x + 0.3949, p = 0.0146; BA.4/5, y = -0.0194x + 0.3949, p = 0.0146; BA.4/5, y = -0.0194x + 0.3949, p = 0.0146; BA.4/5, y = -0.0146; BA.4/5, y = -0.0146
- 287 0.0267x + 0.6728, p = 0.0059). There were no significant differences in post-third dose AIM
- responses between males and females (Figure S5A), or between patients vaccinated primarily
- with Pfizer-BioNTech BNT162b2 compared to Moderna mRNA-1273 (Figure S5B).

290 SARS-CoV-2-specific T cell responses correlate with circulating anti-Spike antibodies

- 291 We investigated correlations between CD4+ T cell AIM responses and previously published anti-
- RBD binding antibody titres measured in the same individuals at the same timepoints⁹.
- 293 CD134+/CD69+ CD4+ T cell AIM responses correlated strongly with antibody levels (Figure
- **5A, Table 2**). At pre- and post-second dose timepoints, there were weak to moderate correlations
- with antibody titres for CD4+ T cell responses to ancestral SARS-CoV-2 (pre-second dose
- 296 Spearman's r = 0.2369, p = 0.2884; post-second dose r = 0.3064, p = 0.0514) and BA.4/5 (pre-
- second dose r = 0.4066, p = 0.0604; post-second dose r = 0.3091, p = 0.0493). However, the
- strength and significance of these correlations increased over time, even without additional vaccinations, and were further enhanced by a third dose, for both responses to the ancestral strain
- (six months r = 0.8028, p = 0.0082; post-third dose r = 0.6755, p < 0.0001) and BA.4/5 (six
- 301 months r = 0.6554, p = 0.0454; post-third dose r = 0.6411, p < 0.0001). By contrast, antibody
- 302 correlations with CD8+ AIM responses did not follow a clear trend and were only significant for
- post-third dose ancestral strain responses (r = 0.3527, p = 0.0441) (Figure 5A, Table 2).
- 304 As a substantial proportion of patients showed strong T cell responses but no detectable antibody
- titres post-second dose, we assessed whether post-second dose CD4+ T cell responses could
- 306 predict subsequent post-third dose antibodies in these patients (n = 19). Log-log regression
- analysis identified a strong positive relationship, with patients who demonstrated stronger T cell responses to ancestral SARS-CoV-2 (y = 1.313x + 3.359, p < 0.0001) or BA.4/5 (y = 1.371x +
- responses to ancestral SARS-CoV-2 (y = 1.313x + 3.359, p < 0.0001) or BA.4/5 (y = 1.371x + 3.59, p < 0.0001) subsequently showing stronger post-third dose antibody responses (Figure
- 5B). We also assessed the relationship of post-third dose T cell AIM responses with the presence
- or absence of BA.4/5-specific nAbs in a subset of patients (n = 18). Although only four patients
- developed nAbs post-third dose, there was a clear trend toward higher CD4+ and CD8 AIM+
- frequencies in these patients (Figure 5C). This trend was less apparent after a fourth dose.
- Significant escape from T cell recognition by the novel variant XBB.1.5 in SOTRs
- 315 We next asked whether three-dose ancestral COVID-19 vaccination induced T cells capable of
- cross-recognizing the novel XBB.1.5 variant, using whole protein isolates in a subset of the
- study cohort (n = 10) for which we had additional pre-second dose and post-third dose PBMC
- samples. Although few XBB.1.5-specific T cells were observed prior to a second dose, three
- COVID-19 vaccine doses significantly induced XBB.1.5-responsive CD4+ T cells (**Figure 6A**).
- 320 CD8+ AIM responses to XBB.1.5 were detected in only four of 10 patients after three doses.
- 321 CD4+ CD134+/CD69+ AIM responses to XBB.1.5 were significantly weaker than responses to
- ancestral SARS-CoV-2 at pre-second dose (5.0-fold lower, p = 0.0078) and post-third dose

- timepoints (2.0-fold lower, p = 0.0020) (Figure 6B). CD8+ CD137+/CD69+ AIM responses to
- 324 XBB.1.5 clearly trended lower (4.8-fold lower, p = 0.0781) at the pre-second dose timepoint,
- with XBB.1.5 responses detectable in only two of ten patients (seven of ten patients responded to
- the ancestral protein), and were significantly weaker than ancestral SARS-CoV-2 responses after
- 327 three doses (18-fold lower, p = 0.0156) (Figure 6B).

