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Abstract 

Deep learning approaches for clinical predictions based on magnetic resonance imaging data 

have shown great promise as a translational technology for diagnosis and prognosis in 

neurological disorders, but its clinical impact has been limited. This is partially attributed to the 

opaqueness of deep learning models, causing insufficient understanding of what underlies their 

decisions. To overcome this, we trained convolutional neural networks on brain scans to 

differentiate dementia patients from healthy controls, and applied layerwise relevance 

propagation to procure individual-level explanations of the model predictions. Through extensive 

validations we demonstrate that deviations recognized by the model corroborate existing 

knowledge of neuropathology in dementia. By employing the explainable dementia classifier in a 

longitudinal dataset of patients with mild cognitive impairment, we show that the spatially rich 

explanations complement the model prediction when forecasting transition to dementia and help 

characterize the biological manifestation of disease in the individual brain. Overall, our work 

exemplifies the clinical potential of explainable artificial intelligence in precision medicine. 

Introduction 

Since its invention in the 1970s, magnetic resonance imaging (MRI) has provided an opportunity 

to non-invasively examine the body from the inside. In neuroscience, images acquired with MRI 

scanners have been used to identify how the brains of patients with various neurological 

disorders differ from their healthy counterparts. Stereotypically, this has been done by collecting 

data from a group of patients with a given disorder and a comparable group of healthy controls, 

on which traditional statistical inference is applied to identify spatial locations of the brain where 

the groups differ 1. Typically, these locations are not atomic locations identified by a spatial 

coordinate, but rather morphological regions defined by an atlas, derived from empirical or 

theoretical insights of how the brain is structured. Differences between groups are described 

using morphometric properties like thickness or volume of these prespecified regions. A large 

benefit of this approach is the innate interpretability of the results: on average, patients with a 

given disorder deviate in a specific region of the brain in a comprehensible manner. Furthermore, 

the high degree of localization offered by modern brain scans allows for accurate 

characterization of where and how the brain of an individual deviates from an expected, typically 

healthy, norm 2. However, the effects which are found are typically small 3 with limited 
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predictive power at the individual level 4,5, which in turn has raised questions about whether 

these analytical methods are expressive enough to model complex mental or clinical phenomena 
6. As an alternative, new conceptual approaches are proposed, advocating modelling frameworks 

with increased expressive power that allow for group differences through complex, non-linear 

interactions between multiple, potentially distant, parts of the brain 7, with a focus on prediction 
8. Such modelling flexibility is naturally achieved with artificial neural networks (ANNs), a class 

of statistical learning methods that combines aspects of data at multiple levels of abstraction, to 

accurately solve a predictive task 9. However, while this often yields high predictive 

performance, e.g. by demonstrating clinically sufficient case-control classification accuracy for 

certain conditions, it comes at the cost of interpretation, as the models employ decision rules not 

trivially understandable by humans 10. When the goal of the analysis is clinical, supporting the 

diagnosis and treatment of someone affected by a potential disorder, this opaqueness presents a 

substantial limitation. Thus, development and empirical validation of new methods within 

clinical neuroimaging that combine predictive efficacy with individual-level interpretability is 

imperative, to facilitate trust in how the system is working, and to accurately describe inter-

individual heterogeneity. 

 

With more than 55 million individuals afflicted worldwide 11, over 25 million disability-adjusted 

life years lost 12,13 and a cost exceeding one trillion USD yearly 14, dementia is a prime example 

of a neurological disorders that incur a monumental global burden. Due to the global aging 

population the prevalence is expected to nearly triple by 2050 15, inciting a demand for 

technological solutions to facilitate handling the upcoming surge of patients. Dementia is a 

complex and progressive clinical condition 16 with multiple causal determinants and moderators. 

Alzheimer’s disease (AD) is the most common form and accounts for 60%-80% of all cases 11. 

However, the brain pathologies underlying different subtypes of dementia are not disjoint, but 

often co-occur 17–19, and have neuropathological commonalities 20. The most prominent is 

neurodegeneration, occurring in both specific regions like the hippocampus, and globally across 

the brain 21, and inter-individual variations in the localization of atrophy has been associated with 

impairments in specific cognitive domains 22,23. Thus, the biological manifestation of dementia in 

the brain is heterogeneous 24, resulting in distinctive cognitive and functional deficits 20, 

highlighting the need for precise and personalized approaches to diagnosis. For patients with 
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mild cognitive impairment (MCI), a potential clinical precursor to dementia, providing 

individualized characterizations of the underlying etiological disease at an early stage could 

widen the window for early interventions 25, alleviate uncertainty about the condition, and help 

with planning for the future 26.  

 

In dementia, ANNs, and particularly convolutional neural networks (CNNs), have been applied 

to brain MRIs to differentiate patients from controls 27,28, prognosticate outcomes 29, and 

differentially diagnose subtypes 30. However, while research utilizing this technology has been 

influential, clinical translations are scarce 31. Where techniques for segmenting brain tumours or 

detecting lesions typically produce segmentation masks that are innately interpretable, predicting 

a complex diagnosis would entail compressing all information contained in a high-dimensional 

brain scan into a single number. Using deep learning, the decisions underlying this immense 

reduction are obfuscated, both from the developer of the system, the clinical personnel using it, 

and the patient ultimately impacted by the decision. This black box nature is broadly credited for 

the low levels of adoption in safety-critical domains like medicine 32. Responding to this 

limitation, explainable artificial intelligence (XAI) provides methodology to explain the 

behaviour of ANNs 33. The nature of these explanations varies, e.g. by what type of model is to 

be explained, what conceptual level the explanation is at, and who it is tailored for 34,35. In 

computer vision, XAI typically aims for post-hoc explanations of individual decisions, 

explaining why a model arrived at a given prediction for a given image. Explanations are often 

provided in a visual format, as a heatmap indicating how different regions of the image 

contribute to the prediction 36. Layerwise Relevance Propagation (LRP) is a variant of such a 

method, based on propagating relevance from the prediction-space, backwards through all layers 

of the model to the image-space, to form a relevance map 37. A major advantage of LRP is its 

intuitive interpretation: by construction, the total amount of relevance which denotes contribution 

to the prediction is kept fixed between layers. Thus, the relevance propagated back to an input 

voxel is directly indicative of the influence of that exact voxel to the prediction. Recently, 

several studies have applied both LRP and other explainable AI methods to dementia 38, finding 

that the heatmaps generally highlight regions known to change in dementia 39,40. However, the 

possibility of utilizing the fine-grained, individual, heatmaps produced by LRP to accurately 
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characterize individualized disease manifestations has not been explored, despite its potential for 

supporting clinical decisions towards precision medicine. 

In the present study, we applied techniques from deep learning and XAI on MRI scans of the 

brain to make explainable and clinically relevant predictions for dementia at the individual level 

(Figure 1). Using a state-of-the-art architecture for neuroimaging data, we trained CNNs to 

differentiate patients diagnosed with dementia from healthy controls based on T1-weighted 

structural MRIs. We implemented LRP on top of the trained models to form a computational 

pipeline producing individual-level explanations in the form of relevance maps alongside the 

model predictions. The relevance maps were validated in a subset of dementia patients, both in a 

qualitative comparison with existing knowledge of the anatomical distribution of 

neuropathology, and in a quantitative, predictive context. Next, we applied the pipeline to a 

large, longitudinal dataset of MCI patients to create individual morphological records, a 

proposed data format for tracking and visualizing disease progression. Finally, we investigated 

the clinical utility of these records for stratifying patients, both in terms of their specific clinical 

profile, and progression of the disease. To facilitate reproducibility and improve the translational 

value of our work, the trained models and the complete explainable pipeline is made accessible 

on GitHub.  
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Figure 1: Overview of the modelling process. The modelling process consisted of four disjoint 

steps. First, we fit multiple Simple Fully Convolutional Networks to classify dementia patients 
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and healthy controls based on structural MRIs. Then we applied the best models to generate out-

of-sample predictions and relevance maps for all participants. Next, we validated the relevance 

maps against existing knowledge using a meta-analysis to generate a statistical reference map. 

