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Abstract 
Early-life gut microbiome-metabolome crosstalk has a pivotal role in the maintenance of host 
physiology. However, our understanding on early-life gut microbiome-metabolome 
maturation trajectories in humans remains limited. This study aims to explore the longitudinal 
patterns of gut metabolites during early life, and how they are related to gut microbiota 
composition in birth cohort samples of n = 670 children collected at 2.5 (n=272), 6 (n=232), 
14 (n=289), and 30 months (n=157) of age.  
Factor analysis showed that breastfeeding has an effect on several metabolites including 
secondary bile acids. We found that the prevalent gut microbial abundances were 
associated with metabolite levels, especially in the 2.5 months-olds. We also demonstrated 
that the prevalent early colonizers Bacteroides, Escherichia and Bifidobacterium 
abundances associated with microbial metabolites bile acids especially in the breastfed 
infants. 
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Taken together, our results suggests that as the microbiome matures during the early-life 
there is an association with the metabolome composition in an analogous fashion to how the 
genome information mature during early life.  

 

 

Introduction 
The human gut harbors an estimated 500–1000 species of microbes on average in the adult 
population. The gut microbiome, which includes the by-products of microbes, as amino 
acids, vitamins, and organic acids, and the host interaction, is considered to be an “essential 
organ” within human beings1,2. The process of gut microbiome colonization after birth has 
been intensively studied during the last decade3-5. Recent studies have demonstrated that 
gut microbiome plays a crucial role in modulating human health and disease, including many 
common health complications such as: inflammatory bowel disease6, obesity7, various 
neurological and psychiatric disorders8,9. Growing evidence suggests that the process of gut 
microbiota maturation in early life relates to the trajectories of human disease and their 
resultant outcomes later in life10,11. These studies have demonstrated the importance of 
understanding the early-life gut microbiome composition and its function in order to 
understand long-term human health outcomes.  
Crosstalk between the host and gut microbiome is vital for maintaining human metabolic 
capacity12. Many complex interactions between the host and gut microbiome occur via 
enterohepatic circulation from the liver to the intestine and back, and the metabolite 
production both in the host and the microbiome begins already prenatally13,14. As such, 
profiling fecal metabolites can provide an indirect functional readout of the gut microbiome 
composition. The metabolites can act as an intermediate phenotype mediating host-
microbiome interactions15. In fact, bidirectional interactions exist between the gut microbiome 
and metabolome16. For example, microbial biotransformation of bile acids (BAs) can regulate 
human physiology and in turn the overall host BA pool can control the microbial diversity17. 
Intriguingly, a recent rodent study suggests that gut metabolome drives gut microbiota 
development and maturation18. However, our understanding on early-life gut microbiome-
metabolome maturation trajectories in humans is limited4,19-21. 
Here, we study how early-life gut metabolome is associated with the maturation of gut 
microbiota. More specifically we aimed to identify trajectories of fecal metabolome which 
may drive the maturation of early gut microbiome. 

Results  
 
The study subjects are described in the Supplementary Table 1. We analyzed longitudinal 
metabolome, using both mass spectrometry based targeted and untargeted techniques, and 
microbiome in stool samples collected at 2.5 (n=444 for microbiome, n=272 for 
metabolome), 6 (n=256 for microbiome, n=232 for metabolome), 14 (n=302 for microbiome 
and n=289 metabolome), and 30 (n=207 for microbiome and n=157 for metabolome) months 
(mo) of age. The metabolomics dataset used for the analysis included identified metabolites 
from the following classes: short chain fatty acids (SCFA), BAs (taurine and glycine 
conjugated), amino acids, carboxylic acids (mainly free fatty acids and other organic acids), 
hydroxy acids, phenolic compounds, alcohols, and sugar derivatives. There was no 
complete overlap between the timepoints: 37 children had microbiome data from all the 
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timepoints, whereas two or three samples were available from 208 or 110 children, 
respectively. Descriptive findings from the 16S rRNA analysis are shown in the 
Supplementary figures 1-3.  
 
Fecal Metabolome age-trends 
First, we explored how the gut metabolome changes by age. As expected, age-related 
variation displayed the major effect on the gut metabolome. Most of the SCFAs, except for 
acetic acid, increased with age (Fig. 1A.). Individual BAs and polar metabolites showed no 
clear age-related patterns (Fig 1.). Secondary BAs were positively, whilst, primary and 
secondary tauroconjugated BAs remained negatively associated with age (Fig. 1B., G.) 
Glycoconjugated BAs were positively associated with age, however, this association 
attenuated when adjusting for breastfeeding (Supplementary Figure 8). Some of the 
metabolites including 5-Hydroxyindoleacetate, 4-Hydroxyphenylacetic acid and multiple 
unidentified polar metabolites that had a significant age trend were attenuated when 
adjusting for breastfeeding associated with breastfeeding (Supplementary Figure 8).  

