Automated Approach to Selecting Neurological Medical Imaging Orders Using Natural Language Processing

2

3

8

q

10

Videet Mehta^{1†}, Rohan Dharia^{2†}, and Nilesh Desai^{3,4}

¹Math and Science Academy, Dulles High School, Sugar Land, Texas.

²Global Studies Academy, Travis High School, Richmond, Texas.

³Department of Radiology, Texas Children's Hospital and Baylor College of

Medicine, Houston, Texas.

[†]These authors contributed equally to this work.

July 3rd 2023

Abstract

Medical imaging, like computed tomography (CT) and magnetic resonance imaging (MRI), 11 holds profound value in disease diagnosis for millions worldwide. However, studies show that 12 physician imaging orders may frequently be inappropriate (26% of cases) for the corresponding 13 patient evaluation. Measures are necessary to mitigate patient risks in the subsequent re-imaging 14 necessitated by physician error, including radiation exposure, additional sedation (pediatrics), 15 and delayed treatment. To address these dangers, AIM-AI presents an unprecedented platform 16 for automated medical imaging order selection using natural language processing and machine 17 learning (ML). The algorithm was trained with anonymized imaging records and associated 18 provider-input symptoms for 40,667 patients from Texas Children's Hospital, obtained after 19 institutional review board approval. First, the data was preprocessed using tokenization and 20 lemmatization to extract keywords. Second, an entity-embedding ML model converted the 21 symptoms to high-dimensional numerical vectors suitable for model comprehension, which we 22 used to balance the dataset through k-nearest-neighbor-based synthetic sampling. Third, a 23 Support Vector Classifier (ML model) was trained and hyper-parameter tuned using the em-24 bedded symptoms to predict modality (CT/MRI), contrast (with/without), and anatomical 25 region (head, neck, etc.) for an imaging order with 93.2% accuracy on 4,704 test cases. Finally, 26 a web application was developed to package the model, which analyzes user-input symptoms 27 and outputs the predicted order. The implementation of this application would save the lives 28 of millions of patients facing potentially fatal risks associated with medical imaging by reducing 29 costs, expediting treatment, and maximizing patient health. In this way, AIM-AI paves the 30 path to a revolutionized medical field. 31

32 1 Introduction

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are routinely used in the diagnosis of various diseases, playing a crucial role in disease identification for millions of people worldwide [1–3]. These imaging techniques allow healthcare professionals to visualize internal structures, enabling them to identify cancerous or diseased tissues, injuries, and neurological disorders. By using this information, medical professionals can carefully plan treatments to accurately address the underlying conditions.

³⁹ 1.1 Purpose

Although their general purpose is the same, MRI and CT scans are necessary for different diagnosis 40 requirements. MRI is a non-radiation imaging process that utilizes the nuclear magnetic resonance 41 phenomenon to generate images of soft tissue structures. By aligning hydrogen atoms in the body 42 with the magnetic field and perturbing them with radio waves, the MRI scanner measures the result-43 ing energy release and constructs a three-dimensional representation of the tissues being examined 44 [2–7]. In contrast, a CT scan conducts numerous X-ray projections to create detailed cross-sectional 45 images of the body with millimeter precision[8–10]. An intramedullary tumor, for example, would 46 require an MRI scan due to its sensitivity in detecting soft tissue abnormalities. A broken bone, 47 however, would require a CT scan due to its ability to visualize dense structures. 48

49 1.2 Imaging

The significant growth of the medical imaging industry has increased over two-fold from \$3.6 billion 50 to \$7.6 billion over a period of 7 years[11]. This growth highlights the increasing prominence of 51 medical imaging in healthcare. However, this rapid rise is also characterized by the need for im-52 provements in imaging efficiency, from the initial physician encounter to the MRI/CT evaluation by 53 the specialist. The imaging process involves numerous interactions between the patient, insurance 54 company, physician ordering the image, and the clinic responsible for carrying out the order. As a 55 result, the imaging process can lead to an extended patient timeline. A long process such as this in 56 a rapidly increasing industry calls for the need for efficient and appropriate imaging. Artificial intel-57 ligence has proven to be necessary for CT scans for patient positioning, scan positioning, protocol 58 selection, CT parameter selection, and image reconstruction [12]. 59

60 1.3 Concerns

Imaging appropriateness has been of important concern in the effort to improve medical imaging efficiency and cost reduction. A past study showed that 26% of medical imaging orders were identified as inappropriate [13, 14]. This high proportion has four main consequences for patients. (i) Reimaging leads to excessive radiation, which has a well-established link to cancer and other disorders [15–18]. (ii) MRI/CT scans require pediatric patients to be sedated, and repeating this can cause cardiopulmonary complications [19, 20]. (iii) The patient recovery timeline can be delayed due to the aforementioned long process of imaging having to be repeated, and for a patient with an

⁶⁸ undiagnosed yet critical condition, timing can be the difference between life and death. (iv) The ⁶⁹ increased costs of reimaging can put a financial strain on not only the patient, potentially preventing ⁷⁰ them from further treatment, but also the hospital, which could better spend those funds to help ⁷¹ more patients[21].