Finally, we employed the full pipeline in an exploratory analysis to stratify patients with mild 

cognitive impairment (MCI).   

Results  

We compiled MRI data from multiple sources (Supplementary Table 1) into a dataset of 

heterogeneous dementia patients (n=854, age range=47-95, 47% females, Table 1) based on 

various diagnoses (Probable AD, vascular dementia, other/unspecified dementia) and diagnostic 

criteria for inclusion (Supplementary Table 2), and a set of controls strictly matched on site, age, 

and sex of equal size. We trained multiple CNNs to differentiate between the groups, employing 

a nested validation approach utilizing all available timepoints for participants in three training 

folds and a single randomly selected timepoint for participants in separate validation and test 

folds. When stacking the out-of-sample predictions for all participants together (n=1708), for 

each fold using the model with the best validation performance, we observed satisfactory 

discrimination with a combined area under the receiver operating characteristics curve (AUC) of 

0.908 (0.904-0.920 split across folds, Supplementary Figure 1), and an accuracy of 84.95% 

(83.04%-87.13%, Supplementary Table 3). This is slightly below with what is commonly 

achieved in similar studies classifying a specific subtype (typically AD) in a single dataset 28. 

When grouping the out-of-sample predictions by site, each with a different acquisition protocol 

and diagnostic criteria, our AUCs ranged from 0.666 to 0.997 and accuracies from 58.33% to 

97.36% (Supplementary Table 4). The best results were achieved in the datasets with a large 

number of datapoints, and a specific, clinical AD diagnosis, as opposed to those where we 

employed e.g. solely a mini-mental state examination (MMSE) threshold. 
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Cohort Participants Mean age (±std) Sex (F/M) Subdiagnoses (n) 

Healthy 

controls 
854 75.13±7.81 401/453 

 

Dementia 

patients 
854 74.82±7.84 401/453 

 

MCI patients 1256 75.09±7.62 719/537 

Improving (80), stable 

(754), progressive (304), 

other (118) 

Total 2964 75.08±7.65 1521/1443  

Table 1: Cohorts. Key characteristics of the cohorts used for training and testing the models, 

and further exploratory analyses. 

 

Relevance maps highlight predictive brain regions in individuals with dementia 

Based on the classifiers with the highest AUCs in the validation sets, we built an explainable 

pipeline for dementia prediction, 𝐿𝑅𝑃!"#"$%&', using composite LRP 41, and a strategy to 

prioritize regions of the brain that contributed positively towards a prediction of dementia 

(Supplementary Table 5). Using this pipeline, we computed out-of-sample relevance maps for all 

participants by applying the model for which the participant was unseen. Qualitatively, these 

maps corroborated known neuropathology in dementia, while still allowing for inter-individual 

variation (Supplementary Figure 2). We confirmed this apparent corroboration quantitatively by 

comparing a voxel-wise average map 𝑅!"#"$%&' (Supplementary Figure 3), containing positive 

relevance from all correctly predicted dementia patients, with a statistical reference map 𝐺 

(Supplementary Figure 4) from an activation likelihood estimation (ALE) meta-analysis 42. For 

sanity checks, we also computed average maps from three alternative pipelines, 𝑅(") , 

𝑅*'$!+#&,"! ."&/0%(and  𝑅*'$!+#&,"! &#'/"(. The comparisons with the reference map were done 

by binarizing the maps on both sides of the comparison at various thresholds and measuring the 

Dice overlap (Figure 2a). For the three alternative pipelines the amount of overlap decreased 

monotonically as the binarization threshold rose (Figure 2b), whereas for 𝑅!"#"$%&' it stabilized 

as the maps grew sparser, indicating more similarity with 𝐺. This effect was reaffirmed by a 

normalized cross-correlation 43 of 0.64 for 𝑅!"#"$%&', compared to 0.41, 0.40 and 0.12 of 𝑅("), 
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𝑅*'$!+#&,"! ."&/0%( and 𝑅*'$!+#&,"! &#'/"( respectively. In addition, we performed a region-

wise, qualitative comparison of 𝑅!"#"$%&' and 𝐺, also yielding general agreement (Figure 2c), 

with the most important regions in both maps being the nucleus accumbens, the amygdala, and 

the parahippocampal gyrus. Next, we tested the importance of the detected regions in a 

predictive context, by applying an iterative mask-and-predict procedure. For each participant, we 

produced a baseline dementia-prediction y&1 and relevance map 𝑅%'(2 for each pipeline 𝐿𝑅𝑃%'(2. 

We then iteratively masked out the most important regions of the image according to the 

relevance map and recorded how the prediction changed as a function of the occlusion (Figure 

2d). Using only true positives, the predictions should ideally start out at approximately 1.0 

(empirically found to be 0.89 on average) and trend towards 0.5 (random prediction) as a larger 

proportion of the image is occluded. The rate of decline is indicative of whether the masked 

regions contain information essential for the classifier to classify the image correctly. Over 20 

iterations we observed that the predictions based on maps from both 𝐿𝑅𝑃!"#"$%&' , 𝐿𝑅𝑃(") and 

𝐿𝑅𝑃*'$!+#&,"! ."&/0%(	decreased, but 𝐿𝑅𝑃!"#"$%&' at a distinctly steeper rate than the rest 

(Figure 2d). To quantify this observation we calculated an area over the perturbation curve 

(AOPC) of 0.231, 0.009, -0.001 and 0.002 for 𝐿𝑅𝑃!"#"$%&', 𝐿𝑅𝑃("), 𝐿𝑅𝑃*'$!+#&,"! &#'/"(, 

𝐿𝑅𝑃*'$!+#&,"! ."&/0%( respectively. Taken together, these results demonstrate that our pipeline 

generates maps with relevance in brain regions associated with changes in dementia. 
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Figure 2: Validation of relevance maps from the dementia pipeline compared with three 

alternative pipelines. a Visualization of the comparison between the binarized average relevance 
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map 𝑹𝒅𝒆𝒎𝒆𝒏𝒕𝒊𝒂 from the dementia-pipeline and the binarized statistical reference map 𝑮 from 

GingerALE, at different thresholds for binarization. b Overlap between the four average relevance 

maps 𝑹 from our four pipelines and 𝑮 as a function of the binarization threshold. The numbers in 

the legend denote the normalized Cross Correlation (nCC) for each pipeline c Mean voxel-wise 

activation in 𝑹𝒅𝒆𝒎𝒆𝒏𝒕𝒊𝒂 and 𝑮, grouped by brain region. d Average participant-wise prediction 

from the dementia model after iteratively masking out regions of the image according to relevance 

maps from the four pipelines. Area over the permutation curve (AOPC) for the dementia map is 

indicated by the shaded area and denoted in the legend for all pipelines. 

 

Output from the explainable dementia pipeline has prognostic value for MCI patients 

For the MCI patients (n=1256, timepoints=6448), previously unseen by all models, we built an 

averaging ensemble to procure a singular out-of-sample prediction and relevance map per patient 

per timepoint. Put together, we let this represent a morphological record (illustrated in Figure 4 

and Supplementary Figure 5 and 6) visualizing the absolute quantity (indicated by the prediction) 

and location (indicated by the relevance map) of dementia-related pathology detected by the 

models over time. Qualitatively, both predictions and maps were relatively stable within a 

participant over time, while allowing enough variation to compose what resembled a trajectory. 

