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ABSTRACT 

Objectives:  

While randomized controlled trials (RCTs) are considered a standard for evidence on the efficacy of medical 

treatments, non-randomized real-world evidence (RWE) studies using data from health insurance claims or 

electronic health records can provide important complementary evidence. The use of RWE to inform decision-

making has been questioned because of concerns regarding confounding in non-randomized studies and the use of 

secondary data. RCT-DUPLICATE was a demonstration project that emulated the design of 32 RCTs with non-

randomized RWE studies. We sought to explore how emulation differences relate to variation in results between 

the RCT-RWE study pairs.  

Methods:  

We include all RCT-RWE study pairs from RCT-DUPLICATE where the measure of effect was a hazard ratio and use 

exploratory meta-regression methods to explain differences and variation in the effect sizes between the results 

from the RCT and the RWE study. The considered explanatory variables are related to design and population 

differences.  

Results:  

Most of the observed variation in effect estimates between RCT-RWE study pairs in this sample could be explained 

by three emulation differences in the meta-regression model: (i) in-hospital start of treatment (not observed in 

claims data), (ii) discontinuation of certain baseline therapies at randomization (not part of clinical practice), (iii) 

delayed onset of drug effects (missed by short medication persistence in clinical practice).  

Conclusions:  

This analysis suggests that a substantial proportion of the observed variation between results from RCTs and RWE 

studies can be attributed to design emulation differences. (238 words) 
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What is already known on this topic – Real-world evidence (RWE) studies can complement randomized 

controlled trials (RCT) by providing insights on the effectiveness of a medical treatment in clinical 

practice. Concerns about confounding have limited the use of RWE studies in clinical practice and policy 

decisions.  

What this study adds – A large share of the observed variation in results between RCT-RWE study pairs 

could be explained by design emulation differences.  
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1 INTRODUCTION 

Real-world evidence (RWE) has been defined as evidence on the effects of medical products that are 

derived from the analysis of real-world data (RWD) which includes a variety of patient health data 

sources, particularly data collected as part of routine clinical practice, including electronic health records 

and insurance claims data [1]. There has been increasing interest in the use of RWE from RWD to 

support clinical practice and policy decisions [2–5]. However, there remain concerns about the validity 

of such evidence compared to the traditional randomized controlled trial (RCT) [5–7]. 

Such concerns stem from a misleading dichotomy that pits RCTs against database studies instead of 

viewing them as providing complementary information that informs a fuller understanding of drug 

effects [8]. There have been many efforts to compare database and RCT results. Some have observed 

high concordance and touted the ability of well-designed database studies to generate valid causal 

conclusions [9–13]. Others have used observed divergence in results to criticize database studies as 

intractably confounded [7,14–17].  

One effort to compare RCT and database studies was RCT-DUPLICATE [10,19–21]. RCT-DUPLICATE set 

out to emulate more than 30 trials by prospectively designing a series of database studies to match each 

RCT design as closely as possible within the confines and limitations of using data that were not 

collected for research purposes. Because of the nature of using routinely collected data from clinical 

practice, some elements of trial design could not be exactly emulated, for example, measures to ensure 

prolonged adherence over long follow up windows. Such emulation differences can be summarised as: 

1) differences in outcome measurements, 2) differences in demographics of included patients, 3) 

differences in treatment implementation in clinical practice, 4) lack of placebo in clinical practice. Design 

emulation differences change the question or estimand being addressed in the RCT compared to the 

database study [22,23]. 

We sought using the RCT-DUPLICATE collection of emulated trials to assess how design emulation 

differences relate to variation in results between RCTs and RWE database studies that were designed to 

emulate them. We explore whether the characteristics of emulation differences can reduce the residual 

heterogeneity in effect size differences in a meta-regression analysis. 

2 DATA AND METHODS 

The following analysis is of an exploratory nature and attempts to better understand emulation 

differences and how this impacts variation in results between RCT-RWE study pairs. 