328 Discussion

- 329 As SARS-CoV-2 variants continue to evolve, understanding vaccine immunogenicity in
- vulnerable populations is critical to informing vaccination strategies. SOTRs show impaired
- humoral and cellular responses to mRNA vaccines^{5,9,28,30}, corresponding with increased
- susceptibility to infection^{4,25}. In the present study, we have provided the first AIM based-
- characterization of COVID-19 vaccine-induced T cell responses in SOTRs. We demonstrate
- 334 significant T cell responses to vaccination which persist over time and are enhanced by booster
- doses. Although monovalent vaccination with the ancestral strain induced T cells capable of
- cross-recognizing BA.4/5 and XBB.1.5, responses to these variants were weaker than those to
- 337 the ancestral strain.
- 338 We observed strong induction of SARS-CoV-2-specific AIM responses to both ancestral SARS-
- CoV-2 and BA.4/5 by second and third doses of mRNA vaccine, particularly among CD4+ T
- 340 cells. Although responses trended lower over time at the six-month and one-year timepoints,
- 341 CD4+ T cell responses remained significantly elevated above pre-second dose levels and were
- 342 further enhanced by a fourth dose. Our data confirm studies showing that SOTRs mount
- 343 significant T cell responses to mRNA vaccination^{9,25,28,29,31}, and represent the first AIM-based
- 344 characterization of BA.4/5-cross-reactive T cells in SOTRs. We show that even two-dose mRNA
- 345 vaccination significantly induces BA.4/5 cross-reactivity, however, this declines over time and at
- least one additional (i.e. third) dose may be required to achieve lasting BA.4/5-specific T cell
 memory. Indeed, longitudinal analyses of immune-suppressed patients with diverse pathologies
- memory. Indeed, longitudinal analyses of immune-suppressed patients with diverse pathologies observe sharp declines in post-second dose responses^{28,50}, while responses remain stable at
- similar magnitudes to healthy individuals following third and fourth doses⁵⁰. Interestingly,
- breakthrough infection did not appear to further enhance BA.4/5-specific responses in patients
- 351 who received a fourth dose, despite cases occurring during a global Omicron wave. Of note,
- these infections occurred more than four months (IQR 111-148 days) prior to one-year sampling,
- thus the acute T cell response to infection was likely not captured.
- We also established clinical factors associated with BA.4/5-specific T cell responses to
- vaccination. Although responses in patients taking prednisone were decreased, consistent with
- 356 studies of BA.4/5 neutralization in SOTRs⁹, all lung recipients in our cohort, and no liver
- 357 recipients, were receiving prednisone in accordance with regional guidelines⁵¹. When analyzing
- 358 differences between organ groups, lung recipients responded weakly compared to liver and
- kidney recipients. This is likely due to the more intense immunosuppression given to lung
- 360 transplant recipients^{52,53}. Others have demonstrated impaired vaccine-induced IFN- γ responses
- and increased COVID-19 mortality in lung recipients^{5,54,55}. We also demonstrate a negative
- 362 relationship between age and BA.4/5-specific AIM responses. CD8+ AIM responses showed

particularly strong declines with increasing patient age, congruent with greater susceptibility to ageing in CD8+ T cells than CD4+ T cells^{56–58}.

As CD4+ T cells promote high-affinity humoral responses and B cell memory⁵⁹, we analyzed 365 correlations of BA.4/5-specific AIM responses with anti-RBD and nAb titres⁹. Correlations 366 between CD4+ AIM responses and anti-RBD titres were non-significant prior to a second dose, 367 but increased in strength and significance with subsequent vaccinations, and over time even 368 without additional vaccinations. At the six-month timepoint or after three doses, patients who 369 developed antibody responses generally showed strong CD4+ AIM responses, suggesting that a 370 third dose is necessary to optimally stimulate both immune compartments and that the 371 relationship between cellular and humoral immunity may also strengthen with time. However, a 372 373 substantial number of patients with no detectable anti-RBD titres after two or three doses showed 374 strong AIM responses, hinting that T cells could play a critical protective role in these antibodydeficient SOTRs^{21,60}. Furthermore, post-second dose T cell responses strongly predicted post-375 third dose antibody responses, supporting a causative relationship between antigen-specific 376 CD4+ T cells and humoral responses. We also observed trending associations between BA.4/5-377 specific AIM responses and BA.4/5-nAbs, but these were non-significant as few patients 378

- developed post-third dose BA.4/5-nAbs.
- 380 The BA.4/5 and XBB.1.5 variants escape antibody-mediated neutralization in individuals
- vaccinated against the ancestral strain^{13,16–20,61}. CD4+ and CD8+ T cell responses have thus far
- shown conserved cross-reactivity with $Omicron^{18,26,27,62}$ including BA.4/5 in immune-
- compromised patients and $SOTRs^{31,63}$, but no data existed for T cell responses to XBB.1.5. In
- contrast to previous research, we found significant decreases in T cell recognition of BA.4/5
- relative to the ancestral strain. We are the first to investigate BA.4/5 cross-recognition in SOTRs
- using an AIM assay, which detects cytokine-negative T cells and rare populations with higher
 sensitivity than ICS^{33,34}, lending itself well to detecting small differences. We obtained similar
- results for XBB.1.5, showing strongly impaired T cell cross-recognition in monovalent ancestral-
- vaccinated SOTRs. However, despite their lower magnitude, CD4+ responses to BA.4/5 and
- 390 XBB.1.5 were induced by vaccination, consistent with broad epitope specificity of CD4+ T
- 391 cells⁶⁴, and displayed similar kinetics to ancestral responses. Thus, impairments in T cell cross-
- 392 recognition may not severely impact vaccine immunogenicity for these variants. Large-scale
- 393 epidemiological data in SOTRs show significantly decreased incidence of hospitalization and
- death following the emergence of Omicron, suggesting adequate vaccine-mediated protection
- from severe outcomes in this highly transmissible but low-virulence variant⁴. The full impact of
- the recent wave of XBB.1.5 infections on SOTRs remains to be seen.
- 397 Our study entails several inherent limitations. First, we are unable to draw conclusions regarding
- the magnitude of AIM responses in SOTRs relative to the general population as we did not
- include healthy controls in the study. This also precludes the extension of novel findings, such as
- 400 impaired T cell responses to BA.4/5 and XBB.1.5, beyond the SOTR population. Second, our
- 401 sample size was insufficient to adequately assess effects of certain clinical parameters such as
- 402 antimetabolite or tacrolimus use, or whether AIM responses predict subsequent infection or
- 403 hospitalization. Finally, our method provided more robust characterization of CD4+ T cell

- 404 responses than CD8+ T cell responses. This may be a feature of the peptide mixes used, which
- 405 consist of 15-mers. CD4+ T cells recognize peptides from 11-20 amino acids, while CD8+ T
- 406 cells optimally recognize peptides of 8-11 amino acids⁶⁵. However, CD8+ T cell responses were
- 407 also poorly detected using whole protein stimulation (Figure 6), and others have observed lower
- 408 magnitudes of Spike-specific CD8+ responses using diverse methods 43,44,60,66,67 . Thus, CD8+ T
- 409 cells may preferentially respond to non-Spike antigens, including internal viral proteins⁴⁴, and
- 410 Spike-based assays may not capture the full complement of SARS-CoV-2-specific CD8+ T cells.
- 411 Overall, we demonstrate that SOTRs mount significant BA.4/5-cross-reactive T cell responses to
- 412 ancestral COVID-19 mRNA vaccines, with booster doses enhancing responses. However, using
- a sensitive AIM assay, we show that cross-recognition of BA.4/5 and XBB.1.5 is significantly
- 414 impaired in SOTRs. We also demonstrate strong correlations between CD4+ T cell responses and
- antibody responses, and identify weaker cellular responses in older adults and lung recipients
- 416 receiving prednisone. Our data provide unique insights into the kinetics of variant-specific T cell
- 417 responses in immune-compromised patients, with important implications for clinical and public
- 418 health guidelines.