To investigate the prognostic value of our proposed morphological records we divided the MCI 

patients into three subgroups based on their trajectories in the follow-up period: those who saw 

improvement of their condition (n=80), those with a stable diagnosis throughout (sMCI, n=754), 

and those who progressed into dementia (pMCI, n=304). The remaining (n=118) had either a 

non-MCI diagnosis at the first timepoint, or a more complex diagnostic trajectory (e.g MCI -> 

AD -> CN), and were excluded from the subsequent analyses. We observed that the predictions 

in the first group were generally very low (mean 𝑦& = 0.13, Supplementary Figure 7a), indicating 

that the models detected little, if any, evidence of dementia in these participants. For the stable 

patients the mean prediction was higher (mean 𝑦& = 0.33), but still below the classification 

threshold of 0.5, whereas in the progressive group the model predicted the average patient to 

already have dementia (mean 𝑦& = 0.72). Importantly, this was also true when considering only 

timepoints before these patients received the clinical diagnosis (mean 𝑦& = 0.65, Supplementary 

Figure 7b), suggesting that the model found evidence of the disorder before the clinical 
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symptoms surpassed the diagnostic threshold. To formally delineate the differences in 

predictions leading up to the potential diagnosis, we combined the improving and stable patients 

into a non-progressive group (nMCI, n=834), and sampled patients to match the progressive 

group based on their visiting histories, leading up to a terminal diagnosis timepoint (or a 

constructed non-diagnosis timepoint in the non-progressive group). In this matched dataset 

(n=550) we applied a linear mixed model controlling for age and sex and observed that the group 

difference was even greater than previously observed (β = 0.47, p = 6.05	 ×	10:;<, Figure 3a, 

Supplementary Table 6). Furthermore, we observed a significant difference in longitudinal 

slopes (β = 0.05 increase in prediction per year, p = 8.14	 ×	10:<;) indicating a greater rate of 

brain change detected by the model in those who would be diagnosed with dementia at a later 

point in time.  

 

The large group differences in the dementia predictions leading up to a potential diagnosis 

suggests this as a biomarker with innate prognostic value, yet the most salient part of our 

morphological records were the relevance maps. Thus, we performed exploratory analyses based 

on these to further differentiate the non-progressive and progressive groups and characterize both 

inter- and intra-group heterogeneity. However, given the high dimensionality of the maps and the 

relatively small number of patients, we first applied a principal component analysis (PCA) to 

relevance maps from all MCI patients, effectively compressing their information content into a 

smaller set of characteristic variables encoding facets of the maps, enabling the subsequent 

analyses. We retained the 64 components that explained the largest amount of variance 

(Supplementary Figure 8) and observed that they qualitatively clustered into three overarching 

categories. The first component was a generic component detecting general presence of 

relevance, resembling the average map from dementia patients, and thus made up a cluster by 

itself. The next cluster was comprised of the subsequent three components that captured high 

level, abstract patterns of relevance, namely differences in lateralization, along the sagittal axis 

and in subcortical regions (Figure 3b). The final cluster consisted of the remaining 60 

components that captured specific, intricate patterns of presence/non-presence of relevance in 

regions revealed in the previous analyses (Supplementary Figure 9). To investigate the potential 

of using the relevance maps for prognosis, we first performed a survival analysis using a Cox 

proportional hazards model where getting a diagnosis was considered the terminal event.  
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Figure 3: Utility of the dementia pipeline for predicting progression and characterizing 

individual-level deviations in the mild cognitive impairment cohort. a Group-wise mean 

predictions from the dementia-model in the progressive and non-progressive groups in the years 

before a diagnosis was given. b The four first voxel-wise components of the principal component 

analysis plotted in MNI152-space. c Survival curves for the average MCI patient (blue) and 

fictitious patients at the extreme percentiles of the span for each component. The second 

component was not significant and is not shown. d Predictive performance of the three models 

predicting progression in the years following the MRI examination. The baseline model (ℳ='(") 

included only sex and age as covariates, the next model ℳ>*"! included the prediction from the 

dementia classifier as a predictor, while the final model ℳ?+#> also added the component 

vectors representing the relevance maps.  e Significance levels of correlations between the each 

of the four PCA components and various cognitive measures. The six annotated measures are 
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composite language (PHC_LAN) and executive function (PHC_EXF) scores from the ADSP 

Phenotype Harmonization Consortium, total score from the Functional Activities Questionnaire 

(FAQTOTAL), composite executive function score from UW – Neuropsych Summary Scores 

(ADNI_EF), clinical evaluation of impairment related to judgement and problem solving 

(CDJUDGE) from the Clinical Dementia Rating, and an overall measure of cognition from the 

Mini-Mental State Examination (MMSCORE). 

Specifically, we modelled the fraction of the population without a diagnosis as a function of age 

and used the subject-wise loadings of 𝑐% as predictors. After Benjamini-Hochberg correction, 37 

of these components were significantly associated with staying undiagnosed (Figure 3c and 

Supplementary Table 7). However, we observed a correlation between the singular dementia 

prediction  𝑦& and the absolute magnitudes of these components (Supplementary Figure 10), 

indicating that the associations in the survival analysis could be induced by differences in the 

prediction rather than variability in the relevance maps. To mitigate this concern, we fit an 

equivalent model while stratifying on 𝑦&, observing that 29 associations remained significant, and 

that all coefficients had the same sign. Nonetheless, this analysis did not account for the 

predictions and relevance maps changing within a participant over time, so we reframed the 

question in a purely predictive setting, constructed to bear resemblance to a clinical scenario, 

using the same participants (nMCI=834, pMCI=304, total n=1138). For each MCI patient 𝑝 at 

each timepoint 𝑡 we asked whether we were able to predict, at yearly intervals 𝛾 up to five years 

into the future, whether 𝑝	 had progressed into dementia, using information from 𝐿𝑅𝑃!"#"$%&' 

available at 𝑡. Importantly, all timepoints for all these participants were unseen by the dementia-

model, yielding out of sample predictions and relevance maps from 𝐿𝑅𝑃!"#"$%&', and we 

employed nested cross-validation to ensure the progression predictions were also out-of-sample. 

First, we fit a baseline model ℳ='(" with age and sex as predictors, showing no predictive 

efficacy at any timepoint (all AUCs ≈ 0.5, Supplementary Table 8), indicating that the dataset 

was not biased with respect to these variables. When adding the prediction from the dementia 

model y&%  as a predictor in model ℳ>*"! we saw large improvements in prognostic efficacy at all 

yearly intervals, culminating with a fold-wise mean AUC of 0.889 after five years (Figure 3d). In 

the final model, ℳ?+#>, also including the component vector 𝑐@ as predictors, we saw further 

improvements for all years, peaking at 0.903 after five years (p = 0.035 when compared to 
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ℳ>*"!  in a Wilcoxon signed-rank test across the outer folds). Overall, our best performing 

model predicted progression to dementia after five years with an AUC of 0.903, an accuracy of 

84.1%, a positive predicted value of 0.92, a sensitivity of 0.82 and a specificity of 0.86 (Table 2). 

 
Model AUC Balanced 

accuracy 

PPV Sensitivity Specificity 

ℳ!"#$ 0.515 51.05% 0.14 0.09 0.93 

ℳ%&$' 0.889 83.61% 0.91 0.83 0.84 

ℳ()*% 0.903 84.1% 0.92 0.82 0.86 

Table 2: Predictive performance of the three models predicting progression five years into the 

future. The baseline model ℳ='(" used only age and sex as covariates. ℳ>*"! also added the 

prediction from the dementia model at the current timepoint as a predictor, while ℳ?+#> 

additionally included the component vector  𝑐% encoding information from the relevance maps. 

 

Facets of the relevance maps are associated with cognitive impairments in distinct 

domains 

Finally, we tested whether common features found in the relevance maps, represented by the 

PCA component, were correlated with impairments in distinct cognitive and functional domains. 