Metabolome associations with factors known to associate with 
microbiome colonization 
 
In order to understand the overall contributions of various factors to gut metabolome, we 
performed variance analysis using variables previously shown to associate with gut 
microbiota maturation, i.e. breastfeeding, delivery mode, antibiotics intake, prenatal birth, 
biological sex assigned at birth, pet ownership and having siblings. In general, demographic 
exposures explained on average <1 % of variance in polar metabolites, SCFAs, and BA 
concentrations (Fig.1D.,E.,F., Supplementary Table 3).  
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Figure 1. A, B. The average changes in SCFAs and BAs concentrations observed across 
different age groups. C. Effect-size (age coefficients) for individual metabolites as estimated 
from the linear mixed models. Lighter colours indicate lower concentration. Density plots 
showing % of variances explained by total D. polar metabolites, E. BAs and F. SCFAs 
associated with the clinical and demographic factors. 
 
Next, to study in more detail how gut metabolites related to demographic exposures, we built 
linear mixed-effect models. We found that breastfed infants had lower concentration of 
secondary, 7-oxo-converted and individual tauro- and glycoconjugated BAs especially at an 
early age (Fig. 2A,B, Supplementary Figure 10). Vaginal delivery was related to lower 
concentration of hydroxyindoleacetate (Fig. 1C), and exposure to intravenous antibiotics in 
the neonatal period was associated with higher butyric acid concentration (Fig.1D). In the 
cross-sectional group comparison (Supplementary Figures 9-51), vaginally born infants had 
lower concentration of 7-oxo-converted BA at 14 mo. The primary BAs at 14 mo, and 
tauroconjugated BAs at 2.5 mo were also lower (Supplementary Figures 48, 50). Likewise, 
breastfed infants had lower concentration of 7-oxo-converted and primary BAs at 2.5 months 
(Supplementary Figure 48). Having pets was positively associated with tauroconjugated BAs 
concentration at 14 mo, whereas having siblings was positively associated with secondary 
BAs concentration at 6 and 14 months (Supplementary Figures 49, 50). It seems that factors 
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related to optimal microbiome development, especially breastfeeding, associated with fecal 
metabolite concentrations. 
 

 

Figure 2. A. Estimates for each demographic variable from age-adjusted mixed model. B. 
Secondary BA concentrations were lower among breastfed infants in the 2.5-6 month 
timepoints. C. Vaginally born infants had consistently lower concentration of 
hydroxyindoleacetate-1 across all timepoints. D. Concentration of butyric acid was higher in 
infants who received antibiotic treatment in the neonatal period.  
 

Microbiome age-trends and association with demographic exposures 
Previous literature has suggested a successional development of infant gut microbiota 
taxonomic composition, and we wanted to confirm these patterns in our data . To examine 
the patterns of gut microbiome succession during early-life we performed Dirichlet 
Multinomial Mixture (DMM) clustering. We identified 7 community types according to Laplace 
criteria when jointly analysing the samples from all time points. The first timepoint was 
dominated by three community types, that were driven by the abundances of Bacteroides 
and Bifidobacterium (C1), Escherichia (C2), Veillonella, and an unidentified genus in 
Enterobacriaceae (C3), (Figure 2 and Supplementary Figure 52). The majority of the later 
timepoints were dominated by a single community type that were driven by Bacteroides, 
Clostridium or Veillonella with differing proportions (C4-7, Figure 3, Supplementary figure 
52). 
 
Consistently with previous reports, the gut microbe community differed according to the 
background factors, including delivery mode and breastfeeding (Figure 3). Some additional 
trends were consistent with earlier reports but did not reach statistical significance. On the 
other hand, infant sex, having pets, and intravenous neonatal or recent antibiotic intake was 
not associated with gut microbe community membership. When stratified by timepoint, 
delivery mode at 2.5 months (C1 3.3%, C2 15.1%, C3 29.4% of C-section born infants, Χ2 q 
< 0.005, Supplementary figure 53) and preterm delivery at 6 months (C1 50%, C2 89%, C3 
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67%, C4 98%, Supplementary figure 53) were enriched in a specific community 
type(Supplementary tables 5-7), whereas perinatal (2.5 mo, 30 mo) and recent antibiotic 
treatments (6 mo, 30 mo), siblings (2.5 mo, 14 mo) were not significant (Supplementary 
Table 5). In a mixed model, the vaginal delivery and current breastfeeding were negatively 
related to community type progression (Fig 2C,D). 
 

 
Figure 3. A. We identified seven community types. These abundances visualized in PCoA 
plot shows that although there is aggregation of clusters, there is no clear separation 
between those. However, it seems that C7 was the most homogenous as indicated by DMM 
theta (Supplementary table 4). In a mixed model, C. current breastfeeding and D. delivery 
mode explained transition between clusters. 