419 Acknowledgements

- 420 We wish to express our deepest gratitude to those who participated in this study. Finally, we wish
- to thank Lisa Xu at the BC Children's Hospital Research Institute Flow Cytometry Core for her
 invaluable assistance with data acquisition. The study was coordinated by the Canadian Donation
- 422 and Transplantation Research Program.
 - 424 PREVenT COVID group investigators: PREVenT COVID group investigators: Jean-Sébastien
 425 Delisle (Hôpital Maisonneuve Rosemont (HMR), Sasan Hosseini-Moghaddam (University
 426 Health Network (UHN)), Dr. Héloïse Cardinal (Centre hospitalier de l'Université de Montréal
 - 427 (CHUM)), Dr. Mélanie Dieudé (Centre hospitalier de l'Université de Montréal (CHUM)), Dr.
 - 428 Normand Racine (Institut de Cardiologie de Montréal (ICM)), Dr. Karina Top (Dalhousie
 - 429 University), Dr. Gaston DeSerres (INSPQ, Public Health), Dr. Lori West (University of Alberta
 - 430 (UofA), CDTRP)), Dr. Marc Cloutier (HémaQuébec), Dr. Renée Bazin (Héma-Québec), Dr.
 - 431 Christopher Lemieux (Université Laval), Dr. Sacha De Serres (Université Laval), Dr. Atul
 - 432 Humar (University Health Network (UHN)), Dr. Sarah Shalhoub (London Health Sciences
 - 433 Center (LHSC)), Dr. Dima Kabbani (University of Alberta (UofA)), Dr. Marie-Josée Hébert
 - 434 (Centre hospitalier de l'Université de Montréal (CHUM)), Dr. Patricia Gongal (CDTRP),
 - 435 Kristian Stephens (CDTRP).
 - 436 **PREVenT COVID Group Coordinators:** Dr. Julie Turgeon (CHUM), Zineb Khrifi (CHUM),
 - France Samson (Université Laval), Maryse Desjardins (ICM), Hélène Brown (ICM), Johanne
 Doiron (ICM), Cadence Baker (London Health Sciences Centre, LHSC), Taylor Toth (LHSC),
 - 438 Donon (ICM), Cadence Baker (London Health Sciences Centre, EHSC), Taylor Toth (EHSC),
 439 Grant Luke (LHSC), Natalia Pinzon (UHN), Victoria G. Hall (UHN), Kimberly Robertson
 - 440 (UofA), Heather Mangan (UofA).
 - 441
 - 442

References

444 445	1.	Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. <i>N Engl J Med.</i> 2021;384(5):403-416. doi:10.1056/NEJMoa2035389
446 447 448	2.	Feikin DR, Higdon MM, Abu-Raddad LJ, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. <i>Lancet</i> . 2022;399(10328):924-944. doi:10.1016/S0140-6736(22)00152-0
449 450	3.	Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid- 19 Vaccine. <i>N Engl J Med.</i> 2020;383(27):2603-2615. doi:10.1056/NEJMoa2034577
451 452 453	4.	Overvad M, Koch A, Jespersen B, et al. Outcomes following SARS-CoV-2 infection in individuals with and without solid organ transplantation—A Danish nationwide cohort study. <i>Am J Transplant</i> . 2022;22(11):2627-2636. doi:10.1111/ajt.17142
454 455 456 457	5.	Hamm SR, Møller DL, Pérez-Alós L, et al. Decline in Antibody Concentration 6 Months After Two Doses of SARS-CoV-2 BNT162b2 Vaccine in Solid Organ Transplant Recipients and Healthy Controls. <i>Front Immunol</i> . 2022;13. Accessed April 20, 2023. https://www.frontiersin.org/articles/10.3389/fimmu.2022.832501
458 459 460	6.	Chang CC, Vlad G, Vasilescu ER, et al. Previous SARS-CoV-2 infection or a third dose of vaccine elicited cross-variant neutralising antibodies in vaccinated solid-organ transplant recipients. <i>Clin Transl Immunol</i> . 2022;11(8):e1411. doi:10.1002/cti2.1411
461 462 463	7.	Boyarsky BJ, Werbel WA, Avery RK, et al. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients. <i>JAMA</i> . 2021;325(21):2204-2206. doi:10.1001/jama.2021.7489
464 465 466	8.	Boyarsky BJ, Werbel WA, Avery RK, et al. Immunogenicity of a Single Dose of SARS-CoV-2 Messenger RNA Vaccine in Solid Organ Transplant Recipients. <i>JAMA</i> . 2021;325(17):1784-1786. doi:10.1001/jama.2021.4385
467 468 469 470	9.	Ferreira VH, Ierullo M, Mavandadnejad F, et al. Omicron BA.4/5 neutralization and T-cell responses in organ transplant recipients after Booster mRNA vaccine: a Multicenter Cohort Study. <i>Clin Infect Dis Off Publ Infect Dis Soc Am</i> . Published online March 28, 2023:ciad175. doi:10.1093/cid/ciad175
471 472 473 474	10.	Karaba AH, Johnston TS, Aytenfisu TY, et al. A Fourth Dose of COVID-19 Vaccine Does Not Induce Neutralization of the Omicron Variant Among Solid Organ Transplant Recipients With Suboptimal Vaccine Response. <i>Transplantation</i> . 2022;106(7):1440. doi:10.1097/TP.00000000004140
475 476	11.	Andrews N, Stowe J, Kirsebom F, et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. <i>N Engl J Med.</i> 2022;386(16):1532-1546. doi:10.1056/NEJMoa2119451
477 478	12.	Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants

