| 1  | Association Between Preoperative Myocardial Perfusion Imaging and Cardiac Events                                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------|
| 2  | after Elective Noncardiac Surgery                                                                                                |
| 3  |                                                                                                                                  |
| 4  |                                                                                                                                  |
| 5  | Seong-Bong Wee, MD, <sup>1</sup> Cheol Hyun Lee, MD, <sup>2</sup> Tae Joon Jun, PhD, <sup>3</sup> Jung-Min Ahn, MD, <sup>1</sup> |
| 6  | Jeong Hwan Yook, MD, <sup>4</sup> Jae-Sik Nam, MD, <sup>5</sup> In-Cheol Choi, MD, <sup>5</sup> Dae Hyuk Moon, MD, <sup>6</sup>  |
| 7  | Sangwon Han, MD, <sup>6</sup> Hoyun Kim, MD, <sup>1</sup> Yeonwoo Choi, MD, <sup>1</sup> Jinho Lee, MD, <sup>1</sup> Sangyong    |
| 8  | Cho, MD, <sup>1</sup> Tae Oh Kim, MD, <sup>1</sup> Do-Yoon Kang, MD, <sup>1</sup> Pil Hyung Lee, MD, <sup>1</sup> Duk-Woo Park,  |
| 9  | MD, <sup>1</sup> Soo-Jin Kang, MD, <sup>1</sup> Seung-Whan Lee, MD, <sup>1</sup> Young-Hak Kim, MD, <sup>1</sup> Cheol Whan Lee, |
| 10 | MD, <sup>1</sup> Seong-Wook Park, MD, <sup>1</sup> David J Cohen, MD, <sup>7</sup> and Seung-Jung Park, MD. <sup>1</sup>         |
| 11 |                                                                                                                                  |
| 12 | <sup>1</sup> Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan, Seoul,                           |
| 13 | Korea; <sup>2</sup> Division of Cardiology, Department of Internal Medicine, Keimyung University                                 |
| 14 | Dongsan Hospital, Daegu, Korea; <sup>3</sup> Big Data Research Center, Asan Institute for Life                                   |
| 15 | Sciences, Asan Medical Center, Seoul, Korea; <sup>4</sup> Department of Surgery, Asan Medical Center,                            |
| 16 | University of Ulsan College of Medicine, Seoul, Korea; <sup>5</sup> Department of Anesthesiology and                             |
| 17 | Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea;                                       |
| 18 | <sup>6</sup> Department of Nuclear Medicine, Asan Medical Center, University of Ulsan, College of                                |
| 19 | Medicine, Seoul, Korea; <sup>7</sup> Department of Cardiology, Saint Francis Hospital and                                        |
| 20 | Cardiovascular Research Foundation, NY, NY 10019, USA.                                                                           |
| 21 |                                                                                                                                  |
| 22 | The first two authors (SB Wee and CH Lee) equally contributed to this paper.                                                     |
| 23 |                                                                                                                                  |

- 24 Abstract Word Count: 290
- 25 Main Text Word Count: 2942

- 27 Address for correspondence:
- 28 Jung-Min Ahn, MD
- 29 Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine,
- 30 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- 31 Telephone: +82-2-3010-5904
- 32 Fax: +82-2-487-5918
- 33 E-mail: drjmahn@gmail.com

#### 34

#### Abstract

Background There remains a lack of robust evidence regarding the prognostic value of
 myocardial perfusion imaging (MPI) before noncardiac surgery in large and diverse patient
 populations.

38 **Methods** This retrospective observational cohort study from single, tertiary, high surgical 39 volume center in South Korea included 82,441 patients aged >40 years who underwent MPI 40 using pharmacologic stress single photon emission computed tomography within 6 months 41 before elective noncardiac surgery from January 2000 to December 2021. Results of MPI 42 were classified as abnormal (any fixed or reversible perfusion defect) vs normal MPI before 43 noncardiac surgery. The primary outcome was a composite of cardiac death or myocardial infarction within 30 days. 44 45 **Results** Among the 82441 patients (mean±standard deviation age, 65.7±9.6 years; 47417 46 [57.5%] men), 184 (0.2%) experienced cardiac death or myocardial infarction within 30 days 47 after noncardiac surgery. MPI were abnormal in 5603 patients (6.8%). Compared with a 48 normal MPI, an abnormal MPI had a higher risk of the primary outcome (crude incidence, 49 1.2% vs 0.1%; adjusted odds ratio, 4.64; 95% confidence interval, 3.29-6.50; P < .001). The 50 presence of an abnormal MPI improved discrimination for the primary outcome (area under 51 the receiver operating characteristic curve with MPI vs without MPI (0.77 vs 0.73; P<0.001)) 52 and significantly increased net reclassification improvement (0.26; 95% confidence interval, 53 0.11-0.40; P < .001). Among patients with an abnormal MPI, 378 (6.7%) underwent pre-54 operative coronary revascularization; however, this was not associated with a lower risk of

55 the primary outcome (P=.56).

56 **Conclusion** An abnormal myocardial perfusion imaging appeared to be an important risk

- 57 factor for adverse postoperative events and provided additional prognostic value for patients
- <sup>58</sup> undergoing noncardiac surgery. Nevertheless, preoperative MPI was limited by its low
- 59 positive predictive value for postoperative cardiac events, leading to potentially unnecessary
- 60 coronary revascularization procedures with unproven prognostic value.

# 61 Clinical Perspectives

## 62 What is new?

| 63 | •      | This study included the largest population to date and included a broad spectrum of  |
|----|--------|--------------------------------------------------------------------------------------|
| 64 |        | patient and surgical procedures compared with previous studies limited by relatively |
| 65 |        | small sample sizes and low event rates.                                              |
| 66 | •      | Preoperative abnormal MPI results were significantly associated with the             |
| 67 |        | postoperative risk of cardiac death and myocardial infarction in patients undergoing |
| 68 |        | noncardiac surgery, and provided incremental prognostic value beyond clincial        |
| 69 |        | assement only.                                                                       |
| 70 |        |                                                                                      |
| 71 | What a | re the clinical implications?                                                        |
| 72 | •      | Our study suggested that MPI appears warranted, particularly for patients with a     |
| 73 |        | considerable surgical risk.                                                          |
| 74 | •      | However, its low positive predictive value, and unproven prognostic value of         |
| 75 |        | coronary revascularization triggered by MPI should be taken into account in the      |
| 76 |        | clincial practice.                                                                   |

#### 77 Introduction

Every year, ≥200 million adults undergo major noncardiac surgery and its number is still
increasing.<sup>1,2</sup> Despite the overall safety of contemporary noncardiac surgery, approximately
10% of these patients experience post-operative complications.<sup>3</sup> Cardiovascular
complications remain the leading cause of death within 30 days of noncardiac surgery.<sup>4</sup>

82 Therefore, identification of patients at high cardiovascular risk during preoperative

83 consultation is important.