Associations between metabolite concentrations and microbiome 
Next, we sought to determine whether the microbiome composition associated with 
metabolome profiles. We found microbiota alpha diversity was correlated with multiple 
metabolite classes (Fig 5), in particular, SCFA concentration showed consistently positive 
associations with alpha diversity. The observed richness was also associated positively with 
SCFA concentration (Supplementary figure 57). Linear mixed model showed that THCA, 
TωMCA and several polar metabolites (Arachidonic acid, 2-Methylpentadecanoic acid, 
Putrescine) were negatively associated with Shannon Index (q < 0.015, Fig. 4), whereas 
butyric, propionic, isovaleric and iso-butyric acid, ωMCA, αMCA, UDCA, and other polar 
metabolite concentrations were positively associated with Shannon index when adjusted for 
age (p<0.039, Fig. 4). In addition, we found Shannon index was positively associated with 7-
oxo-converted BA concentrations (estimate = 0.3, 95%-CI 0.3-0.56, q  = 0.047). Clostridium 
and Bifidobacterium showed associations with butyric acid and conjugated BAs in opposing 
directions (Supplementary figure 55). 
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Figure 4. A. Differential abundance analysis showed multiple associations between genus 
abundances and metabolites (with the ALDEx2 method). Only significant associations (q < 
0.05) are visualized. Across all timepoints, Bifidobacterium (n=22), Clostridium (n=18), 
unidentified genus in Oscillaspirales (n=11), Bacteroides (n=9), Escherichia (n=9) had most 
significant associations. B. SCFA tended to positively correlate with alpha diversity, whereas 
individual polar metabolites and BAs correlated both negatively and positively. C. Most 
significant associations between genera and metabolites were at 2.5 mo timepoint. 
Bifidobacterium at 2.5 mo associated negatively and Clostridium at 2.5 mo associated 
positively with conjugated BAs and butyric acid. Streptococcus was associated negatively 
with propionic acid. Unidentified genus in Oscillospiroles at 30 months associated negatively 
with multiple BAs, especially 7-oxo-converted and tauroconjugated BAs.  

Microbiota clusters associate with different levels of metabolites  

 
Furthermore, we utilized the microbiota clusters to study whether metabolite concentrations 
were different between community types. Clusters showed different levels of fecal 
metabolites per timepoint, and largest effect sizes were for TwMCA, TCA, THCA, GCA as 
well as succinic acid and an unknown polar metabolite at 2.5 months (Supplementary Table 
8). For all the above mentioned BAs, C1 had a lower concentration compared with C2 and/or 
C3 (Supplementary Table 8). Additionally, both glucoconjugated and tauroconjugated BA 
concentrations were lower in C1 at 2.5 months (Supplementary Figure 65, 66). At 14 
months, butyric acid concentration was higher in C6 compared with C5. Additionally, at 30 
months, C7 had higher concentrations of valeric acid, βMCA, succinic acid and βMCA with 
moderate effect size (Supplementary figures 62, 63). 
 
The BAs TωMCA, THCA, TCA, GCA and arachidonic acid showed positive association with 
cluster membership. Whereas multiple polar metabolites, UDCA, propionic acid, and 
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branched SCFA showed negative associations with cluster membership (Fig. 5). Likewise, 
glycoconjugated and tauroconjugated were both positively associated with clusters C2-C6 
and C2, C3 and C6, respectively (FDR < 0.05, C1 as reference, Fig. 5). 
 
 

 
Figure 5. Cluster showed different levels of metabolites. A. Several associations remained 
after adjusting for breastfeeding in the mixed model, color indicating the timepoint. B. 
Clusters at 2.5, 6 and 30 months had different levels of BA based on cross-sectional group 
comparison and post hoc testing. * q < 0.05 & q > 0.01, ** q <= 0.01 & q > 0.001, ***q <= 
0.001. 

The association between levels of metabolites and their interaction with 

breastfeeding, as well as with the microorganisms capable of metabolizing them. 
 
Breastfeeding drives the microbiome maturation. We observed that breastfeeding showed 
the strongest associations with metabolite levels. Thus, we wanted to further explore the 
interactions between gut microbes abundances, metabolite levels and breastfeeding. As the 
prevalent genera were driving the clusters and they showed the most associations 
metabolite levels, we studied how the interaction between prevalent genera and 
breastfeeding status associated with metabolite levels (Supplementary table 9.).  
 
We observed that Bifidobacterium abundances were associated negatively with 
tauroconjugated BA concentration only in breastfed infants. On the other hand, Bacteroides 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2023. ; https://doi.org/10.1101/2023.05.29.23290441doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.29.23290441
http://creativecommons.org/licenses/by/4.0/


was positively associated with 7-oxo-converted and secondary BA in the breastfed infants. 
Moreover, the less there is Escherichia in breastfed infants gut microbiota, the less there is 
7-oxo-HDCA. Of the polar metabolites, Bacteroides abundances were positively associated 
with pinitol concentrations in the breastfed infants.  
 
 

 
Figure 6. A. Only top 5 most prevalent taxa were observed in >50 % of the study subjects, 
and those selected for the interaction analyses. B. Escherichia, Bifidobacterium and 
Bacteroides showed significant interaction with breastfeeding. Scatterplots for significant 
interaction models. 