- in England: a cohort study. *Lancet*. 2022;399(10332):1303-1312. doi:10.1016/S01406736(22)00462-7
- 13. Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2
 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. *Cell*. 2022;185(14):2422-2433.e13.
 doi:10.1016/j.cell.2022.06.005
- 484 14. Uriu K, Ito J, Zahradnik J, et al. Enhanced transmissibility, infectivity, and immune
 485 resistance of the SARS-CoV-2 omicron XBB.1.5 variant. *Lancet Infect Dis.* 2023;23(3):280486 281. doi:10.1016/S1473-3099(23)00051-8
- 487 15. Yue C, Song W, Wang L, et al. ACE2 binding and antibody evasion in enhanced
 488 transmissibility of XBB.1.5. *Lancet Infect Dis.* 2023;23(3):278-280. doi:10.1016/S1473489 3099(23)00010-5
- 490 16. Bowen JE, Addetia A, Dang HV, et al. Omicron spike function and neutralizing activity
 491 elicited by a comprehensive panel of vaccines. *Science*. 2022;377(6608):890-894.
 492 doi:10.1126/science.abq0203
- 493 17. Dijokaite-Guraliuc A, Das R, Zhou D, et al. Rapid escape of new SARS-CoV-2 Omicron
 494 variants from BA.2-directed antibody responses. *Cell Rep.* 2023;42(4).
 495 doi:10.1016/j.celrep.2023.112271
- 496 18. Muik A, Lui BG, Quandt J, et al. Progressive loss of conserved spike protein neutralizing
 497 antibody sites in Omicron sublineages is balanced by preserved T cell immunity. *Cell Rep.*498 2023;42(8). doi:10.1016/j.celrep.2023.112888
- 499 19. Kurhade C, Zou J, Xia H, et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2,
 500 BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. *Nat Med*.
 501 2023;29(2):344-347. doi:10.1038/s41591-022-02162-x
- 20. Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2
 BQ and XBB subvariants. *Cell*. 2023;186(2):279-286.e8. doi:10.1016/j.cell.2022.12.018
- Sold 21. Goldblatt D, Alter G, Crotty S, Plotkin SA. Correlates of protection against SARS-CoV-2
 infection and COVID-19 disease. *Immunol Rev.* 2022;310(1):6-26. doi:10.1111/imr.13091
- 506 22. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. *Cell*.
 507 2021;184(4):861-880. doi:10.1016/j.cell.2021.01.007
- Sette A, Crotty S. Immunological memory to SARS-CoV-2 infection and COVID-19
 vaccines. *Immunol Rev.* 2022;310(1):27-46. doi:10.1111/imr.13089
- 24. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity
 to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. *Cell*.
 2020;183(4):996-1012.e19. doi:10.1016/j.cell.2020.09.038

- 513 25. Barnes E, Goodyear CS, Willicombe M, et al. SARS-CoV-2-specific immune responses and
 514 clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease.
 515 *Nat Med.* 2023;29(7):1760-1774. doi:10.1038/s41591-023-02414-4
- 516 26. Gao Y, Cai C, Grifoni A, et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the
 517 Omicron variant. *Nat Med.* 2022;28(3):472-476. doi:10.1038/s41591-022-01700-x
- 518 27. Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell
 519 memory able to cross-recognize variants from Alpha to Omicron. *Cell*. 2022;185(5):847520 859.e11. doi:10.1016/j.cell.2022.01.015
- 521 28. Gao Y, Cai C, Wullimann D, et al. Immunodeficiency syndromes differentially impact the
 522 functional profile of SARS-CoV-2-specific T cells elicited by mRNA vaccination. *Immunity*.
 523 2022;55(9):1732-1746.e5. doi:10.1016/j.immuni.2022.07.005
- 524 29. Ferreira VH, Marinelli T, Ierullo M, et al. Severe Acute Respiratory Syndrome Coronavirus 2
 525 Infection Induces Greater T-Cell Responses Compared to Vaccination in Solid Organ
 526 Transplant Recipients. *J Infect Dis.* 2021;224(11):1849-1860. doi:10.1093/infdis/jiab542
- 30. Rezahosseini O, Hamm SR, Heftdal LD, et al. Humoral and T-cell response 12 months after
 the first BNT162b2 vaccination in solid organ transplant recipients and controls: Kinetics,
 associated factors, and role of SARS-CoV-2 infection. *Front Immunol*. 2023;13. Accessed
 April 24, 2023. https://www.frontiersin.org/articles/10.3389/fimmu.2022.1075423
- 531 31. Thompson EA, Ngecu W, Stoddart L, et al. Heterologous versus homologous boosting elicits
 532 qualitatively distinct, BA.5–cross-reactive T cells in transplant recipients. *JCI Insight*.
 533 2023;8(10). doi:10.1172/jci.insight.168470
- 32. Altosole T, Rotta G, Uras CRM, Bornheimer SJ, Fenoglio D. An optimized flow cytometry
 protocol for simultaneous detection of T cell activation induced markers and intracellular
 cytokines: Application to SARS-CoV-2 immune individuals. *J Immunol Methods*.
 2023;515:113443. doi:10.1016/j.jim.2023.113443
- 33. Poloni C, Schonhofer C, Ivison S, Levings MK, Steiner TS, Cook L. T-cell activationinduced marker assays in health and disease. *Immunol Cell Biol*. Published online February
 24, 2023. doi:10.1111/imcb.12636
- 34. Bacher P, Scheffold A. Flow-cytometric analysis of rare antigen-specific T cells. *Cytometry* A. 2013;83A(8):692-701. doi:10.1002/cyto.a.22317
- 543 35. Elias G, Ogunjimi B, Van Tendeloo V. Activation-induced surface proteins in the
 544 identification of antigen-responsive CD4 T cells. *Immunol Lett.* 2020;219:1-7.
 545 doi:10.1016/j.imlet.2019.12.006
- 36. Braun J, Loyal L, Frentsch M, et al. SARS-CoV-2-reactive T cells in healthy donors and
 patients with COVID-19. *Nature*. 2020;587(7833):270-274. doi:10.1038/s41586-020-2598-9