RCT DUPLICATE The selection process for the RCT-DUPLICATE study is described in detail elsewhere 

[19,24]. In summary, the RCT-DUPLICATE consortium emulated 32 RCTs that were relevant to regulatory 

decision making and were potentially feasible to emulate using claims data because key study 

parameters such as the primary outcome, the treatment strategies and inclusion/exclusion criteria were 

measurable. The selected trials include a mix of superiority and non-inferiority trials, trials with large 

and small effect sizes, and a mix of trials with active comparators and placebo added to active standard 

of care therapies. The consortium used three RWD sources to implement the database studies that 

emulated RCTs: Optum Clinformatics Data Mart beginning in 2004, IBM MarketScan beginning in 2003 

and Medicare Parts A, B, and D. Whenever possible, the RCT emulations were implemented in more 

than one of the data sources and the final analyses are based on estimates resulting from a fixed effects 
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meta-analysis of the implementations in all databases. In the present study only those trials where the 

primary analysis resulted in a hazard ratio will be used - the trial LEAD2 with continuous outcome is 

discarded. For two trials (ISAR-REACT5 and VERO) a Chi-squared test indicated that the results were 

heterogeneous across databases so that the meta-analysis could not be performed to obtain a pooled 

RWE estimate for the hazard ratio [19] and those trials are omitted too. 

Emulation differences identified in RCT-DUPLICATE Design emulation differences were recorded as 

covariates in RCT-DUPLICATE. Differences in age and sex distribution are captured as numerical variables 

representing the difference in mean age or percentage females - the value in the RCT minus the value in 

the RWE pooled emulation. The categorical emulation difference characteristics recorded in RCT-

DUPLICATE are described in Table 2.1 [19]. 

Table 2.1: Description of categorical emulation difference characteristics with their possible levels, the reference 

category, as well as a short description are provided. All of the listed characteristics are binary. 

CHARACTERISTICS LEVELS REFERENCE DESCRIPTION 

Comparator 

emulation 

Good, 

moderate/poor 

Moderate/poor Good: RCT had active comparator, 

moderate: placebo was emulated with 

treatment unrelated to outcome, poor: 

placebo was emulated with treatment 

potentially related to outcome 

Outcome emulation Good, moderate Moderate Good: outcome assessed with high 

specificity, moderate: outcome assessed 

with low specificity and high number of 

missings 

Run-in window to 

one treatment arm 

Yes, no No Yes: RCT included a run-in phase that 

selectively includes responders to one 

treatment arm before randomization 

Placebo control Yes, no No Yes: RCT involved placebo comparator 

which was emulated with active 

comparator 

In-hospital start Yes, no No Yes: therapy initiated in-hospital, not 

captured in RWD 

Dose titration during 

follow-up 

Yes, no No Yes: RCT designed with a dose-titration 

during follow-up 

Discontinuation of 

maintenance 

therapy without 

washout 

Yes, no No Yes: RCT required participants to 

discontinue certain baseline therapy 

without allowing for a post 

randomization washout window 

Delayed effect Yes, no No Yes: therapy has a delayed effect possibly 

causing lower adherence in clinical 

practice recorded in the RWD 

Finally, all characteristics from Table 2.1 are summarized into a binary composite covariate indicating 

whether the RCT-RWE study pair represents a ‘close emulation’ or not. A study pair is considered a 
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‘close emulation’ if the comparator and outcome emulations were at least moderate with at least one 

good, and none of the following: start of follow-up in hospital, a run-in window that selectively includes 

responders to one treatment arm, mixing effects of randomization and discontinuation of baseline 

therapy, and delayed effect over long follow-up. The composite indicator was defined retrospectively by 

the RCT-DUPLICATE team [19]. 

Statistical analysis 

All statistical analyses used require that the effect estimates from the RCT and the RWE are 

approximately normally distributed. Hence log-transformations are applied on the hazard ratios of all 

included studies. The standardized differences of the RCT-RWE study pairs are computed by dividing the 

difference in log hazard ratios by the standard error of the difference. The squared standardized 

difference is the �-statistic which is used to perform the �-test for heterogeneity between RCT and 

RWE studies [25,26]. The sum of all computed �-statistics is used for an overall test for heterogeneity 

between RCT-RWE study pairs included in RCT-DUPLICATE. 

Heterogeneity can be quantified as a multiplicative parameter [27], an overdispersion parameter 

generally larger than 1 inflating the model’s standard errors. As described in [28], the multiplicative 

heterogeneity parameter is estimated by fitting a weighted linear regression on the observed 

differences from all RCT-RWE study pairs against a constant, with weights defined as the inverse of the 

squared standard error of the differences. The multiplicative heterogeneity is then simply this model’s 

standard error and absence of heterogeneity is achieved if the parameter is equal to 1. Whenever the 

heterogeneity parameter is estimated to be smaller than 1, it is set to its lower bound of 1. 