Discussion 
Gut microbiota undergoes successional development in early life22, which is affected by 
factors such as breastfeeding and delivery mode4. However, less is known about 
development of fecal metabolites, which are important mediators of physiological effects of 
the gut microbiome. Here, we showed in our population-based cohort that the fecal 
metabolome develops alongside the gut microbiome, and individual variation in microbiome 
is associated with the metabolome composition. Additionally, our observations suggest that 
breastfeeding, an important microbiome-modulating factor, is related to metabolite 
concentration depending on gut microbiota composition. This not only shows that 
metabolome is related to microbiome development, but that common exposures may have 
individualized effects based on microbiome composition. 
 
SCFAs, except acetic acid, were systematically increased by age and this might be 
explained by more complex microbiota and increased intake of indigestible fiber by age. This 
is in agreement with earlier studies, which suggest an increasing stool SCFA trend after 
birth23 with exception for acetic acid. We observed no significant age-related increase for 
acetic acid, which might relate to the lack of very early sampling in our study. On the other 
hand, developmental patterns of BAs were more nuanced. Secondary BAs increased by 
age, whereas primary and tauroconjugated BAs decreased by age, which is partially in line 
with our previous findings24. The decrease in BAs could be related to increased bile salt 
hydrolase (BSH) activity, potentially driven by increasing abundances of Clostridium and 
Bacteroides25. Interestingly, glycoconjugated BAs were not increased by age when adjusting 
for breastfeeding. This could be explained by the observation that most of the infants in the 
first time point were breastfed, and thus harbored more bifidobacteria, which often have BSH 
enzymes with preference for glycine as a substrate over taurine26. Thus, it may be that the 
Bifidobacterium-dominated microbiome is already capable of deconjugating glycine in earlier 
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phases, which is further supported by our observation that Bifidobacterium was negatively 
associated with glycoconjugated BA concentration.  
 
We observed that breastfeeding was related to lower abundances of butyric, iso-butyric and 
propionic acid, which is in contrast to Brink et al. report26. However, we noted a negative 
association between Bifidobacterium and butyric acid, which corroborates a finding by 
Nguyen et al.. As noted by them, certain Bifidobacterium strains can compete for the same 
substrates as butyrate producers19,27, and thus the strain-level variation between the studies 
may underline the discrepancies in the reports. Our data would suggest that if a breastfed 
infants has a lower Bifidobacterium or higher Bacteroides abundance, there is a concomitant 
higher concentration of microbially modified BAs. Both Bacteroides and Bifidobacterium are 
hallmark genera of breastfed infants gut ecosystem, and those harbour differential capacity 
for BA metabolism. We acknowledge that strain level information is missing in our study. 
Notwithstanding that, we corroborate that secondary BA concentration was lower in 
breastfed infants28, which might reflect slower acquisition of microbiome with BA 
metabolizing capacity.  
 
In line with previous reports, we observed clustering in the gut microbiome that mostly 
aligned with age reflecting typical colonization patterns in early-life. Notable exception was 
the 2.5 months’ timepoint when most infants were breastfed, where three community types 
with either Bifidobacterium and Bacteroides, Veillonella and Enterobacteriaceae  
or Escherichia dominance were observed. Bifidobacterium and Bacteroides dominated 
community type was related to lower rate of C-section, which aligns with existing 
literature4,29. Moreover, in addition to vaginal delivery, breastfeeding was related to a slower 
community type progression, which may indicate slower maturation of gut microbiota4. Thus, 
our data would support the observation that cessation of breastfeeding would result in faster 
maturation of gut microbiota.  
  
The differences in metabolite concentrations between community types in the 2.5-month-
olds further elucidates the interaction between microbiomes, factors affecting colonization 
and metabolites. The Bifidobacterium and Bacteroides dominated community type, which 
had a higher proportion of vaginally born infants, was associated with lower concentration of 
conjugated BAs than the two other major clusters in the first time point, most likely reflecting 
differences in BSH enzymatic activity. On the other hand, Bifidobacterium and Bacteroides 
dominated community type had higher concentration of propionic acid and branched SCFA 
iso-butyric and iso-valeric acids than the Escherichia-dominated community type, which may 
indicate increased availability of protein for microbial fermentation. The difference may relate 
to variation in human milk composition30, as no difference in breastfeeding was observed 
between community typedominating the first timepoint. 
 
It is evident that breastfeeding is an essential factor in determining the microbiome. 
However, there is variation in the individual colonization patterns also in the breastfed 
infants, and we wanted to explore how the interaction between breastfeeding and prevalent 
taxa is associated with metabolite concentrations. Not surprisingly, conjugated BA 
concentrations were lower in the breastfed infants the more they had Bifidobacteria. On the 
other hand, breastfed infants with high Bacteroides abundances had higher concentrations 
of secondary BAs. This indicates a complex interaction between early nutrition, early life 
microbiome and microbially metabolized products. Thus, future focus on human milk 
components that potentially relate to the colonization patterns in microbiome when serving 
as substrates for microbial fermentation is warranted. 
 