Physician-based clinical decision support systems (CDS) have been demonstrated to improve the 72 efficiency of image ordering and reduce re-imaging rates significantly [22], and artificial intelligence 73 has a potential impact in protocol/order selection in medical CT scans specifically [8]. However, 74 limited research is available on the effectiveness of computer-based imaging order CDS algorithms. 75 To address this gap in the literature, we conducted a study to develop an AI algorithm with NLP that 76 can effectively determine the most appropriate imaging order for a patient based on their clinical signs 77 and symptoms within a clinical setting. We hypothesized that implementing a computer-interface-78 based CDS would enhance clinical efficiency and reduce the likelihood of the four aforementioned 79 devastating consequences of re-imaging a patient. 80

$_{\scriptscriptstyle 81}$ 2 Methods

⁸² 2.1 Data Collection

⁸³ Data were obtained in CSV format from the Texas Children's Hospital Department of Pediatric
 ⁸⁴ Neuroradiology following IRB approval and HIPAA certification. All imaging orders were verified
 ⁸⁵ for accuracy and anonymized per HIPAA guidelines before their use in the study.

The dataset was composed of 40,667 entries of patient symptoms paired with the corresponding imaging order as seen in Figure 1. Exploratory data analysis [23] was then conducted to identify key features for implementation in the algorithm. The initial dataset consisted of approximately 80 neurological imaging orders but was eventually reduced to the top 8 most frequent imaging orders. The distribution of the frequency of imaging orders in Figure 2 reports CT Head without Contrast as a frequent option or ordering and MRI Pituitary with less than 1000.

The data in Figure 1 included information on various unidentifiable patient attributes namely 92 age, weight, and height. which were assessed for their contribution to the model's output. It was 93 determined that these columns would introduce unnecessary features with low predictive power 94 due to their randomness and were therefore excluded. The average word count of the clinical 95 signs/symptoms showed an average of 4.6 words indicating the limited information provided with 96 each entry (Fig. 3). Three key issues were identified in the data that impacted our approach prior 97 to algorithm implementation. First, the degree of irregularity present required the implementation 98 of a pre-processing step prior to ML. Many rows consisted of abbreviations, irregular capitalization, 99 incorrect spelling and grammar, and empty entries. Second, a severe data imbalance, with nearly 100 11,000 cases of CT Head without Contrast and just 1,000 of MRI Pituitary indicated the need 101 for class balancing, either with under-sampling or oversampling [24]. Lastly, the most frequent 102 word count of the symptom text rows was found to be just three, as seen in the distribution graph, 103 indicating that each word present contributes significant meaning and that any pre-processing should 104 be somewhat conservative (Fig. 3). 105

106 2.2 Preprocessing

A three-step processing algorithm addressed these data irregularities. The initial step was to nor-107 malize and condense the symptom text. Our initial approach was to utilize OpenAI's Davinci GPT-3 108 API [25] to ask it to extract important keywords and include similar words to the existing prompt 109 for additional data. This approach proved to be costly and computationally expensive as it required 110 API and tokens for purchase. The alternative was the Natural Language Toolkit (NLTK) which 111 tokenizes each symptom row and filters through the StopWord corpus to identify stop-words [26]. 112 As opposed to extracting important keywords, the algorithm uses the corpus to identify and extract 113 unnecessary filler words that serve no significant meaning such as "with", "to", and "also". It proved 114 to be the most effective approach in normalizing the data and accounted for special characters and 115 irregular syntax as seen in Figure 5. However, using the NLTK library sacrificed the ability to 116 correct spellings, a feature that the GPT model would automatically account for. 117

Following keyword filtering, word lemmatization was performed to simplify each word to its most fundamental grammatical root and maintain consistency across conjugations as seen in Fig. 5 (e.g. "flying" transformed to "fly") [27, 28]. Lemmatization was preferred over stemming due to its higher accuracy but at the expense of computational speed [29, 30]. Without lemmatization, however, the model is introduced to more variability in words and would impact the accuracy of the model.

To facilitate ML model training, it was necessary to transform the symptom text into numerical 123 representations [31]. The reasoning of use of an embedding model for text-to-numerical represen-124 tations was two-fold over the established one-hot encoding approach - the computation time is 125 significantly increased and the dimensionality of the encoding approach of a 40,000-row dataset 126 would magnify the complexity of the algorithm carrying out downstream tasks [32, 33]. The fo-127 cus went on utilizing the optimal model for entity embedding. With limitations of computational 128 power and a limited solution timeline, the choice was dependent on the previous literature on the 129 trade-off of accuracy to time complexity. We leveraged OpenAI's 1.2 billion-parameter pre-trained 130 and custom-tuned Ada embedding model [34], which uses entity embedding techniques to convert 131 each symptom row into dense 1536-dimensional numerical vectors to convey both the definition and 132 context of the input (Fig. 5). The model architecture first embeds each word into a vector and then 133 uses multi-head self-attention transformer layers to understand and generate relationships between 134 the words. Word2Vec, a prospective alternative embedding algorithm, was not preferred in this use 135 case due to possible words un-encountered in the pre-trained base embedding and presence of pairs 136 of structurally similar words but different definitions [35]. 137