We extracted 17 summary measures from 7 neuropsychological tests (Supplementary Table 9 

and 10), performed approximately at the same time as an MRI examination, and tested for 

associations with the subject-wise loadings of 𝑐% in 733 MCI patients using linear models. After 

FDR correction, while correcting for age, sex and 𝑦&, we found 48 significant correlations 

between 18 unique components and 14 of the cognitive measures (Figure 3e). Component 30 and 

the aggregate score from the Functional Activities Questionnaire (FAQTOTAL) had the highest 

number of significant hits among the components and measures respectively, both with six 

passing the threshold. Most importantly, the components showed distinct patterns of associations 

with the different cognitive measures (Supplementary Table 13). To ensure the significant 

associations were not driven by collinearity between components 𝑐& and 𝑦&, we ran an equivalent 

analysis without including 𝑦& as a predictor, observing that only 5/48 of the previously significant 

hits had coefficients with the opposite sign (Supplementary Table 14). To summarize, the spatial 

features captured in our relevance maps, and subsequently in our component vectors, were 
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associated with distinct patterns of performance on neuropsychological tests relevant for 

characterizing phenotypic heterogeneity in dementia patients (Supplementary Figure 11). 
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Figure 4: A visualization of the proposed morphological record for a randomly selected 

progressive MCI patient that was held out of all models and analyses. a The top half shows the 

prediction from the dementia model at each visit, while the bottom part displays the relevance 

map underlying the prediction. The opaque sections (including c, d, and e) contain information 

accessible at the imagined current timepoint (22.02.07) to support a clinician in a diagnostic 

procedure. The angle (∠) represents the change in dementia prediction per year based on the 

first two visits. b Translucent regions reveal the morphological record for the remaining follow 

ups in the dataset, thus depicting the future. The ground truth diagnostic trajectory is encoded by 
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the colour of the markers. c Predicted probabilities of progression at future follow-ups based on 

the prediction and relevance map at the current timepoint. d Survival curve of the patient 

compared to the average MCI patient calculated from the prediction and relevance map. The 

marker indicates the location of the patient at the current timepoint. e A list of cognitive domains 

where the patient is predicted to significantly differ from the average based on the prediction 

and relevance map. 
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Discussion  

Given the huge burden of disease and expected increase in prevalence, innovative technological 

solutions for clinical decision making in dementia diagnostics and prognostics is urgently 

needed. Although commonly referred to as a homogenous condition or split into a few subtypes 

based on aetiology or pathophysiology 17, dementia patients exhibit unique and complex 

deficiencies, disease trajectories, and cognitive deficits. To explore the potential of brain MRI 

and XAI to characterize heterogeneity in the brain underpinnings of dementia, we trained neural 

networks to differentiate dementia patients from healthy individuals, and derived relevance maps 

using Layerwise Relevance Propagation to explain the individual-level decisions of the classifier. 

The relevance maps were specific to the individual, spanned regions that were predictive of 

dementia and corroborated existing knowledge of the anatomical distribution of neuropathology. 

In a cohort of MCI patients, it enabled characterization and differentiation of individual-level 

disease manifestations and trajectories linked to cognitive performance in multiple domains. 

While further validations in clinical contexts are needed, our XAI pipeline for dementia has the 

potential to be employed by clinicians for monitoring and characterizing disease development at 

the level of the individual subject. 

 

There is a multitude of XAI techniques available for explaining the decisions of an image 

classifier, many of which have yielded promising results for dementia classification 38. We 

employed LRP due to its straightforward interpretation as well as earlier studies indicating 

robustness 44, both properties we would consider integral in a clinical decision support system. 

But while procuring explanations that are ipso facto meaningful is an important step towards 

adoption of AI in clinical neuroimaging, it is not in itself sufficient. There is a host of predictive 

models that are trivially explainable, but not understandable 45, and there is genuine concern that 

XAI will lead to another level of systems that are formally well-defined, but opaque and obscure, 

and thus practically useless 46. Thus, empirical explorations are imperative to investigate the 

nature of these explanations, examine how they may be useful and build essential trust 47. In our 

validation, we observed that the explanatory maps produced by the dementia pipeline were more 

predictive and showed distinctly more agreement with existing knowledge of pathology than 

those produced by the three alternative pipelines. Given limitations that have been exposed in 

such methods earlier 48,49 these validations are crucial, and observing that our results both 
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corroborate earlier evidence 40 and extend beyond that, provides confidence that the explanations 

derived from the model are meaningful. However, we emphasize that the ultimate validation 

should happen in actual implementations of the technology in end-user systems, with clinical 

personnel applying it in clinical scenarios on realistic data. 

 

We extend upon validating the relevance maps by proposing them as a potential epistemic and 

clinical tool to characterize individual facets of dementia. To this end, we explored if the maps 

contributed to predicting imminent progression from MCI to dementia, and correlated them with 

different cognitive measures, extending upon the current literature 38. In both analyses we found 

evidence, although modest, that the maps are informative beyond the predictions of the model. 

To illustrate the potential of the pipeline for clinical decision making we compiled its output into 

a proposed morphological record (visualized for a single patient in Figure 4) that can help 

clinicians localize morphological abnormalities during a diagnostic process. Identifying subtle 

pathophysiology through deep phenotyping could have a huge potential for charting the 

heterogeneity of dementia, providing precise biological targets to guide future research. 

Furthermore, for the individual patient, it can support personalized diagnosis to identify 

appropriate disease-modifying treatments, and in the future, hopefully, accurate therapeutic 

interventions. 

 

The regions with the highest density of relevance in our maps were the nucleus accumbens, 

amygdala and the parahippocampal gyrus, all of which are strongly affected in dementia 50–52. 

While the two latter corroborate the established involvement of the medial temporal lobe 53 it is 

surprising that the hippocampus does not appear in our analyses, as it has frequently in similar 

studies 38. While this could be caused by actual localization of pathology 54 we consider it more 

likely to be related to the inner working of the model. Specifically, the CNN relies on spatial 

context to identify brain regions before assessing their integrity, utilizing filters that span areas of 

the image larger than those containing the region itself. In the backwards pass, LRP uses these 

filters, and thus the localization of relevance is not necessarily voxel precise. Furthermore, we 

believe the model broadly can be seen as an atrophy detector, which necessarily entails looking 

for gaps surrounding regions instead of directly at the regions themselves. Therefore, while the 
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relevance maps provide important information, they depend on contextual information and thus 

rely on interpretation from clinicians to maximize their utility in clinical practice. 

 

We focused our analyses mainly on the relevance maps, but the results with largest, immediate, 

potential for clinical utility were the predictions from the dementia classifier. Other studies have 

shown the efficacy of machine learning models in differentiating dementia patients and healthy 

controls 28, but it is intriguing that we see a large discrepancy in the predictions of the 

progressive and non-progressive MCI patients many years before the dementia diagnosis is 

given. This corroborates findings from theory-driven studies 55 and a recent deep learning study 
27, implying detectable structural brain changes many years before the clinical diagnosis is given. 

This gives hope for advanced technology to contribute to early detection and diagnosis through 

MRI based risk scores, in our case supported by a visual explanation. If curative treatments 

prove efficacious and become accessible, early identification of eligible patients could be 

imperative 56. Furthermore, timely access to interventions have shown efficiency in slowing the 

progress of cognitive decline 57, in addition to improving the quality of life for those afflicted and 

their caregivers 26,58. Widely accessible technology that allows for early detection with high 

precision could play a key role in the collective response to the impending surge of patients and 

provide an early window of opportunity for more effective treatments. 

 

While our results show a great potential for explainable AI, and particularly LRP, as a 

translational technology to detect and characterize dementia, there are limitations to our study. 

First, there are technical caveats to be aware of. Most importantly, there is an absolute 

dependence between the predictions of our model and the relevance maps. In our case, when we 

qualitatively assessed the relevance maps of the false negatives, they were indistinguishable from 

the true negatives. This emphasizes the fact that when the model is wrong, this is not evident 

from the explanations. Next, while the maps contain information sufficient to explain the 

prediction, they are not necessarily complete. Thus, they don’t contain all evidence in the MRI 

pointing towards a diagnosis, a property which could prove essential for personalization. We 

have addressed this problem through pragmatic solutions, namely ensembling and targeted 

augmentations, but theoretical development of the core methodology might be necessary to 

theoretically guarantee complete maps. Beyond the fundamental aspects of LRP, there are 
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weaknesses to the present study that should be acknowledged. First, the dataset with dementia 

patients portrayed as heterogeneous mostly consists of ADNI and OASIS data, and thus patients 

with a probable AD diagnosis (although clinically determined). Thus, while we consider it likely, 

it is not necessarily true that the dimension of variability spanning from healthy controls to 

dementia patients portrayed by our model has the expressive power to extrapolate to other 

aetiologies. To overcome this in actual clinical implementations, we encourage the use of 

datasets that are organically collected from subsets of the population that are experiencing early 

cognitive impairments, for instance from memory clinics. A related problem is the out-of-sample 

generalization, especially related to scanners and acquisition protocols. Although we utilize data 

from many sites, which we have earlier shown to somewhat address this problem 59, in 

combination with transfer learning, we did not explicitly test this by e.g., leaving sites out for 

validation. Again, we advise that clinical implementations should be based on realistic data, and 

thus at least be finetuned towards data coming from the relevant site, scanner, and protocol 

implemented in the clinic 60. This also includes training models with class frequencies matching 

those observed in clinical settings, instead of naively balancing classes as we have done here. 

