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Abstract10

Medical imaging, like computed tomography (CT) and magnetic resonance imaging (MRI),11

holds profound value in disease diagnosis for millions worldwide. However, studies show that12

physician imaging orders may frequently be inappropriate (26% of cases) for the corresponding13

patient evaluation. Measures are necessary to mitigate patient risks in the subsequent re-imaging14

necessitated by physician error, including radiation exposure, additional sedation (pediatrics),15

and delayed treatment. To address these dangers, AIM-AI presents an unprecedented platform16

for automated medical imaging order selection using natural language processing and machine17

learning (ML). The algorithm was trained with anonymized imaging records and associated18

provider-input symptoms for 40,667 patients from Texas Children’s Hospital, obtained after19

institutional review board approval. First, the data was preprocessed using tokenization and20

lemmatization to extract keywords. Second, an entity-embedding ML model converted the21

symptoms to high-dimensional numerical vectors suitable for model comprehension, which we22

used to balance the dataset through k-nearest-neighbor-based synthetic sampling. Third, a23

Support Vector Classifier (ML model) was trained and hyper-parameter tuned using the em-24

bedded symptoms to predict modality (CT/MRI), contrast (with/without), and anatomical25

region (head, neck, etc.) for an imaging order with 93.2% accuracy on 4,704 test cases. Finally,26

a web application was developed to package the model, which analyzes user-input symptoms27

and outputs the predicted order. The implementation of this application would save the lives28

of millions of patients facing potentially fatal risks associated with medical imaging by reducing29

costs, expediting treatment, and maximizing patient health. In this way, AIM-AI paves the30

path to a revolutionized medical field.31
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1 Introduction32

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are routinely used in the33

diagnosis of various diseases, playing a crucial role in disease identification for millions of people34

worldwide [1–3]. These imaging techniques allow healthcare professionals to visualize internal struc-35

tures, enabling them to identify cancerous or diseased tissues, injuries, and neurological disorders.36

By using this information, medical professionals can carefully plan treatments to accurately address37

the underlying conditions.38

1.1 Purpose39

Although their general purpose is the same, MRI and CT scans are necessary for different diagnosis40

requirements. MRI is a non-radiation imaging process that utilizes the nuclear magnetic resonance41

phenomenon to generate images of soft tissue structures. By aligning hydrogen atoms in the body42

with the magnetic field and perturbing them with radio waves, the MRI scanner measures the result-43

ing energy release and constructs a three-dimensional representation of the tissues being examined44

[2–7]. In contrast, a CT scan conducts numerous X-ray projections to create detailed cross-sectional45

images of the body with millimeter precision[8–10]. An intramedullary tumor, for example, would46

require an MRI scan due to its sensitivity in detecting soft tissue abnormalities. A broken bone,47

however, would require a CT scan due to its ability to visualize dense structures.48

1.2 Imaging49

The significant growth of the medical imaging industry has increased over two-fold from $3.6 billion50

to $7.6 billion over a period of 7 years[11]. This growth highlights the increasing prominence of51

medical imaging in healthcare. However, this rapid rise is also characterized by the need for im-52

provements in imaging efficiency, from the initial physician encounter to the MRI/CT evaluation by53

the specialist. The imaging process involves numerous interactions between the patient, insurance54

company, physician ordering the image, and the clinic responsible for carrying out the order. As a55

result, the imaging process can lead to an extended patient timeline. A long process such as this in56

a rapidly increasing industry calls for the need for efficient and appropriate imaging. Artificial intel-57

ligence has proven to be necessary for CT scans for patient positioning, scan positioning, protocol58

selection, CT parameter selection, and image reconstruction [12].59

1.3 Concerns60

Imaging appropriateness has been of important concern in the effort to improve medical imaging61

efficiency and cost reduction. A past study showed that 26% of medical imaging orders were identified62

as inappropriate [13, 14]. This high proportion has four main consequences for patients. (i) Re-63

imaging leads to excessive radiation, which has a well-established link to cancer and other disorders64