Characteristics describing emulation differences are used to explain part of the observed heterogeneity. 

Using meta-regression methods ([29], Chapter 7), the emulation difference characteristics - the 

differences in age and sex distribution as well as the categorical characteristics summarized in Table 2.1 

- are added into the weighted linear regression model estimating the multiplicative heterogeneity. If the 

extracted residual heterogeneity from the more complex, adjusted, model is smaller than the 

heterogeneity measured with the simple model (with only a constant), part of the variation can be 

explained by the included emulation difference characteristics. To reduce the complexity of the meta-

regression, avoid overfitting and choose only the most predictive of the � candidate characteristics, 

leave-one-out cross-validated mean squared errors (LOO MSE, [30]) are computed for all 2� possible 

candidate models. The simplest model with an MSE at most one standard error away from the smallest 

MSE across all models is selected [31]. The model coefficients for the included characteristics have to be 

interpreted with respect to the model’s intercept, the difference in RCT-RWE effect estimates that 

remains when all binary emulation difference characteristics and the centered continuous 

characteristics are set to their reference or zero, respectively. 

A detailed description of the statistical analyses can be found in the appendix. All analyses are 

performed in the R programming language 4.3.0 [32]. Code and data to reproduce the analyses and 

recompile this manuscript are available through https://gitlab.com/heyardr/hte-in-rwe. 

3 RESULTS 

Figure 3.1 shows the estimated hazard ratios from the RCTs against the hazard ratios estimated using 

the pooled RWE studies with their 95% confidence intervals. Perfectly emulated trial estimates would 

scatter around the diagonal line. While more than half of the pooled estimates from the RWE studies 

tend to be smaller than the RCT estimates, many are also larger. This is different from the results seen in 
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the large-scale replication projects where the effect size estimated in the replication study is generally 

smaller than the one from the original study, which may be attributable to publication bias or other 

questionable research practices which are unlikely operating in this emulation study [33]. This 

phenomenon is referred to as “shrinkage” of effect sizes [34], whereas we observe exaggeration in many 

of the emulations. 

The left panel of Figure 3.2 represents the distribution of the observed standardized differences versus a 

standard normal distribution, which should, in the absence of heterogeneity between each RCT and its 

emulation, be aligned. Then, the right panel of Figure 3.2 shows the �-values resulting from the �-test 

for heterogeneity between each individual RCT-RWE study pair which would, in the absence of 

heterogeneity, be uniformly distributed. However, many small �-values are observed. The �-value from 

an overall test of heterogeneity suggests strong evidence for variation between all study pairs in RCT-

DUPLICATE (� � 0.001). 

To better understand the variability in results observed in RCT-DUPLICATE, the variation was quantified 

and its sources were investigated. Figure 3.3 represents the differences in log hazard ratio for each study 

pair depending on whether the emulation was categorized as close or not. Trials that are categorized as 

not closely emulated using the exploratory indicator tended towards positive differences. The estimated 

multiplicative heterogeneity comparing the pooled RWE studies to the RCT is shown in Table 3.1, 

together with the model intercept and coefficient with 95% confidence intervals. The simple model 

refers to the weighted regression with only a constant while the second model is a meta-regression 

adjusted for the binary characteristic “close emulation”. Including “close emulation” in the weighted 

linear regression model reduced the heterogeneity from 1.9 to 1.72. In other words, a small part of the 

observed variation between estimates in RWE-RCT study pairs can be attributed to the composite 

covariate. While the intercept of the simple model is close to zero, the intercept of the adjusted model - 

the difference in log hazard ratio for the trials that are not closely emulated - tends to be positive. 

Closely emulated trials however produce, on average, slightly negative differences. The same 

information can be found in the bubble plot in Figure 3.5.A. 

Table 3.1: Model intercept and coefficient with their 95% confidence interval together with the heterogeneity 

between the RWE and the RCT depending on the model used. A heterogeneity close to 1 means more homogeneous 

effect size differences between study pairs. 