Previous studies have revealed that abnormal features upon myocardial perfusion 84 imaging (MPI) indicate an increased risk of perioperative cardiac complications.<sup>5</sup> Current 85 86 practice guidelines recommend stress MPI prior to non-cardiac surgery for patients with both 87 elevated risk of major adverse cardiac events and poor functional capacity especially if testing impacts decision-making or perioperative care.<sup>4</sup> The uncertain value of pre-operative 88 MPI derives from its low diagnostic yield, the unclear clinical benefit of preoperative 89 90 revascularization triggered by its results, and the potential for unnecessary delays of surgical treatment.<sup>6,7</sup> Notably, previous studies on preoperative MPI were limited by their small 91 samples and numbers of events.<sup>8</sup> Most studies were performed on the highest-risk patients 92 93 (eg, those undergoing vascular surgery) decades ago, and the application of those results in 94 today's practice is unclear, given advances in both surgery and perioperative care. In addition, 95 the predictive discrimination associated with MPI has not been adequately compared with those derived from preoperative risk calculators alone.<sup>9</sup> Nevertheless, preoperative MPI and 96 subsequent revascularization are frequently performed in real-world practice to evaluate 97 cardiac risk in an effort to prevent perioperative cardiac complications.<sup>10-12</sup> 98



To address these gaps in contemporary evidence, we performed a retrospective, real-

| 100 | world study: | (1)   | ) determine the | prognostic | value of r | oreo | perative MPI to | predict | cardiac | events |
|-----|--------------|-------|-----------------|------------|------------|------|-----------------|---------|---------|--------|
|     |              | < - / | ,               |            |            |      |                 |         |         |        |

- 101 after elective noncardiac surgery; and (2) examine the clinical benefit of selective coronary
- 102 angiography and revascularization in response to abnormal MPI.
- 103
- 104 Methods
- 105 Study Design and Study Population

106 This was a single-center, retrospective observational cohort study, and was conducted using

107 data from the Asan Biomedical Research Environment (ABLE), which is a de-identified

108 clinical database of Asan Medical Center, a 2700-bed tertiary hospital in Seoul, South Korea.

109 This data warehouse contains all medical records of our center, including electronic medical

110 records, international classification of disease codes, laboratory findings, imaging data, and

111 medications in an anonymized form.<sup>13</sup>

112 The study population was drawn from all patients who underwent MPI in the 6 months 113 prior to elective noncardiac surgery under general anesthesia between January 2000 and 114 December 2021. Patients were excluded if they met any of the following criteria: younger 115 than 40 years of age; undergoing an emergency operation; experiencing acute myocardial 116 infarction in the month before surgery; undergoing cardiac surgery; undergoing nonsurgical 117 procedures (eg, bronchoscopy, endoscopy, cystoscopy, and percutaneous vascular or 118 nonvascular procedures); undergoing minor surgery with minimal sedation or local 119 anesthesia, such as skin, dental, and ophthalmologic procedures. Only the index procedure of 120 patients undergoing multiple eligible procedures during the study period was used for 121 analyses. Additional inclusion and exclusion criteria are summarized in the Supplement 122 Appendix.

This study conformed to the ethical guidelines of the Declaration of Helsinki and was approved by the institutional review board of Asan Medical Center. The need for written informed consent was waived. No industry was involved in the design, conduct, or analysis of the study.

127

#### 128 Data Extraction and Collection

129 Patient demographics, comorbidities, prescriptions, laboratory data, types of surgeries, and

130 outcomes were obtained via the ABLE system by researchers who were blinded to the

131 process of data analysis. Comorbidities diagnosed prior to the date of noncardiac surgery

132 were electronically obtained using the Korean Standard Classification of Diseases and Causes

133 of Death (KCD-7), which was developed based on the International Classification of

134 Diseases, 10th revision (Supplement).<sup>14</sup> In addition, the revised cardiac risk index (RCRI),

135 which consists of six identifiable predictive factors (high-risk surgery [intraperitoneal,

136 intrathoracic, and suprainguinal vascular surgery], ischemic heart disease, congestive heart

137 failure, cerebrovascular disease, diabetes mellitus controlled with insulin therapy, and renal

138 dysfunction [serum creatinine concentration >2.0 mg/dL]), was calculated. All 1436 types of

139 surgeries performed in the study population were reviewed and classified as low- or high-risk

140 surgeries based on prior expert consensus (Supplement Appendix).<sup>15,16</sup>

141

#### 142 Myocardial Perfusion Imaging

143 Single photon emission computed tomography with thallium-201 (Tl-201) was used to

144 acquire myocardial perfusion images via a standardized protocol, as previously described.<sup>17</sup>

145 Pharmacologic stress was induced with intravenous infusion of either adenosine (0.14

| 146 | mg/kg/min for 6 min) or dipyridamole (0.56 mg/kg/min for 4 min). At peak stress, a 44.4-              |
|-----|-------------------------------------------------------------------------------------------------------|
| 147 | 148.0-MBq dose of 201-Tl was intravenously injected, depending on the patient's body                  |
| 148 | weight and the type of gamma camera used. Post-stress and redistribution MPIs were                    |
| 149 | acquired with one of the following camera systems equipped with a conventional Anger                  |
| 150 | camera or cadmium-zinc-telluride detectors: Triad 88 or XLT (Trionix Research Laboratory,             |
| 151 | Twinsberg, OH, USA); ADAC or Precedence 16 (Philips Healthcare, Best, The Netherlands);               |
| 152 | E.Cam, Symbia T2, or Evo Excel (Siemens Healthineers, Erlangen, Germany); Infinia,                    |
| 153 | Ventri, Discovery NM830, or NM530c (GE Healthcare, Waukesha, WI, USA). Specific                       |
| 154 | acquisition parameters depended on the type of camera.                                                |
| 155 | MPI was primarily analyzed qualitatively by experienced nuclear medicine physicians                   |
| 156 | (D.H.M. and S.W.H) as a normal or abnormal. <sup>17</sup> Subsequently, abnormal results were further |
| 157 | classified into fixed perfusion defects only or any reversible perfusion defect. In addition,         |
| 158 | semi-quantitative analysis, performed using a 20-segment model and a five-point scale, was            |
| 159 | used to calculate the summed stress score, summed rest score, and summed difference score             |
| 160 | (SDS). The SDS was converted into a percentage of total myocardium by dividing it by the              |
| 161 | maximum potential score (4 $\times$ 20) to assess the ischemic burden (% ischemic                     |
| 162 | myocardium). <sup>18,19</sup>                                                                         |
| 163 |                                                                                                       |
| 164 | Study Outcomes and Follow-up                                                                          |

165 The primary outcome in this study was the composite of cardiac death or myocardial

166 infarction within 30 days after elective noncardiac surgery. Cardiac death was defined as

- 167 sudden death or death secondary to a proximate cardiac cause, including cardiac arrest,
- 168 myocardial infarction, low-output failure, or fatal arrhythmia. Myocardial infarction was

| 169 | defined as an elevation of cardiac enzymes with associated signs and symptoms of ischemia             |
|-----|-------------------------------------------------------------------------------------------------------|
| 170 | felt to be caused by coronary atherothrombosis. The secondary outcomes were cardiac death,            |
| 171 | all-cause death, and myocardial infarction within 30 days after elective noncardiac surgery.          |
| 172 | The mortality data was confirmed by cross-referencing with the Korean National Health                 |
| 173 | Insurance Service, which is a single-payer program of a universal health coverage system and          |
| 174 | mandatory health care in Korea. <sup>20</sup> In addition, all medical records and other source       |
| 175 | documents were carefully reviewed, by two physicians (S.B.W. and C.H.L), blinded to MPI               |
| 176 | results, to validate the diagnosis of cardiac death and myocardial infarction. Myocardial             |
| 177 | injury after noncardiac surgery (MINS) was defined as a postoperative cardiac troponin                |
| 178 | concentration above the 99 <sup>th</sup> percentile of the upper reference limit of the assay without |
| 179 | evidence of nonischemic etiology among patients who underwent a routine troponin test after           |
| 180 | noncardiac surgery. <sup>21</sup> Definitions of the study outcomes are provided in the Supplement    |
| 181 | Appendix.                                                                                             |