Referenced before, Figure 2 magnifies the severe class imbalance present in the dataset. Training 138 an ML model with imbalanced data with a majority-minority ratio of approximately 15:1 is sub-139 optimal to maximize accuracy as much as possible. To combat this, a synthetic sampling algorithm 140 assisted in balancing the dataset following entity embedding. We utilized a synthetic minority 141 oversampling technique (SMOTE) k-nearest-neighbor algorithm [36], which is designed to construct 142 new points close to existing ones in high-dimensional feature space, thereby increasing the number 143 of samples of the minority class. A sample point is paired with a neighbor and the difference 144 between the points is multiplied by a random number which then creates a new point in between 145

the two existing points. SMOTE has also been proven to work well in high-dimensional datasets 146 [37]. Each of the minority classes was oversampled to match the count of the majority class (CT 147 Head without Contrast). SMOTE increased the sample size from 40,667 to approximately 90,000 148 rows and was used to train the final ML model (Fig. 7). Basic minority oversampling and majority 149 undersampling techniques were also tested, however, the SMOTE algorithm was found to be more 150 effective at increasing the variety of data present in a limited dataset [38]. By generating synthetic 151 data points, the algorithm was able to maintain the underlying structure of the data while eliminating 152 the problem of class imbalance. 153

¹⁵⁴ 2.3 Machine Learning

Selecting a model required a rigorous experimental design, training, and testing of three distinct 155 supervised alternatives on the same dataset with default model parameters. This approach allowed 156 for a reliable assessment of the most effective model for accurate classification. Specifically, the 157 models tested were XGBoost, which utilizes gradient boosting and decision trees to iteratively learn 158 from residuals and minimize loss; Random Forest, an ensemble learning method that constructs 159 multiple decision trees to aggregate their outputs and improve prediction accuracy; and Support 160 Vector Machine (SVM), a robust classification algorithm that identifies a hyperplane to optimally 161 separate data points of different classes in a high-dimensional feature space through a maximum 162 margin function. Evaluation of all three models proved the Support Vector Classifier to be the best 163 for the dataset as seen in Figure 8. The reasoning of the model was two-fold. (i) It was critical 164 to prevent the model's overfitting, a problem commonly associated with high-dimensional data 165 SVMs [39, 40]. The SVM is comparatively better than regression algorithms and other classifiers in 166 preventing overfitting in high-dimensional space leading to overall improved performance in high-167 dimensional datasets [41, 42]. (ii) SVM classification models being resistant to noise [40]. This is 168 important in medical NLP where abbreviations and other anomalies are included in the history [43]. 169 The straight line for the boundaries of each classification region in a linear SVM classifier is 170 defined as: 171

$$\beta_0 * x_1 + \beta_2 * x_2 = -\beta_0 \ (1)$$

where \overrightarrow{w} is $[\beta_0, \beta_1]$ which is perpendicular to the hyperplane and \overrightarrow{x} is $[x_1, x_2]$ is the point on the traight line.

¹⁷⁵ Equation 1 can be generalized to:

176
$$\beta_0 + \beta_0 * x_1 + \beta_1 * x_2 + \dots + \beta_p * x_{p+1} = 0$$
 (2)
177 or

177 or 178 $\overrightarrow{w} \bullet \overrightarrow{x} + b = 0$ (3)

 X_i is defined as the vector to display all features of index *i*. With $\overrightarrow{X_+}$ describing the positive class and $\overrightarrow{X_-}$ describing the negative class. The support vectors can be defined as

- $\overrightarrow{w} \bullet \overrightarrow{X_+} + b > 1$
- 182 and

$$\overrightarrow{w} \bullet X_{-}' + b < -1 \ (4)$$

Provided that Y_i is a vector containing values -1 and +1. Equation 4 can be generalized into

185
$$Y_i(\overrightarrow{w} \bullet \overrightarrow{X_i} + b) \ge 1$$
(5)

¹⁸⁶ The width of the margin is then defined as

$$\frac{(\overrightarrow{X_{+}} - \overrightarrow{X_{-}}) \bullet \overrightarrow{w}}{\|w\|}$$
(6)
188 Or

189
$$\frac{2}{\|w\|}$$
 (7)

¹⁹⁰ And to maximize Equation 7, the model must minimize

$$\frac{1}{2} \|w\|^2$$
 (8)

¹⁹² Lagrangian Transform then optimizes Equation 8 with constraints of Equation 5.

¹⁹³
$$L = \frac{1}{2} \|w\|^2 - \sum \alpha_i [Y_i(\vec{w} \bullet \vec{X}_i + b) - 1]$$
(9)

194 Since

¹⁹⁵
¹⁹⁶
¹⁹⁷

$$\frac{\delta L}{\delta w} = 0$$
, therefore $\overrightarrow{w} = \sum \alpha_i Y_i X_i$ (10)
and
 $\frac{\delta L}{\delta b} = 0$, therefore $\sum X_i Y_i = 0$ (11)

¹⁹⁸ Which leads to

$$L = -\frac{1}{2} \sum_{ij} \alpha_i \alpha_j Y_i Y_j \overrightarrow{X_i} \bullet \overrightarrow{X_j} + \sum \alpha_i \ (12)$$

From here, we see that the SVC depends on $\overrightarrow{X_i} \bullet \overrightarrow{X_j}$.

Each model was trained on the pre-processed data and was validated on a 4704(5%) randomly sampled test case set with accuracy metrics. Accuracy, in terms of True Positive(TP), True Negative(TN), False Positive(FP), and False Negative(FN).

$$Accuracy = \frac{TP + FP}{TP + FP + FN + TN}$$
(13)

After selecting a model, the support vector machine further optimized the model's performance through GridSearchCV which further optimized the model's performance by conducting tuning of six model parameters using GridSearchCV. The GridSearchCV starts with random hyperparameters and slowly optimized the model through a trial-and-error method. The perfect model is met when there is a balance between underfitting and overfitting, therefore increasing the metrics of the model [44–46]. The parameters that were optimized were Kernel, C, Gamma, and Train-Test split. A low-degree polynomial kernel is optimal in NLP situations [47, 48].