MODEL INTERCEPT (95% CI) COEFFICIENT (95% CI) HETEROGENEITY 

Simple 0.002 (-0.06 to 0.07) - 1.90 

Adjusted for close emulation 0.06 (-0.01 to 0.1) -0.2 (-0.3 to -0.04) 1.72 

A set of explanatory characteristics explaining emulation differences between RCT and emulation were 

explored to use instead of the composite covariate “close emulation”. Univariate model coefficients, the 

respective model intercept and the residual heterogeneity can be found in Table 3.2. Some of the 

characteristics reduced the heterogeneity more than others. Adding the characteristic “Discontinuation 

of maintenance therapy without washout”, for example, results in the largest decrease in heterogeneity: 

from 1.9 to 1.26. The intercept shown in Table 3.2 can be interpreted as the difference in log hazard 

ratio for the respective reference category of the binary characteristics or no difference in the 

distribution for the two continuous characteristics, age and percentage female. The variable selection 

algorithm described in the methods section was applied to decide which combination of the ten 

characteristics related to design emulation and population differences explains the most variation in the 

meta-regression. All 2�� � 1	024 possible candidate models, depending on which of the ten 
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characteristics are included, were fitted and their LOO MSE were computed. The evolution of the LOO 

MSE depending on the number of characteristics in the model is illustrated in Figure 3.4. The residual 

heterogeneity from the respective models is shown. Note that for each number of characteristics, from 

0 to 10, only the results from the model minimizing the LOO MSE are shown. A minimum is found after 

including five characteristics, with residual multiplicative heterogeneity of 1. Conditional on those five 

characteristics, differences in effect estimates are homogeneous. With a small sample size of only 29 

included RCT-RWE study pairs, a reduction in the complexity of the meta-regression is desired in order 

to avoid overfitting. The final model is the simplest model with LOO MSE smaller than the minimum MSE 

observed in Figure 3.4 plus 1 standard error. Using this tuning parameter, three characteristics would be 

included. Table 3.3 shows the coefficient estimates of those models with best performance for each 

number of included characteristics. Note that the models summarised in Table 3.3 lead to the model 

performance and heterogeneity illustrated in Figure 3.4. 

Table 3.2: Univariate coefficients estimate with 95% confidence interval for each candidate characteristics. For each 

row - each characteristics - a separate model is fit, resulting in a separate intercept and residual heterogeneity. The 

closer the residual heterogeneity is to 1, the more the characteristic explains part of the variations. 

CHARACTERISTICS INTERCEPT (95% CI) UNIVARIATE COEFFICIENT 

ESTIMATE (95% CI) 

RESIDUAL 

HETEROGENEITY 

Comparator emulation 

(good) 

-0.06 (-0.1 to 0.03) 0.1 (-0.005 to 0.2) 1.82 

Outcome emulation 

(good) 

-0.003 (-0.1 to 0.1) 0.007 (-0.1 to 0.2) 1.94 

Difference mean age 

(centered) 

0.009 (-0.06 to 0.07) -0.01 (-0.03 to 0.01) 1.91 

Difference in % female 

(centered) 

0.005 (-0.07 to 0.08) 0.0007 (-0.005 to 0.007) 1.94 

Run-in window to one 

treatment arm (yes) 

-0.06 (-0.1 to 0.002) 0.2 (0.1 to 0.4) 1.51 

Placebo control (yes) 0.07 (0.0001 to 0.1) -0.2 (-0.3 to -0.06) 1.68 

In-hospital start (yes) -0.008 (-0.08 to 0.06) 0.1 (-0.1 to 0.3) 1.91 

Dose titration during 

follow-up (yes) 

0.02 (-0.05 to 0.1) -0.07 (-0.2 to 0.07) 1.90 

Discontinuation of 

maintenance therapy 

without washout (yes) 

-0.08 (-0.1 to -0.03) 0.3 (0.2 to 0.4) 1.26 

Delayed effect (yes) -0.0005 (-0.06 to 0.06) 0.3 (-0.4 to 0.9) 1.92 
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Table 3.3: Model selection: Model coefficients for the best model with respect to LOO MSE for each number of 

covariates. Note that the same models' heterogeneity and leave-one-out mean squared error are already 

represented in the previous Figure. 

 EMULATION DIFFERENCE CHARACTERISTICS  

Nb 

charact. 