182

#### 183 Statistical Analysis

184 Baseline characteristics of the patients are reported as frequencies and percentages for 185 categorical variables and means with standard deviations for continuous variables. Survival 186 was assessed using the Kaplan-Meier method and compared using the log-rank test. We compared the primary and secondary outcomes according to the MPI results by using logistic 187 regression models, and the final multivariable models included age, sex, the RCRI, and MPI 188 results. These covariates were selected a priori based on previous evidence.<sup>22</sup> Odds ratios 189 190 (ORs) and corresponding 95% confidence intervals (CIs) were reported. We assessed the risk prediction and stratification performance of MPI by calculating the area under the time-191

| 192 | dependent receiver operating characteristic (ROC) curve and the continuous net                 |
|-----|------------------------------------------------------------------------------------------------|
| 193 | reclassification improvement (NRI). Because of the potential for type I error due to multiple  |
| 194 | comparisons, for which we did not adjust for the $P$ values, results of analyses for secondary |
| 195 | outcomes should be interpreted as exploratory. All reported P values are two-sided. A P value  |
| 196 | <.05 was considered statistically significant. Analyses were performed using R software,       |
| 197 | version 4.2.1 (R Foundation for Statistical Computing, Vienna, Austria).                       |
| 198 |                                                                                                |
| 199 | Results                                                                                        |
| 200 | Characteristics of the Population                                                              |
| 201 | From January 2000 to December 2021, 82,441 patients who underwent MPI for preoperative         |
| 202 | cardiac risk assessment before elective noncardiac surgery were included in this study, of     |
| 203 | whom 5603 (6.8%) had an abnormal MPI (Figure 1). The patients' mean age was 65.7±9.6           |
| 204 | years, 57.5% were men, 50.2% underwent high-risk surgery, and 12.2% had an RCRI score          |
| 205 | $\geq$ 2 (Table 1). Compared with patients with normal MPI, patients with abnormal MPI were    |
| 206 | more likely to have comorbidities. The frequency of abnormal MPI increased as the RCRI         |
| 207 | score increased, ranging from 2.4% among patients with an RCRI 0 to 50.3% in patients with     |
| 208 | RCRI $\geq$ 4 (Figure 2).                                                                      |
| 209 |                                                                                                |

## 210 Primary and Secondary Outcomes

At 30 days, 82388 (99.9%) of patients were completed clinical follow-up. The primary

212 outcomes (the composite of cardiac death or myocardial infarction) occurred in 184 patients

- 213 (97 cardiac deaths and 100 myocardial infarctions) within 30 days of elective noncardiac
- surgery. The causes of death are summarized in eTable 1. Figure 3 demonstrates that the

| 215                             | cumulative incidences of the primary and secondary outcomes were all significantly higher                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 216                             | among patients with abnormal MPI results than among those with normal results. As                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 217                             | summarized in Table 2, the risk of the primary outcome was significantly higher in patients                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 218                             | with abnormal MPI than in those with normal results (crude incidence, 1.2% vs 0.1%;                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 219                             | adjusted OR, 4.64; 95% CI, 3.29 to 6.50; P<.001). Similarly, cardiac death (0.5% vs 0.1%;                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 220                             | adjusted OR, 3.11; 95% CI, 1.86 to 5.07; P<.001), death from any cause (1.0% vs 0.5%;                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 221                             | adjusted OR, 1.41; 95% CI, 1.03 to 1.89; P=.026), and myocardial infarction (0.9% vs 0.1%;                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 222                             | adjusted OR, 8.19; 95% CI, 5.21 to 12.87; P<.001) were more frequent in patients with                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 223                             | abnormal MPI. Among 23934 patients who underwent routine troponin testing after                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 224                             | noncardiac surgery, the risk of MINS was also significantly higher in patients with abnormal                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 225                             | MPI (16.5% vs 13.2%; adjusted OR, 1.37; 95% CI, 1.23 to 1.52; P<.001), as indicated in                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 226                             | Table 2 and eFigure 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 227                             | When abnormal MPI findings were classified as fixed only or reversible, the primary                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 228                             | outcome more frequently occurred among patients with a fixed defect only (adjusted OR,                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 229                             | 3.42; 95% CI, 1.94 to 5.69; $P \le .001$ ) and those with a reversible perfusion defect (adjusted                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 230                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 200                             | OR, 5.26; 95% CI, 3.62 to 7.57; $P$ <.001) than it did among patients with normal MPI, as                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 231                             | OR, 5.26; 95% CI, 3.62 to 7.57; $P$ <.001) than it did among patients with normal MPI, as demonstrated in eFigure 2A and eTable 2. In addition, the risk of the primary outcome                                                                                                                                                                                                                                                                                                                                                 |
| 231<br>232                      | OR, 5.26; 95% CI, 3.62 to 7.57; $P$ <.001) than it did among patients with normal MPI, as demonstrated in eFigure 2A and eTable 2. In addition, the risk of the primary outcome increased according to the extent of ischemia. Compared with <5% ischemic burden                                                                                                                                                                                                                                                                |
| 231<br>232<br>233               | OR, 5.26; 95% CI, 3.62 to 7.57; $P$ <.001) than it did among patients with normal MPI, as demonstrated in eFigure 2A and eTable 2. In addition, the risk of the primary outcome increased according to the extent of ischemia. Compared with <5% ischemic burden (reference category), the adjusted OR for 5-10% ischemic burden was 1.47 (95% CI, 0.94 to                                                                                                                                                                      |
| 231<br>232<br>233<br>234        | OR, 5.26; 95% CI, 3.62 to 7.57; $P$ <.001) than it did among patients with normal MPI, as<br>demonstrated in eFigure 2A and eTable 2. In addition, the risk of the primary outcome<br>increased according to the extent of ischemia. Compared with <5% ischemic burden<br>(reference category), the adjusted OR for 5-10% ischemic burden was 1.47 (95% CI, 0.94 to<br>2.23; $P$ =0.080), while >10% ischemic burden was associated with an adjusted OR of 3.52                                                                 |
| 231<br>232<br>233<br>234<br>235 | OR, 5.26; 95% CI, 3.62 to 7.57; $P$ <.001) than it did among patients with normal MPI, as<br>demonstrated in eFigure 2A and eTable 2. In addition, the risk of the primary outcome<br>increased according to the extent of ischemia. Compared with <5% ischemic burden<br>(reference category), the adjusted OR for 5-10% ischemic burden was 1.47 (95% CI, 0.94 to<br>2.23; $P$ =0.080), while >10% ischemic burden was associated with an adjusted OR of 3.52<br>(95% CI, 2.07 to 5.70; $P$ <.001) (eFigure 2B and eTable 2). |