Next, we want to explicitly mention the cyclicality of our mask-and-predict validation. In a sense 

it trivially follows that regions that are considered important by a model are also the ones that are 

driving the predictions, and thus it is no surprise that the relevance maps coming from the 

dementia model are more important to the dementia model than the maps coming from e.g., the 

sex model. We addressed this by alternating the models for test and validation, but fully avoiding 

this circularity would require disjunct datasets, and more and larger cohorts. In summary, the 

predictive value for the individual patient must be interpreted with caution. However, our 

extensive validation approach as well as our thorough explanation of the method and its 

limitations, and training on a massive dataset, provides a first step towards making explainable 

AI relevant for clinical decision support in neurological disorders. Nonetheless, it also reveals a 

complicated balance between validating against existing knowledge and allowing for new 

discoveries. In our case, confirming whether small details revealed in the relevance maps are 

important aspects of individualization or simply intra-individual noise requires datasets with a 

label-resolution beyond what currently exists. Thus, we reiterate our belief that the continuation 

of our work should happen at the intersection between clinical practice and research 61, by 
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continuously collecting and labelling data to develop and validate technology in a realistic 

settings.  

 

To conclude, while there are still challenges to overcome, our study provides an empirical 

foundation and a roadmap for implementations of brain MRI based explainable AI in clinical 

decision support systems for personalization. Specifically, we show that deep neural networks 

trained on a heterogenous set of brain MRI scans can predict dementia, and that their predictions 

can be made human interpretable. Furthermore, our pipeline allows us to reason about 

neurobiological aberrations in individuals showing early signs of cognitive impairment by 

providing personalized characterizations which can subsequently be used for precise 

phenotyping and prognosis, thus fulfilling a realistic clinical purpose. 

Materials and Methods 

Data 

All data used in the present study have been obtained from previously published studies which 

have been approved by their respective institutional review board or relevant research ethics 

committee.  

 

To train the dementia models we compiled a case-control dataset from seven different sources 

(Supplementary Table 1), consisting of patients with a dementia diagnosis and healthy controls 

from the same scanning sites. Because of the different diagnostic criteria used in the original 

datasets we applied different rules to achieve a singular, heterogeneous dementia label 

(Supplementary Table 2). We extracted all participants with a dementia-diagnosis at all 

timepoints to comprise the patient group (n=854). Then, for each unique proxy site (In ADNI, 

due to the large number of scanners and acquisition protocols, and the work put into unifying 

them, we used field strength as a proxy for site), sex, and age-bin spanning 10 years, we sampled 

an equal number of healthy controls to form the matched control set (total n=1708, Table 1). 

Lastly, before modelling, we split the data into five equally sized folds stratified on diagnosis, 

site, sex, and age, such that all timepoints for a single participant resided in the same fold.  
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For the MCI dataset we started with all participants from all ADNI waves with an MCI diagnosis 

(subjective memory complaint, MMSE between 24 and 30, CDR>0.5 with memory box>0.5, 

Weschler Memory Scale-Revised <9 for 16 years of education, <5 for 8-15 years of education 

and <3 for 0-7 years of education) 62, on at least one timepoint. These were 12661 images from 

6448 visits for 1256 participants, none of which were used for model training. This selection 

criterion ensured all participants had an MCI diagnosis at one point in time, though it did not 

limit us to only those timepoints. Thus, in addition to those with a consistent, stable, MCI 

diagnosis (sMCI), we had a variety of diagnostic trajectories, including those transitioning from 

normal cognition to MCI, MCI to AD (pMCI) and various other combinations. Before the 

subsequent analyses we discarded all participants without an MCI diagnosis initially, and 

everyone with ambiguous trajectories (e.g. MCI->CN->AD), leaving 5607 visits from 1138 

participants.  

Modelling 

All dementia models were variants of the PAC2019-winning simple fully convolutional network 

(SFCN) architecture 63,64, modified to have a single output neuron with a sigmoid activation. The 

architecture is a simple, VGG-like convolutional neural network with 6 convolutional blocks and 

approximately 3 million parameters. We initialized the model with weights from a publicly 

accessible brain age model previously shown to have superior generalization capabilities when 

dealing with unseen scanning sites and protocols 59. Before modelling, all images were 

skullstripped 65 and linearly registered to MNI152 space 66 using a previously developed pipeline 
59 relying on FreeSurfer v5.3 and FSL v6.0 67. The models were trained on a single Nvidia A100 

GPU with 40GB of memory, Tensorflow 2.6 68 through the Keras interface 69. We used a vanilla 

stochastic gradient descent (SGD) optimizer with a learning rate defined by the hyperparameter 

settings (see next section), optimizing the binary cross-entropy loss. All models ran for 160 

epochs with a batch size of 6, and for each run the epoch with the lowest validation loss was 

chosen. Varying slightly depending on the hyperparameters, a single model trained in 

approximately 4 hours.  

 

For each hold-out test fold we trained models on three of the remaining folds and validated on 

the fourth, akin to a cross-validation with an additional out-of-sample test set, to achieve out-of-

sample predictions for all 1708 participants while allowing for hyperparameter tuning. The 
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hyperparameters we optimized were dropout 𝑑  ∈ {0.25,  0.5} and weight decay 𝑤  ∈

{10:A,  10:B}. Additionally, we tested stepwise, one-cycle and multi-cycle learning rate 

schedules (Supplementary Figure 12b), and a light and a heavy augmenter (Supplementary Table 

12). Initial values for the learning rate were set manually based on a learning rate sweep 70, 

though kept conservative to preserve the learned features from the pretraining (Supplementary 

Figure 12a). The hyperparameter search was implemented as a naive grid-search over the total 

24 different configurations (Supplementary Figure 13). We selected the model procuring the best 

AUC in the validation set to produce out-of-sample predictions for the outer hold-out fold. In the 

final evaluation of the models, we compiled predictions for all participants, for each using the 

model where they belonged to the hold-out test set. Our main method for measuring performance 

was the AUC, but we also report accuracy, which, due to our matching procedure, is equivalent 

to balanced accuracy.  

Relevance maps 

We built a pipeline 𝐿𝑅𝑃!"#"$%&'for generating relevance maps by implementing LRP (Bach et 

al., 2015) on top of the trained classifier. LRP is a technique for explaining single decisions 

made by the model, and thus, when running the pipeline on input 𝑋	 a relevance map 𝑅	 is 

generated alongside the prediction 𝑦&. 𝑅	is a three-dimensional volume, representing a visual 

explanation for 𝑦& , where each voxel 𝑟&,D,2   ∈ 𝑅 has a spatial position 𝑖, 𝑗, 𝑘	corresponding to the 

location of an input voxel 𝑥&,D,2   ∈ 𝑋. Furthermore, the intensity of 𝑟&,D,2 can be directly 

interpreted as how much voxel 𝑥&,D,2 contributes to 𝑦&, such that ∑ 𝑟*∈F =  𝑦&. In the original LRP-

formulation, relevance 𝑟	is propagated subsequent layers 𝑍1 and 𝑍< according to the relative 

contribution of one artificial neuron 𝑎& ∈ 𝑍1 in the first layer on relevance in all artificial neurons 

𝑎D ∈ 𝑍< in the following layer, 

 

𝑟(𝑎&) = ∑ '+.+,
∑ '-.-,-

𝑟(𝑎D)D , 

 

where 𝑤&D denotes the weight between 𝑎& and 𝑎D. We controlled the influence of different aspects 

of the explanations using a composite LRP strategy 41, combining different formulations of the 

LRP-formula for the different layers in the model to enhance specific aspects of the relevance 
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maps. Specifically, we employed LRPϵ for the prediction layer to retain the most salient 

explanations,  

 

𝑟H(𝑎&) = ∑ '+.+,
HI∑ '-.-,-

𝑟(𝑎D)D . 

