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Abstract

As COVID-19 vaccines became abundantly available around the world since the second
half of 2021, many countries carried out a vaccination certificate (green pass) policy to
encourage vaccination and help reopen their economies. This policy granted certified
people more freedom of gathering and movement than unvaccinated individuals.
Accordingly, pre-existing non-pharmaceutical interventions (NPIs) were adjusted under
the vaccination certificate policy. The vaccination certificate also induced heterogeneous
behaviors between unvaccinated and vaccinated groups, which complicates the modeling
of COVID-19 transmission. Still, limited work is available in evaluating the impact of
the green pass policy on COVID-19 transmission using quantitative methods. To
characterize the major changes caused by the green pass policy, a modified
susceptible-exposed-infected-removed (SEIR) epidemiological model SEIQRD2 is
proposed in this paper. By integrating different behavior patterns of unvaccinated and
vaccinated groups under the green pass policy, SEIQRD2 adopts the inherent variability
and complexity of human behaviors in the context of vaccination and NPIs and their
effect on COVID-19 transmissions. Three countries: Greece, Austria, and Israel are
selected as case studies to demonstrate the validity of SEIQRD2. The simulation results
illustrate that the combination of NPIs and vaccination still plays a pivotal role in
containing the resurgence of COVID-19 by enforcing vaccination certification.

Introduction 1

Before December 2020, non-pharmaceutical interventions (NPIs) were the only effective 2

way to contain the spread of the novel coronavirus SARS-CoV-2 [2,3]. Strict NPIs, 3

including gathering restrictions, border closure, international travel restrictions, curfew, 4

and lockdown, were taken to prevent and contain the COVID-19 pandemic [2]. With 5

the effective vaccines available against SARS-CoV-2 [4], a lot of countries started their 6

nationwide vaccination campaigns since January 2021 [5], including the UK, the US, 7

Israel, and various European countries. Until the second half of 2021, the vaccines were 8

abundantly available around the world. Then, many countries carried out the green 9

pass policy, i.e., individuals and businesses with vaccine passports or certificates have 10

free access to certain facilities and activities. This vaccination certification encouraged 11

people to receive vaccination and helped reopen businesses and economy. For example, 12

Israel was one of the first countries to launch the nationwide vaccination campaign and 13

implement the green pass policy [6]. 14

Since the outbreak of COVID-19, significant efforts have been made on modeling 15

COVID-19 [12], where epidemiological models provide epidemic explanation and 16

indication for controlling the transmission of SARS-CoV-2. In the early stage of the 17
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COVID-19 pandemic, the scientific reports focused on the impact of various NPIs on 18

the COVID-19 transmission [7–11]. For example, Jonas et al. [7] discussed the 19

effectiveness of interventions with varying implementation and timing. They showed 20

that strict NPIs and early implementation can largely reduce the spread of COVID-19. 21

Seth et al. [8] made an evaluation of the effect of various NPIs in Europe. Their results 22

demonstrated that lockdowns have a huge impact on reducing COVID-19 transmission. 23

With the development of effective vaccines against SARS-CoV-2, efficient vaccine 24

allocation strategies and the optimal combination of both vaccination and NPIs became 25

valuable topics. Accordingly, a significant number of researchers have developed novel 26

methods or approaches to explore potential combinations [3, 13–23]. For instance, Yang 27

et al. [13] thought that equitable access to vaccine around the world would make a 28

long-term positive impact on curbing COVID-19. Sam et al. [14] investigated different 29

combinations of vaccination and NPIs by varying vaccine’s protection rates against 30

SARS-CoV-2. They concluded that vaccination alone is insufficient to contain the 31

COVID-19 epidemic resurgence. Matrajt et al. [21] searched for potential vaccination 32

strategies to reduce the cumulative cases. Ge et al. [18, 24] evaluated the effectiveness of 33

all kinds of NPIs and vaccination in controlling COVID-19, respectively. Sonabend et 34

al. [23] assessed the roadmap of England by considering the lifting of NPIs and 35

vaccination roll-out under the influence of the COVID-19 pandemic. As the green pass 36

policy has been carried out in several countries, heterogeneous behaviors between 37

vaccinated and unvaccinated groups become another key factor influencing the 38

transmission of COVID-19 pandemic. For instance, the Oxford Covid-19 Government 39

Response Tracker (OxCGRT) distinguished NPIs on vaccinated individuals from the 40

control measures on unvaccinated ones from late July 2022 41

(https://www.bsg.ox.ac.uk/research/covid-19-government-response-tracker) because of 42

the importation of green pass policy. 43

NPIs and vaccination affect people’s behaviors significantly, how to model their effect 44

on containing COVID-19 was an emerging topic yet challenging for computing behaviors 45

and their impact [1]. There was some research [39,40] on considering the impact of 46

heterogeneous behaviors in modeling the dynamics of COVID-19, they are not designed 47

to be applied in the countries or regions where the green pass policy was carried out. 48

For instance, Cliff et al. [39] modeled the development of COVID-19 by incorporating 49

different human behavior patterns under varying environments, such as schools, home, 50

and workplace. Their method makes predictions without carrying out the green pass 51

policy, which cannot differentiate the vaccination status of population and is unsuitable 52

for countries with green pass policy, such as Israel and Greece. A vaccination green pass 53

(vaccination passport or certificate) is a digital or paper certificate that proves its 54

holders being fully vaccinated or recovered after being infected by COVID-19. It grants 55

its holders more freedom of gathering and movement than unvaccinated individuals. In 56

the context of a pandemic resurgence, while unvaccinated individuals are restricted in 57

social activities, those holding green passes are granted entry to various public 58

establishments, including restaurants, bars, cafes, and indoor venues. [25]. 59

Given that the presence of vaccination certification has fostered different behaviors 60

among unvaccinated and vaccinated groups, COVID-19 modeling [12] may benefit from 61

involving behavioral heterogeneity and their modeling their impact on COVID-19 62

transmissions from behavior informatics perspective [1]. With this motivation, we 63

propose a modified susceptible-exposed-infected-removed (SEIR) epidemiological model 64

SEIQRD2. Different from other work that only characterizes the risk of vaccination 65

certificate policy on unvaccinated and vaccinated groups [26,27], SEIQRD2 explicitly 66

characterizes their behavioral heterogeneity and their further interactions 67

simultaneously using two dependent SEIR-based transmission chains. The two 68

transmission chains correspond to the spread of COVID-19 in the unvaccinated and 69
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vaccinated, respectively. In the meanwhile, the interplay between the two groups is 70

described by the association between the two chains. 71

In addition, our model notices the diminishing efficacy of vaccination during the 72