BAs participate to regulation of inflammatory and metabolic processes via farnesoid X 
receptor and other bile acid-responsive receptors. For instance, secondary BAs, more 
abundant in breastfed infants with high Bacteroides-levels, may inhibit pro-inflammatory 
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processes in microglia31, and they are also required to activate vitamin D receptor to support 
optimal growth and development of adaptive immunity32,33. Early-life microbiome-bile acid 
crosstalk may then participate in programming of growth and later brain health. However, it 
is uncertain how exactly the complex feedback systems affect the physiological outcomes, 
since gut metabolites shape the postnatal gut microbiota composition18, and for instance 
tauroconjugated BAs metabolized by gut bacteria may in feedback inhibit BA synthesis via 
FXR antagonism34. 
 
Although our study benefits from a large sample of children and a representative variation in 
breastfeeding and delivery mode, our sample collection time points do not extend to the 
neonatal time nor was the sampling dense. This may have limited us to detect more 
nuanced patterns in the colonization and metabolome development. The utilized 16s rRNA 
sequencing data provided important information on the overall microbiome profiles, but the 
results call for future studies focusing on gene-level differences in gut microbiome. 
Leveraging metagenomic sequencing in future studies will help to disentangle the role of BA 
metabolizing capacity in the developing gut microbiome. Moreover, more detailed data on 
early diet, such as analysis of human milk composition, may also help to describe the 
differences in microbiome composition and the functional output especially in breastfed 
infants. Future integration of the reported exploratory findings to mechanistic models will 
help to elucidate the clinical potential related to inflammation32,35 and metabolic 
programming25. 
 
 
Conclusion:  
 
First, we showed that SCFA concentrations, except acetic acid, increase within the first 30 
months. Second, breastfeeding, among the background factors known to influence gut 
microbiota maturation, associated with multiple metabolites. Interestingly, the secondary BA 
concentrations were lower in the breastfed infants. Third, we corroborated that gut 
microbiota shows successional maturation during the first 30 months of life. Fourth, we 
showed that prevalent gut microbe abundances are associated with metabolite levels, 
especially in the 2.5-month-olds. Finally, we demonstrate that the prevalent early colonizers 
Bacteroides, Escherichia and Bifidobacterium abundances associate with the microbial 
metabolites BAs especially in the breastfed infants. Alterations in early-life bile acid-
microbiota crosstalk may in future studies prove important mechanism in developmental 
programming of health. Breastfeeding and human milk composition are likely to be important 
moderators in the process. 
 

Methods 

Cohort description and data collection 
 
The study subjects are children from the FinnBrain Cohort Study36 that is a general 
population birth cohort study located in the southwestern Finland. The FinnBrain Birth Cohort 
Study recruited families with sufficient fluency in Finnish or Swedish, and normal 1st 
trimester ultrasound examination. A subset of the cohort participated in the study visits, and 
there were no exclusion criteria for the collection of fecal samples. The initial recruitment 
took place between December 2011 and April 2015, and fecal samples were collected from 
May 2013 to May 2018. The fecal samples were collected from the children by the parents 
according to written and oral instructions at 2.5, 6, 14 and 30 months postpartum. The 
samples were collected in plastic tubes, and parents were instructed to store the sample in a 
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refrigerator, and bring the sample to the laboratory within 24 h. The sample collection time 
was reported.  
 
Clinical data used in the study were collected with parental reports during and after 
pregnancy at 14, 24, 34 gestational weeks, 3, 6, 12, and 24 months postpartum and during 
study visits (2.5, 6, 14, and 30 months). Likewise, the data on maternal pre-pregnancy body 
mass index (BMI; kg/m2), duration of gestation as well as mode of delivery (caesarian 
section vs. vaginal) were collected from National Birth Registry provided by the National 
Institute for Health and Welfare of Finland (www.thl.fi). The information on maternal perinatal 
and infant neonatal intravenous antibiotic intake was collected from the hospital records. 
Breastfeeding was categorized in two ways: 1) any current breastfeeding (yes vs. no); 2) 
exclusive breastfeeding at least 4 months and partial breastfeeding for at least 6 months 
(breastfeeding_criteria, yes vs. no). 
 
The Ethical Committee of Southwestern Finland approved the study. Parents provided 
informed consent on behalf of their children. STORMS guideline was used for reporting the 
methods and materials.  
 