- 37. Kabbani D, Yotis DM, Ferreira VH, et al. Immunogenicity, Safety, and Breakthrough Severe
 Acute Respiratory Syndrome Coronavirus 2 Infections After Coronavirus Disease 2019
 Vaccination in Organ Transplant Recipients: A Prospective Multicenter Canadian Study. *Open Forum Infect Dis.* 2023;10(5):ofad200. doi:10.1093/ofid/ofad200
- 38. Reiss S, Baxter AE, Cirelli KM, et al. Comparative analysis of activation induced marker
 (AIM) assays for sensitive identification of antigen-specific CD4 T cells. *PLOS ONE*.
 2017;12(10):e0186998. doi:10.1371/journal.pone.0186998
- 39. Dan JM, Lindestam Arlehamn CS, Weiskopf D, et al. A Cytokine-Independent Approach To
 Identify Antigen-Specific Human Germinal Center T Follicular Helper Cells and Rare
 Antigen-Specific CD4+ T Cells in Blood. *J Immunol Baltim Md 1950*. 2016;197(3):983-993.
 doi:10.4049/jimmunol.1600318
- 40. Wolfl M, Kuball J, Ho WY, et al. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. *Blood*. 2007;110(1):201-210.
 doi:10.1182/blood-2006-11-056168
- 41. Betts MR, Brenchley JM, Price DA, et al. Sensitive and viable identification of antigenspecific CD8+ T cells by a flow cytometric assay for degranulation. *J Immunol Methods*.
 2003;281(1):65-78. doi:10.1016/S0022-1759(03)00265-5
- 42. Bowyer G, Rampling T, Powlson J, et al. Activation-induced Markers Detect Vaccine Specific CD4+ T Cell Responses Not Measured by Assays Conventionally Used in Clinical
 Trials. *Vaccines*. 2018;6(3):50. doi:10.3390/vaccines6030050
- 43. Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4+ and CD8+ T cells induced
 by SARS-CoV-2 in UK convalescent individuals following COVID-19. *Nat Immunol.*2020;21(11):1336-1345. doi:10.1038/s41590-020-0782-6
- 44. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T Cell Responses to SARS-CoV-2
 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. *Cell*.
 2020;181(7):1489-1501.e15. doi:10.1016/j.cell.2020.05.015
- 45. Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to
 8 months after infection. *Science*. 2021;371(6529):eabf4063. doi:10.1126/science.abf4063
- 46. Painter MM, Mathew D, Goel RR, et al. Rapid induction of antigen-specific CD4+ T cells is
 associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA
 vaccination. *Immunity*. 2021;54(9):2133-2142.e3. doi:10.1016/j.immuni.2021.08.001
- 47. Tarke A, Sidney J, Methot N, et al. Impact of SARS-CoV-2 variants on the total CD4+ and
 CD8+ T cell reactivity in infected or vaccinated individuals. *Cell Rep Med*.
 2021;2(7):100355. doi:10.1016/j.xcrm.2021.100355
- 48. Paul K, Sibbertsen F, Weiskopf D, et al. Specific CD4+ T Cell Responses to Ancestral
 SARS-CoV-2 in Children Increase With Age and Show Cross-Reactivity to Beta Variant.

- *Front Immunol.* 2022;13. Accessed August 2, 2023.
 https://www.frontiersin.org/articles/10.3389/fimmu.2022.867577
 49. Newell KL, Waldran ML, Thomas SL, Endy TP, Waickman AT, Simultaneous
- 49. Newell KL, Waldran MJ, Thomas SJ, Endy TP, Waickman AT. Simultaneous analysis of
 antigen-specific B and T cells after SARS-CoV-2 infection and vaccination. *Cytometry*.
 2022;101(6):474-482. doi:10.1002/cyto.a.24563
- 50. Cheung MW, Dayam RM, Shapiro JR, et al. Third and Fourth Vaccine Doses Broaden and
 Prolong Immunity to SARS-CoV-2 in Adult Patients with Immune-Mediated Inflammatory
 Diseases. *J Immunol*. Published online June 16, 2023:ji2300190.
 doi:10.4049/jimmunol.2300190
- 51. BC Transplant, Provincial Health Services Authority. Medication Guidelines for Solid Organ Transplants. Published online May 13, 2021. Accessed July 9, 2023.
 http://www.transplant.bc.ca/health-professionals/transplant-resources/transplant-clinicalguidelines/medication-guidelines
- 52. Korom S, Boehler A, Weder W. Immunosuppressive therapy in lung transplantation: state of
 the art☆. *Eur J Cardiothorac Surg*. 2009;35(6):1045-1055. doi:10.1016/j.ejcts.2009.02.035
- 53. Ng CY, Madsen JC, Rosengard BR, Allan JS. Immunosuppression for lung transplantation.
 Front Biosci J Virtual Libr. 2009;14:1627-1641.
- 54. Meshram HS, Kute V, Rane H, et al. Humoral and cellular response of COVID-19 vaccine
 among solid organ transplant recipients: A systematic review and meta-analysis. *Transpl Infect Dis.* Published online August 12, 2022:e13926. doi:10.1111/tid.13926
- 55. Schaenman J, Byford H, Grogan T, et al. Impact of solid organ transplant status on outcomes
 of hospitalized patients with COVID-19 infection. *Transpl Infect Dis.* 2022;24(4):e13853.
 doi:10.1111/tid.13853
- 56. Czesnikiewicz-Guzik M, Lee WW, Cui D, et al. T cell subset-specific susceptibility to aging.
 Clin Immunol Orlando Fla. 2008;127(1):107-118. doi:10.1016/j.clim.2007.12.002
- 57. Moro-García MA, Alonso-Arias R, López-Larrea C. When Aging Reaches CD4+ T-Cells:
 Phenotypic and Functional Changes. *Front Immunol*. 2013;4:107.
 doi:10.3389/fimmu.2013.00107
- 58. Weinberger B, Lazuardi L, Weiskirchner I, et al. Healthy aging and latent infection with
 CMV lead to distinct changes in CD8+ and CD4+ T-cell subsets in the elderly. *Hum Immunol.* 2007;68(2):86-90. doi:10.1016/j.humimm.2006.10.019
- 59. Elgueta R, Benson MJ, De Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism
 and function of CD40/CD40L engagement in the immune system. *Immunol Rev.*2009;229(1):152-172. doi:10.1111/j.1600-065X.2009.00782.x
- 619 60. Moss P. The T cell immune response against SARS-CoV-2. *Nat Immunol*. 2022;23(2):186-
- 620 193. doi:10.1038/s41590-021-01122-w