With x and y reprinting the input vectors, $\varphi(x)$ and $\varphi(y)$ representing the mapping functions, the polynomial kernel works as follows:

214
$$K(x,y) = (x^T y + c)^d = (\varphi(x), \varphi(y))$$
(14)

215 **3** Results

The models were successfully trained and tested on the preprocessed dataset. Notably, the SVM exhibited the highest accuracy of 91.5% on a randomly sampled test case set of 4704 from the original data, outperforming the other models (see Fig. 8 for model accuracies). The GridSearchCV then increased the SVM accuracy by 1.7% to 93.2

Precision, recall, and F1 scores painted a more detailed picture of the intricacies of the model (Fig. 9), and each can be defined in terms of the number of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) cases for the given classification in the test set.

Precision represents the proportion of retrieved positive cases that were relevant and is calculated as:

$$Precision = \frac{TP}{TP+FP}(15)$$

Recall represents the proportion of relevant positive cases that were retrieved by the model and is calculated as:

⁸
$$Recall = \frac{TP}{TP+FN}(16$$

The F1 score is the harmonic mean of precision and recall.

MRI I

0.98 respective

22

230

231

232

 $F1 = \frac{Precision * Recall}{Precision + Recall} (17)$

scores of all three metrics at 0.84, 0.72, and 0.77 respectively, suggesting that this class may be highly similar to another. However, the average of all individual class metrics came out to be 0.92, 0.92, and 0.92 respectively, confirming the model's overall accuracy.

The heatmap in Fig. 10 assists in visualizing class-specific performance as well. Similarly, the receiver operating characteristic (ROC) curves seen in Fig. 11 demonstrate a strong tradeoff between true and false positives. An area under the curve (AUC) close to 1 for each class indicates an accurate model. The model achieved near-perfect AUC values for three classes: CT Soft Tissue Neck With Contrast, CT Maxillofacial Without Contrast, and MRI Pituitary WO/W Contrast. These findings are consistent with the high metrics observed for the classes above in Fig. 9.

To properly visualize the internal workings of the algorithm, the 1536-dimensional data was compressed into a two-dimensional array through a t-distributed stochastic embedding (TSNE) network. tSNE is a dimensionality reduction technique that embeds the 1536 features present into two or three dimensions for visualization. Each individual point represents a case, all of which can be observed to be clustered based on class.

In order to carry out the tSNE algorithm, the high-dimensional Euclidean distances between any two datapoints x_i and x_j is first found in the form of conditional probabilities, which represent the similarity between the points. The conditional probability $p_{j|i}$ that x_j is near x_i is calculated using a Gaussian distribution centered at x_i with a standard deviation of σ_i and is defined as:

251
$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)} (18)$$

²⁵² The high-dimensional joint probability distribution can then be calculated as:

253
$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n} (19)$$

Next, a second joint probability distribution is constructed in low-dimensional space. The conditional probability q_{ij} representing the similarity of any two points y_i and y_j is calculated with a t-distribution:

$$q_{ij} = \frac{(1+\|y_i - y_j\|^2)^{-1}}{\sum_{k \neq l} (1+\|y_k - y_l\|^2)^{-1}} (20)$$

Finally, the deviation between the low- and high-dimensional data point distributions must be minimized, which can be done using the Kullback-Leiber (KL) divergence. The KL divergence for distributions P and Q in space χ is defined as:

$$D_{KL}(P || Q) = \sum_{x \in \chi} P(x) \log \left(\frac{P(x)}{Q(x)}\right) (21)$$

Gradient descent is employed to iteratively modify the low-dimensional data to best match the high-dimensional data. To do this, the cost function C must be minimized. C represents the KL divergence of the joint probability distributions P, from the high-dimensional data, and Q, from the low-dimensional data and is defined as:

266

257

261

$$C = KL(P || Q) = \sum_{i \neq j} p_{ij} \log\left(\frac{p_{ij}}{q_{ij}}\right) (22)$$

²⁶⁷ The results are shown in Fig. 12.

Hyperplanes were then drawn to view the classification boundaries of the SVM (Fig. 13). Due to its large compression ratio (1536/2 = 768), many features were most likely lost, so the classification in a two-dimensional space is not entirely representative of the 1536-dimensional hyperspace but does serve as a rough model. The poor classification of points seen in the MRI Brain WO/W Contrast class in Fig. 13 is consistent with the relatively low class-specific metrics observed in the classification report in Fig. 9.