Metabolome analysis 

The BAs were measured in fecal samples as described previously16. Only samples frozen 
within 24 h of sample collection were included in the metabolome analyses. The order of the 
samples was randomized before sample preparation. Two aliquots (50 mg) of each fecal 
sample were weighed. An aliquot was freeze-dried prior to extraction to determine the dry 
weight.. The second aliquot was  homogenized by adding homogenizer beads and 20 µL of 
water for each mg of dry weight in the fecal sample, followed by samples freezing  to at least 
-70 °C and homogenizing them for five minutes using a bead beater. The BAs analysed 
were Litocholic acid (LCA), 12-oxo-litocholic acid(12-oxo-LCA), Chenodeoxycholic acid 
(CDCA), Deoxycholic acid (DCA), Hyodeoxycholic acid (HDCA), Ursodeoxycholic acid 
(UDCA), Dihydroxycholestanoic acid (DHCA), 7-oxo-deoxycholic acid (7-oxo-DCA), 7-oxo-
hyocholic acid (7-oxo-HCA), Hyocholic acid(HCA), β-Muricholic acid (b-MCA), Cholic acid 
(CA), Ω/α-Muricholic acid (w/a-MCA), Glycolitocholic acid (GLCA), Glycochenodeoxycholic 
acid (GCDCA), Glycodeoxycholic acid (GDCA), Glycohyodeoxycholic acid (GHDCA), 
Glycoursodeoxycholic acid (GUDCA), Glycodehydrocholic acid (GDHCA), Glycocholic acid 
(GCA), Glycohyocholic acid (GHCA), Taurolitocholic acid (TLCA), Taurochenodeoxycholic 
acid (TCDCA), Taurodeoxycholic acid (TDCA), Taurohyodeoxycholic acid (THDCA), 
Tauroursodeoxycholic acid (TUDCA), Taurodehydrocholic acid (TDHCA), Tauro-α-
muricholic acid (TaMCA), Tauro-β-muricholic acid (TbMCA), Taurocholic acid (TCA), 
Trihydroxycholestanoic acid (THCA) and Tauro-Ω-muricholic acid (TwMCA). BAs were 
extracted by adding 40 µL fecal homogenate to 400 µL crash solvent (methanol containing 
62,5 ppb each of the internal standards LCA-d4, TCA-d4, GUDCA-d4, GCA-d4, CA-d4, 
UDCA-d4, GCDCA-d4, CDCA-d4, DCA-d4 and GLCA-d4) and filtering them using a Supelco 
protein precipitation filter plate. The samples were dried under a gentle flow of nitrogen and 
resuspended using 20 µL resuspenstion solution (Methanol:water (40:60) with 5 ppb 
Perfluoro-n-[13C9]nonanoic acid as in injection standard). Quality control (QC) samples 
were prepared by combining an aliquot of every sample into a tube, vortexing it and 
preparing QC samples in the same way as the other samples. Blank samples were prepared 
by pipetting 400 µL crash solvent into a 96-well plate, then drying and resuspending them 
the same way as the other samples. Calibration curves were prepared by pipetting 40 µL of 
standard dilution into vials, adding 400 µL crash solution and drying and resuspending them 
in the same way as the other samples. The concentrations of the standard dilutions were 
between 0.0025 and 600 ppb. 
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The LC separation was performed on a Sciex Exion AD 30 (AB Sciex Inc., Framingham, MA 
) LC system consisting of a binary pump, an autosampler set to 15 °C and a column oven 
set to 35 °C. A waters Aquity UPLC HSS T3 (1.8µm, 2.1x100mm) column with a precolumn 
with the same material was used. Eluent A was 0.1 % formic acid in water and eluent B was 
0.1 % formic acid in methanol. The gradient started from 15 % B and increased to 30 % B 
over 1 minute. The gradient further increased to 70 % B over 15 minutes. The gradient was 
further increased to 100 % over 2 minutes. The gradient was held at 100 % B for 4 minutes 
then decreased to 15 % B over 0.1 minutes and re-equilibrated for 7.5 minutes. The flow rate 
was 0.5 mL/min and the injection volume was 5 µL. 

The mass spectrometer used for this method was a Sciex 5500 QTrap mass spectrometer 
operating in scheduled multiple reaction monitoring mode in negative mode. The ion source 
gas1 and 2 were both 40 psi. The curtain gas was 25 psi, the CAD gas was 12 and the 
temperature was 650 °C. The spray voltage was 4500 V. Data processing was performed on 
Sciex MultiQuant.    

Quantification of SCFA 
We adapted and modified the targeted SCFA analysis from previous work37. Fecal samples 
were homogenized by adding water (10 µL per mg of dry weight as determined for the BA 
analysis) to wet feces, the samples were homogenized using a bead beater. Analysis of 
SCFA was performed on fecal homogenate (50 µL) crashed with 500 µL methanol 
containing internal standard (propionic acid-d6 and hexanoic acid-d3 at 10 ppm). Samples 
were vortexed for 1 min, followed by filtration using 96-Well protein precipitation filter plate 
(Sigma-Aldrich, 55263-U). Retention index (RI, 8 ppm C10-C30 alkanes and 4 ppm 4,4-
Dibromooctafluorobiphenyl in hexane) was added to the samples.  Gas chromatography 
(GC) separation was performed on an agilent 5890B GC system equipped with a 
Phenomenex Zebron ZB-WAXplus (30 m × 250 μm × 0.25 μm) column a short blank pre-
column (2 m) of the same dimensions was also added. A sample volume of 1 μL was 
injected into a split/splitless inlet at 285°C using split mode at 2:1 split ratio using a PAL LSI 
85 sampler. Septum purge flow and split flow were set to 13 mL/min and 3.2 mL/min, 
respectively. Helium was used as carrier gas, at a constant flow rate of 1.6 mL/min. The GC 
oven program was as follows: initial temperature 50°C, equilibration time 1 min, heat up to 
150°C at the rate of 10°C/min, then heat at the rate of 40°C/min until 230°C and hold for 2 
min. Mass spectrometry was performed on an Agilent 5977A MSD. Mass spectra were 
recorded in Selected Ion Monitoring (SIM) mode. The detector was switched off during the 1 
min of solvent delay time. The transfer line, ion source and quadrupole temperatures were 
set to 230, 230 and 150°C, respectively. Dilution series of SCFA standards of acetic, 
propionic, butyric, valeric, hexanoic acid, isobutyric, and iso-valeric acid were prepared in 
concentrations of 0.1, 0.5, 1, 2, 5, 10, 20, 40, and 100 ppm for the construction of standard 
curves for quantification.  
 