COVID-19 pandemic. Differently, many research studies on COVID-19 do not consider 73

the decreasing effect of vaccination on infection [18,19, 28]. This ignorance may conflict 74

with the reality of the COVID-19 resurgence, to which the waning effectiveness of 75

vaccines made a contribution [29–32]. 76

This work makes the attempt to precisely explore the above open question per the 77

following real-world scenario and assumptions. First, authorities would relax NPIs and 78

grant the vaccinated group more freedom to activities such as shopping and public 79

gatherings than the unvaccinated [25]. Second, the virus resurgence could be triggered 80

after the implementation of the green pass policy. These assumptions represent the 81

practical situations in the countries which implemented the green pass policy in 2021. 82

Still, limited work is available in evaluating the impact of the green pass policy on 83

people’s behaviors and the COVID-19 transmission from a quantitative perspective. 84

This paper addresses these gaps in SEIQRD2. 85

SEIQRD2 analyzes the above aspects and gaps in modeling the viral and human 86

behavior dynamics during COVID-19 under mass vaccination and the influence of 87

vaccination certification and other NPIs. SEIQRD2 also captures the behavioral 88

heterogeneity between vaccinated and unvaccinated groups under the green pass policy 89

characterized by two dependent transmission chains. At last, we demonstrate the 90

validity of this method in modeling COVID-19 transmissions in three pioneering 91

countries with vaccination certification: Greece, Austria, and Israel. 92

Materials and methods 93

Model structure and assumptions 94

The structure of SEIQRD2 is shown in Fig 1, which illustrates the organization and 95

arrangement of various components of the model. The left part of the figure displays 96

major external factors for COVID-19: virus, mass vaccination, and NPIs. The right 97

section outlines the dynamics of COVID-19. As it is shown, the compartmental 98

transition part explicitly incorporates the impact of these external factors. For instance, 99

the virus SARS-CoV-2 caused the COVID-19 pandemic and its transmission could be 100

described by an extended SEIR model. In a mass vaccination campaign, the total 101

population is typically categorized into two groups: those who have been vaccinated and 102

those who have not received the vaccine (unvaccinated). Lastly, when a green pass policy 103

was carried out, stricter NPIs were used to restrict the activities of the unvaccinated 104

group than the vaccinated, which induced heterogeneous behaviors between the two 105

groups. All these factors form the two dependent SEIR-based chains in SEIQRD2. 106

Fig 1. The structure and workflow of the model SEIQRD2. In the external factors part, C0 and Cv represent NPI
events for the unvaccinated and vaccinated, respectively; Pv stands for mass vaccination campaign. In the compartmental
transitions part, the status transitions among unvaccinated population are described by the chain S0, E0, I0, Q0, R0, and D0.
Similarly, the transition chain of the vaccinated consists of Sv, Ev, Iv, Qv, Rv, and Dv. α is the daily vaccination rate, β0

1

represents the effective transmission rate among Susceptible(S0) caused by Infected (I0), β0
2 depicts the effective transmission

rate among Susceptible(S0) caused by Infected (Iv), βv
1 is the effective transmission rate among Vaccinated(Sv) caused by

Infected (I0), βv
2 is the effective transmission rate among Vaccinated(Sv) caused by Infected (Iv), 1/γ is the incubation period,

δ is the diagnosis rate, λ is the recovery rate, and φ is the death rate.
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Compartmental transitions 107

The compartmental transitions part comprises two similar transition chains. The first 108

chain is for the unvaccinated people. It consists of seven compartments: Susceptible 109

(S0), Exposed (E0), Infected (I0), Quarantined (Q0), Recovered (R0), and Death (D0), 110

which reflect the epidemiological compartmental transitions among the unvaccinated 111

individuals during COVID-19. These components are presented in Fig 1. Individuals in 112

the Susceptible compartment (S0) may get infected by those Infected (I0) or Infected 113

(Iv) at the effective transmission rate of β0
1 and β0

2 , and become exposed, i.e., transited 114

to the Exposed status (E0). After a particular incubation period 1/γ, those exposed 115

individuals (E0) are transferred to the Infected compartment (I0) and become infectious. 116

Those infectious may be identified and confirmed, then transferred to the Quarantined 117

compartment (Q0) at a probability δ. In Q0, individuals either recovers (R0) at rate λ 118

or deceases (D0) at rate φ. 119

The other transition chain is for those vaccinated with green passes. Similarly, it 120

consists of compartments Vaccinated (Sv), Exposed (Ev), Infected (Iv), Quarantined 121

(Qv), Recovered (Rv), and Death (Dv). The set of compartments depicts the dynamics 122

of COVID-19 among green pass holders. Besides, the transition processes are also 123

similar to those unvaccinated people (i.e., the status S0, E0, I0, Q0, R0, and D0). The 124

compartments Sv, Ev, Iv, Qv, Rv, and Dv are shown in Fig 1. 125

This bi-chain compartmental structure describes the status transitions among 126

unvaccinated and vaccinated people during the COVID-19 pandemic and grasps their 127

behavioral heterogeneity simultaneously. Different from the existing epidemiological 128

methods [13, 14], SEIQRD2 emphasizes the interactions between the two groups, which 129

play an important role in forming the resurgence of COVID-19 under the green pass 130

policy. For instance, a susceptible person (S0) may become infected by those vaccinated 131

(Iv) at the probability of β0
2 . Similarly, βv

1 reflects the transmission rate that the 132

unvaccinated (I0) spreads the virus to a green pass holder (Sv). The two dependent 133

SEIR-based chains of SEIQRD2 can be characterized by the following set of ordinary 134

differential equations (ODE) Eqs (1)-(12). N refers to the population size. 135
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dS0

dt
= −β0

1

S0I0

N
− β0

2

S0Iv

N
− αN (1)

dSv

dt
= −βv

1

SvI0

N
− βv

2

SvIv

N
+ αN (2)

dE0

dt
= −γE0 + β0

1

S0I0

N
+ β0

2

S0Iv

N
(3)

dEv

dt
= −γEv + βv

1

SvI0

N
+ βv

2

SvIv

N
(4)

dI0

dt
= −δI0 + γE0 (5)

dIv

dt
= −δIv + γEv (6)

dQ0

dt
= −λQ0 − φQ0 + δI0 (7)

dQv

dt
= −λQv − φQv + δIv (8)

dR0

dt
= λQ0 (9)

dRv

dt
= λQv (10)

dD0

dt
= φQ0 (11)

dDv

dt
= φQv (12)

α, λ, φ are country specific parameters from real-world data described in Table 1, 136

while β0
1 , β

0
2 , β

v
1 , β

v
2 , γ, δ are estimated from the model. 137

Table 1. Model parameters for SEIQRD2 and their associated values.