The accuracy of the SVM model does appear to be significantly higher than the physician accu-274 racy of 74.3%, but a one-way two proportion z-test confirmed that there was a statistically significant 275 difference in the physician imaging order accuracy of 74.3% and SVM model imaging order accuracy 276 of 93.2% (p < 0.0001). In the context of the 100 million MRI/CT scans done annually, an increase 277 of 18.9% in imaging accuracy can prevent 18.9 million patients from the effects of excessive imaging. 278 In order to maximize the efficacy of the ML model and provide a more realistic clinical tool, 279 a probability-based prediction system was implemented that provides the probability of each class 280 fitting the input, rather than outputting a single classification. The algorithm, by default, offers the 281 top three highest-probability class results with a 100% chance that the class labeled as correct will 282 be present in the top three (Fig. 14). 283

$_{284}$ 4 Discussion

This algorithm proves the effectiveness of an automated approach to mitigating existing risks of incorrect imaging order selection by physicians. However, a raw algorithm is impractical for a

²⁸⁷ practicing physician, who requires a straightforward user interface. After the study, the model ²⁸⁸ was packaged into a web application that receives free-text symptom input and uses it to output ²⁸⁹ the predicted imaging order with a confidence score. This application acts as a clinical decision ²⁹⁰ support tool, allowing physicians an additional verification step to produce a combined imaging ²⁹¹ order selection accuracy of over 93%.

A notable use for this tool is in emergency settings. Rather than requiring a physician to evaluate a patient both before and after receiving imaging, the application would reduce strain on the physician by eliminating any need for them to see the patient until after imaging and diagnostics have been completed, which would maximize hospital efficiency.[49] Patients could realistically be rapidly evaluated, receive an imaging order from the tool, undergo imaging, and have the results read in a short time frame, which would improve their treatment outlook.

The widespread implementation of this algorithm holds potential for several positive outcomes as a result of decreased re-imaging due to more accurate imaging order selection.[22] First, excessive radiation brought by several imaging methods, namely CT scans, would be mitigated. Presently, radiation, which is significantly carcinogenic, can be presented in unnecessarily high dosage when imaging must be carried out multiple times.[15, 50] With improved imaging order selection, fewer cases of re-imaging would reduce radiation exposure to a minimal level.

The algorithm would, furthermore, eliminate repeated sedation in patients, reducing the potential for complications. Pediatric patients, as well as adults with certain conditions such as claustrophobia, require sedation when being imaged, but such practices pose risks of complications for those patients.[51] By minimizing the number of instances of sedation, the algorithm will maximize patient health outcomes.

Reducing re-imaging would also expedite patient treatment timelines. The process of imaging, including carrying out the imaging, reading results, and conveying the outcome to the patient, is time-consuming, and for patients with unknown critical conditions, repeating these steps due to physician imaging order error can be life-threatening. Without re-imaging, the duration of diagnostic testing is lessened for improved treatment options. [52].

A final advantage is the reduction of costs for both the hospital and patient that is brought by more precise imaging ordering. [53] Hospital systems currently spending millions to carry out imaging orders would see significant drops in spending with the implementation of this algorithm.[11] By instead applying these funds to causes such as research, medical facilities could see a growth in innovation and potentially revolutionary treatment breakthroughs.

Despite the numerous benefits of this tool, there exist several avenues for further development that would optimize its effectiveness. Enhancement of this algorithm's accuracy metrics will most importantly require the incorporation of more training data. The present data includes just one feature (clinical symptoms) and originates from a single hospital institution. Incorporating vital signs, laboratory orders, family history, and clinical guidelines from multiple institutions in the model could certainly see an additional 4-5% accuracy increase.

The present dataset also is limited to neurological imaging orders; however, due to the generalizability of the algorithm, this can be easily diversified.[54] Because this model does not need to be adapted to specific features of the dataset, any additional, similarly-structured data (free-text

input + class-based output) could be used in training to also produce high accuracy rates. In this
way, with datasets for other body systems, such as gastrointestinal imaging orders, the scope of the
model could quickly be grown to fit any medical specialty, and the application's online nature will
allow for real-time remote updates to the platform.

332 5 Conclusion

This algorithm has significant potential to be truly revolutionary for the millions of patients facing incorrect imaging orders in the United States. Beyond this, scaling the application to the rest of the world would impact millions more by reducing costs through fewer scans, expediting treatment through more efficient diagnosis, and maximizing patient health through reduced radiation and sedation. This tool will certainly be critical for a more efficient healthcare system and groundbreaking to the medical field as a whole.

339 6 Figures

PHYSICIAN IMAGING ORDER	AGE AT ORDER IN YEARS	WEIGHT IN LBS	HEIGHT IN FT INCHES	CLINICAL SIGNS/ SYMPTOMS
CT HEAD WITHOUT CONTRAST	17.58	178.13188	5' 7.717"	abnormal gait, word finding difficulty, tremor
CT SOFT TISSUE NECK WITH CONTRAST	16.38	90.829	5' 1.1417"	trismus, uvular deviation, muffled voice - concern for deep neck infection vs PTA
MRI FACE WO/W CONTRAST	17.91	216.49188	5' 8.661"	right ear vascular mass; possible AVM