Analysis of polar metabolites  
Polar metabolites were extracted in methanol. The method was adapted from the method 
used by Lamichhane et al.24. Fecal homogenate (60 µL) were diluted with 600 µL methanol 
crash solvent containing internal standards (heptadecanoic acid (5 ppm) valine-d8 (1 ppm) 
and glutamic acid-d5 (1 ppm)). After precipitation the samples were filtered using Supelco 
protein precipitation filter plates. One aliquot (50 µL) was transferred to a shallow 96-well 
plate to create a QC sample. The rest of the sample volume was dried under a gentle stream 
of nitrogen and stored in -80 °C until analysis. After thawing the samples were again dried to 
remove any traces of water. Derivatization was carried out on a Gerstel MPS MultiPurpoe 
Sampler using the following protocol: 25 µL methoxamine (20 mg/mL) was added to the 
sample followed by incubation on a shaker heated to 45 °C for 60 minutes. N-Methyl-N-
(trimethylsilyl) trifluoroacetamide (25 µL) was added followed by incubation (60 min). After 
that, 25 µL retention index was added, the sample was allowed to mix for one min followed 
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by injection. The automatic derivatization was carried out using the Gerstel maestro 1 
software (version 1.4). 
Gas chromatographic (GC) separation was carried out on an Agilent 7890B GC system 
equipped with an Agilent DB-5MS (20 m x 0,18 mm (0,18 µm)) column. A sample volume of 
1 μl was injected into a split/splitless inlet at 250°C using splitless mode. The system was 
guarded by a retention gap column of deactivated silica (internal dimensions 1.7 m, 0.18 
mm, PreColumn FS, Ultimate Plus Deact; Agilent Technologies, CA, USA). Helium was used 
as carrier gas at a flow rate of 1.2 ml/min for 16 min followed by 2 mL/min for 5.75 min. The 
temperature programme started at 50°C (5 min), then a gradient of 20°C/min up to 270°C 
was applied and then finally a gradient of 40°/min to 300°C, where it was held stable for 7 
min. The mass spectrometry was carried out on a LECO Pegasus BT system (LECO). The 
acquisition delay was 420 sec. The acquisition rate was 16 spectra/sec. The mass range 
was 50 – 500 m/z and the extraction frequency was 30 kHz. The ion source was held at 250 
°C and the transferline heater temperature was 230 °C. ChromaTOF software (version 5.51) 
was used for data aquisition. The samples were run in 9 batches, each consisting of 100 
samples and a calibration curve. In order to monitor the run a blank, a QC and a standard 
sample with a known concentration run between every 10 samples. Between every batch the 
septum and liner on the GC were replaced, the precolumn was cut if necessary and the 
instrument was tuned. 

The retention index was determined with ChromaTOF using the reference method function. 
For every batch a reference file was created. The reference file contained the spectras and 
approximate retention times of the alkanes from C10 to C30 as determined manually). A 
reference method was implemented for every sample in order to determine the exact 
retention time of the alkanes. Text files with the names and retention times of the alkanes 
were then exported and converted to the correct format for MSDIAL using an in-house R 
script. The samples were exported from ChromaTOF using the netCDF format. After this 
they were converted to abf files using the abfConverter software (Reifycs). Untargeted data 
processing was carried out using MSDIAL (version 4.7). The minimum peak height was set 
to an amplitude of 1000, the sigma window value was 0.7 and the EI spectra cut off was 10. 
The identification was carried out using retention index with the help of the GCMS DB-
Public-kovatsRI-VS3 library provided on the MSDIAL webpage. A separate RI file was used 
for each sample.  The RI tolerance was 20 and the m/z tolerance was 0.5 Da. the EI similarly 
cut off was 70 %. The identification score cut off was 70 % and retention information was 
used for scoring. Alignment was carried out using the RI with an RI tolerance of 10. The EI 
similarity tolerance was 60 %. The RI factor was 0.7 and the EI similarity factor was 0.5. The 
results were exported as peak areas and further processed with excel. In excel the results 
were normalized using heptadecanoic acid as internal standard and the features with a 
coefficient of variance of less than 30 % in QC samples were selected. Further filtering was 
carried out to remove alkanes and duplicate features. The IDs of the features which passed 
the CV check were further checked using the Golm Metabolome Database. 