Intercept Comparator 

emulation 

(good) 

Outcome 

emulation 

(good) 

Mean age 

difference 

(centered) 

Difference 

in % female 

(centered) 

Run-in 

(yes) 

Placebo 

control 

(yes) 

In hospital 

start (yes) 

Dose 

titration 

(yes) 

Discontin-

uation 

(yes) 

Delayed 

effect 

(yes) 

0 0.002 - - - - - - - - - - 

1 -0.079 - - - - - - - - 0.282 - 

2 -0.084 - - - - - - - - 0.287 0.338 

3 -0.115 - - - - - - 0.203 - 0.318 0.369 

4 -0.11 - - -0.011 - - - 0.245 - 0.309 0.38 

5 -0.087 - - -0.01 0.005 - - 0.152 - 0.357 0.318 

6 -0.098 - - -0.011 0.006 - - 0.116 0.042 0.375 0.326 

7 -0.119 - - -0.011 0.006 - 0.024 0.127 0.054 0.395 0.324 

8 -0.16 - 0.051 -0.011 0.006 - 0.03 0.127 0.046 0.402 0.331 

9 -0.112 -0.025 0.029 -0.011 0.008 0.127 - 0.089 0.06 0.308 0.313 

10 -0.1 -0.037 0.029 -0.011 0.008 0.138 -0.012 0.089 0.059 0.296 0.313 

The best model with three emulation difference characteristics includes delayed effect, discontinuation 

and in hospital start. This model’s residual heterogeneity is 1.003. Figure 3.5.B shows the association 

between the combination of these finally selected characteristics and the outcome - the difference in 

log hazard ratio. Only the prediction intervals for the combinations with observations are displayed, e.g., 

none of the trials in RCT-DUPLICATE has more than one of the three emulation differences set to “Yes”. 

The three included characteristics are mutually exclusive and together they were better in reducing 

observed heterogeneity than “close emulation”. Hence, the remaining characteristics only added noise 

to the indicator for “close emulation”, or they canceled each other out. 

4 DISCUSSION 

Using data from the RCT-DUPLICATE initiative comparing results from RCT-RWE study pairs we observed 

that the study emulation characteristics “delayed effect of treatment”, “discontinuation during run-in 

period” and “in-hospital start of treatment”, explained most of the observed variation beyond chance in 

this sample. In this collection of RCT-RWE study pairs, most of the observed variation in effect estimate 

differences could be explained by those three emulation characteristics. Surprisingly little variation is 

explained by “placebo comparator” which was thought to be an emulation challenge in the absence of 

placebo in clinical practice and source for confounding bias. 

It has to be noted that even though RCTs are seen as the standard in establishing the efficacy of medical 

products they may neither be free of flaws in their implementation, nor might they always represent 

clinical practice. The results of multiple clinical trials that address similar questions, even basically 

identical “twin trials” can vary in their findings (see for example [35] and [36], or [37] and [38], or [39]). 

Discordant results between RCTs and RWE studies that study similar drug exposures and outcomes 

should not necessarily discredit the RWE study before considering emulation differences that may result 
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in studying a slightly different causal question. Therefore, emphasis has to be put on understanding 

where those differences come from, and the clinical or research question that is being asked by each 

study type. 

Our study has some limitations. First, we present the results of an exploratory analysis using a limited 

sample size from 29 RCT-RWE study pairs non-randomly selected by in the RCT-DUPLICATE initiative. 

Therefore, we could only include a limited number of explanatory emulation characteristics in our 

models. Second, the trials that were included in RCT DUPLICATE were selected to have high potential to 

be feasible to emulate with claims data. Relatedly, the design emulation challenges that were recorded 

may not be a comprehensive listing of all important design differences that could be considered. 

Different design emulation differences might be more or less relevant for different clinical areas and the 

direction of the effect of these differences are context dependent limiting the generalizability of our 

empirical findings. 

Overall, our study demonstrates that a substantial proportion of the observed variation between results 

from RCTs and RWE studies can be attributed to design emulation differences. Furthermore, our study 

shows how meta-regression can be used to get a more nuanced understanding regarding emulation 

differences. 

5 REFERENCES 

1  US Food and Drug Administration. Framework for FDA’s Real-World Evidence Program. 2018. 

https://www.fda.gov/media/120060/download 

2  Eichler H-G, Baird L, Barker R, et al. From adaptive licensing to adaptive pathways: Delivering a flexible 

life-span approach to bring new drugs to patients. Clinical Pharmacology & Therapeutics 2015;97:234–46. 

doi:10.1002/cpt.59 

3  Ball R, Robb M, Anderson S, et al. The FDAs sentinel initiative-a comprehensive approach to medical 

product surveillance. Clinical Pharmacology & Therapeutics 2016;99:265–8. doi:10.1002/cpt.320 