237 Subgroup Analysis

| 238                                                         | Figure 4 demonstrates the incidence of the primary and secondary outcomes according to the                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 239                                                         | RCRI score. The risk of cardiac death or MI increased with increasing RCRI score. The                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 240                                                         | prognostic impact of an abnormal MPI on the risk of cardiac death or MI was more                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 241                                                         | prominent in patients with low RCRI risk category ( $P$ for interaction <.001). Nevertheless,                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 242                                                         | even among the highest risk group (patients with RCRI $\geq 2$ and abnormal MPI), the absolute                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 243                                                         | risk of cardiac death or MI was only 1.5% at 30 days. Additional subgroup analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 244                                                         | according to the clinical subgroup and types of surgery, which consistently showed the higher                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 245                                                         | risk of primary outcome in patients with abnormal MPI, were summarized in eFigure 3 and                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 246                                                         | eFigure 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 247                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 248                                                         | Prognostic Performance of MPI before Noncardiac Surgery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 248<br>249                                                  | <b>Prognostic Performance of MPI before Noncardiac Surgery</b><br>The presence of an abnormal MPI improved discrimination for the primary outcome (AUC                                                                                                                                                                                                                                                                                                                                                                                            |
| 248<br>249<br>250                                           | Prognostic Performance of MPI before Noncardiac SurgeryThe presence of an abnormal MPI improved discrimination for the primary outcome (AUCwith MPI vs without MPI [0.77 vs 0.73; P<0.001]) and significantly increased NRI (0.26,                                                                                                                                                                                                                                                                                                                |
| 248<br>249<br>250<br>251                                    | Prognostic Performance of MPI before Noncardiac SurgeryThe presence of an abnormal MPI improved discrimination for the primary outcome (AUCwith MPI vs without MPI [0.77 vs 0.73; P<0.001]) and significantly increased NRI (0.26,                                                                                                                                                                                                                                                                                                                |
| 248<br>249<br>250<br>251<br>252                             | Prognostic Performance of MPI before Noncardiac SurgeryThe presence of an abnormal MPI improved discrimination for the primary outcome (AUCwith MPI vs without MPI [0.77 vs 0.73; P<0.001]) and significantly increased NRI (0.26,                                                                                                                                                                                                                                                                                                                |
| 248<br>249<br>250<br>251<br>252<br>253                      | Prognostic Performance of MPI before Noncardiac SurgeryThe presence of an abnormal MPI improved discrimination for the primary outcome (AUCwith MPI vs without MPI [0.77 vs 0.73; P<0.001]) and significantly increased NRI (0.26,                                                                                                                                                                                                                                                                                                                |
| 248<br>249<br>250<br>251<br>252<br>253<br>253               | Prognostic Performance of MPI before Noncardiac SurgeryThe presence of an abnormal MPI improved discrimination for the primary outcome (AUCwith MPI vs without MPI [0.77 vs 0.73; P<0.001]) and significantly increased NRI (0.26,                                                                                                                                                                                                                                                                                                                |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255        | Prognostic Performance of MPI before Noncardiac Surgery<br>The presence of an abnormal MPI improved discrimination for the primary outcome (AUC<br>with MPI vs without MPI [0.77 vs 0.73; <i>P</i> <0.001]) and significantly increased NRI (0.26,<br>95% CI, 0.11-0.40; <i>P</i> <0.001). These significant improvements were driven mainly by<br>improved discrimination for myocardial infarction. The model including adjustment for<br>abnormal MPI results yielded good discrimination performance for myocardial infarction<br>(AUC=0.83). |
| 248<br>249<br>250<br>251<br>252<br>253<br>254<br>255<br>256 | Prognostic Performance of MPI before Noncardiac SurgeryThe presence of an abnormal MPI improved discrimination for the primary outcome (AUCwith MPI vs without MPI [0.77 vs 0.73; P<0.001]) and significantly increased NRI (0.26,                                                                                                                                                                                                                                                                                                                |

angiography, and subsequently, 378 underwent coronary revascularization (260 percutaneous

- coronary interventions and 118 coronary artery bypass graft surgeries) before elective
- 260 noncardiac surgery. Among patients with abnormal MPI, patient who underwent coronary

- angiography or revascularization were not significantly associated with the lower risk of the 261
- 262 primary outcome within 30 days of noncardiac surgery (Figure 5).
- 263

#### 264 Discussion

- 265 This large, observational study identified a significant association between an abnormal
- 266 preoperative MPI and the composite of cardiac death or myocardial infarction within 30 days
- 267 of noncardiac surgery—an association that increased progressively according to the extent of
- 268 myocardial ischemia. When compared with standard clinical risk factors, the use of
- 269 preoperative MPI testing led to a significant improvement in discrimination as well as
- 270 substantial reclassification of risk as assessed by the net reclassification index. Nonetheless,
- 271 given the low overall incidence of post-operative cardiac events in the study population, the
- 272 positive predictive value of an abnormal MPI study to predict postoperative cardiac event
- 273 was low (1.2%), leading to potentially unnecessary coronary angiography and
- 274 revascularization procedures with unproven prognostic value.
- 275 Previous studies have examined a role for MPI in stratification of perioperative cardiac risk, but the results have been mixed.<sup>5,23-25</sup> A meta-analysis of nine studies including 1,179
- 276
- 277 patients undergoing noncardiac vascular surgery revealed that reversible defects in >20% of

myocardial segments were significantly associated with perioperative complications.<sup>5</sup> 278

- 279 Another study suggested that incorporation of MPI may improve perioperative risk
- 280 assessment of patients with obstructive disease upon coronary computed tomography
- angiography.<sup>23</sup> However, other studies have shown that routine use of MPI before abdominal 281
- aortic surgery did not predict the risk of cardiac complications<sup>26,27</sup> and did not improve 282
- patient risk classification beyond essential assessment using age, RCRI, and surgical 283

priority.<sup>28</sup> However, These previous studies were limited by relatively small sample sizes and low event rates, inclusion of mainly patients undergoing relatively high-risk vascular surgery, and the use of outdated perfusion imaging techniques and perioperative management.<sup>15,29</sup> In contrast, our study included the largest population to date and included a broad spectrum of patients and surgical procedures across the full risk spectrum, thus demonstrating the consistent prognostic utility of MPI for predicting perioperative cardiac risk in contemporary practice.

291 Current clinical guidelines do not support the routine use of MPI in preoperative risk 292 assessment and rather recommend a subjective assessment of functional capacity as an initial step for preoperative cardiac risk assessment.<sup>9,30</sup> Typically, preoperative MPI is recommended 293 294 only for patients with both elevated risk of major adverse cardiac events and poor exercise capacity. However, a recent prospective cohort study has revealed that subjective assessments 295 296 of functional capacity are neither an accurate predictors of exercise capacity based on formal cardiopulmonary testing nor associated with the risk of post-operative cardiac events.<sup>22</sup> 297 298 Moreover, recent studies suggested that the prevalence of poor functional capacity is 299 relatively low in clinical practice, and the most patients who experience postoperative cardiac complications had satisfactory preoperative functional capacities.<sup>31-33</sup> Therefore, our 300 301 study suggested that more liberal use of MPI, ungated by functional capacity, is seemingly 302 warranted, particularly in patients with a considerable surgical risk. 303 Prior to our study, there was little information on the value of preoperative noninvasive stress testing in low-risk patients.<sup>24,29</sup> Our study, which included 32498 patients with 304