Figure 1: Sample Data

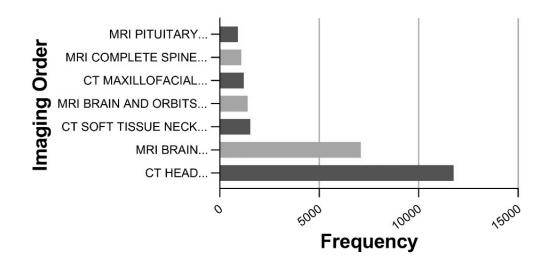


Figure 2: Class Distribution

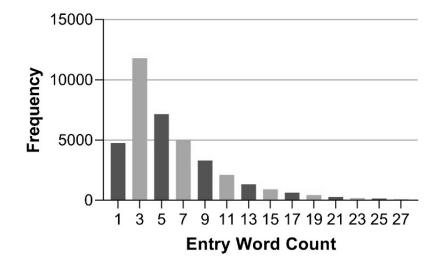


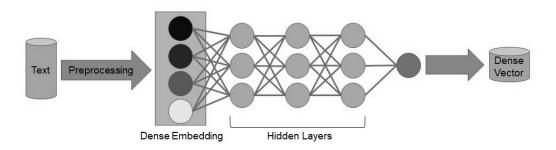
Figure 3: Word Count Distribution

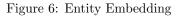
Abnormal	Gait	Word	Finding	Difficulty			
Rapidly	Enlarging	Right	Neck	Swelling			
Lethargy	Prolonged	Sleeping	Evaluate	Encephalopathy			
Abnormal	Gait	Word	Find	Difficulty			
Rapid	Enlarge	Right	Neck	Swell			
Lethargy	Prolong	Sleep	Evaluate	Encephalopathy			

Figure 4: Lemmatization

Recurrent	Focal	Seizures	With	Eye	Deviation		
Dog	Bite	То	Left	Face	Eval		
Female	With	No	Berlin	Continued	Concern		
Recurrent	Focal	Seizures		Eye	Deviation		
Recurrent Dog	Focal Bite	Seizures	Left	Eye Face	Deviation Eval		

Figure 5: Keyword Filtering





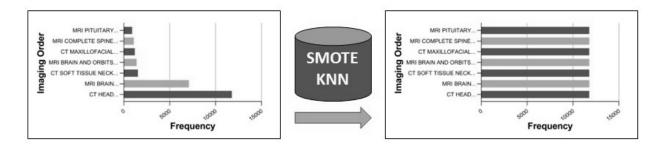


Figure 7: Synthetic Sampling

Model	Description	Accuracy
XGBoost	Gradient boosting decision tree optimized for efficiency that uses regularization, parallel processing, and data structure optimization	84.6%
Random Forest Classifier	Ensemble machine learning algorithm utilizing multiple decision trees, each employing a unique criterion for recursive partitioning of the feature space and compiling a prediction	82.3%
Support Vector Classifier	Discriminative classification algorithm that finds an optimal hyperplane that maximally separates the label classes in high- dimensional feature space	93.2%

Figure 8: Model Comparisons

Imaging Order	Count	Precision	Recall	F1
CT HEAD WITHOUT CONTRAST	585	0.85	0.83	0.84
CT MAXILLOFACIAL WITHOUT CONTRAST	588	0.95	0.99	0.97
CT SOFT TISSUE NECK WITH CONTRAST	577	0.97	0.99	0.98
MRANGIO BRAIN WITHOUT CONTRAST	585	0.94	0.98	0.96
MRI BRAIN AND ORBITS WO/W CONTRAST	603	0.94	0.94	0.94
MRI BRAIN WO/W CONTRAST	557	0.84	0.72	0.77
MRI COMPLETE SPINE WO/W CONTRAST	617	0.91	0.95	0.93
MRI PITUITARY WOW CONTRAST	590	0.97	0.99	0.98
Sum/Average	4704	0.92	0.92	0.92

Figure 9: Classification Report



Figure 10: Heatmap

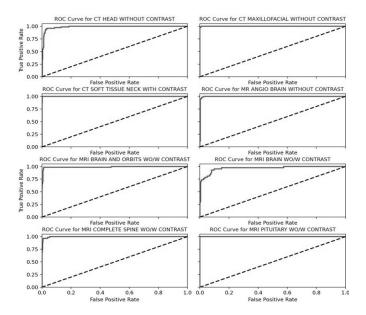


Figure 11: ROC Curves

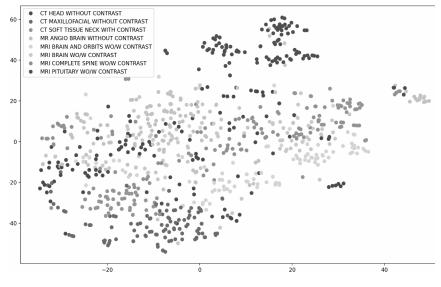


Figure 12: tSNE 2D

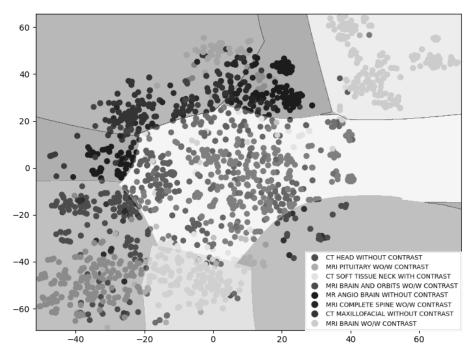


Figure 13: Decision Boundary Plot

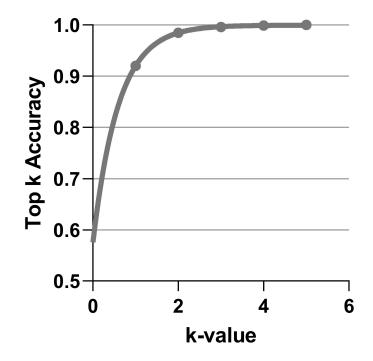


Figure 14: Top K Accuracy

340 Acknowledgements

The authors would like to thank Texas Children's Hospital for providing the project dataset and offering project feedback from a medical perspective.