4  Sun X, Tan J, Tang L, et al. Real world evidence: Experience and lessons from china. BMJ 2018;j5262. 

doi:10.1136/bmj.j5262 

5  Makady A, Ham R ten, Boer A de, et al. Policies for use of real-world data in health technology assessment 

(HTA): A comparative study of six HTA agencies. Value in Health 2017;20:520–32. doi:10.1016/j.jval.2016.12.003 

6  Hampson G, Towse A, Dreitlein WB, et al. Real-world evidence for coverage decisions: Opportunities and 

challenges. Journal of Comparative Effectiveness Research 2018;7:1133–43. doi:10.2217/cer-2018-0066 

7  Collins R, Bowman L, Landray M, et al. The magic of randomization versus the myth of real-world 

evidence. New England Journal of Medicine 2020;382:674–8. doi:10.1056/nejmsb1901642 

8  Eichler H-G, Pignatti F, Schwarzer-Daum B, et al. Randomized controlled trials versus real world evidence: 

Neither magic nor myth. Clinical Pharmacology & Therapeutics 2020;109:1212–8. doi:10.1002/cpt.2083 

9  Crown W, Dahabreh IJ, Li X, et al. Can observational analyses of routinely collected data emulate 

randomized trials? Design and feasibility of the observational patient evidence for regulatory approval science and 

understanding disease project. Value in Health Published Online First: August 2022. doi:10.1016/j.jval.2022.07.003 

10  Franklin JM, Patorno E, Desai RJ, et al. Emulating randomized clinical trials with nonrandomized real-world 

evidence studies. Circulation 2021;143:1002–13. doi:10.1161/circulationaha.120.051718 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.23292601doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.13.23292601
http://creativecommons.org/licenses/by/4.0/


11  Benson K, Hartz AJ. A comparison of observational studies and randomized, controlled trials. New England 

Journal of Medicine 2000;342:1878–86. doi:10.1056/nejm200006223422506 

12  Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of 

research designs. New England Journal of Medicine 2000;342:1887–92. doi:10.1056/nejm200006223422507 

13  Moneer O, Daly G, Skydel JJ, et al. Agreement of treatment effects from observational studies and 

randomized controlled trials evaluating hydroxychloroquine, lopinavir-ritonavir, or dexamethasone for covid-19: 

Meta-epidemiological study. BMJ 2022;e069400. doi:10.1136/bmj-2021-069400 

14  Hemkens LG, Contopoulos-Ioannidis DG, Ioannidis JPA. Agreement of treatment effects for mortality from 

routinely collected data and subsequent randomized trials: Meta-epidemiological survey. BMJ 2016;i493. 

doi:10.1136/bmj.i493 

15  Matthews AA, Szummer K, Dahabreh IJ, et al. Comparing effect estimates in randomized trials and 

observational studies from the same population: An application to percutaneous coronary intervention. Journal of 

the American Heart Association 2021;10. doi:10.1161/jaha.120.020357 

16  Kumar A, Guss ZD, Courtney PT, et al. Evaluation of the use of cancer registry data for comparative 

effectiveness research. JAMA Network Open 2020;3:e2011985. doi:10.1001/jamanetworkopen.2020.11985 

17  Soni PD, Hartman HE, Dess RT, et al. Comparison of population-based observational studies with 

randomized trials in oncology. Journal of Clinical Oncology 2019;37:1209–16. doi:10.1200/jco.18.01074 

18  Ioannidis JPA. Randomized controlled trials: Often flawed, mostly useless, clearly indispensable: A 

commentary on deaton and cartwright. Social Science & Medicine 2018;210:53–6. 

doi:10.1016/j.socscimed.2018.04.029 

19  Wang SV, Schneeweiss S, Franklin JM, et al. Emulation of randomized clinical trials with nonrandomized 

database analyses. JAMA 2023;329:1376. doi:10.1001/jama.2023.4221 

20  Franklin JM, Glynn RJ, Martin D, et al. Evaluating the use of nonrandomized real-world data analyses for 

regulatory decision making. Clinical Pharmacology & Therapeutics 2019;105:867–77. doi:10.1002/cpt.1351 

21  Franklin JM, Schneeweiss S. When and how can real world data analyses substitute for randomized 

controlled trials? Clinical Pharmacology & Therapeutics 2017;102:924–33. doi:10.1002/cpt.857 