Parameters Interpretation Value
N Population size A fixed value - Country specific
α Daily vaccination rate A series of values - Country specific
β0
1 Effective transmission rate within unvaccinated A series of values – Estimated

β0
2

Effective transmission rate of vaccinated infected
within unvaccinated

A series of values – Estimated

βv
1

Effective transmission rate of unvaccinated infected
within vaccinated

A series of values – Estimated

βv
2 Effective transmission rate within vaccinated A series of values – Estimated

γ Incubation rate A fixed value - Estimated
δ Quarantine rate A fixed value - Estimated
λ Recovery rate A series of values - Country specific
φ Mortality rate A series of values - Country specific

External factors 138

Compartmental transitions may be greatly affected by external factors: NPIs and mass 139

vaccination. Therefore, it is necessary for SEIQRD2 to quantify the effect of these NPI 140

events and vaccination. Generally, the impact of such external factors is assessed by 141

their role in changing the viral transmission speed. In SEIQRD2, we define the effect of 142
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external factors NPIs and vaccination by measuring their impact on transmission rates. 143

The effective transmission rates {β0
1 , β

0
2 , β

v
1 , β

v
2} are described by Eq (13). Each 144

transmission rate is a function of NPIs and vaccination. 145

{β0
1 , β

0
2 , β

v
1 , β

v
2} = {f0

1 , f
0
2 , f

v
1 , f

v
2 }(npis, vaccination) (13)

In theory, NPIs and vaccination are independent from each other. Therefore, Eq (13) 146

is transformed into Eq (14). 147

{β0
1 , β

0
2 , β

v
1 , β

v
2} = {g01(npis), g02(npis), gv1(npis), gv2(npis)} ∗ h(vaccination) (14)

We further explain the functions of g01(npis), g
0
2(npis), g

v
1(npis), g

v
2(npis), and 148

h(vaccination). During the COVID-19 pandemic, various NPIs were carried out to stop 149

or mitigate the viral spread. Commonly, step functions are used to measure the effect of 150

existing NPIs during a COVID-19 resurgence. In the other words, at a given time 151

segment, the effectiveness of NPIs is fixed as a constant value. The discrete values come 152

from fitting the model, where n is the total number of NPIs-related events. Ti 153

represents the starting time of the ith NPI event, Ttotal is the total number of days 154

during a specific COVID-19 wave. For example, R0
1,1 represents the impact of NPIs 155

among the unvaccinated after the 1th NPI event and before the 2nd event, called basic 156

transmission rate. Therefore, the functions of NPIs can be characterized as a set of 157

discrete values by Eqs (15)-(18). 158

g01(npis) = β0
base,1(t) =


R0

1,0, T0 < t ⩽ T1

R0
1,1, T1 < t ⩽ T2

R0
1,i, Ti < t ⩽ Ti+1

R0
1,n, Tn < t ⩽ T0 + Ttotal

(15)

g02(npis) = β0
base,2(t) = {R0

2,1, R
0
2,2, R

0
2,3, ......, R

0
2,n} (16)

gv1(npis) = βv
base,1(t) = {Rv

1,1, R
v
1,2, R

v
1,3, ......, R

v
1,n} (17)

gv2(npis) = βv
base,2(t) = {Rv

2,1, R
v
2,2, R

v
2,3, ......, R

v
2,n} (18)

The effectiveness of vaccination is measured by Eq (19). Many scientific studies 159

explore the effectiveness of vaccines against the infection of COVID-19 over time. In 160

this work, we use the results about the Pfizer–BioNTech (BNT162b2) COVID-19 161

vaccine in [33] to compute the effectiveness of vaccination during COVID-19 resurgence 162

because the Pfizer vaccination took the highest proportion around the world, including 163

the chosen three countries: Greece (> 70%), Austria (> 60%), and Israel (> 80%). M 164

refers to the total population of the vaccinated until the tth day. t0 is the starting time 165

of mass vaccination. Num(j) is the number of the vaccinated people on the jth day. 166

Eff(t− j) refers to the vaccine effectiveness against infection (t− j) days after 167

vaccination. In Eq (20), the coefficients {0.775, 0.732, 0.696, 0.517, 0.225, 0.173} 168

correspond to the results in [33]. To simplify the modeling, we assume the booster’s 169

effectiveness follows the same diminishing efficacy trend in [33]. Besides, the assumption 170

will not significantly change the general results of SEIQRD2 about NPIs, because the 171

impact of NPIs is described by step functions Eqs (15)-(18), while the effectiveness of 172

vaccination is represented by the ramp function Eq (19), which means it is easy to 173

separate the impact of NPIs from vaccination. 174

h(vaccination) = h(t) = 1− 1

M

t∑
j=t0

Num(j)Eff(t− j) (19)
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Eff(t− j) =



0.775, 0 < t− j ⩽ 30

0.732, 30 < t− j ⩽ 60

0.696, 60 < t− j ⩽ 90

0.517, 90 < t− j ⩽ 120

0.225, 120 < t− j ⩽ 150

0.173, 150 < t− j

(20)

Then, Eq (14) can be converted to Eqs (21-24). 175

β0
1(t) = β0

base,1(t) (21)

β0
2(t) = β0

base,2(t) (22)

βv
1 (t) = βv

base,1(t)∗h(t) =


Rv

1,0 ∗ [1− 1
M

∑t
j=t0

Num(j)Eff(t− j)], T0 < t ⩽ T1

Rv
1,1 ∗ [1− 1

M

∑t
j=t0

Num(j)Eff(t− j)], T1 < t ⩽ T2

Rv
1,i ∗ [1− 1

M

∑t
j=t0

Num(j)Eff(t− j)], Ti < t ⩽ Ti+1

Rv
1,n ∗ [1− 1

M

∑t
j=t0

Num(j)Eff(t− j)], Tn < t ⩽ T0 + Ttotal

(23)

βv
2 (t) = βv

base,2(t) ∗ h(t) (24)

Estimation 176

We solve the model with a nonlinear data-fitting approach that minimizes a least 177

squares error function as shown in Eq (25), where F represents our model, x denotes 178

the input data (Q, R and D), provided by the integration of the ordinary differential 179

equation (ODE) system (Eqs (1)-(12)) and solved by a fourth-order Runge-Kutta 180

method. y denotes an observation (i.e., the reported active case number). θ refers to all 181

parameters (α, β0
1 , β

0
2 , β

v
1 , β

v
2 , γ, δ, λ, φ) that are inferred by Eqs (1)-(12). Ttotal is the 182

total number of days. 183

Model parameters are based on formal estimation. In order to obtain the simulation 184

results, we take the classical optimization algorithm (the least-square method) to fit 185

actual quarantined cases with a given objective function Eq (25). In Eq (25), yj is the 186

actual quarantined case in the jth day. 187

min
θ

∥F (θ,x)− y∥22 = min
θ

Ttotal∑
j

(F (θ, x)− yj)
2 (25)