Microbiome analysis 
DNA extraction and sample processing 
 
The samples were divided into cryotubes and freezed in -80C within 2 days after arriving at 
the laboratory. Samples were kept at +4C before freezing. Only samples that were freezed 
within 48 h of sample collection were sequenced. Sample volume for DNA extraction was 
approximately 100 mg. Lysis buffer was added 1 ml and the samples were homogenized 
with glass beads 1000 rpm / 3 min. The samples were centrifuged at high speed (> 13000 
rpm) for 5 min. The lysate (800µL) was then transferred to tubes and the extraction 
proceeded according to the manufacturer’s protocol. DNA was extracted using a semi-
automatic extraction instrument Genoxtract with DNA stool kit (HAIN life science, Germany).  
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DNA yields were measured with Qubit fluorometer using Qubit dsDNA High Sensitivity 
Assay kit (Thermo Fisher Scientific, USA). The DNA extraction and sequencing was 
performed in the University of Turku. 
 
16S ribosomal RNA (rRNA) amplicon sequencing 
 
Bacterial community composition was determined by sequencing the V4 region of 16S rRNA 
gene using Illumina MiSeq platform (Illumina, USA). The sequence library was constructed 
with an in-house developed protocol where amplicon PCR and index PCR were combined.. 

The DNA samples were diluted in PCR grade water to 10 ng/µL concentration prior to library 
PCR. PCR was performed with KAPA HiFi High Fidelity PCR kit with dNTPs (Roche, USA). 
Reverse and forward primers included in-house modifications verified by Rintala et al.38. The 
forward and reverse primer sequences were 5’-AATGAT-
ACGGCGACCACCGAGATCTACAC -i5- TATGGTAATT -GT-
GTGCCAGCMGCCGCGGTAA-3’ and 5’-CAAGCAGAAGACGGCATACGAGAT -i7- 
AGTCAGTCAG-GC-GGACTACHVGGGTWTCTAAT-3’, respectively, where i5 and i7 
indicate the sample specific indexes. After PCR, 5µl of the product was analyzed with 1,5% 
TBE agarose gel (100V, 1h15min). PCR products were purified with AMPure XP magnetic 
beads (Becman Coulter, USA). The DNA concentration of the purified samples were 
measured with Qubit fluorometer using Qubit dsDNA High Sensitivity Assay kit (Thermo 
Fisher Scientific, USA), after which the samples were mixed in equimolar concentration into 
a 4 nM library pool. The library pool was denatured, diluted to a concentration of 4 pM and a 
denaturized PhiX control (Illumina, USA) was added. The sequencing was performed with 
Illumina MiSeq Reagent kit v3 (600 cycles) on MiSeq system with 2x 250 base pair (bp) 
paired ends following the manufacturer’s instructions. Positive control (DNA 7-mock 
standard) and negative control (PCR grade water) were included in library preparation and 
sequencing runs (Supplementary figures 5-8). 

DADA2-pipeline (version 1.14) was used to preprocess the 16S rRNA gene sequencing data 
to infer exact amplicon sequence variants (ASVs)39. The reads were truncated to length 225 
and reads with more than two expected errors were discarded (maxEE = 2). SILVA 
taxonomy database (version 138)40,41 and RDP Naive Bayesian Classifier algorithm42 were 
used for the taxonomic assignments of the ASVs.  

Statistical analyses 
 
The data analyses were performed with R version 4.2.0 with packages including phyloseq, 
mia, vegan, DirichletMultinomial and lme. Heatmaps were created with the pheatmap R 
package. Shannon Index and Inverse Simpson were used as alpha diversity indices and 
those were calculated with mia package from the untransformed ASV-table. Metabolite 
concentrations were log-transformed with a pseudocount (minimum value / 2). Dirichlet 
Multinomial Mixtures model with the rarefied, genus-level count data were used for clustering 
the microbiome data. The number of community types was justified by the Laplace criteria.  
 
Factor analysis, the relative contribution of a clinical/demographic factor towards the total 
variance of the metabolite classes were estimated by fitting a linear regression model. The 
total metabolite concentrations of a particular class was regressed to a clinical/demographic 
factor of interest, and median marginal coefficient of determination (R2) and % of explained 
variance were estimated. Factor analysis was performed using the ‘Scater’ package 
deployed in R. 
 
Wilcoxon test, Chi-square test, and Kruskal-Wallis test with Dunn’s posthoc test were used 
in the analyses. Linear mixed models with child ID as random effect and sampling age as 
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fixed effect was used to study i. metabolite age-trends, ii. association between metabolite 
concentrations and demographic factors, iii., association between microbiome community 
typemembership and demographic factors, iv. associations between metabolite 
concentrations and microbiome community type membership, and v. association between 
metabolite concentrations and the interaction with breastfeeding and rclr-transformed 
prevalent genera abundances as breastfeeding has been shown to drive the microbiome 
maturation4. Package lme4 was used to check for model singularity, and nlme was used for 
running the mixed model. The clr-module from the ALDEx2 package was used for the 
differential abundance analysis43. Variance explained in the metabolome assays by 
demographic factors was calculated with the package scater44. p-Values were adjusted for 
multiple testing with Benjamini-Hochberg procedure. 
 
The analysis scripts and full results can be found in the supplementary files. 
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