 

For the central convolutional layers, we upweighted positive relevance (e.g. features increasing 

the prediction, corresponding to evidence for a diagnosis) with LRPαβ, 

 

𝑟JK(𝑎&) = ∑ O𝛼 L'+.+,M
.

∑ L'-.-,M
.

-
− 𝛽 L'+.+,M

/

∑ L'-.-,M
/

-
S 𝑟(𝑎D)D ,  

 

Where (⋅)I and (⋅): denote positive and negative contributions respectively. For the input layer 

and the following convolutional layer we employed LRPb (also denoted as LRPflat), to smooth 

finer details of the relevance maps, 

 

𝑟b(𝑎&) = ∑ <
∑ <-

𝑟(𝑎D)D . 

 

The configuration of the full strategy can be found in Supplementary Table 5. The raw relevance 

maps produced by the pipeline were full brain volumes with the same dimensionality as the MRI 

data (167x212x160 voxels) containing mostly (see below) positive relevance.  

 

Notation-wise we generally consider the relevance map 𝑅(𝑋&) for an image 𝑋& to be a function of 

the model  𝑚%'(2, where 𝑡𝑎𝑠𝑘	indicates which task the model was trained for, the LRP strategy 

LRPcomposite and the image 𝑋& 

 

𝑅(𝑋&) = 𝑓X𝑚%'(2 ,  LRPcomposite, 𝑋&Y. 

 

Because the composite LRP strategy described above is kept fixed in our pipeline, we contract 

this to  
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𝑅(𝑋&) = 𝑓(𝑚%'(2 ,  𝑋&). 

 

Furthermore, we let the model-specifier task annotate the map for a further simplification  

 

𝑅%'(2(𝑋&) = 𝑓(𝑋&). 

 

Thus, 𝐿𝑅𝑃%'(2 is used to annotate the full pipeline for a given task, while 𝑅%'(2(𝑋&) denotes a 

single relevance map generated by this pipeline for image 𝑋&. When the task is given by the 

context, we sometimes simplify this further to 𝑅(𝑋&), and when a general image is considered, 

we simply use 𝑅	 to denote its relevance map. 

 

While we generally discuss our pipeline as a singular one, there were in reality five 

approximately equivalent pipelines (corresponding to the models trained for the five test folds), 

and which one is used depends on what image was used as input. Specifically, for each 

participant diagnosed with dementia, the pipeline is chosen where the participant was part of the 

hold-out test set while training the model, and both the relevance maps and the predictions are 

thus always out-of-sample. For participants used in the MCI analysis, which are all out-of-

sample for all models, we created an ensemble by averaging the predictions and the voxel-wise 

relevance across all models.  

 

Before implementing the LRP procedure we made two slight modifications to the models to 

facilitate the backwards relevance propagation, both leaving the functional interface of the model 

unchanged. First, we removed the sigmoid activation in the final layer, so that the output of the 

model changed from a bounded continuous variable 𝑦&  ∈ [0,  1] to an unbounded prediction y&N   ∈

[−∞,  ∞]. In this space a raw prediction of y&N   = 0 is equivalent to a sigmoid-transformed 

prediction of 𝑦& = 0.5, and thus y&N   <  0 means that the model predicts control status for the 

given participant, and oppositely y&N   >  0 implies that the model predicts a dementia diagnosis. 

Furthermore, this means that all positive relevance 𝑟  ∈ 𝑅,  𝑟  >  0	can be interpreted as visual 

evidence in favour of a dementia diagnosis. Secondly, we modified the model by fusing all batch 

normalization layers with their preceding convolutional layers, adjusting their weights and biases 

to match the shift and scaling previously performed by the normalization layer 71,72.  
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After generation, the relevance maps are in the same stereotaxic space as their corresponding, 

linearly registered, input MRIs. To ensure intra-individual comparisons were done in the same 

space we non-linearly registered the maps to MNI152- space before subsequent statistical 

analyses were run. First, we registered the preprocessed MRIs 𝑋& used as inputs to the 1mm 

MNI152 template packaged with FSL using fnirt with splineorder=2. We then applied the 

transformation computed for 𝑋& to 𝑅(𝑋&) using applywarp. We also restrained our relevance 

maps to contain strictly positive relevance, evidence in favour of a dementia prediction, by 

clipping them to a minimum value of 0. Furthermore, to remove edge-effects from our analyses, 

we enforce that there is no relevance in non-brain tissue by nullifying all relevance outside the 

brain: 

 

∀(𝑖, 𝑗, 𝑘)`𝑥&,D,2 = 0  ⇒  𝑟&,D,2 = 0b. 

 

All visualized relevance maps are plotted after non-linear registration, overlayed on the MNI152-

template. As the maps are three-dimensional, we generally plot a collection of distributed axial 

slices. The relevance is coloured by the nibabel v3.2.2 73 cold_hot colourmap. Since the absolute 

relevance values vary between maps, all maps are normalized to the intensity range [0, 1] in the 

visualizations.  

Validating the relevance maps 

Earlier studies have shown that interpretability techniques in general are prone to generate visual 

explanations that do not capture salient parts of the input 48,49. To investigate the extent of this for 

our pipeline 𝐿𝑅𝑃!"#"$%&'  we employed two analyses to assess the sanity of the relevance maps. 

The first was a domain-specific analysis comparing the relevance maps to existing knowledge of 

the pathology of dementia, while the second was a purely quantitative analysis examining how 

important the regions found by the pipeline are for the dementia prediction 𝑦&. In both cases we 

contrasted the relevance maps generated from the main pipeline with three alternative pipelines 

representing variants of a null hypothesis, all expected to produce relevance maps with no 

significant association to dementia.  
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𝐿𝑅𝑃*'$!+# &#'/"( represents the simplest alternative pipeline, and is built around the dementia-

model, but with an additional preprocessing step scrambling the input,  

 

𝑅*'$!+# &#'/"((𝑋&)  =  𝑅!"#"$%&'(𝒳&), where 

𝒳& = 𝒩X𝑋& ,  𝜎O+Y. 

 

𝐿𝑅𝑃*'$!+# &#'/"( is expected to generated relevance maps where the relevance is evenly 

distributed across the entire image. In the next pipeline 𝐿𝑅𝑃*'$!+# ."&/0%( we replaced the 

dementia-model with a model with random weights,  

 

𝑅*'$!+# ."&/0%((𝑋&) = 𝑅(𝑚P ,  𝑋&). 

 

𝑚P has not been trained for any task, and thus has random weights initialized by the default 

Keras ”Glorot Uniform” weight-initializer. This pipeline is expected to produce relevance maps 

which correlate with the raw voxel intensities, e.g. high intensity in the input should entail more 

(absolute) relevance, thereby reflecting aspects of morphology. The final and most realistic 

alternative pipeline was 𝐿𝑅𝑃("), where we replaced the dementia-model with a binary sex-

classifier,  

 

𝑅(")(𝑋&) = 𝑅(𝑚(") ,  𝑋&). 

 

The sex-classifier was trained to differentiate males from females in one of the splits from the 

dementia-dataset, achieving an out-of-sample AUC of 0.956 and a balanced accuracy of 89.40%. 