343 Author Contributions

³⁴⁴ All authors contributed equally to the writing of the manuscript.

345 Conflicts of Interest

346 The authors have not declared any conflicts of interest.

347 **References**

- Beek EJ van and Hoffman EA. Functional imaging: CT and MRI. Clinics in chest medicine
 2008;29:195–216.
- Weishaupt D, Koechli VD, Marincek B, and Kim EE. How does MRI Work? An introduction to the physics and function of magnetic resonance imaging. Journal of Nuclear Medicine 2007;48:1910–0.

- Geva T. Magnetic resonance imaging: historical perspective. Journal of cardiovascular magnetic
 resonance 2006;8:573–80.
- 4. Plewes DB and Kucharczyk W. Physics of MRI: a primer. Journal of magnetic resonance imaging 2012;35:1038–54.
- 5. Gossuin Y, Hocq A, Gillis P, and Lam VQ. Physics of magnetic resonance imaging: from spin to pixel. Journal of Physics D: Applied Physics 2010;43:213001.
- ³⁵⁹ 6. Pooley RA. Fundamental physics of MR imaging. Radiographics 2005;25:1087–99.
- Stafford RJ. The physics of magnetic resonance imaging safety. Magnetic Resonance Imaging
 Clinics 2020;28:517–36.
- McCollough CH, Bushberg JT, Fletcher JG, and Eckel LJ. Answers to common questions about the use and safety of CT scans. In: *Mayo Clinic Proceedings*. Vol. 90. 10. Elsevier. 2015:1380–92.
- Lee CI, Haims AH, Monico EP, Brink JA, and Forman HP. Diagnostic CT scans: assessment
 of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology
 2004;231:393–8.
- Sluimer I, Schilham A, Prokop M, and Van Ginneken B. Computer analysis of computed
 tomography scans of the lung: a survey. IEEE transactions on medical imaging 2006;25:385–
 405.
- Iglehart JK. Health insurers and medical-imaging policy—a work in progress. New England
 Journal of Medicine 2009;360:1030–7.
- McCollough C and Leng S. Use of artificial intelligence in computed tomography dose optimi sation. Annals of the ICRP 2020;49:113–25.
- Lehnert BE and Bree RL. Analysis of appropriateness of outpatient CT and MRI referred
 from primary care clinics at an academic medical center: how critical is the need for improved
 decision support? Journal of the American College of Radiology 2010;7:192–7.
- Pourjabbar S, Cavallo JJ, Arango J, et al. Impact of radiologist-driven change-order requests
 on outpatient CT and MRI examinations. Journal of the American College of Radiology
 2020;17:1014–24.
- Brenner DJ and Hall EJ. Computed tomography—an increasing source of radiation exposure.
 New England journal of medicine 2007;357:2277–84.
- Miglioretti DL, Johnson E, Williams A, et al. The use of computed tomography in pedi atrics and the associated radiation exposure and estimated cancer risk. JAMA pediatrics
 2013;167:700-7.
- Meulepas JM, Ronckers CM, Smets AM, et al. Radiation exposure from pediatric CT scans
 and subsequent cancer risk in the Netherlands. JNCI: Journal of the National Cancer Institute
 2019;111:256-63.
- 18. Hall E and Brenner D. Cancer risks from diagnostic radiology. The British journal of radiology
 2008;81:362–78.

- ³⁹⁰ 19. Mason KP, Lubisch NB, Robinson F, and Roskos R. Intramuscular dexmedetomidine sedation
 ³⁹¹ for pediatric MRI and CT. American Journal of Roentgenology 2011;197:720–5.
- ³⁹² 20. Kamat PP, McCracken CE, Simon HK, et al. Trends in outpatient procedural sedation: 2007–
 ³⁹³ 2018. Pediatrics 2020;145.
- Flaherty S, Zepeda ED, Mortele K, and Young GJ. Magnitude and financial implications of
 inappropriate diagnostic imaging for three common clinical conditions. International Journal
 for Quality in Health Care 2019;31:691–7.
- Blackmore CC, Mecklenburg RS, and Kaplan GS. Effectiveness of clinical decision support in controlling inappropriate imaging. Journal of the American College of Radiology 2011;8:19–25.
- Jebb AT, Parrigon S, and Woo SE. Exploratory data analysis as a foundation of inductive
 research. Human Resource Management Review 2017;27:265–76.
- 401 24. Mohammed R, Rawashdeh J, and Abdullah M. Machine Learning with Oversampling and
 402 Undersampling Techniques: Overview Study and Experimental Results. In: 2020 11th Inter403 national Conference on Information and Communication Systems (ICICS). 2020:243–8. DOI:
 404 10.1109/ICICS49469.2020.239556.
- 405 25. Brown TB, Mann B, Ryder N, et al. Language Models are Few-Shot Learners. CoRR 2020;abs/2005.14165.
- ⁴⁰⁶ 26. Loper E and Bird S. NLTK: The Natural Language Toolkit. 2002. arXiv: cs/0205028 [cs.CL].

Khyani D and B S S. An Interpretation of Lemmatization and Stemming in Natural Language
 Processing. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and
 Technology 2021;22:350–7.

- 410 28. Jivani AG et al. A comparative study of stemming algorithms. Int. J. Comp. Tech. Appl
 411 2011;2:1930-8.
- Pramana RS, Debora, Subroto JJ, Gunawan AAS, and Anderies. Systematic Literature Review
 of Stemming and Lemmatization Performance for Sentence Similarity. 2022 IEEE 7th International Conference on Information Technology and Digital Applications (ICITDA) 2022:1–
- 415

6.