This function requires initial values for optimization. We randomly set the initial 188

values for the unknown parameter set θ with the lower bound 0. The representative 189

measure of the optimal set of parameters is obtained with up to 10,000 iterations of 190

optimization under the initial values. 191

Evaluation 192

The MAPE defined in Eq (26) is also a key metric to assess the performance of 193

SEIQRD2 in predicting the dynamics of COVID-19. yj is the actual quarantined case or 194

total deaths on the jth day. ȳj is the prediction of SEIQRD2 about quarantined cases or 195
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total deaths. Ttotal is the total number of days. For instance, the prediction of the next 196

14-day quarantined cases and total deaths is measured by the MAPE of the simulation 197

results. 198

MAPE =
1

Ttotal

Ttotal∑
j=1

|yj − ȳj |
yj

(26)

Explanatory model for transmission rates 199

As we know, classic SEIR models are widely applied in the public health domain. One 200

of the most obvious reasons is its clear explanation. It means they can provide key 201

epidemiological parameters, such as transmission rate and incubation period. In our 202

model, four effective transmission rates β0
1 , β

0
2 , β

v
1 , and βv

2 depict a more accurate 203

dynamics of the pandemic by specifying people’s vaccination status. Unlike the single 204

transmission rate in classic SEIR models, the four effective transmission rates equip the 205

model with a more accurate picture about the COVID-19 transmission. For example, 206

the increase of both β0
1 and βv

2 reflects the relaxation of NPIs or the appearance of a 207

more infectious virus variant. Combined with the decrease of β0
1 , the increase of βv

2 208

points out that the phenomenon may be caused by over-relaxation interventions for 209

green pass holders or declined vaccine effectiveness. Furthermore, β0
2 and βv

1 capture 210

the interactions between unvaccinated and vaccinated groups. For instance, the rise of 211

β0
2 shows that the activities of those vaccinated increase the risk of unvaccinated people 212

being infected. Accordingly, it would be reasonable to enforce appropriate restrictions 213

on those vaccinated. The change of βv
1 may be caused by lifting NPIs for the vaccinated 214

and the waning efficacy of vaccination. With these four rates, SEIQRD2 can offer a 215

more comprehensive understanding about the dynamics of COVID-19 both within and 216

between the groups, which is helpful to adjust the existing control measure reasonably. 217

The effective transmission rates measure the joint impact of NPIs and mass 218

vaccination on the COVID-19 transmission, while its corresponding basic transmission 219

rates {β0
base,1, β

0
base,2, β

v
base,1, β

v
base,2} are separated from mass vaccination and consider 220

the impact of NPIs alone. The basic transmission rates are important to evaluate the 221

effectiveness of NPIs when mass vaccination is available. 222

Results 223

Data and code availability 224

Data used in the paper are collected from several public datasets. For example, 225

epidemiological data are from the Johns Hopkins University Center for Systems Science 226

and Engineering (JHU CSSE) [34,35], including daily case numbers and deaths. The 227

vaccination information comes from Our World in Data [36]. The Oxford COVID-19 228

Government Response Tracker (OxCGRT) [37] provides NPI information and 229

CoVariants [38] with viral variants. 230

Besides, the data for the second half of 2021 are selected for two reasons. Firstly, a 231

growing number of countries started to carry out green pass policy several months after 232

mass vaccination campaigns started, which happened in this period. Secondly, most 233

countries relaxed COVID-19 monitoring or did not record daily cases since the Omicron 234

variant emerged and became dominant in the late December 2021, which led to 235

inaccuracy of confirmed cases after this period. Based on the above reasons, the data 236

from July to December 2021 are suitable for our research purpose. The data and code 237

are available at GitHub (https://github.com/lzxiaohu/SEIQRD2). 238
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We apply SEIQRD2 in three countries: Greece, Austria, and Israel to evaluate its 239

performance. These three countries distributed in Europe and Middle East hold 240

different ethnic and cultural backgrounds, which promote their varied behaviors and 241

responses to NPIs, vaccination, and green pass policy. It could be used to test the 242

generalized ability of our model in different countries. On the other hand, there are 243

several similarities among Greece, Austria, and Israel. They are developed countries and 244

own a sufficient amount of vaccines for their nationwide mass vaccination. They all 245

carried out the green pass policy to restart economic activities when a high percentage 246

of vaccination was reached, which matches with the assumptions of the model. Below, 247

we make a summary of the main results and findings of the experiments. 248

Greece 249

The results for Greece are shown in Fig 2. From 18 September 2021, Greece experienced 250

a new resurgence caused by the Delta variant after a mass vaccination campaign. This 251

wave lasted until late December 2021. Fig 2. A displays the forecasting results about 252

quarantined cases and total deaths for the next 14 days. The accuracy of prediction is 253

measured by the metric MAPE, achieving 3.229% in quarantined cases and 4.853% in 254

death cases. Fig 2B shows the combined impact of NPIs and mass vaccination during 255

the COVID-19 resurgence. 256

Fig 2. The results of SEIQRD2 in Greece for the period between 18 September 2021 and 18 December 2021.
(A) is the modeling results for the quarantined and total deaths in Greece, where the blue line refers to the quarantined cases
estimated by SEIQRD2, and the brown line is the total death cases produced by our method. (B) displays the impact of
external factors during the COVID-19 resurgence. The first subplot from the top refers to the daily reported cases in Greece.
Vaccination coverage, booster coverage, and the efficacy of vaccination are shown in the second subplot. The third subplot
indicates the impact of NPIs on the transmission of the COVID-19 wave, in which the red line is the basic transmission rate
β0
base,1 in the unvaccinated group, the green line refers to the basic transmission rate β0

base,2 among the unvaccinated caused
by the vaccinated, the blue line represents the basic transmission rate βv

base,1 among the vaccinated group caused by the
unvaccinated people, and the purple line shows the basic transmission rate βv

base,2 of the vaccinated. The fourth subplot
shows the joint impact of both NPIs and vaccination during the COVID-19 resurgence, which are denoted by the four
effective transmission rates β0

1 , β
0
2 , β

v
1 , and βv

2 . PI represents the start of booster campaign. {R0
1, C

0
1 , C

0
2} denote the NPI

events for the unvaccinated, where R means relaxation of NPI and C is the control of NPI. Similarly, {Rv
1} is the NPI event

for the vaccinated. Their physical meanings are also listed in the appendix.