[15–18]. (ii) MRI/CT scans require pediatric patients to be sedated, and repeating this can cause65

cardiopulmonary complications [19, 20]. (iii) The patient recovery timeline can be delayed due66

to the aforementioned long process of imaging having to be repeated, and for a patient with an67
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undiagnosed yet critical condition, timing can be the difference between life and death. (iv) The68

increased costs of reimaging can put a financial strain on not only the patient, potentially preventing69

them from further treatment, but also the hospital, which could better spend those funds to help70

more patients[21].71

Physician-based clinical decision support systems (CDS) have been demonstrated to improve the72

efficiency of image ordering and reduce re-imaging rates significantly [22], and artificial intelligence73

has a potential impact in protocol/order selection in medical CT scans specifically [8]. However,74

limited research is available on the effectiveness of computer-based imaging order CDS algorithms.75

To address this gap in the literature, we conducted a study to develop an AI algorithm with NLP that76

can effectively determine the most appropriate imaging order for a patient based on their clinical signs77

and symptoms within a clinical setting. We hypothesized that implementing a computer-interface-78

based CDS would enhance clinical efficiency and reduce the likelihood of the four aforementioned79

devastating consequences of re-imaging a patient.80

2 Methods81

2.1 Data Collection82

Data were obtained in CSV format from the Texas Children’s Hospital Department of Pediatric83

Neuroradiology following IRB approval and HIPAA certification. All imaging orders were verified84

for accuracy and anonymized per HIPAA guidelines before their use in the study.85

The dataset was composed of 40,667 entries of patient symptoms paired with the corresponding86

imaging order as seen in Figure 1. Exploratory data analysis [23] was then conducted to identify87

key features for implementation in the algorithm. The initial dataset consisted of approximately 8088

neurological imaging orders but was eventually reduced to the top 8 most frequent imaging orders.89

The distribution of the frequency of imaging orders in Figure 2 reports CT Head without Contrast90

as a frequent option or ordering and MRI Pituitary with less than 1000.91

The data in Figure 1 included information on various unidentifiable patient attributes namely92

age, weight, and height. which were assessed for their contribution to the model’s output. It was93

determined that these columns would introduce unnecessary features with low predictive power94

due to their randomness and were therefore excluded. The average word count of the clinical95

signs/symptoms showed an average of 4.6 words indicating the limited information provided with96

each entry (Fig. 3). Three key issues were identified in the data that impacted our approach prior97

to algorithm implementation. First, the degree of irregularity present required the implementation98

of a pre-processing step prior to ML. Many rows consisted of abbreviations, irregular capitalization,99

incorrect spelling and grammar, and empty entries. Second, a severe data imbalance, with nearly100

11,000 cases of CT Head without Contrast and just 1,000 of MRI Pituitary indicated the need101

for class balancing, either with under-sampling or oversampling [24]. Lastly, the most frequent102

word count of the symptom text rows was found to be just three, as seen in the distribution graph,103

indicating that each word present contributes significant meaning and that any pre-processing should104

be somewhat conservative (Fig. 3).105
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2.2 Preprocessing106

A three-step processing algorithm addressed these data irregularities. The initial step was to nor-107

malize and condense the symptom text. Our initial approach was to utilize OpenAI’s Davinci GPT-3108

API [25] to ask it to extract important keywords and include similar words to the existing prompt109

for additional data. This approach proved to be costly and computationally expensive as it required110

API and tokens for purchase. The alternative was the Natural Language Toolkit (NLTK) which111

tokenizes each symptom row and filters through the StopWord corpus to identify stop-words [26].112

As opposed to extracting important keywords, the algorithm uses the corpus to identify and extract113

unnecessary filler words that serve no significant meaning such as “with”, “to”, and “also”. It proved114

to be the most effective approach in normalizing the data and accounted for special characters and115

irregular syntax as seen in Figure 5. However, using the NLTK library sacrificed the ability to116

correct spellings, a feature that the GPT model would automatically account for.117

Following keyword filtering, word lemmatization was performed to simplify each word to its most118

fundamental grammatical root and maintain consistency across conjugations as seen in Fig. 5 (e.g.119