- 305 RCRI 0, demonstrated that even among low-risk patients, an abnormal MPI study was
- 306 significantly associated with an increased risk of post-operative cardiac events. In addition,

the prognostic impact of abnormal MPI was more prominent in patients with low cardiac risk. 307 308 Nonetheless, given that the incidence of an abnormal MPI in low-risk patients (RCRI 0) was 309 only 2.4% and the incidence of cardiac death or MI among these individuals was only 1.0%, 310 the value of routine preoperative MPI testing in low-risk population should be interpreted in 311 the context of the appropriate use of medical resources and cost-effectiveness in real practice. 312 The original justification for preoperative MPI was to identify patients with significant 313 myocardial ischemia who would potentially benefit from coronary revascularization prior to 314 noncardiac surgery. However, this hypothesis was refuted by the randomized trials which demonstrated no clinical benefit of coronary revascularization before noncardiac surgerv<sup>34-37</sup> 315 316 - results that are reinforced by our observational data. Therefore, our study suggested that 317 preoperative MPI should not be the sole indication for preoperative invasive coronary 318 angiography and subsequent coronary revascularization in stable elective surgical candidates, 319 which is supported by recent randomized trial in patients with stable ischemic heart disease.<sup>38</sup> 320 Nonetheless, previous observational study has suggested an association between performing preoperative MPI and reduced rate of perioperative mortality after noncardiac surgery.<sup>29</sup> 321 322 These findings suggest that clinical benefits associated with preoperative MPI may be 323 explained by mechanisms other than coronary revascularization such as careful 324 anesthesiologic care, meticulous perioperative medical surveillance and management, 325 changes in surgical technique, mostly towards a less invasive approach, or even deferring 326 surgery in some very high risk patients. Further prospective study is necessary to evaluate 327 whether performing preoperative MPI and subsequent changes in surgical and medical 328 management of patient would improve postoperative cardiac outcomes. 329 Our study has several limitations. First, it was a retrospective observational study.

| 330 | Therefore, the possibility of residual confounding in the associations cannot be eliminated   |
|-----|-----------------------------------------------------------------------------------------------|
| 331 | despite the statistical adjustments we made for several key clinical characteristics. Second, |
| 332 | our data sources did not capture information on exercise tolerance. Third, biomarkers for     |
| 333 | perioperative myocardial necrosis were not obtained for all patients. Fourth, the attending   |
| 334 | physicians and surgeons were not blinded to the MPI results, which might have affected the    |
| 335 | clinical outcomes. Fifth, this study was performed in a tertiary hospital with high surgical  |
| 336 | volumes, thus limiting its generalizability to lower-volume surgical centers.                 |
| 337 | In conclusion, among patients undergoing elective noncardiac surgery and referred for         |
| 338 | preoperative MPI testing, an abnormal MPI study was associated with an increased risk of      |
| 339 | 30-day cardiac death or MI-a result that was independent of age, sex, and clinical risk       |
| 340 | factors. However, the value of routine preoperative MPI testing appears to be limited given   |
| 341 | its low positive predictive value and the fact that coronary angiography or revascularization |
| 342 | triggered by an abnormal MPI result was not associated with improved outcomes.                |
| 343 |                                                                                               |
| 344 | Sources of Funding                                                                            |
| 345 | This research was supported by a grant of the Korea Health Technology R&D Project through     |
| 346 | the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health     |
| 347 | & Welfare, Republic of Korea (grant number: HC19C0022).                                       |
| 348 |                                                                                               |
| 349 | Role of the funding source                                                                    |
| 350 | The funder of the study had no role in study design, data collection, data analysis, data     |

351 interpretation, or writing of the report.

#### 353 Disclosures

354 The authors have no conflicts to declare.

# 355 References

| 356 | 1.  | Weiser TG, Regenbogen SE, Thompson KD, Haynes AB, Lipsitz SR, Berry WR, Gawande AA.         |
|-----|-----|---------------------------------------------------------------------------------------------|
| 357 |     | An estimation of the global volume of surgery: a modelling strategy based on available      |
| 358 |     | data. <i>Lancet</i> . 2008;372:139-144. doi: 10.1016/S0140-6736(08)60878-8                  |
| 359 | 2.  | Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, Fu R, Azad T, Chao  |
| 360 |     | TE, Berry WR, et al. Estimate of the global volume of surgery in 2012: an assessment        |
| 361 |     | supporting improved health outcomes. Lancet. 2015;385 Suppl 2:S11. doi: 10.1016/s0140-      |
| 362 |     | 6736(15)60806-6                                                                             |
| 363 | 3.  | Spence J, LeManach Y, Chan MTV, Wang CY, Sigamani A, Xavier D, Pearse R, Alonso-Coello      |
| 364 |     | P, Garutti I, Srinathan SK, et al. Association between complications and death within 30    |
| 365 |     | days after noncardiac surgery. <i>Cmaj.</i> 2019;191:E830-e837. doi: 10.1503/cmaj.190221    |
| 366 | 4.  | Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, De Hert S, de Laval I, |
| 367 |     | Geisler T, Hinterbuchner L, et al. 2022 ESC Guidelines on cardiovascular assessment and     |
| 368 |     | management of patients undergoing non-cardiac surgery. Eur Heart J. 2022;43:3826-3924.      |
| 369 |     | doi: 10.1093/eurheartj/ehac270                                                              |
| 370 | 5.  | Etchells E, Meade M, Tomlinson G, Cook D. Semiquantitative dipyridamole myocardial          |
| 371 |     | stress perfusion imaging for cardiac risk assessment before noncardiac vascular surgery: a  |
| 372 |     | meta-analysis. <i>J Vasc Surg</i> . 2002;36:534-540. doi: 10.1067/mva.2002.126563           |
| 373 | 6.  | Kristensen SD, Knuuti J, Saraste A, Anker S, Botker HE, Hert SD, Ford I, Gonzalez-Juanatey  |
| 374 |     | JR, Gorenek B, Heyndrickx GR, et al. 2014 ESC/ESA Guidelines on non-cardiac surgery:        |
| 375 |     | cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery:      |
| 376 |     | cardiovascular assessment and management of the European Society of Cardiology (ESC)        |
| 377 |     | and the European Society of Anaesthesiology (ESA). Eur Heart J. 2014;35:2383-2431. doi:     |
| 378 |     | 10.1093/eurheartj/ehu282                                                                    |
| 379 | 7.  | Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, Davila-       |
| 380 |     | Roman VG, Gerhard-Herman MD, Holly TA, Kane GC, et al. 2014 ACC/AHA guideline on            |
| 381 |     | perioperative cardiovascular evaluation and management of patients undergoing               |
| 382 |     | noncardiac surgery: a report of the American College of Cardiology/American Heart           |
| 383 |     | Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64:e77-137. doi:     |
| 384 |     | 10.1016/j.jacc.2014.07.944                                                                  |
| 385 | 8.  | Devereaux PJ, Sessler DI. Cardiac Complications in Patients Undergoing Major Noncardiac     |
| 386 |     | Surgery. N Engl J Med. 2015;373:2258-2269. doi: 10.1056/NEJMra1502824                       |
| 387 | 9.  | Smilowitz NR, Berger JS. Perioperative Cardiovascular Risk Assessment and Management        |
| 388 |     | for Noncardiac Surgery: A Review. JAMA. 2020;324:279-290. doi: 10.1001/jama.2020.7840       |
| 389 | 10. | Wijeysundera DN, Beattie WS, Austin PC, Hux JE, Laupacis A. Non-invasive cardiac stress     |
| 390 |     | testing before elective major non-cardiac surgery: population based cohort study. Bmj.      |