22  Franklin JM, Glynn RJ, Suissa S, et al. Emulation differences vs. Biases when calibrating real-world 

evidence findings against randomized controlled trials. Clinical Pharmacology Therapeutics 2020;107:735–7. 

doi:10.1002/cpt.1793 

23  Lodi S, Phillips A, Lundgren J, et al. Effect estimates in randomized trials and observational studies: 

Comparing apples with apples. American Journal of Epidemiology 2019;188:1569–77. doi:10.1093/aje/kwz100 

24  Franklin JM, Pawar A, Martin D, et al. Nonrandomized real-world evidence to support regulatory decision 

making: Process for a randomized trial replication project. Clinical Pharmacology Therapeutics 2019;107:817–26. 

doi:10.1002/cpt.1633 

25  Cochran WG. The combination of estimates from different experiments. Biometrics 1954;10:101. 

doi:10.2307/3001666 

26  Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 

2002;21:1539–58. doi:10.1002/sim.1186 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.23292601doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.13.23292601
http://creativecommons.org/licenses/by/4.0/


27  Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: A comparison of methods. Statistics in 

Medicine 1999;18:2693–708. doi:10.1002/(sici)1097-0258(19991030)18:20<2693::aid-sim235>3.0.co;2-v 

28  Mawdsley D, Higgins JPT, Sutton AJ, et al. Accounting for heterogeneity in meta-analysis using a 

multiplicative model-an empirical study. Research Synthesis Methods 2016;8:43–52. doi:10.1002/jrsm.1216 

29  Schmid CH, Stijnen T, White IR. Handbook of meta-analysis. Chapman; Hall/CRC 2020. 

doi:10.1201/9781315119403 

30  van Houwelingen JC, le Cessie S. Predictive value of statistical models. Statistics in Medicine 1990;9:1303–

25. doi:10.1002/sim.4780091109 

31  Hastie T, Tibshirani R, Wainwright M. Statistical learning with sparsity: The lasso and generalizations. CRC 

Press 2015. https://doi.org/10.1201/b18401 

32  R Core Team. R: A language and environment for statistical computing. Vienna, Austria: : R Foundation for 

Statistical Computing 2022. https://www.R-project.org/ 

33  Open Science Collaboration. Estimating the reproducibility of psychological science. Science 2015;349. 

doi:10.1126/science.aac4716 

34  Held L, Micheloud C, Pawel S. The assessment of replication success based on relative effect size. The 

Annals of Applied Statistics 2022;16. doi:10.1214/21-aoas1502 

35  The EINSTEIN Investigators. Oral rivaroxaban for symptomatic venous thromboembolism. New England 

Journal of Medicine 2010;363:2499–510. doi:10.1056/nejmoa1007903 

36  The EINSTEIN Investigators. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. 

New England Journal of Medicine 2012;366:1287–97. doi:10.1056/nejmoa1113572 

37  Soyza AD, Aksamit T, Bandel T-J, et al. RESPIRE 1: A phase III placebo-controlled randomised trial of 

ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. European Respiratory Journal 

2018;51:1702052. doi:10.1183/13993003.02052-2017 

38  Aksamit T, Soyza AD, Bandel T-J, et al. RESPIRE 2: A phase III placebo-controlled randomised trial of 

ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis. European Respiratory Journal 

2018;51:1702053. doi:10.1183/13993003.02053-2017 

39  Tampi RR, Forester BP, Agronin M. Aducanumab: Evidence from clinical trial data and controversies. Drugs 

in Context 2021;10:1–9. doi:10.7573/dic.2021-7-3 

40  Higgins JPT, Thomas J, Chandler J, et al., editors. Cochrane handbook for systematic reviews of 

interventions. Wiley 2019. doi:10.1002/9781119536604 

41  Gneiting T. Making and evaluating point forecasts. Journal of the American Statistical Association 

2011;106:746–62. doi:10.1198/jasa.2011.r10138 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.23292601doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.13.23292601
http://creativecommons.org/licenses/by/4.0/


FIGURE LEGENDS 

 

Figure 3.1: The hazard ratios estimated in the randomized trial and the RWE study (pooled over all data sources), 

together with their respective 95% confidence interval. The diagonal line represents a scenario of perfect 

emulation, while all trials with points on the right side of the diagonal have an effect size estimated in the RCT that 

is larger than the effect size estimated in the pooled RWE study. 