61. Jeong HW, Kim SM, Jung MK, et al. Enhanced antibody responses in fully vaccinated individuals against pan-SARS-CoV-2 variants following Omicron breakthrough infection. Cell Rep Med. 2022;3(10). doi:10.1016/j.xcrm.2022.100764 62. Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022;603(7901):488-492. doi:10.1038/s41586-022-04460-3 63. Qui M, Bert NL, Chan WPW, et al. Favorable vaccine-induced SARS-CoV-2-specific T cell response profile in patients undergoing immune-modifying therapies. J Clin Invest. 2022;132(12). doi:10.1172/JCI159500 64. Tye EXC, Jinks E, Haigh TA, et al. Mutations in SARS-CoV-2 spike protein impair epitopespecific CD4+ T cell recognition. Nat Immunol. 2022;23(12):1726-1734. doi:10.1038/s41590-022-01351-7 65. Rosa DS, Ribeiro SP, Cunha-Neto E. CD4+ T Cell Epitope Discovery and Rational Vaccine Design. Arch Immunol Ther Exp (Warsz). 2010;58(2):121-130. doi:10.1007/s00005-010-0067-0 66. Cohen KW, Linderman SL, Moodie Z, et al. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep Med. 2021;2(7). doi:10.1016/j.xcrm.2021.100354 67. Ogbe A, Kronsteiner B, Skelly DT, et al. T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nat Commun. 2021;12(1):2055. doi:10.1038/s41467-021-21856-3

Characteristic	n (%) or median [IQR] ^a			Total
	Kidney	Liver	Lung	
Sample size	16	16	10	42
Pre-2nd dose	5 (31%)	12 (75%)	4 (40%)	21 (50%)
Post-2nd dose	16 (100%)	16 (100%)	8 (80%)	40 (95%)
Six months post-1st dose	3 (19%)	4 (25%)	4 (40%)	11 (26%)
Post-3rd dose	14 (88%)	11 (69%)	8 (80%)	33 (79%)
One year post-1st dose	14 (88%)	9 (56%)	9 (90%)	32 (76%)
Neither 4th dose nor COVID-19	1 (6%)	4 (25%)	1 (10%)	6 (14%)
Post-4th dose (no COVID-19)	7 (44%)	4 (25%)	4 (40%)	15 (36%)
Hybrid (4th dose + COVID-19)	6 (38%)	1 (6%)	0 (0%)	7 (17%)
COVID-19 (no 4th dose)	0 (0%)	0 (0%)	4 (40%)	4 (10%)
Sample collection timing				
1st dose to pre-2nd dose sample (days)	73	71	70	70
	[40, 84]	[47, 76]	[69, 75]	[53, 79]
2nd dose to post-2nd dose sample (days)	29	29	34	29
	[26, 33]	[28, 33]	[29, 35]	[26, 34]
2nd dose to 6 month sample (days)	105	146	105	109
		[128, 152]	[102, 108]	[100, 134]
3rd dose to post-3rd dose sample (days)	33	31	32	32
	[28, 40]	[29, 36]	[28, 36]	[28, 39]
3rd dose to 1 year sample (no 4th dose or COVID-19) (days)	232	203	217	211
		[194, 209]		[200, 216]
4th dose to 1 year sample (no COVID-19) (days)	28	22	30	27
	[27, 39]	[20, 27]	[25, 35]	[22, 39]
4th dose to 1 year sample (hybrid) (days)	34 [26, 20]	36		35 [29 29]
COVID 10 to 1 year sample (hybrid) (days)	[20, 39]	118		[28, 38]
COVID-19 to 1 year sample (hybrid) (days)	[110 151]	110		[111 148]
Age	55	62	56	58
	[46, 66]	[50, 66]	[49, 65]	[47, 66]
<i>Time since transplant (v)</i>	4.6	8.7	9.0	6.8
1 (7)	[2.8, 8.0]	[4.5, 13.9]	[4.3, 14.1]	[3.2, 12.9]
Sex	<u> </u>	<u> </u>		- · -
Female	8 (50%)	9 (56%)	5 (50%)	22 (52%)
Male	8 (50%)	7 (44%)	5 (50%)	20 (48%)
Vaccinations				
1st dose	16 (100%)	16 (100%)	10 (100%)	42 (100%)
Moderna	2 (13%)	6 (38%)	0 (0%)	8 (19%)
Pfizer-BioNTech	14 (88%)	10 (63%)	10 (100%)	34 (81%)