| 1. | Schulman-Marcus J, Feldman DN, Rao SV, Prasad A, McCoy L, Garratt K, Kim LK, Minutello      |
|----|---------------------------------------------------------------------------------------------|
|    |                                                                                             |
|    | RM, Wong SC, Vora AN, et al. Characteristics of Patients Undergoing Cardiac                 |
|    | Catheterization Before Noncardiac Surgery: A Report From the National Cardiovascular        |
|    | Data Registry CathPCI Registry. JAMA Intern Med. 2016;176:611-618. doi:                     |
|    | 10.1001/jamainternmed.2016.0259                                                             |
| 2. | Chan K, Abou-Zamzam AM, Woo K. Preoperative Cardiac Stress Testing in the Southern          |
|    | California Vascular Outcomes Improvement Collaborative. Ann Vasc Surg. 2018;49:234-240.     |
|    | doi: 10.1016/j.avsg.2017.11.028                                                             |
| 3. | Shin SY, Lyu Y, Shin Y, Choi HJ, Park J, Kim WS, Lee JH. Lessons Learned from Development   |
|    | of De-identification System for Biomedical Research in a Korean Tertiary Hospital. Healthc  |
|    | Inform Res. 2013;19:102-109. doi: 10.4258/hir.2013.19.2.102                                 |
| 4. | Korean standard classification of diseases and causes of death (KCD-7).                     |
|    | https://kssc.kostat.go.kr:8443/ksscNew_web/ekssc/main/main.do. Accessed 1 Apr 2016.         |
| 5. | Smilowitz NR, Gupta N, Ramakrishna H, Guo Y, Berger JS, Bangalore S. Perioperative Major    |
|    | Adverse Cardiovascular and Cerebrovascular Events Associated With Noncardiac Surgery.       |
|    | JAMA Cardiol. 2017;2:181-187. doi: 10.1001/jamacardio.2016.4792                             |
| 6. | Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, De Hert S, de Laval I, |
|    | Geisler T, Hinterbuchner L, et al. 2022 ESC Guidelines on cardiovascular assessment and     |
|    | management of patients undergoing non-cardiac surgery: Developed by the task force for      |
|    | cardiovascular assessment and management of patients undergoing non-cardiac surgery         |
|    | of the European Society of Cardiology (ESC) Endorsed by the European Society of             |
|    | Anaesthesiology and Intensive Care (ESAIC). European Heart Journal. 2022;43:3826-3924.      |
|    | doi: 10.1093/eurheartj/ehac270                                                              |
| 7. | Kim YH, Ahn JM, Park DW, Song HG, Lee JY, Kim WJ, Yun SC, Kang SJ, Lee SW, Lee CW, et       |
|    | al. Impact of ischemia-guided revascularization with myocardial perfusion imaging for       |
|    | patients with multivessel coronary disease. J Am Coll Cardiol. 2012;60:181-190. doi:        |
|    | 10.1016/j.jacc.2012.02.061                                                                  |
| 8. | Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, Hayes SW,           |
|    | Cohen I, Germano G, Berman DS. Impact of ischaemia and scar on the therapeutic benefit      |
|    | derived from myocardial revascularization vs. medical therapy among patients undergoing     |
|    | stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32:1012-1024. doi:         |
|    | 10.1093/eurheartj/ehq500                                                                    |
| 9. | Dorbala S, Ananthasubramaniam K, Armstrong IS, Chareonthaitawee P, DePuey EG, Einstein      |
|    | AJ, Gropler RJ, Holly TA, Mahmarian JJ, Park MA, et al. Single Photon Emission Computed     |
|    | Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation,                |
|    | Acquisition, Processing, and Interpretation. J Nucl Cardiol. 2018;25:1784-1846. doi:        |
|    | 7.<br>3.<br>9.                                                                              |

#### 428 10.1007/s12350-018-1283-y

429 20. Son JS, Choi S, Kim K, Kim SM, Choi D, Lee G, Jeong SM, Park SY, Kim YY, Yun JM, et al. 430 Association of Blood Pressure Classification in Korean Young Adults According to the 2017 431 American College of Cardiology/American Heart Association Guidelines With Subsequent 432 Cardiovascular Disease Events. Jama. 2018;320:1783-1792. doi: 10.1001/jama.2018.16501 433 21. Ruetzler K, Smilowitz NR, Berger JS, Devereaux PJ, Maron BA, Newby LK, de Jesus Perez V, 434 Sessler DI, Wijeysundera DN. Diagnosis and Management of Patients With Myocardial 435 Injury After Noncardiac Surgery: A Scientific Statement From the American Heart 436 Association. Circulation. 2021;144:e287-e305. doi: 10.1161/CIR.000000000001024 437 22. Wijeysundera DN, Pearse RM, Shulman MA, Abbott TEF, Torres E, Ambosta A, Croal BL, 438 Granton JT, Thorpe KE, Grocott MPW, et al. Assessment of functional capacity before major 439 non-cardiac surgery: an international, prospective cohort study. The Lancet. 440 2018;391:2631-2640. doi: 10.1016/s0140-6736(18)31131-0 441 23. Dowsley TF, Sheth T, Chow BJW. Complementary pre-operative risk assessment using 442 coronary computed tomography angiography and nuclear myocardial perfusion imaging 443 in non-cardiac surgery: A VISION-CTA sub-study. J Nucl Cardiol. 2020;27:1331-1337. doi: 444 10.1007/s12350-019-01779-9 445 24. Hashimoto J, Nakahara T, Bai J, Kitamura N, Kasamatsu T, Kubo A. Preoperative risk 446 stratification with myocardial perfusion imaging in intermediate and low-risk non-cardiac 447 surgery. Circ J. 2007;71:1395-1400. doi: 10.1253/circj.71.1395 448 25. Metz LD, Beattie M, Hom R, Redberg RF, Grady D, Fleischmann KE. The prognostic value of 449 normal exercise myocardial perfusion imaging and exercise echocardiography: a meta-450 analysis. J Am Coll Cardiol. 2007;49:227-237. doi: 10.1016/j.jacc.2006.08.048 451 26. Baron JF, Mundler O, Bertrand M, Vicaut E, Barré E, Godet G, Samama CM, Coriat P, Kieffer 452 E, Viars P. Dipyridamole-thallium scintigraphy and gated radionuclide angiography to 453 assess cardiac risk before abdominal aortic surgery. N Engl J Med. 1994;330:663-669. doi: 454 10.1056/nejm199403103301002 455 27. Shin S, Kwon TW, Cho YP, Lee JY, Park H, Han Y. Preoperative cardiac evaluation by 456 dipyridamole thallium-201 myocardial perfusion scan provides no benefit in patients with 457 abdominal aortic aneurysm. World J Surg. 2013;37:2965-2971. doi: 10.1007/s00268-013-458 2200-9 459 Yao Y, Quirk T, French M, Dharmalingam A, Collins N. Myocardial perfusion imaging failed 28. 460 to improve patient risk classification compared with the revised cardiac risk index for early 461 cardiac complications after major non-cardiac surgery. Intern Med J. 2022;52:1203-1214. 462 doi: 10.1111/imj.15662 463 29. Weinstein H, Steingart R. Myocardial perfusion imaging for preoperative risk stratification. 464 J Nucl Med. 2011;52:750-760. doi: 10.2967/jnumed.110.076158