As shown Fig 2B, the turning point of the COVID-19 wave appeared on about 09 257

November 2021, which coincided with the evident decline of effective transmission rates 258

β0
1 and βv

1 from 2.418 and 0.482 to 0.625 and almost 0, respectively. Combined with the 259

NPI event C0
1 that required unvaccinated individuals to show a negative COVID-19 test 260

result before entering all indoor public places, the wave was contained by the stricter 261

control measures on the unvaccinated group, which slowed down the transmission speed 262

among the unvaccinated and indirectly mitigated the spread among the green pass 263

holders by significantly reducing the physical contact between the two groups. Besides, 264

the decrease of β0
base,1 and βv

base,1 further demonstrates the NPI event C0
1 largely 265

reduced the spread of COVID-19. After this, another NPI event C0
2 that banned 266

unvaccinated individuals from accessing restaurants came into effect on 22 November 267

2021. The new NPI further restricted the social activities of those unvaccinated, leading 268

to the decline of transmission rate β0
1 . Combined {βv

1 , β
v
2} with {βv

base,1, β
v
base,2}, these 269

NPI events did not obviously change the dynamics of the COVID-19 among the green 270

pass holders due to green pass policy. In order to explain the impact of NPI events 271

during the resurgence in detail, we make a table to list their contribution to the four 272

couples of transmission rates. The content is shown in the table 2. 273
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Table 2. Attributes of NPI impact in Greece.

NPI events
Basic transmission rates Effective transmission rates

β0
base,1 β0

base,2 βv
base,1 βv

base,2 β0
1 β0

2 βv
1 βv

2

Initial values 2.418 0.001 1.000 2.577 2.418 0.001 0.482 1.164
R0

1: 09 Oct 2021
Rv

1
: 2.418 0.102 1.000 2.577 2.418 0.102 0.541 1.394

C0
1 : 06 Nov 2021

-:
0.625 0.001 0.001 2.577 0.625 0.001 0.001 1.592

C0
2 : 22 Nov 2021

-:
0.531 0.001 0.001 2.577 0.531 0.001 0.001 1.599

During the resurgence, the government of Greece started a mass booster campaign to 274

mitigate the transmission of COVID-19. This scenario is reflected in the efficacy curve 275

of vaccination shown in Fig 2B. Because of the waning efficacy of vaccination [33], the 276

efficacy of vaccination was decreasing from 0.519 (18 September 2021) to 0.373 (15 277

November 2021), which caused the increase of the effective transmission rate βv
2 . As the 278

acceleration of booster shots happened on 15 November 2021, its effectiveness gradually 279

increased and reached about 0.500 (06 December 2021), corresponding to 1.289 280

(2.577*0.5) of βv
2 . The increase of its efficacy contributed to the mitigation of 281

COVID-19 among the green pass holders, which coincided with a drop in daily cases. 282

According to the results of SEIQRD2, the mitigation of COVID-19 wave was 283

attributed to both control measures and booster shots. In Greece, NPIs were used to 284

reduce the COVID-19 transmission in the unvaccinated group, whereas vaccine booster 285

was for the vaccinated individuals. 286

Austria 287

The modeling results for Austria are shown in Fig 3. A resurgence with more infected 288

cases took place in the middle of September 2021. SEIQRD2 makes predictions about 289

the dynamics of the COVID-19 wave for the next 14 days, showing 5.411% MAPE of 290

forecasting quarantined cases. They are illustrated in Fig 3A. The joint impact of 291

external factors is displayed in Fig 3B. 292

Fig 3. The results of SEIQRD2 in Austria for the period between 13 September 2021 and 13 December 2021.
(A) is the modeling results for the quarantined and total deaths in Austria. (B) displays the impact of external factors during
the COVID-19 resurgence.

The dynamics of the wave is fully explained by SEIQRD2 as shown in Fig 3B. After 293

the peak daily cases reported on 18 November 2021, the wave reached a plateau and 294

then declined sharply on 29 November 2021. It was closely related to two lockdowns 295

taken place on 15 November 2021 and 22 November 2021, respectively. In the first 296

lockdown, the government of Austria required all unvaccinated individuals to stay at 297

home (C0
4 ), which nevertheless did not quickly reduce the number of infection cases but 298

reduced the physical contact between the two groups. It lowered the transmission rate 299

β0
2 from 0.999 to 0.632. Then, their authorities carried out the second lockdown (Cv

1 ) to 300

restrict the social activities of those green pass holders. This second lockdown reduced 301

the values of β0
2 and βv

2 from 0.632 and 1.588 to 0.345 and 1.048, corresponding to 0.345 302

of β0
base,2 and 1.817 of βv

base,2. Compared to the first lockdown enforced on the 303

unvaccinated group, the second one on green pass holders made a greater contribution 304

to flattening the wave. That implied that the resurgence may be caused by the 305

over-relaxation of NPIs, especially for those green pass holders. The impact of other 306

August 4, 2023 10/19

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 15, 2023. ; https://doi.org/10.1101/2023.08.10.23293925doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.10.23293925
http://creativecommons.org/licenses/by/4.0/


NPI events is listed in Table 3. 307

Table 3. Attributes of NPI impact in Austria.

NPI events
Basic transmission rates Effective transmission rates

β0
base,1 β0

base,2 βv
base,1 βv

base,2 β0
1 β0

2 βv
1 βv

2

Initial values 2.365 1.000 0.487 2.607 2.365 1.000 0.211 1.130
C0

1 : 15 Sep. 2021
-:

1.915 0.999 0.487 2.607 1.915 0.999 0.214 1.145

C0
2 : 01 Nov. 2021

-:
1.915 0.999 0.070 2.607 1.915 0.999 0.042 1.577

C0
3 : 08 Nov. 2021

-:
1.915 0.999 0.001 2.607 1.915 0.999 0.001 1.610

C0
4 : 15 Nov. 2021

-:
1.915 0.632 0.001 2.607 1.915 0.632 0.001 1.588

-:
Cv

1 : 22 Nov. 2021
1.915 0.345 0.001 1.817 1.915 0.345 0.001 1.048

Besides, vaccination also played a crucial role in the mitigation of COVID-19. As the 308

resurgence worsened, booster shots received greater attention in public discourse and 309

booster coverage grew substantially from November 2021. Until 13 December 2021, it 310

indeed improved the effectiveness of vaccination from the lowest point of 0.382 to 0.551. 311

After the second lockdown, the effective transmission rate βv
2 gradually decreased from 312

1.048 to 0.816 (1.817*(1-0.551)) because of the increasing effectiveness of vaccination. 313

The results of SEIQRD2 demonstrated that proper NPIs are still necessary for the 314

vaccinated group, especially when the efficacy of vaccination decreases. At the same 315

time, vaccination is also critical to control the spread of COVID-19. 316

Israel 317

Lastly, Fig 4 illustrates the modeling results for Israel. Israel was hit by another wave 318

from August 2021 to October 2021. The results modeled by SEIQRD2 match the 319

dynamics of this viral resurgence. The MAPE of forecasting the quarantined cases is 320

1.292% and the MAPE for estimating the total deaths is 3.167%. Fig 4B shows the 321

combined impact of NPIs and mass vaccination during the COVID-19 resurgence in 322

Israel. 323

Fig 4. The results of SEIQRD2 in Israel for the period between 30 July 2021 and 30 October 2021. (A) is the
modeling results for the quarantined and total deaths in Israel. (B) is the impact of external factors on the COVID-19
resurgence.