“flying” transformed to “fly”) [27, 28]. Lemmatization was preferred over stemming due to its higher120

accuracy but at the expense of computational speed [29, 30]. Without lemmatization, however, the121

model is introduced to more variability in words and would impact the accuracy of the model.122

To facilitate ML model training, it was necessary to transform the symptom text into numerical123

representations [31]. The reasoning of use of an embedding model for text-to-numerical represen-124

tations was two-fold over the established one-hot encoding approach - the computation time is125

significantly increased and the dimensionality of the encoding approach of a 40,000-row dataset126

would magnify the complexity of the algorithm carrying out downstream tasks [32, 33]. The fo-127

cus went on utilizing the optimal model for entity embedding. With limitations of computational128

power and a limited solution timeline, the choice was dependent on the previous literature on the129

trade-off of accuracy to time complexity. We leveraged OpenAI’s 1.2 billion-parameter pre-trained130

and custom-tuned Ada embedding model [34], which uses entity embedding techniques to convert131

each symptom row into dense 1536-dimensional numerical vectors to convey both the definition and132

context of the input (Fig. 5). The model architecture first embeds each word into a vector and then133

uses multi-head self-attention transformer layers to understand and generate relationships between134

the words. Word2Vec, a prospective alternative embedding algorithm, was not preferred in this use135

case due to possible words un-encountered in the pre-trained base embedding and presence of pairs136

of structurally similar words but different definitions [35].137

Referenced before, Figure 2 magnifies the severe class imbalance present in the dataset. Training138

an ML model with imbalanced data with a majority-minority ratio of approximately 15:1 is sub-139

optimal to maximize accuracy as much as possible. To combat this, a synthetic sampling algorithm140

assisted in balancing the dataset following entity embedding. We utilized a synthetic minority141

oversampling technique (SMOTE) k-nearest-neighbor algorithm [36], which is designed to construct142

new points close to existing ones in high-dimensional feature space, thereby increasing the number143

of samples of the minority class. A sample point is paired with a neighbor and the difference144

between the points is multiplied by a random number which then creates a new point in between145
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the two existing points. SMOTE has also been proven to work well in high-dimensional datasets146

[37]. Each of the minority classes was oversampled to match the count of the majority class (CT147

Head without Contrast). SMOTE increased the sample size from 40,667 to approximately 90,000148

rows and was used to train the final ML model (Fig. 7). Basic minority oversampling and majority149

undersampling techniques were also tested, however, the SMOTE algorithm was found to be more150

effective at increasing the variety of data present in a limited dataset [38]. By generating synthetic151

data points, the algorithm was able to maintain the underlying structure of the data while eliminating152

the problem of class imbalance.153

2.3 Machine Learning154

Selecting a model required a rigorous experimental design, training, and testing of three distinct155

supervised alternatives on the same dataset with default model parameters. This approach allowed156

for a reliable assessment of the most effective model for accurate classification. Specifically, the157

models tested were XGBoost, which utilizes gradient boosting and decision trees to iteratively learn158

from residuals and minimize loss; Random Forest, an ensemble learning method that constructs159

multiple decision trees to aggregate their outputs and improve prediction accuracy; and Support160

Vector Machine (SVM), a robust classification algorithm that identifies a hyperplane to optimally161

separate data points of different classes in a high-dimensional feature space through a maximum162

margin function. Evaluation of all three models proved the Support Vector Classifier to be the best163

for the dataset as seen in Figure 8. The reasoning of the model was two-fold. (i) It was critical164

to prevent the model’s overfitting, a problem commonly associated with high-dimensional data165

SVMs [39, 40]. The SVM is comparatively better than regression algorithms and other classifiers in166

preventing overfitting in high-dimensional space leading to overall improved performance in high-167

dimensional datasets [41, 42]. (ii) SVM classification models being resistant to noise [40]. This is168

important in medical NLP where abbreviations and other anomalies are included in the history [43].169