653 Table 1. Study Cohort Characteristics

2nd dose	16 (100%)	16 (100%)	10 (100%)	42 (100%)
Moderna	2 (13%)	8 (50%)	0 (0%)	10 (24%)
Pfizer-BioNTech	14 (88%)	8 (50%)	10 (100%)	32 (76%)
3rd dose	15 (94%)	13 (81%)	10 (100%)	38 (90%)
Moderna	6 (38%)	11 (69%)	6 (60%)	23 (55%)
Pfizer-BioNTech	9 (56%)	2 (13%)	4 (40%)	15 (36%)
4th dose	14 (88%)	12 (75%)	9 (90%)	35 (83%)
Moderna	11 (69%)	11 (69%)	7 (70%)	29 (69%)
Pfizer-BioNTech	3 (19%)	1 (6%)	2 (20%)	6 (14%)
Immunosuppression at enrollment				
Prednisone	10 (63%)	0 (0%)	10 (100%)	20 (48%)
Cyclosporine	0 (0%)	1 (6%)	0 (0%)	1 (2%)
Tacrolimus	16 (69%)	11 (69%)	10 (100%)	35 (83%)
Mycophenolate mofetil or mycophenolate sodium	12 (44%)	7 (44%)	8 (80%)	27 (64%)
Azathioprine	3 (19%)	1 (6%)	1 (10%)	5 (12%)
Sirolimus	0 (0%)	3 (19%)	0 (0%)	3 (7%)
657 658 659 660				
661				
662				
663				
665				
666				
667				
668				
669				
670				

	Timepoint	Variant	Spearman's r	P-value	Significance
	CD4+ T cells (CD134+/CD69+)		_		_
	pre-2nd	Ancestral	0.2369	0.2884	ns
	pre-2nd	BA.4/5	0.4066	0.0604	ns
	post-2nd	Ancestral	0.3064	0.0514	ns
	post-2nd	BA.4/5	0.3091	0.0493	*
	6 months	Ancestral	0.8028	0.0082	**
	6 months	BA.4/5	0.6554	0.0454	*
	post-3rd	Ancestral	0.6755	< 0.0001	****
	post-3rd	BA.4/5	0.6411	< 0.0001	***
	CD8+ T cells (CD137+/CD69+)				
	pre-2nd	Ancestral	0.4273	0.0534	ns
	pre-2nd	BA.4/5	0.3288	0.1456	ns
	post-2nd	Ancestral	0.2832	0.0727	ns
	post-2nd	BA.4/5	0.2726	0.0847	ns
	6 months	Ancestral	0.6457	0.0512	ns
	6 months	BA.4/5	0.6241	0.0591	ns
	post-3rd	Ancestral	0.3527	0.0441	*
	post-3rd	BA.4/5	0.3313	0.0596	ns
673	ns, non-significant; *p <0.05, **p <	0.01; ***p <0.001	l; ****p <0.0001		
674					
675					
676					
677					
678					
679					
680					
681					
682					
683					
684					
685					

671 Table 2. Correlations of anti-RBD titres with T cell activation-induced marker responses

687	Figure 1. Second and third vaccine doses induce durable Omicron BA.4/5-specific T cell
688	responses in solid-organ transplant recipients. A) PBMC samples from solid organ transplant
689	recipients (SOTRs, n = 42) immunized with COVID-19 mRNA vaccines were collected at pre-
690	second dose, post-second dose, six months post-first dose, post-third dose and one-year
691	timepoints. B) Representative flow cytometry data showing T cell activation-induced marker
692	(AIM) responses to the ancestral strain of SARS-CoV-2 in one donor after three doses of a
693	COVID-19 mRNA vaccine. Samples were stimulated with 1 μ g/mL SARS-CoV-2 ancestral
694	strain or Omicron BA.4/5 Spike peptides for 20 h. CD4+ T cell activation-induced marker (AIM)
695	responses were measured as frequencies of CD134+/CD25+, CD134+/CD69+ or
696	CD137+/CD69+ events among CD4+ T cells. CD8+ AIM responses were measured as
697	frequencies of CD107a+/CD69+, CD107a+/CD137+ or CD137+/CD69+ events among CD8+ T
698	cells. All data represent net AIM+ frequencies after subtracting the equivalent AIM+ frequency
699	in the DMSO-stimulated control. C) Time course of CD4+ and CD8+ T cell AIM responses to
700	ancestral SARS-CoV-2 and BA.4/5 in SOTRs. Participants who had already received a third dose
/01	were excluded at the six-month timepoint, and participants who received a fourth dose or
702	developed COVID-19 were excluded at the one-year timepoint to model the natural history of
703	the vaccine-induced 1 cell response. P-values represent Dunnett's multiple comparisons test
704	following a mixed effects analysis on \log_2 -transformed AIM+ frequencies.
705	
706	
707	
709	
708	
709	
710	
711	
712	
713	
714	
715	
716	
717	
718	
719	
720	

726 Figure 2. A fourth vaccine dose enhances SARS-CoV-2-specific T cell responses in solid

- **organ transplant recipients.** PBMCs from solid organ transplant recipients (SOTRs) were
- collected at post-third dose and one year post-first dose (6-8 months post-third dose) timepoints
- and stimulated with 1 μ g/mL SARS-CoV-2 ancestral strain or Omicron BA.4/5 Spike peptides for 20 h. T cell activation-induced marker (AIM) responses were quantified as CD134+/CD69+
- for 20 h. T cell activation-induced marker (AIM) responses were quantified as CD134+/CD69+
 or CD137+/CD69+ frequencies among CD4+ and CD8+ T cells, respectively, after subtraction of
- the equivalent AIM+ frequency in the DMSO-stimulated control. **A)** At the one-year timepoint,
- 733 SOTRs were grouped as having received neither a fourth dose nor a contracting COVID-19
- (controls, n = 6), having received a fourth monovalent COVID-19 mRNA vaccine dose within 3-
- 6 weeks of sample collection (fourth dose, n = 15), or a fourth dose and symptomatic COVID-19
- (hybrid, n = 7). Patients who had only COVID-19 infection (n = 4) were excluded due to
- insufficient sample size. **B**) Evolution of CD4+ and CD8+ T cell AIM responses in from the
- post-third dose to one-year timepoint within fourth dose, hybrid and control groups of SOTRs.
- Paired Wilcoxon signed-rank test p-values are shown. C) Effect of a fourth dose or hybrid
- immunity on CD4+ and CD8+ T cell AIM responses in SOTRs. Changes from post-third dose to
- one-year timepoints are compared between fourth dose, hybrid and control groups. P-values
- represent Dunn's multiple comparisons test following a Kruskal-Wallis test.
- 743
- 744
- 745
- 746
- 747
- 748