Then, Fig 4B about the transmission rates of COVID-19 elucidates the course of the 324

resurgence. At the outbreak of this new wave, the Israeli government took stringent 325

NPI measures to control the spread of viral infections. These control measures include 326

showing a negative COVID-19 test result for those unvaccinated (C0
1 ) and limiting the 327

gatherings of green pass holders (Cv
1 ), which substantially reduced the four basic 328

transmission rates β0
1 , β

0
2 , β

v
1 , and βv

2 . For example, β0
1 and βv

2 decreased radically from 329

1.024 and 1.236 to 0.001 and 0.486, respectively. It means that only green pass holders 330

can take part in social activities with limitations, whereas the unvaccinated people were 331

required to stay at home, which described the realistic condition in Israel during the 332

viral resurgence. As a result, the physical contact between the two groups declined 333

substantially, which is demonstrated by the reduction of β0
base,2 and βv

base,1 from 0.779 334

and 0.350 to 0.001 and 0.001. The impact of NPI events is shown in Table 4. 335
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Table 4. Attributes of NPI impact in Israel.

NPI events
Basic transmission rates Effective transmission rates

β0
base,1 β0

base,2 βv
base,1 βv

base,2 β0
1 β0

2 βv
1 βv

2

Initial values 1.024 0.779 0.350 1.621 1.024 0.779 0.112 1.236
C0

1 : 04 Aug. 2021
Cv

1 :
0.001 0.001 0.001 0.648 0.001 0.001 0.001 0.486

C0
2 : 18 Aug. 2021

Cv
2 :

0.001 0.001 0.001 0.647 0.001 0.001 0.001 0.425

C0
3 : 01 Sep. 2021

-:
0.001 0.001 0.001 0.647 0.001 0.001 0.001 0.348

-:
Cv

3 : 03 Oct. 2021
0.001 0.001 0.001 0.637 0.001 0.001 0.001 0.274

In the meantime, Israel started its mass booster campaign to strengthen the 336

effectiveness of vaccination. The turning point of daily cases appeared when the efficacy 337

of vaccination was rising from 0.236 to 0.596. Until the end of COVID-19 resurgence, 338

the value of βv
2 was 0.257 (0.637*(1-0.596)). Therefore, accelerating boosters in a short 339

time period played an important role in suppressing the spread of this COVID-19 wave. 340

Consequently, Israel successfully contained the COVID-19 resurgence through the 341

combination of efficient NPIs and mass booster vaccination within three months. 342

Analyses 343

During the viral resurgences caused by the Delta variant, all three countries: Greece, 344

Austria, and Israel took similar actions to combat COVID-19. These measures comprise 345

a range of different operations, including accelerating booster shots, green pass policy, 346

and more stringent NPIs. Displayed in the results of the model SEIQRD2 in three 347

countries, booster shots and green pass policy are also carried out. Furthermore, 348

booster vaccination and stricter NPIs indeed played a crucial role in preventing the 349

transmission of COVID-19. For example, Israel was most successful among these 350

countries in stopping the spread of COVID-19. In the early stage of resurgence, the 351

Israeli government carried out a series of strict NPIs (C0
1 -C

0
3 , C

v
1 -C

v
3 ) for both the 352

unvaccinated and green pass holders, which largely lowered the transmission of 353

COVID-19. After that, a nationwide booster campaign was activated and the booster 354

coverage increased quickly from 0.5% to 24.5% within a month, improving vaccination 355

efficacy from 0.236 to 0.45. The other two countries adopted a similar combination of 356

NPIs and booster campaign, while their NPI policies were mild and their processes of 357

booster shots were delayed. 358

On the other hand, the impact of vaccination and NPIs play a crucial role in the 359

development of COVID-19 resurgence in different mechanisms. The effectiveness of 360

vaccination is determined by vaccination rate and vaccine effectiveness against infection. 361

It could only provide protection for the vaccinated. While the influence of NPIs can be 362

varying and unpredictable. According to the simulation results above, even the 363

lockdown were carried out in Greece, Austria, and Israel, their impact on the 364

transmission rates is different. For example, the lockdown (C0
1) almost stopped the 365

transmission of COVID-19 in the unvaccinated group of Israel, while it (C0
4) made no 366

difference in Austria. Besides, the NPIs for a specific group, such as the unvaccinated 367

and the vaccinated, would influence the COVID-19 transmission in the other one. For 368

example, the NPI event C0
1 of Greece and C0

2 of Austria also change the transmission of 369

COVID-19 within the vaccinated through reducing the effective transmission rate βv
1 370

from 0.541 to 0.001, 0.214 to 0.042, respectively. That implies that the impact of NPIs 371
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on COVID-19 are also complicated when green pass policy is in effect, which could be 372

captured in the model SEIQRD2. To further illustrate the impact of green pass policy, 373

we list the total number of infected and deaths when the unvaccinated people shared 374

the same freedom as the vaccinated and compare it to actual confirmed cases and 375

deceases when green pass policy was available. The detailed information is shown in 376

Table 5. The results suggest that green pass policy reduces the total confirmed cases 377

and total deaths more than 10 times. 378

Table 5. The comparison of with and without green pass policy in Greece, Austria, and Israel.