- ⁴¹⁶ 30. Balakrishnan V and Lloyd-Yemoh E. Stemming and lemmatization: A comparison of retrieval
 ⁴¹⁷ performances. 2014.
- ⁴¹⁸ 31. KS K and Sangeetha S. SECNLP: A Survey of Embeddings in Clinical Natural Language
 ⁴¹⁹ Processing. CoRR 2019;abs/1903.01039.
- 420 32. Guo C and Berkhahn F. Entity Embeddings of Categorical Variables. CoRR 2016;abs/1604.06737.
- 421 33. Chawda A, Grimm S, and Kloft M. Unsupervised Anomaly Detection for Auditing Data and
 422 Impact of Categorical Encodings. 2022.
- 423 34. SATHVIK M. Enhancing Machine Learning Algorithms using GPT Embeddings for Binary
 424 Classification. 2023.
- ⁴²⁵ 35. Banerjee I, Chen M, Lungren M, and Rubin D. Radiology Report Annotation using Intelligent
 ⁴²⁶ Word Embeddings: Applied to Multi-institutional Chest CT Cohort. Journal of Biomedical
 ⁴²⁷ Informatics 2017;77.

- 428 36. Fernández A, Garcia S, Herrera F, and Chawla NV. SMOTE for learning from imbalanced
 429 data: progress and challenges, marking the 15-year anniversary. Journal of artificial intelligence
 430 research 2018;61:863–905.
- ⁴³¹ 37. Blagus R and Lusa L. SMOTE for high-dimensional class-imbalanced data. BMC bioinformatics
 ⁴³² 2013;14:1–16.
- 433 38. Mohammed R, Rawashdeh J, and Abdullah M. Machine learning with oversampling and un 434 dersampling techniques: overview study and experimental results. 2020:243–8.
- 435 39. Clarke R, Ressom HW, Wang A, et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nature Reviews Cancer 2008;8:37–437 49.
- 438 40. Hussain H. Robustness of Support Vector Machines. Dissertation. 2020.
- 439 41. Pappu V and Pardalos P. High Dimensional Data Classification. In: 2013:34. DOI: 10.1007/
 440 978-1-4939-0742-7_8.
- 441 42. Ghaddar B and Naoum-Sawaya J. High dimensional data classification and feature selection
 442 using support vector machines. European Journal of Operational Research 2018;265:993–1004.
- 43. Joshi M, Pakhomov S, Pedersen T, and Chute CG. A comparative study of supervised learning
 as applied to acronym expansion in clinical reports. In: *AMIA annual symposium proceedings*.
 Vol. 2006. American Medical Informatics Association. 2006:399.
- 446 44. Ahmad GN, Fatima H, Ullah S, Salah Saidi A, and Imdadullah. Efficient Medical Diagnosis of
 Human Heart Diseases Using Machine Learning Techniques With and Without GridSearchCV.
 448 IEEE Access 2022;10:80151–73.
- ⁴⁴⁹ 45. Deshwal V and Sharma M. Breast cancer detection using SVM classifier with grid search
 technique. International Journal of Computer Applications 2019;975:8887.
- 46. Fuadi AZ, Haq IN, Leksono E, et al. Support Vector Machine to Predict Electricity Consumption in the Energy Management Laboratory. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 2021;5:466–73.
- 454 47. Goldberg Y and Elhadad M. splitSVM: Fast, Space-Efficient, non-Heuristic, Polynomial Kernel
 455 Computation for NLP Applications. In: *Proceedings of ACL-08: HLT, Short Papers*. Columbus,
 456 Ohio: Association for Computational Linguistics, 2008:237–40. URL: https://aclanthology.
 457 org/P08-2060.
- 458 48. Chang YW, Hsieh CJ, Chang KW, Ringgaard M, and Lin CJ. Training and testing low-degree 459 polynomial data mappings via linear SVM. Journal of Machine Learning Research 2010;11.
- 460 49. Berge L. Diagnostic Imaging for the Emergency Physician. JAMA : the journal of the American
 461 Medical Association 2012;308:189.
- ⁴⁶² 50. Hussain S, Mubeen I, Ullah N, et al. Modern Diagnostic Imaging Technique Applications and
 ⁴⁶³ Risk Factors in the Medical Field: A Review. BioMed Research International 2022;2022:5164970.
- Tith S, Lalwani K, and Fu R. Complications of three deep sedation methods for magnetic
 resonance imaging. Journal of Anaesthesiology Clinical Pharmacology 2012;28:178–84.

- Jessome R. Improving patient flow in diagnostic imaging: a case report. J. Med. Imaging Radiat.
 Sci. 2020;51:678-88.
- 468 53. Sistrom CL and McKay NL. Costs, charges, and revenues for hospital diagnostic imaging pro469 cedures: differences by modality and hospital characteristics. J. Am. Coll. Radiol. 2005;2:511–
 470 9.
- 471 54. Maleki F, Ovens K, Gupta R, Reinhold C, Spatz A, and Forghani R. Generalizability of Ma472 chine Learning Models: Quantitative Evaluation of Three Methodological Pitfalls. Radiology:
 473 Artificial Intelligence 2023;5:e220028.