750

Figure 3. T cell activation-induced marker responses to Omicron BA.4/5 are weaker than 751

responses to ancestral SARS-CoV-2 in solid organ transplant recipients. Paired comparisons 752

of CD4+ (A) and CD8+ (B) T cell AIM responses to Omicron BA.4/5 and ancestral SARS-CoV-753

2, measured after three doses of a COVID-19 mRNA vaccine, in solid organ transplant recipients 754 (n = 33). Following a 20-h stimulation of patient PBMCs with 1 µg/mL SARS-CoV-2 ancestral

755 strain or Omicron BA.4/5 Spike peptides, CD4+ T cell activation-induced marker (AIM) 756

responses were quantified as frequencies of CD134+/CD25+, CD134+/CD69+ or 757

CD137+/CD69+ events among CD4+ T cells, while CD8+ AIM responses were measured as 758

frequencies of CD107a+/CD69+, CD107a+/CD137+ or CD137+/CD69+ events among CD8+ T 759

760 cells, after subtracting the equivalent AIM+ frequency in the DMSO-stimulated control.

```
Wilcoxon signed-rank test p-values are shown.
761
```

762

763

764

765

766

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783	Figure 4. Prednisone, lung transplantation and older age are associated with weaker T cell responses to COVID-19 vaccination. Post-third dose CD4+ and CD8+ T cell activation-induced marker (AIM) responses to SARS-CoV-2 ancestral and Omicron BA.4/5 variants are shown in solid-organ transplant recipients. Patient PBMCs were stimulated for 20 h with 1 μ g/mL SARS-CoV-2 ancestral strain or Omicron BA.4/5 Spike peptides, and T cell activation-induced marker responses were quantified by flow cytometry as frequencies of CD134+/CD69+ events among CD4+ T cells, or CD137+/CD69+ events among CD8+ T cells, after subtracting the equivalent AIM+ frequency in the DMSO-stimulated control. A) Mann-Whitney U-test comparing AIM responses between patients receiving baseline prednisone (n = 17) and those not receiving prednisone (n = 16). Symbols differentiate between kidney (black circles), liver (red squares) and lung (blue triangles) transplant recipients. B) Comparisons of AIM responses between age and T cell AIM responses, testing the null hypothesis of the slope being equal to zero.
784	
785	
786	
787	
788	
789	
790	
791	
792	
793	
794	
795	
796	
797	
798	
799	
800	
801	

803	Figure 5. SARS-CoV-2-specific T cell activation-induced marker responses correlate with
804	Spike-specific antibody titres in solid organ transplant recipients. Relationships of T cell
805	activation-induced marker (AIM) responses with previously published anti-Spike binding and
806	neutralizing antibodies are shown in solid organ transplant recipients ⁹ . PBMCs were collected
807	from COVID-19-vaccinated SOTRs at pre-second dose, post-second dose, six months post-first
808	dose and post-fourth dose timepoints. AIM responses are shown as frequencies of
809	CD134+/CD69+ or CD137+/CD69+ events among CD4+ or CD8+ T cells, respectively,
810	following stimulation for 20 h with 1 μ g/mL SARS-CoV-2 ancestral strain or Omicron BA.4/5
811	Spike peptides, after subtracting the equivalent AIM+ frequency in the DMSO-stimulated
812	control. A) Spearman's correlations of CD4+ and CD8+ T cell activation-induced marker
813	responses to ancestral or Omicron BA.4/5 variants of SARS-CoV-2 with circulating anti-Spike
814	antibody fittes. Correlations were analyzed separately at pre-second dose (green circles, $n = 21$),
815 016	post-second dose (blue triangles, $n = 40$), six months post-first dose (red squares, $n = 10$) and third dose (block triangles, $n = 32$) vaccination timencints. B) Log log regression analysis of
810 817	nost-second dose CD4+ AIM responses and post-third dose anti-RBD antibody titres in SOTRs
818	who had no detectable post-second dose antibody titres testing the null hypothesis of slope being
819	equal to zero. C) Comparison of post-third dose and post-fourth dose CD4+ and CD8+ T cell
820	AIM responses to BA.4/5 in patients with (nAbs) or without (no nAbs) detectable BA.4/5
821	neutralization titres. Groups were compared by unpaired two-sample t-tests on log ₂ -transformed
822	AIM frequencies.
823	
824	
825	
826	
827	
828	
829	
830	
831	
832	
833	
834	
835	
836	

- 839 Figure 6. The SARS-CoV-2 variant XBB.1.5 partially escapes recognition by vaccine-
- 840 induced T cells in solid organ transplant recipients. CD4+ and CD8+ T cell AIM responses to
- 841 SARS-CoV-2 ancestral strain Spike protein and XBB1.5 Spike protein, measured prior to a
- second dose and after three doses of a COVID-19 mRNA vaccine in solid organ transplant
- recipients (n = 10). Following a 44-h stimulation of patient PBMCs with 0.5 μ g/mL SARS-CoV-
- 2 ancestral strain or XBB.1.5 Spike protein, CD4+ T cell activation-induced marker (AIM)
- responses were quantified as frequencies of CD134+/CD69+ events among CD4+ T cells, while
- 846 CD8+ AIM responses were measured as frequencies of CD137+/CD69+ events among CD8+ T
- cells, after subtraction of the equivalent AIM+ frequency in the PBS-stimulated control. Paired
- 848 Wilcoxon signed-rank test p-values are shown. A) Comparisons of AIM responses between pre-
- second dose and post-third dose timepoints. **B)** Comparisons of AIM responses to ancestral
- 850 SARS-CoV-2 and XBB.1.5.