Country
Total infected Deceased

green pass policy without ∆1 green pass policy without ∆2

Greece 509,968 7,755,818 +1,420% 6,738 123,547 +1,733%
Austria 388,373 6,283,800 +1,518% 2,781 47,129 +1,595%
Israel 468,273 7,855,803 +1,577% 1,612 26,101 +1,519%

The above analyses show that the green pass policy indeed plays a crucial role in 379

combating COVID-19 resurgence. Even the green pass policy cannot eliminate the 380

COVID-19 spred, it can make a reasonable balance between personal freedom and 381

national economy. Besides, a temporary strict NPIs for the vaccinated maybe also is 382

necessary when the daily cases increase abruptly in a short time as the three countries 383

performed a strict NPIs for the green pass holders, just like the situation of the three 384

countries. 385

Ablation study 386

To further evaluate the capacity of our method SEIQRD2, we conduct three ablation 387

studies in Greece, Austria, and Israel. The first ablation study generates a variant 388

SPEIQRD from the SEIQRD2 without the factor of green pass policy, which treats the 389

behavior patterns of both groups as homogeneous. The second one derives a new model 390

SVEIQRD by discarding the interactions between the unvaccinated and the vaccinated 391

groups in SEIQRD2. The third ablation produces the derived model SEIQRD2
c from 392

SEIQRD2 by assuming the stationary efficacy of vaccination. In summary, there are 393

three variants SPEIQRD, SVEIQRD, and SEIQRD2
c , in addition to the full model 394

SEIQRD2 which involves all the above aspects. The detailed information about the 395

variants of the model is displayed in the supporting information. Besides, the results of 396

ablation study are from independent parameters. The corresponding parameter values 397

are from the optimization algorithm (the least-square method). 398

The experimental results for Greece are presented in Fig 5. Compared with the three 399

variants SPEIQRD, SVEIQRD, and SEIQRD2
c , the full model SEIQRD2 makes more 400

accurate forecasting of quarantined cases while its results for death cases are close to 401

the actual values. 402

Fig 5. The results of four variants of our method SEIQRD2 in Greece. In the four variants of method, SPEIQRD
ignores the impact of enforcing vaccination certification. SVEIQRD overlooks the interactions between unvaccinated and
vaccinated groups. SEIQRD2

c neglects the waning effectiveness of vaccine.

The results for Austria are shown in Fig 6. The three variants SPEIQRD, 403

SVEIQRD, and SEIQRD2
c achieve the MAPE of 20.896%, 17.445%, and 24.326% 404

respectively, while SEIQRD2 achieves a MAPE of 5.411% in forecasting the quarantined 405

cases of the next 14 days. SEIQRD2’s evident advantage over the three variants 406

demonstrates the significant role of NPI, vaccination, and the interaction between 407

unvaccinated and vaccinated groups in mitigating the spread of COVID-19. 408
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Fig 6. The results of four variants of our method SEIQRD2 in Austria.

Fig 7 displays the results for Israel. The results of SPEIQRD significantly deviate 409

from the realistic situation, which further demonstrates that the green pass policy plays 410

a leading role in containing the COVID-19 resurgence in Israel. In reality, Israel was the 411

first country which carried out the green pass policy to restore its economy. Compared 412

with Greece and Austria, Israel heavily relied on the green pass policy to contain the 413

resurgence. This explains why the results of SPEIQRD are much worse. Among all four 414

methods, SEIQRD2 obtains the least error in predicting the quarantined cases, whose 415

MAPE is 1.292%. The forecasting performance in terms of MAPE of all models is 416

shown in Table 6. 417

Fig 7. The results of four variants of our method SEIQRD2 in Israel.

Table 6. The MAPE performance of the next 14-day prediction of cases in Greece, Austria, and Israel
for the ablation study.

Country
SEIQRD2 SPEIQRD SVEIQRD SEIQRD2

c

quarantined deceased quarantined deceased quarantined deceased quarantined deceased
Greece 3.229% 4.853% 22.626% 7.014% 6.289% 6.184% 8.989% 4.676%
Austria 5.411% 11.133% 20.896% 9.999% 17.445% 10.492% 24.326% 12.107%
Israel 1.292% 3.167% 18.347% 45.994% 13.157% 2.557% 1.825% 3.208%

Besides, SEIQRD2 achieves better results than its variant SVEIQRD, which 418

illustrates the interaction between the two groups is a necessary factor in modeling the 419

dynamics of COVID-19. By contrast, the poor performance of SPEIQRD emphasizes 420

the importance of the green pass policy in the simulation of COVID-19. Although the 421

MAPE results of both SEIQRD2
c and SEIQRD2 in predicting total deaths are similar, 422

SEIQRD2 makes more accurate predictions on quarantined cases than SVEIQRD. That 423

supported the conclusion that the declined vaccine effectiveness is a crucial element in 424

modeling of the COVID-19 pandemic. 425

In conclusion, these ablation studies convincingly illustrate the importance of 426

involving the green pass policy in modeling the COVID-19. The green pass policy 427

brought about the differences between behaviors of unvaccinated and vaccinated groups 428

and their interactions, which complicates the COVID-19 modeling. At last, our method 429

emphasizes the contribution of the waning efficacy of vaccine to modeling the 430

COVID-19 infection. 431

Conclusion 432

In this work, we develop a deterministic compartmental model SEIQRD2 by involving 433

external factors. SEIQRD2 characterizes the resurgences caused by the coronavirus 434

variant Delta and estimates their trends in the next period. Different from the previous 435

SEIR-based models for COVID-19, SEIQRD2 incorporates three external factors, 436

including heterogeneity of behaviors between vaccinated and unvaccinated groups, their 437

interactions, and the waning effect of vaccine under green pass policies. We show that 438

SEIQRD2 precisely matches the dynamics of COVID-19 resurgences happened in 439

Greece, Austria, and Israel relating to the Delta variant. The modeling and forecasting 440

results demonstrate that external factors including behavioral heterogeneity, group 441

interaction, and vaccination status may play a crucial role in forming the dynamics of 442

COVID-19 transmission. 443
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In addition, the effects of these three factors are further evaluated by ablation 444

studies. The results further elucidate that these factors improve the modeling 445

performance in characterizing the dynamics of COVID-19 resurgence. 446

The study in this work further confirms that, even with substantial vaccination 447

including boosters, NPIs may still play an essential role in suppressing or mitigating 448

COVID-19 resurgence. At the outbreak of a new wave, quick reactions should include 449

reasonable interventions for those vaccinated individuals in addition to other restrictions 450

on unvaccinated people. Although the efficacy of vaccine reduces the infection risk of 451

vaccinated people, more (frequent) activities create higher exposure for those 452

unvaccinated to become infected, which may then become a super spreader and cause a 453

wide spread of COVID-19. The evaluation in three countries taking different severity 454

levels of NPIs and vaccination certification further demonstrates that it would be 455

essential to enforce restrictions on vaccinated people during implementing vaccination 456

certification policies. 457

This study is subject to several limitations. Firstly, the model parameters such as 458

effective transmission rates, correspond to specific values, rather than a probability 459

distributions. In the next work, we are considering the possible statistic methods for 460

leveraging SEIR models. Secondly, our model ignores the number of hospitalized people, 461

which may be another important external factor in deciding what time to upgrade 462

control measures, especially for Greece and Austria co-existing with COVID-19. Once 463

these data can be accessed by public, the related research could be made. Thirdly, the 464

model assumes all infected individuals are detected and confirmed, which may be an 465

ideal situation. In practice, a specific proportion of infected are asymptomatic and 466

recovered without confirmation. In theory, the proportion is small, so it will not 467

challenge the general results of the method. Besides, the lack of information about 468

vaccination status also makes it hard to demonstrate the realistic change of the effective 469

transmission rates. The problem may be solved completely when the vaccination status 470

information is available. Even though, the values of the effective transmission rates give 471

some insight to the role of green pass policy in COVID-19 pandemic. 472

Overall, this work is one of the first attempts to address the impact of green pass 473

policy on the COVID-19 transmission. In addition, the behavior heterogeneity of 474

unvaccinated and vaccinated groups is incorporated into the SEIR-based model to 475

explore the possible interaction of two groups. This work could be extended to generate 476