| 465 | 30. | Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, De Hert S, de Laval I,  |
|-----|-----|----------------------------------------------------------------------------------------------|
| 466 |     | Geisler T, Hinterbuchner L, et al. 2022 ESC Guidelines on cardiovascular assessment and      |
| 467 |     | management of patients undergoing non-cardiac surgery. Eur Heart J. 2022;43:3826-3924.       |
| 468 |     | doi: 10.1093/eurheartj/ehac270                                                               |
| 469 | 31. | Gupta PK, Gupta H, Sundaram A, Kaushik M, Fang X, Miller WJ, Esterbrooks DJ, Hunter CB,      |
| 470 |     | Pipinos, II, Johanning JM, et al. Development and validation of a risk calculator for        |
| 471 |     | prediction of cardiac risk after surgery. Circulation. 2011;124:381-387. doi:                |
| 472 |     | 10.1161/circulationaha.110.015701                                                            |
| 473 | 32. | Biccard B. Proposed research plan for the derivation of a new Cardiac Risk Index. Anesth     |
| 474 |     | <i>Analg</i> . 2015;120:543-553. doi: 10.1213/ane.0000000000000598                           |
| 475 | 33. | Biccard BM. The clinical utility of preoperative functional assessment. Lancet.              |
| 476 |     | 2018;391:2580-2581. doi: 10.1016/s0140-6736(18)31375-8                                       |
| 477 | 34. | McFalls EO, Ward HB, Moritz TE, Goldman S, Krupski WC, Littooy F, Pierpont G, Santilli S,    |
| 478 |     | Rapp J, Hattler B, et al. Coronary-artery revascularization before elective major vascular   |
| 479 |     | surgery. <i>N Engl J Med</i> . 2004;351:2795-2804. doi: 10.1056/NEJMoa041905                 |
| 480 | 35. | Hawn MT, Graham LA, Richman JS, Itani KM, Henderson WG, Maddox TM. Risk of major             |
| 481 |     | adverse cardiac events following noncardiac surgery in patients with coronary stents. Jama.  |
| 482 |     | 2013;310:1462-1472. doi: 10.1001/jama.2013.278787                                            |
| 483 | 36. | Poldermans D, Schouten O, Vidakovic R, Bax JJ, Thomson IR, Hoeks SE, Feringa HH,             |
| 484 |     | Dunkelgrün M, de Jaegere P, Maat A, et al. A clinical randomized trial to evaluate the       |
| 485 |     | safety of a noninvasive approach in high-risk patients undergoing major vascular surgery:    |
| 486 |     | the DECREASE-V Pilot Study. J Am Coll Cardiol. 2007;49:1763-1769. doi:                       |
| 487 |     | 10.1016/j.jacc.2006.11.052                                                                   |
| 488 | 37. | Muthappan P, Smith D, Aronow HD, Eagle K, Wohns D, Fox J, Share D, Gurm HS. The              |
| 489 |     | epidemiology and outcomes of percutaneous coronary intervention before high-risk             |
| 490 |     | noncardiac surgery in contemporary practice: insights from the Blue Cross Blue Shield of     |
| 491 |     | Michigan Cardiovascular Consortium (BMC2) Registry. J Am Heart Assoc. 2014;3:e000388.        |
| 492 |     | doi: 10.1161/jaha.113.000388                                                                 |
| 493 | 38. | Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O'Brien SM, Boden WE, Chaitman BR,           |
| 494 |     | Senior R, López-Sendón J, Alexander KP, et al. Initial Invasive or Conservative Strategy for |
| 495 |     | Stable Coronary Disease. N Engl J Med. 2020;382:1395-1407. doi: 10.1056/NEJMoa1915922        |
|     |     |                                                                                              |

#### 497 Figure legends

- 498 Figure 1. Flow Diagram of Participants in the Study
- 499 MPI, myocardial perfusion imaging.
- 500 Figure 2. Frequency of Abnormal MPI According to the Revised Cardiac Risk Index
- 501 MPI, myocardial perfusion imaging.
- 502 Figure 3. Primary and Secondary Outcomes
- 503 The cumulative incidences of the primary outcome of the composite of cardiac death and
- 504 myocardial infarction (A) and the secondary outcomes of cardiac death (B), all-cause death
- 505 (C), and myocardial infarction (D) within 30 days of noncardiac surgery. The P value was
- 506 calculated by means of the log-rank test.

## 507 Figure 4. Primary and Secondary Outcomes According to Revised Cardiac Risk Index

- 508 Score
- 509 Subgroup analyses by revised cardiac risk index score for primary and secondary outcomes,
- classified into three groups (score of 0, 1, and  $\geq 2$ ). The crude incidence of the outcomes is
- 511 marked on the bars. P value for interaction is also shown.
- 512 Figure 5. Primary Outcome According to Preoperative Coronary Angiography and
- 513 Revascularization among Patients with Abnormal MPI Results
- 514 Cumulative incidences of the primary outcome of the composite of cardiac death and
- 515 myocardial infarction within 30 days after noncardiac surgery. CAG, coronary angiography;
- 516 MPI, myocardial perfusion imaging.

# **Table 1. Baseline Characteristics**

|                                 | Myocardial perfusion imaging |             |              |                |  |
|---------------------------------|------------------------------|-------------|--------------|----------------|--|
| Characteristics                 | All patients                 | Abnormal    | Normal       | <i>P</i> value |  |
|                                 | (N = 82441)                  | (n = 5603)  | (n = 76838)  |                |  |
| Age, mean (SD), years           | 65.7 (9.6)                   | 67.5 (9.1)  | 65.5 (9.6)   | <.001          |  |
| $\geq$ 75 years                 | 14581 (17.7)                 | 1254 (22.4) | 13327 (17.3) | <.001          |  |
| $\geq 65$ years                 | 47926 (58.1)                 | 3685 (65.8) | 44241 (57.6) | <.001          |  |
| Sex (male)                      | 47417 (57.5)                 | 4500 (80.3) | 42917 (55.9) | <.001          |  |
| BMI, mean (SD), $kg/m^2$        | 24.4 (3.4)                   | 24.5 (3.4)  | 24.4 (3.5)   | <.001          |  |
| Not available                   | 2302 (2.8)                   | 202 (3.6)   | 2100 (2.7)   |                |  |
| Hypertension                    | 42570 (51.6)                 | 3580 (63.9) | 38990 (50.7) | <.001          |  |
| Diabetes                        | 22295 (27.0)                 | 2291 (40.9) | 20004 (26.0) | <.001          |  |
| Insulin usage                   | 3968 (4.8)                   | 545 (9.7)   | 3423 (4.5)   | <.001          |  |
| Hyperlipidemia                  | 5407 (6.6)                   | 670 (12.0)  | 4737 (6.2)   | <.001          |  |
| Chronic kidney disease          | 4646 (5.6)                   | 564 (10.1)  | 4082 (5.3)   | <.001          |  |
| Creatinine $>2.0 \text{ mg/dL}$ | 3696 (4.5)                   | 394 (7.0)   | 3302 (4.3)   | <.001          |  |
| Chronic heart failure           | 1462 (1.8)                   | 373 (6.7)   | 1089 (1.4)   | <.001          |  |
| Cerebrovascular disease         | 3248 (3.9)                   | 491 (8.8)   | 2757 (3.6)   | <.001          |  |
| Ischemic heart disease          | 8218 (10.0)                  | 3360 (60.0) | 4858 (6.3)   | <.001          |  |
| High-risk surgery               | 41396 (50.2)                 | 2775 (49.5) | 38621 (50.3) | .29            |  |
| Type of surgery                 |                              |             |              | <.001          |  |
| General                         | 33652 (40.8)                 | 2380 (42.5) | 31272 (40.7) |                |  |
| Thoracic                        | 5959 (7.2)                   | 387 (6.9)   | 5572 (7.3)   |                |  |
| Transplant                      | 5566 (6.8)                   | 207 (3.7)   | 5359 (7.0)   |                |  |
| Vascular                        | 2345 (2.8)                   | 451 (8.0)   | 1894 (2.5)   |                |  |
| Urologic                        | 7779 (9.4)                   | 758 (13.5)  | 7021 (9.1)   |                |  |
| Breast and endocrine            | 947 (1.1)                    | 67 (1.2)    | 880 (1.1)    |                |  |
| Neurosurgery                    | 11106 (13.5)                 | 427 (7.6)   | 10679 (13.9) |                |  |
| Obstetrics and gynecology       | 2361 (2.9)                   | 57 (1.0)    | 2304 (3.0)   |                |  |
| Orthopedic                      | 10849 (13.2)                 | 674 (12.0)  | 10175 (13.2) |                |  |
| Otolaryngology                  | 1492 (1.8)                   | 136 (2.4)   | 1356 (1.8)   |                |  |
| Plastic                         | 385 (0.5)                    | 59 (1.1)    | 326 (0.4)    |                |  |
| Left ventricular ejection       |                              |             |              |                |  |
| fraction                        |                              |             |              |                |  |
| $\leq 40\%$                     | 712 (0.9)                    | 349 (6.2)   | 363 (0.5)    | <.001          |  |
| Not available                   | 7342 (8.9)                   | 218 (3.9)   | 7124 (9.3)   |                |  |
| Revised cardiac risk index      |                              |             |              | <.001          |  |
| 0                               | 32498 (39.4)                 | 785 (14.0)  | 31713 (41.3) |                |  |
| 1                               | 39837 (48.3)                 | 2453 (43.8) | 37384 (48.7) |                |  |
| 2                               | 8445 (10.2)                  | 1752 (31.3) | 6693 (8.7)   |                |  |
| $\geq 3$                        | 1661 (2.0)                   | 613 (10.9)  | 1048 (1.4)   |                |  |
| Medication history*             |                              |             |              |                |  |
| Beta blocker                    | 16591 (20.1)                 | 2862 (51.1) | 13729 (17.9) | <.001          |  |
| Calcium channel blocker         | 38279 (46.4)                 | 3693 (65.9) | 34586 (45.0) | <.001          |  |
| ACEi or ARB                     | 23904 (29.0)                 | 2608 (46.5) | 21296 (27.7) | <.001          |  |