We did not do any hyperparameter optimization for this model but used the best configuration 

from the dementia cross-validation in the same fold. The heatmaps from this pipeline should 

reflect regions where there is intra-individual variation in morphology, which are predictive of 

sex but with minimal association with dementia.  
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As a proxy for existing knowledge in the literature we performed an ALE meta-analysis using 

Sleuth v3.0.4 74 and GingerALE v3.0.2 42. We used Sleuth to search for relevant articles with the 

query 

 

Imaging Modality is MRI 

 AND 

 Context is disease 

 AND 

 Diagnosis is Dementia OR Alzheimer’s Disease OR Lewy Body Dementia OR Frontotemporal 

Dementia OR Non-Aphasic Frontotemporal Dementia  

 

in the Voxel-based morphometry database, yielding 394 experiments from 124 articles. These 

experiments contained 3972 foci, 280 of which were outside the MNI152 mask, leaving 3692 to 

be loaded into GingerALE. Then the reference map 𝐺, with voxels 𝑔&,D,2, was generated by an ALE 

meta-analysis using the default parameters: Cluster-level FWE=0.01, Threshold 

Permutations=1000, P Value=0.001. The reference map is visualized in Supplementary Figure 4.  

 

We performed four pairwise comparisons to estimate the amount of overlap between each of the 

pipelines and 𝐺. For each pipeline, we first computed an average relevance map 𝑅 across all true 

positives (e.g. dementia patients where the dementia-model correctly predicted a diagnosis, 

n=697, Supplementary Figure 1c), by computing their voxel-wise average relevance. Next, we 

binarized both the average map and the reference map by thresholding them at multiple 

percentiles 𝑝  ∈ [0,  100), 

 

𝑅g> =	 h
1				𝑟&,D,2 > 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑟, 𝑝)
0				𝑒𝑙𝑠𝑒																																					

, 

𝐺> =	h
1				𝑔&,D,2 > 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑔, 𝑝)
0				𝑒𝑙𝑠𝑒																																							

. 

 

 

Then, for each percentile p we calculate the Sørensen-Dice coefficient SDC between the two,  
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𝑆𝐷𝐶>X𝑅g>, 𝐺>Y =
∑ 𝑟&,D,2𝑔&,D,2 	&,D,2

∑ 𝑟&,D,2 + ∑ 𝑔&,D,2&,D,2&,D,2
, 𝑟 ∈ 𝑅g>, 𝑔 ∈ 𝐺>	 

  

which allows us to plot the Dice coefficient as a function of the percentile (Figure 2b). To have a 

singular numerical basis for comparison we also computed the normalized cross-correlation 43 

between the (non-binarized) average maps 𝑅 and the reference map 𝐺	, 

 

  

𝑛𝐶𝐶(𝑅g, 𝐺) = 	
∑ (𝑟&,D,2 − �̅�&,D,2 )(𝑔&,D,2 − �̅�)	

q∑ (𝑟&,D,2 − �̅�)A ∗ 	∑ (𝑔&,D,2 − �̅�)A&,D,2&,D,2
, 𝑟 ∈ 𝑅g, 𝑔 ∈ 𝐺.	 

 

To facilitate an intuitive understanding of what parts of the brain the dementia-model is focusing 

on, we also performed a similar, region-wise comparison. This was done by extracting a subset 

of voxels from the average relevance map 𝑅!"#"$%&',  

 

𝑅Q  =  s𝑟&,D,2  I (𝑖,  𝑗,  𝑘)  ∈ 𝜌u, 

 

where 𝜌 is one of 69 regions defined in the Harvard-Oxford cortical and subcortical atlases 75. 

We did the same for 𝐺 and let the mean activation per region for both constitute a tuple 

 

v
∑ 𝑟*∈F0

|𝑅Q|
,
∑ 𝑔/∈R0

|𝐺Q|
x	 

 

plotted Figure 2c. However, since it is non-trivial to determine which aggregation method 

corresponds to the most understandable and intuitive interpretation, we also created plots for 

tuples of sums, 

 

yz 𝑟
*∈F0

, z 𝑔
/∈R0

{ 
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and maximum values 

 

Omax
*∈F0

𝑟 ,max
/∈R0

𝑔S 

 

per region in Supplementary Figure 14.  

To quantify the importance of the spatial locations captured by the various LRP pipelines for 

predicting dementia, we implemented a procedure for iteratively occluding parts of the image 

based on the relevance maps and observing how the prediction from the dementia model changed 
76. Still using the true positives, for each pipeline 𝐿𝑅𝑃%'(2 for each MRI 𝑋1 we generated a 

baseline dementia-prediction y&1 and relevance map 𝑅%'(2. Then we located the voxel with the 

highest amount of relevance in 𝑅%'(2 and replaced a 15x15x15 cube centred around the voxel 

with random uniform noise 𝒰(0,  1), effectively concealing all information contained in this 

region. Next, we ran the modified image 𝑋%'(2<  through the dementia-model to see how the 

prediction 𝑦&%'(2<  changed as a function of the occlusion. Note that injecting a box of random 

noise into the image is not trivially equivalent to removing information, however we specifically 

applied the same modification in the random box-augmentation during training and are thus 

hopeful that the model is invariant to the injection beyond the information removal. We 

iteratively applied this modify-and-predict procedure, also masking out the regions from the 

relevant maps between each iteration to minimize overlap of occlusion windows, for 20 

iterations, producing a list of predictions [y&1,  𝑦&%'(2< , 𝑦&%'(2A , … , 𝑦&%'(2<S ] plotted for each pipeline in 

Figure 2d (averaged across all true positives). The rate of decline in these traces indicate the 

importance of the regions found in the respective relevance maps. We quantified the differences 

between the pipelines 𝐿𝑅𝑃%'(2 by calculating the area over the area over their perturbation 

curves 76,  

 

𝐴𝑂𝑃𝐶%'(2 =	
<
A1
	X∑ 𝑦&1 −	𝑦&%'(2&A1

&T< Y. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.06.22.23291592doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291592
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 34 

Exploratory analyses in the MCI cohort 

In the exploratory MCI analyses we used 𝐿𝑅𝑃!"#"$%&' to generate predictions and relevance 

maps for participants from ADNI who were given an MCI diagnosis at inclusion. We first 

compiled the predictions and relevance maps (and the corresponding timestamps) for each 

participant at all timepoints into a single data structure we called a morphological record. We 

then tried to utilize this data structure to differentiate three groups: stable MCI patients (sMCI), 

progressive MCI patients (pMCI), and those who saw improvement in their cognition throughout 

the data collection phase. The remaining participants, e.g. those who either passed through all 

three diagnostic stages, or bounced between diagnoses, were excluded. Furthermore, we 

combined the stable and improving cohorts into a non-progressive group (nMCI) to facilitate 

binary group comparisons in the subsequent analyses. 

 

For the first analysis comparing predictions in the two groups, due to variability in the total 

number and the frequency of visits between participants, we aimed to create a matched dataset 

based on visit history from the nMCI and pMCI cohorts to compare the predictions in the two 

groups with reference to a specific timepoint. We first started with all the progressive patients 

𝑝>  ∈ 𝑝𝑀𝐶𝐼 who got a diagnosis at timepoint 𝑡$I<, and, for each patient individually, compiled 

all previous visits 𝑡#,  𝑚  ≤  𝑛 into a vector ℎ> representing the time of the visits. The entries 

𝑑%1of the vector were the number of days until the diagnosis was given, 𝑡$I< − 𝑡#. For 

simplicity we also appended 𝑑%2.3 = 0 to ℎ>, such that for a single patient 

 

ℎ> = `𝑑%4 ,  𝑑%3 ,   … ,  𝑑%2 ,  0b. 

 

Then, for each of the non-progressive patients 𝑝$  ∈ 𝑛𝑀𝐶𝐼 who didn’t have a time of diagnosis 

(e.g. 𝑡$I< is not given) we compiled a set 𝐻> of all possible history vectors ℎ> by varying which 

visit was chosen as 𝑡1 and a terminal non-diagnosis timepoint 𝑡$I<. Next, we defined a cost-

criterion for matching two histories (with an equal number of visits) as the sum of absolute 

pairwise differences between the vectors, 

 

𝑐𝑜𝑠𝑡(ℎ<, ℎA) = ∑ |𝑑%1
03 −	𝑑%1

05 |$
#T1 . 
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For each pair of progressive and non-progressive patients X𝑝>, 𝑝$Y this allowed us to calculate a 

best possible match, given that the stable patient had a total number of visits equal to or larger 

than the number of visits for the progressive patient: 

 

𝑚𝑎𝑡𝑐ℎX𝑝>, 𝑝(Y = 	 �
min
0∈U67

𝑐𝑜𝑠𝑡 �ℎ>6 , ℎ�			∃ℎ ∈ 𝐻>7 �|ℎ| = �ℎ>6��

∞																																			𝑒𝑙𝑠𝑒																																			
. 