”what-if” scenario and help decision-makers determine appropriate NPI and mass 477

vaccination implementations for containing future waves of infection. 478

Supporting information 479

S1 Dataset and code. These data and code are available at 480

https://github.com/lzxiaohu/SEIQRD2. 481

S2 Ablation Study Models. Ablation Study Models. 482

S1 Table. The major interventions and activities reported during the 483

resurgence caused by the Delta variant in Greece. 484

S2 Table. The major interventions and activities reported during the 485

resurgence caused by the Delta variant in Austria. 486

S3 Table. The major interventions and activities reported during the 487

resurgence caused by the Delta variant in Israel. 488
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boosting of COVID-19 in Canada with vaccination. Epidemics. 2022 Jun
1;39:100583.

21. Matrajt L, Eaton J, Leung T, Brown ER. Vaccine optimization for COVID-19:
Who to vaccinate first?. Science Advances. 2021 Feb 3;7(6):eabf1374.

22. Pan J, Zhu W, Tian J, Liu Z, Xu A, Yao Y, Wang W. Vaccination as an
alternative to non-drug interventions to prevent local resurgence of COVID-19.
Infectious Diseases of Poverty. 2022 Dec;11(1):1-3.

23. Sonabend R, Whittles LK, Imai N, Perez-Guzman PN, Knock ES, Rawson T,
Gaythorpe KA, Djaafara BA, Hinsley W, FitzJohn RG, Lees JA.
Non-pharmaceutical interventions, vaccination, and the SARS-CoV-2 delta

August 4, 2023 17/19

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 15, 2023. ; https://doi.org/10.1101/2023.08.10.23293925doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.10.23293925
http://creativecommons.org/licenses/by/4.0/


variant in England: a mathematical modelling study. The Lancet. 2021 Nov
13;398(10313):1825-35.

24. Ge Y, Zhang WB, Liu H, Ruktanonchai CW, Hu M, Wu X, Song Y,
Ruktanonchai NW, Yan W, Cleary E, Feng L. Impacts of worldwide individual
non-pharmaceutical interventions on COVID-19 transmission across waves and
space. International Journal of Applied Earth Observation and Geoinformation.
2022 Feb 1;106:102649.

25. Montanari Vergallo G, Zaami S, Negro F, Brunetti P, Del Rio A, Marinelli E.
Does the EU COVID digital certificate strike a reasonable balance between
mobility needs and public health?. Medicina. 2021 Oct 9;57(10):1077.

26. Krueger T, Gogolewski K, Bodych M, Gambin A, Giordano G, Cuschieri S,
Czypionka T, Perc M, Petelos E, Rosińska M, Szczurek E. Risk assessment of
COVID-19 epidemic resurgence in relation to SARS-CoV-2 variants and
vaccination passes. Communications Medicine. 2022 Mar 3;2(1):23.

27. Fisman DN, Amoako A, Tuite AR. Impact of population mixing between
vaccinated and unvaccinated subpopulations on infectious disease dynamics:
implications for SARS-CoV-2 transmission. CMAJ. 2022 Apr 25;194(16):E573-80.

28. Khajanchi S, Sarkar K, Banerjee S. Modeling the dynamics of COVID-19
pandemic with implementation of intervention strategies. The European Physical
Journal Plus. 2022 Jan 17;137(1):129.

29. Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Haas EJ,
Milo R, Alroy-Preis S, Ash N, Huppert A. Waning immunity after the BNT162b2
vaccine in Israel. New England Journal of Medicine. 2021 Dec 9;385(24):e85.

30. Kodera S, Rashed EA, Hirata A. Estimation of real-world vaccination
effectiveness of mRNA COVID-19 vaccines against delta and omicron variants in
Japan. Vaccines. 2022 Mar 11;10(3):430.

31. Rosenberg ES, Dorabawila V, Easton D, Bauer UE, Kumar J, Hoen R, Hoefer D,
Wu M, Lutterloh E, Conroy MB, Greene D. Covid-19 vaccine effectiveness in
New York state. New England Journal of Medicine. 2022 Jan 13;386(2):116-27.

32. Eyre DW, Taylor D, Purver M, Chapman D, Fowler T, Pouwels KB, Walker AS,
Peto TE. Effect of Covid-19 vaccination on transmission of alpha and delta
variants. New England Journal of Medicine. 2022 Jan 5.

33. Chemaitelly H, Tang P, Hasan MR, AlMukdad S, Yassine HM, Benslimane FM,
Al Khatib HA, Coyle P, Ayoub HH, Al Kanaani Z, Al Kuwari E. Waning of
BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. New
England Journal of Medicine. 2021 Dec 9;385(24):e83.

34. Dong E, Du H, Gardner L. An interactive web-based dashboard to track
COVID-19 in real time. The Lancet infectious diseases. 2020 May 1;20(5):533-4.

35. Dong E, Ratcliff J, Goyea TD, Katz A, Lau R, Ng TK, Garcia B, Bolt E, Prata S,
Zhang D, Murray RC. The Johns Hopkins University Center for Systems Science
and Engineering COVID-19 Dashboard: data collection process, challenges faced,
and lessons learned. The Lancet Infectious Diseases. 2022 Aug 31.

36. Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, Giattino C,
Rodés-Guirao L. A global database of COVID-19 vaccinations. Nature human
behaviour. 2021 Jul;5(7):947-53.

August 4, 2023 18/19

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 15, 2023. ; https://doi.org/10.1101/2023.08.10.23293925doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.10.23293925
http://creativecommons.org/licenses/by/4.0/


37. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, Webster S,
Cameron-Blake E, Hallas L, Majumdar S, Tatlow H. A global panel database of
pandemic policies (Oxford COVID-19 Government Response Tracker). Nature
human behaviour. 2021 Apr;5(4):529-38.

38. Hodcroft, E. CoVariants: SARS-CoV-2 Mutations and Variants of Interest.
https://covariants.org

39. Kerr, C., Stuart, R., Mistry, D., Abeysuriya, R., Rosenfeld, K., Hart, G., Núñez,
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