| Statin      | 19981 (24.2) | 3208 (57.3) | 16773 (21.8) | <.001 |
|-------------|--------------|-------------|--------------|-------|
| Aspirin     | 9594 (11.6)  | 2684 (47.9) | 6910 (9.0)   | <.001 |
| Clopidogrel | 4896 (5.9)   | 1662 (29.7) | 3234 (4.2)   | <.001 |

518 Data are presented as no. (%) of individuals unless otherwise indicated.

519 \*Medications at the time of admission for surgery.

520 Abbreviations: ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor

521 blocker; SD, standard deviation.

|                                                | Myocardial perfusion imaging <sup>a</sup> |             | Unadjusted         |                | Adjusted <sup>b</sup> |         |
|------------------------------------------------|-------------------------------------------|-------------|--------------------|----------------|-----------------------|---------|
|                                                | Abnormal                                  | Normal      | OR [95% CI]        | <i>P</i> value | OR [95% CI]           | P value |
|                                                | n=5598                                    | n=76790     |                    |                |                       |         |
| Primary outcome                                |                                           |             |                    |                |                       |         |
| Cardiac death or MI                            | $69(1.2)^{a}$                             | 115 (0.1)   | 8.32 [6.14-11.19]  | <.001          | 4.64 [3.29-6.50]      | <.001   |
| Secondary outcomes                             |                                           |             |                    |                |                       |         |
| Cardiac death                                  | 26 (0.5)                                  | 71 (0.1)    | 5.04 [3.16-7.80]   | <.001          | 3.11 [1.86-5.07]      | <.001   |
| All-cause death                                | 58 (1.0)                                  | 352 (0.5)   | 2.27 [1.70-2.98]   | <.001          | 1.41 [1.03-1.89]      | .026    |
| MI                                             | 52 (0.9)                                  | 48 (0.1)    | 15.0 [10.11-22.26] | <.001          | 8.19 [5.21-12.87]     | <.001   |
| Patients undergoing troponin test <sup>c</sup> | n=3281                                    | n=20638     |                    |                |                       |         |
| Cardiac death and MINS                         | 548 (16.7)                                | 2741 (13.3) | 1.31 [1.18-1.45]   | <.001          | 1.38 [1.24-1.53]      | <.001   |
| MINS                                           | 542 (16.5)                                | 2729 (13.2) | 1.30 [1.17-1.44]   | <.001          | 1.37 [1.23-1.52]      | <.001   |

## 522 Table 2. Thirty-day Outcomes, stratified by MPI Results

523 Abbreviations: CI, confidence interval; OR, odds ratio; MI, myocardial infarction; MINS, myocardial injury after noncardiac surgery.

<sup>a</sup>Crude incidence within 30 days, no. of events (%).

<sup>b</sup>Adjusted variables were age, sex, revised cardiac risk index, and myocardial perfusion imaging result.

<sup>526</sup> <sup>c</sup>Cardiac troponin test was conducted within 30 days after noncardiac surgery in 23934 patients, and 15 patients of them had missing data.

## 527 Table 3. Predictive Performance of Myocardial Perfusion Imaging before Noncardiac Surgery

|                             |           | <i>P</i> value | Net reclassification improvement |            |                    |                |
|-----------------------------|-----------|----------------|----------------------------------|------------|--------------------|----------------|
|                             | $AUC^{a}$ |                | Events                           | Non-events | Overall [95% CI]   | <i>P</i> value |
| Cardiac death and MI        |           |                |                                  |            |                    |                |
| Baseline model <sup>b</sup> | 0.73      |                |                                  |            |                    |                |
| Plus MPI result             | 0.77      | <.001          | -0.12                            | 0.38       | 0.26 [0.11-0.40]   | <.001          |
| Cardiac death               |           |                |                                  |            |                    |                |
| Baseline model <sup>b</sup> | 0.70      |                |                                  |            |                    |                |
| Plus MPI result             | 0.73      | .048           | -0.26                            | 0.35       | 0.09 [-0.10-0.28]  | .360           |
| All cause death             |           |                |                                  |            |                    |                |
| Baseline model <sup>b</sup> | 0.65      |                |                                  |            |                    |                |
| Plus MPI result             | 0.65      | .110           | -0.42                            | 0.30       | -0.12 [-0.21-0.03] | .007           |
| Myocardial infarction       |           |                |                                  |            |                    |                |
| Baseline model <sup>b</sup> | 0.76      |                |                                  |            |                    |                |
| Plus MPI result             | 0.83      | <.001          | 0.10                             | 0.49       | 0.59 [0.39-0.79]   | <.001          |

528 Abbreviations: AUC, area under the receiver-operating-characteristic curve; CI, confidence interval; MPI, myocardial perfusion imaging.

<sup>529</sup> <sup>a</sup>AUC for the relevant logistic regression model.

<sup>530</sup> <sup>b</sup>Covariates in the baseline model were age, sex, and the revised cardiac risk index score.













#### **B** Cardiac death within 30 days after noncardiac surgery