 

 

Finally, we compiled the cost of the optimal match from all pairs into a matrix and found the best 

complete matching by minimizing the total cost across this matrix using the Hungarian algorithm 

implemented in scipy v1.6.3 77, such that each patient occurs in at most one pair.  

 

We estimated differences in predictions 𝑦& between the two groups using a linear mixed model. 

Specifically, we modelled 𝑦& at all timepoints before the terminal timepoint 𝑡$I< as a function of 

age, sex (as controlling variables), years to diagnosis, categorical group membership (nMCI, 

pMCI), and an interaction between years to diagnosis and group. In addition, we had an 

independent intercept and slope per participant. The model was fit the formula API of 

statsmodels v0.13.2 78 using the formula 

 

𝑦 ∼ 𝑎𝑔𝑒 + 𝑠𝑒𝑥 + 𝑦𝑒𝑎𝑟𝑠	𝑡𝑜	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 + 𝐶(𝑔𝑟𝑜𝑢𝑝) + 𝑦𝑒𝑎𝑟𝑠	𝑡𝑜	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠: 𝐶(𝑔𝑟𝑜𝑢𝑝)

+ (1 + 𝑦𝑒𝑎𝑟𝑠	𝑡𝑜	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠	|	𝑠𝑢𝑏𝑗𝑒𝑐𝑡) 

 

on the matched dataset. A full overview of coefficients and p-values can be found in 

Supplementary Table 7.  

 

Due to the high dimensionality of the relevance maps, we decomposed them with a principal 

component analysis (PCA) before the final analyses. To fit the PCA we used the non-linearly 

registered relevance maps from a randomly selected timepoint for all MCI patients. Before fitting 

the model, all relevance maps were smoothed with a constant 3x3x3 blurring kernel using the 

convolution operation from Tensorflow 2.6 to strengthen the signal-to-noise ratio. The PCA was 
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computed using scikit-learn v1.0.2 79, retaining 64 components (out of 1137 maximally possible) 

in a component vector 𝑐  =  [𝑐1,  𝑐<,   … ,  𝑐VB]. An axial slice from each of the 64 components 

visualized in MNI152-space is shown in Supplementary Figure 9. 

 

We fit Cox proportional hazard models using the component vectors as predictors to assess the 

association between the relevance maps and progression as a function of age. In addition to the 

components, representing the maps, we controlled for sex in the model. The p-values and 

coefficient can be found in Supplementary Table 7. To account for covariance between the 

components and the dementia-prediction 𝑦& (Supplementary Figure 10) we ran an additional 

model where we divided the patients into ten strata based on 𝑦&. Both models were fit using 

lifelines v0.27.1 80. 

 

To further explore the prognostic efficacy of our pipeline we set up a predictive analysis for 

predicting progression at multiple, fixed timepoints a given number of months in the future. For 

each participant 𝑝 with visits at timepoints 𝑡>, we denoted the last timepoint with an MCI 

diagnosis 𝑡$"/
>  and the first timepoint with a dementia diagnosis (if present) 𝑡>+(

> . Using a fixed 

set of years into the future, 𝛾  ∈ {1,  2,  3,  4,  5}, we constructed a target variable 𝑧W(𝑡>) such that  

 

𝑧W(𝑡>) = �
1						𝑡> + 𝛾 ≥ 𝑡>+(

>

0						𝑡> + 𝛾 ≤ 𝑡$"/
>

𝑁𝐴		𝑒𝑙𝑠𝑒																		
 

 

 

where the NAs allow for exclusion of all patients where the status at timepoint 𝑡> + 𝛾 is 

unknown. For each 𝛾 we constructed the target vector 𝑧W  across all timepoints for all participants 

with 𝑧W  ≠ 𝑁𝐴 and split the constituent patients 𝑝	into five folds stratified on 𝑧W, sex and age, 

such that all timepoints from a participant resided in the same fold. Using these folds, we fit 

logistic regression models to predict 𝑧W with an 𝑙<-penalty in a nested cross-validation loop, 

allowing us to both tune the regularization parameter 𝜆 and have out-of-sample predictions for 

all participants. For eligible participants we used all timepoints for training the models, but 
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during testing we sampled a random timepoint per participant to ensure independence between 

datapoints in the final evaluation. For each 𝛾 we fit three models: a baseline model 

 

ℳ='("   ≔  𝑧W  ~ 𝑎𝑔𝑒%6 + 𝑠𝑒𝑥 + 𝑎𝑔𝑒%6 × 𝑠𝑒𝑥 

 

to assess the bias in the dataset with respect to age at the given timepoint 𝑡> and sex, a model 

using the prediction  𝑦&%6 from the dementia classifier at 𝑡> as a predictor  

 

ℳ>*"!   ≔  𝑧W  ~ 𝑎𝑔𝑒%6 + 𝑠𝑒𝑥 + 𝑎𝑔𝑒%6 × 𝑠𝑒𝑥  +  𝑦&%6   +  𝑎𝑔𝑒%6 × 𝑦&%6 

 

and a model including the relevance maps from 𝑡>, represented by the component vector 𝑐%6,  

 

ℳ?+#>  ≔  𝑧W  ~ 𝑎𝑔𝑒%6 + 𝑠𝑒𝑥 + 𝑎𝑔𝑒%6 × 𝑠𝑒𝑥  +  𝑦&%6   +  𝑎𝑔𝑒%6 × 𝑦&%6   +  𝑐%6. 

 

All models were fit and tuned using the LogisticRegressionCV interface of sklearn v1.0.2 79. We 

compared models by measuring the mean AUC across the five folds (Supplementary Table 8). 

To evaluate clinical applicability we also report accuracy, positive predictive value, sensitivity, 

and specificity (Table 2). To determine whether the more complex models represented 

significant improvements we employed a Wilcoxon signed-rank test from scipy v1.9.3 77 to do 

pairwise comparisons between ℳ='(" and ℳ>*"!, and ℳ>*"!,  and ℳ?+#> on results from the 

five out-of-sample AUCs independently. 

 

To assess whether the relevance maps were associated with specific cognitive functions we 

associated aspects of them with performance on various cognitive tests. We first extracted test 

results from seven neuropsychological batteries which spanned all ADNI waves and contained 

high-level summary scores from the ADNI website (Supplementary Table 9). We then manually 

extracted 17 summary scores spanning different, but overlapping, cognitive domains 

(Supplementary Table 10). The component vectors 𝑐 were used as proxies for the relevance 

maps, where each 𝑐& represented a template for localization of pathology. We matched 2402 

component vectors with test results from 733 MCI patients, forming a basis for the comparison. 

We then calculated the univariate association between cognitive performance according to each 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 4, 2023. ; https://doi.org/10.1101/2023.06.22.23291592doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291592
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 38 

of the 17 with each of the dimensions 𝑐&   ∈ 𝑐, while including age and sex as covariates for 

correction. To isolate the effect of the localization we also corrected for dementia-prediction, 𝑦&. 

When a patient had multiple potential matches, a random timepoint was selected, and the final 

number of datapoints used in the analyses varied from 518 to 675. Correction for multiple testing 

was done with the Benjamini-Hochberg procedure. The coefficients and p-values of all 

correlations are reported in Supplementary Table 13. To ensure the associations were not 

confounded by collinearities between 𝑐 and 𝑦&, we also performed an equivalent analysis without 

correction to observe whether the sign of the coefficients changed (Supplementary Table 14). 
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