The straight line for the boundaries of each classification region in a linear SVM classifier is170

defined as:171

β0 ∗ x1 + β2 ∗ x2 = −β0 (1)172

where −→w is [β0, β1] which is perpendicular to the hyperplane and −→x is [x1, x2] is the point on the173

straight line.174

Equation 1 can be generalized to:175

β0 + β0 ∗ x1 + β1 ∗ x2 + ...+ βp ∗ xp+1 = 0 (2)176

or177

−→w • −→x + b = 0 (3)178

Xi is defined as the vector to display all features of index i. With
−→
X+ describing the positive class179

and
−→
X− describing the negative class. The support vectors can be defined as180

−→w •
−→
X+ + b > 1181

and182

−→w •
−→
X− + b < −1 (4)183
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Provided that Yi is a vector containing values -1 and +1. Equation 4 can be generalized into184

Yi(
−→w •

−→
Xi + b) ≥ 1 (5)185

The width of the margin is then defined as186

(
−→
X+−

−−→
X−)•−→w

∥w∥ (6)187

or188

2
∥w∥ (7)189

And to maximize Equation 7, the model must minimize190

1
2 ∥w∥

2
(8)191

Lagrangian Transform then optimizes Equation 8 with constraints of Equation 5.192

L = 1
2 ∥w∥

2 −
∑

αi[Yi(
−→w •

−→
Xi + b)− 1] (9)193

Since194

δL
δw = 0, therefore −→w =

∑
αiYiXi (10)195

and196

δL
δb = 0, therefore

∑
XiYi = 0 (11)197

Which leads to198

L = − 1
2

∑
ij αiαjYiYj

−→
Xi •

−→
Xj +

∑
αi (12)199

From here, we see that the SVC depends on
−→
Xi •

−→
Xj .200

Each model was trained on the pre-processed data and was validated on a 4704(5%) randomly201

sampled test case set with accuracy metrics. Accuracy, in terms of True Positive(TP), True Nega-202

tive(TN), False Positive(FP), and False Negative(FN).203

Accuracy = TP+FP
TP+FP+FN+TN (13)204

After selecting a model, the support vector machine further optimized the model’s performance205

through GridSearchCV which further optimized the model’s performance by conducting tuning of206

six model parameters using GridSearchCV. The GridSearchCV starts with random hyperparameters207

and slowly optimized the model through a trial-and-error method. The perfect model is met when208

there is a balance between underfitting and overfitting, therefore increasing the metrics of the model209

[44–46]. The parameters that were optimized were Kernel, C, Gamma, and Train-Test split. A210

low-degree polynomial kernel is optimal in NLP situations [47, 48].211

With x and y reprinting the input vectors, φ(x) and φ(y) representing the mapping functions,212

the polynomial kernel works as follows:213

K(x, y) = (xT y + c)d = (φ(x), φ(y)) (14)214
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3 Results215

The models were successfully trained and tested on the preprocessed dataset. Notably, the SVM216

exhibited the highest accuracy of 91.5% on a randomly sampled test case set of 4704 from the original217

data, outperforming the other models (see Fig. 8 for model accuracies). The GridSearchCV then218

increased the SVM accuracy by 1.7% to 93.2219

Precision, recall, and F1 scores painted a more detailed picture of the intricacies of the model220

(Fig. 9), and each can be defined in terms of the number of true positive (TP), true negative (TN),221

false positive (FP), and false negative (FN) cases for the given classification in the test set.222

Precision represents the proportion of retrieved positive cases that were relevant and is calculated223

as:224

Precision = TP
TP+FP (15)225

Recall represents the proportion of relevant positive cases that were retrieved by the model and226

is calculated as:227

Recall = TP
TP+FN (16)228

The F1 score is the harmonic mean of precision and recall.229

F1 = Precision∗Recall
Precision+Recall (17)230

MRI Pituitary WO/W Contrast had the highest scores of all three metrics at 0.97, 0.99, and231

0.98 respectively, suggesting confidence with this class. MRI Brain WO/W Contrast had the lowest232

scores of all three metrics at 0.84, 0.72, and 0.77 respectively, suggesting that this class may be233

highly similar to another. However, the average of all individual class metrics came out to be 0.92,234