 

Figure 3.2: Left: The distribution of the observed standardized difference of the RCT-RWE study pairs compared to 

the standard normal distribution. Right: The �-values from the �-test for heterogeneity within RCT-RWE study pairs 

compared to the uniform distribution on the interval [0-1], as well as the �-value for the overall test for 

heterogeneity between all study pairs. 

 

Figure 3.3: The difference in effect estimates, hazard ratios, observed in the RCT and the pooled RWE depending on 

whether it was a close emulation or not. The horizontal line represents a scenario of no difference between RWE 

and RCT estimates. 

 

Figure 3.4: The leave-one-out mean squared error and the residual heterogeneity for each number of covariates 

included in the weighted regression. A multiplicative heterogeneity of 1 represents absence of heterogeneity in the 

effect size difference between study pairs. The minimum in MSE (best predictive performance) is found after 

including five characteristics. The simplest model with LOO MSE smaller than the minimum plus 1 standard error is 

the model with three characteristics. 

 

Figure 3.5: Bubble plots showing the association between close emulation (Yes or No) and the difference in log 

hazard ratio (A) and the association between the (possible) combination of the three binary characteristics and the 

difference in log hazard ratio (B). The larger the bubbles, the more precise the estimates/trials. Horizontal jitter has 

been applied on the bubbles to enhance visibility. The 95% prediction intervals are compiled using the meta-

regression including the binary composite covariate.  
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APPENDIX 

Details on statistical analyses 

Our statistical analyses require that the effect estimates are approximately normally distributed around 

the true effect size �. A log-transformation is applied on the hazard ratios resulting in ��RCT being the 

estimate of the log-hazard ratio of the RCT and ��RWE being the (pooled) estimate of the log-hazard ratio 

of the RWE emulation. The associated variances are denoted by seRWE
�  and se�����	


�  respectively. The 

standardized differences of each RCT-RWE study pair is computed as such 

Std. Diff. � ��RWE  ��RCT
�se

RWE

� � se
RCT

�

��� ��0,1�, 

where �� is the null hypothesis of absence of heterogeneity and bias. The squared standard difference 

is the �-statistic with � ��� ���1� which is used to perform the �-test for heterogeneity between RCT 

and RWE, often used in meta-analysis [25,26]. Then, ∑ ��� ��� ����� is used for an overall test for 

heterogeneity between all RCT-RWE study pairs. 

The heterogeneity � can be quantified as a multiplicative parameter [27], an overdispersion parameter 

generally larger than 1 to be applied to each of the trial-specific variances 

�� � ���, se�
� � ���, 

where the variance of the difference of the �th study pair is se�
� � seRWE,�

� � seRCT,�
� . As described in [28], 

� can be estimated by fitting a weighted linear regression on the observed differences ��  from all RCT-

RWE study pairs against a constant, with weights �� � 1/se�
� . The multiplicative heterogeneity is the 

model’s standard error truncated at 1 (� � max�$model , 1�) and absence of heterogeneity is achieved if 

� � 1. To explain part of the observed heterogeneity covariates describing emulation challenges 

(summarised in Table 1) can be used. As in a meta-regression ([29], Chapter 7), the covariates are added 

into the weighted linear regression model. Then, if the � extracted from the more complex, adjusted 

model is smaller than the heterogeneity measured with the simple model, we can conclude that part of 

the variation was explained by the covariates. 

Variable selection - As only a limited number of RCT-RWE study pairs are available, the meta-regression 

model should be parsimonious to prevent overfitting. According to the commonly used rule of thumb 

[40] we would need at least ten studies (i.e., study pairs) for each covariate. To reduce the model 

complexity, we apply the following variable selection algorithm: all 2� possible candidate models are 

fitted, depending on which combination of the � covariates is included. To assess the prediction 

performance of the candidate models, we compute the leave-one-out cross-validated mean squared 

error (LOO CV MSE, [30]). This analysis allows us to compare the importance of the covariates and 

ensure that we select those that are most predictive for our outcome, ��  [41]. MSE is oriented in a way 

that the lower it is, the better the model’s prediction performance. To take the uncertainty of the 

modeling process into account when selecting a final model, differences in models’ performances are 

investigated with the interval MSE % 1 � SE, where SE is the LOO standard error. The final selected model 
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will be the smallest model (i.e., the model with the fewest covariates) with MSE & min
���,…,��

MSE� � SE 

[31]. 
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