0.92, and 0.92 respectively, confirming the model’s overall accuracy.235

The heatmap in Fig. 10 assists in visualizing class-specific performance as well. Similarly, the236

receiver operating characteristic (ROC) curves seen in Fig. 11 demonstrate a strong tradeoff between237

true and false positives. An area under the curve (AUC) close to 1 for each class indicates an accurate238

model. The model achieved near-perfect AUC values for three classes: CT Soft Tissue Neck With239

Contrast, CT Maxillofacial Without Contrast, and MRI Pituitary WO/W Contrast. These findings240

are consistent with the high metrics observed for the classes above in Fig. 9.241

To properly visualize the internal workings of the algorithm, the 1536-dimensional data was242

compressed into a two-dimensional array through a t-distributed stochastic embedding (TSNE)243

network. tSNE is a dimensionality reduction technique that embeds the 1536 features present into244

two or three dimensions for visualization. Each individual point represents a case, all of which can245

be observed to be clustered based on class.246

In order to carry out the tSNE algorithm, the high-dimensional Euclidean distances between any247

two datapoints xi and xj is first found in the form of conditional probabilities, which represent the248

similarity between the points. The conditional probability pj|i that xj is near xi is calculated using249

a Gaussian distribution centered at xi with a standard deviation of σi and is defined as:250

pj|i =
exp(−∥xi−xj∥2/2σ2

i )∑
k ̸=i exp(−∥xi−xk∥2/2σ2

i )
(18)251
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The high-dimensional joint probability distribution can then be calculated as:252

pij =
pj|i+pi|j

2n (19)253

Next, a second joint probability distribution is constructed in low-dimensional space. The con-254

ditional probability qij representing the similarity of any two points yi and yj is calculated with a255

t-distribution:256

qij =
(1+∥yi−yj∥2)−1∑
k ̸=l(1+∥yk−yl∥2)−1 (20)257

Finally, the deviation between the low- and high-dimensional data point distributions must be258

minimized, which can be done using the Kullback-Leiber (KL) divergence. The KL divergence for259

distributions P and Q in space χ is defined as:260

DKL(P ||Q) =
∑

x∈χ P (x) log
(

P (x)
Q(x)

)
(21)261

Gradient descent is employed to iteratively modify the low-dimensional data to best match the262

high-dimensional data. To do this, the cost function C must be minimized. C represents the KL263

divergence of the joint probability distributions P , from the high-dimensional data, and Q, from the264

low-dimensional data and is defined as:265

C = KL(P ||Q) =
∑

i ̸=j pij log
(

pij

qij

)
(22)266

The results are shown in Fig. 12.267

Hyperplanes were then drawn to view the classification boundaries of the SVM (Fig. 13). Due to268

its large compression ratio (1536/2 = 768), many features were most likely lost, so the classification269

in a two-dimensional space is not entirely representative of the 1536-dimensional hyperspace but270

does serve as a rough model. The poor classification of points seen in the MRI Brain WO/W271

Contrast class in Fig. 13 is consistent with the relatively low class-specific metrics observed in the272

classification report in Fig. 9.273

The accuracy of the SVM model does appear to be significantly higher than the physician accu-274

racy of 74.3%, but a one-way two proportion z-test confirmed that there was a statistically significant275

difference in the physician imaging order accuracy of 74.3% and SVM model imaging order accuracy276

of 93.2% (p < 0.0001). In the context of the 100 million MRI/CT scans done annually, an increase277

of 18.9% in imaging accuracy can prevent 18.9 million patients from the effects of excessive imaging.278

In order to maximize the efficacy of the ML model and provide a more realistic clinical tool,279

a probability-based prediction system was implemented that provides the probability of each class280

fitting the input, rather than outputting a single classification. The algorithm, by default, offers the281

top three highest-probability class results with a 100% chance that the class labeled as correct will282

be present in the top three (Fig. 14).283

4 Discussion284

This algorithm proves the effectiveness of an automated approach to mitigating existing risks of285

incorrect imaging order selection by physicians. However, a raw algorithm is impractical for a286
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practicing physician, who requires a straightforward user interface. After the study, the model287

was packaged into a web application that receives free-text symptom input and uses it to output288

the predicted imaging order with a confidence score. This application acts as a clinical decision289

support tool, allowing physicians an additional verification step to produce a combined imaging290

order selection accuracy of over 93%.291

A notable use for this tool is in emergency settings. Rather than requiring a physician to292

evaluate a patient both before and after receiving imaging, the application would reduce strain on293

the physician by eliminating any need for them to see the patient until after imaging and diagnostics294

have been completed, which would maximize hospital efficiency.[49] Patients could realistically be295

rapidly evaluated, receive an imaging order from the tool, undergo imaging, and have the results296

read in a short time frame, which would improve their treatment outlook.297

The widespread implementation of this algorithm holds potential for several positive outcomes298

as a result of decreased re-imaging due to more accurate imaging order selection.[22] First, excessive299

radiation brought by several imaging methods, namely CT scans, would be mitigated. Presently,300

radiation, which is significantly carcinogenic, can be presented in unnecessarily high dosage when301

imaging must be carried out multiple times.[15, 50] With improved imaging order selection, fewer302

cases of re-imaging would reduce radiation exposure to a minimal level.303

The algorithm would, furthermore, eliminate repeated sedation in patients, reducing the potential304

for complications. Pediatric patients, as well as adults with certain conditions such as claustropho-305

bia, require sedation when being imaged, but such practices pose risks of complications for those306

patients.[51] By minimizing the number of instances of sedation, the algorithm will maximize patient307

health outcomes.308

Reducing re-imaging would also expedite patient treatment timelines. The process of imaging,309

including carrying out the imaging, reading results, and conveying the outcome to the patient,310

is time-consuming, and for patients with unknown critical conditions, repeating these steps due to311

physician imaging order error can be life-threatening. Without re-imaging, the duration of diagnostic312

testing is lessened for improved treatment options. [52].313

A final advantage is the reduction of costs for both the hospital and patient that is brought314

by more precise imaging ordering. [53] Hospital systems currently spending millions to carry out315

imaging orders would see significant drops in spending with the implementation of this algorithm.[11]316

By instead applying these funds to causes such as research, medical facilities could see a growth in317

innovation and potentially revolutionary treatment breakthroughs.318

Despite the numerous benefits of this tool, there exist several avenues for further development319

that would optimize its effectiveness. Enhancement of this algorithm’s accuracy metrics will most320

importantly require the incorporation of more training data. The present data includes just one321

feature (clinical symptoms) and originates from a single hospital institution. Incorporating vital322

signs, laboratory orders, family history, and clinical guidelines from multiple institutions in the323

model could certainly see an additional 4-5% accuracy increase.324

The present dataset also is limited to neurological imaging orders; however, due to the gener-325

alizability of the algorithm, this can be easily diversified.[54] Because this model does not need to326

be adapted to specific features of the dataset, any additional, similarly-structured data (free-text327
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input + class-based output) could be used in training to also produce high accuracy rates. In this328

way, with datasets for other body systems, such as gastrointestinal imaging orders, the scope of the329

model could quickly be grown to fit any medical specialty, and the application’s online nature will330

allow for real-time remote updates to the platform.331

5 Conclusion332

This algorithm has significant potential to be truly revolutionary for the millions of patients facing333

incorrect imaging orders in the United States. Beyond this, scaling the application to the rest of334

the world would impact millions more by reducing costs through fewer scans, expediting treatment335

through more efficient diagnosis, and maximizing patient health through reduced radiation and se-336

dation. This tool will certainly be critical for a more efficient healthcare system and groundbreaking337

to the medical field as a whole.338
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6 Figures339

Figure 1: Sample Data

Figure 2: Class Distribution
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Figure 3: Word Count Distribution

Figure 4: Lemmatization

12

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.24.23291863doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.24.23291863
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5: Keyword Filtering

Figure 6: Entity Embedding

Figure 7: Synthetic Sampling
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Figure 8: Model Comparisons

Figure 9: Classification Report
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Figure 10: Heatmap

Figure 11: ROC Curves
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Figure 12: tSNE 2D

Figure 13: Decision Boundary Plot
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Figure 14: Top K Accuracy
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