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Abstract 

Interoceptive mismatch is a perceptual discrepancy between ascending bodily signals and higher-

order representation of anticipated physiological state. Inspired by predictive coding models, we 

present autonomic perceptual mismatch as a measure of this discrepancy for clinical application to 

brain-body interactions. Joint hypermobility is disproportionately found in individuals with anxiety 

disorders. Previous work has shown atypical autonomic reactivity represents a likely mediating 

mechanism consequent of altered connective tissue in the vasculature and nervous system. 

 

This fMRI study investigates the neural substrates of autonomic perceptual mismatch on affective 

processing in the hypermobility-anxiety interaction. We compared regional brain activity during 

emotional face processing in participants with and without hypermobility and generalized anxiety 

disorder diagnosis, then tested association with perceptual mismatch.  

 

In the brain, autonomic perceptual mismatch correlated with enhanced activation in emotion 

processing and autonomic control regions, notably anterior cingulate cortex. Anxious individuals 

exhibited increased mid-insula cortex activity in relation to perceptual mismatch. Activity was 

decreased within the inferior frontal gyrus, a region implicated in cognitive control. Dysautonomia 

mediated the link between hypermobility and anxiety.   

 

Together, these findings support a neural basis of an autonomic perceptual mismatch model in a 

clinical sample. This is supported by the engagement of neural systems for emotion-cognition and 

interoception. This work highlights convergent aspects of neurodiversity, mental health, connective 

tissue disorders and brain-body interactions relevant to precision healthcare. 
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1. Introduction 

The coupling of brain and body is evident in cognitive and emotive responses to visceral 

afferent signals. Interoception, the internal sensing of our milieu intérieur, its representation 

in brain, and its impact on psychological processes including bodily feelings, is proposed to 

be central to emotion [1–4]. Afferent interoceptive information is conveyed centrally by 

viscerosensory nerves that permit the reflexive and allostatic [5] autonomic nervous control 

of internal physiology [6]. Dysautonomia describes perturbation of adaptive autonomic 

control and may arise through aberrant interoceptive signalling, representation and 

regulation. Notably, dysautonomic symptoms are common to many mental and physical 

conditions.  

 

Anxiety is commonly associated with heightened states of autonomic arousal linked to 

anticipatory fear and worry. The physiological signalling and perception of arousal amplify 

negative feelings as subjective anxiety symptoms and associated avoidant behaviours [7, 

8]. Anxiety is thus linked to uncertainty regarding internal states (generalised anxiety 

disorder) or external situations (panic and social anxiety disorders) [9]. Anxious feelings 

may arise from unexplained arousal and the mismatch between anticipated/desired actual 

interoceptive signalling [10]. Correspondingly, discrepancies in accurately discerning 

interoceptive signals provide a mechanistic hypothesis for the precipitation of anxiety by 

dysregulated bodily states [3, 11, 12]. 

 

Interoception provides a conceptual framework for the relationship between autonomic 

dysfunction and anxiety [3, 9, 10, 13]. Recent studies link the expression of anxiety to 

attenuated interoceptive awareness (interoceptive metacognitive insight), computed as the 

correspondence (or mismatch) between objective measures of a person’s interoceptive 
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sensitivity (from performance accuracy on interoceptive tasks) and their subjective 

perception of their own interoceptive sensitivity (rated confidence in interoceptive 

performance accuracy) [14]. Interoceptive mismatch has been conceptualised as the 

discrepancy between self-reported awareness measures of interoception (e.g. assessed 

through the awareness subscale of the Porges Body Awareness Questionnaire; [15]) 

relative to behavioural accuracy on interoceptive tests (e.g. heartbeat perception). 

Interoceptive mismatch is also associated with heightened anxiety symptomatology [16].   

 

Joint hypermobility is an outward manifestation of a more general variation in the structural 

integrity of connective tissues, including collagen [17]. Although hypermobility is common 

(present in roughly 20% of the general population) some individuals develop symptoms that 

can affect multiple bodily systems: hypermobility is associated with chronic pain, fatigue, 

gastrointestinal disturbance, neurodevelopmental and neuropsychiatric conditions [18–20]. 

While typically underdiagnosed, the complex comorbidities of symptomatic hypermobility 

can go unrecognised in individuals, hindering quality-of-life [18, 21–23].  

 

Hypermobility is highly prevalent in up to 70% of individuals clinically diagnosed with 

anxiety [17, 24–26]. Hypermobile individuals experience autonomic symptoms that can 

amplify affective anxiety [23]. Dysautonomia in hypermobility is thought to manifest 

consequent of reactive autonomic regulation of less elastic vascular tissues [8, 27, 28]. 

Imprecise feedback control of peripheral blood flow putatively results in physiological 

symptoms and compensatory autonomic and behavioural responses.  

 

Despite findings of the association between hypermobility and anxiety extending to 

autonomic and somatic symptoms [28], a neurobiological account is yet to be elucidated. 
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Atypical autonomic function (dysautonomia), in the interoceptive framework, may provide a 

mechanistic explanation. 

 

Hypermobile individuals show higher subjective sensitivity to interoceptive sensations [27] 

and interoceptive accuracy influences the relationship between hypermobility and anxiety 

level [29]. Based on these observations, we predict the important interaction between 

autonomic interoception, hypermobility and anxiety will be evident in distinct brain activation 

patterns. 

 

Orthostatic intolerance (OI) is the onset of autonomic symptoms upon standing, including 

palpitations and dizziness, linked with increased heart rate and low blood pressure [30]. OI 

quantifies dysautonomia [12, 13, 31] and has a 78% prevalence in hypermobility [32]. OI 

symptoms rise in anxious individuals [13], notably mediating the relationship between 

hypermobility and anxiety diagnosis [19], suggesting altered connective tissue affects 

autonomic function.  

 

Functional magnetic resonance imaging (fMRI) has shown engagement of the same brain 

regions during anxiety states that support interoceptive representations and autonomic 

control in the limbic system [9]. The insula cortex is a putative mismatch computation site, 

shown to respond to altered physiological feedback and relay information to anterior 

cingulate cortex [33, 34]. 

 

Hypermobility presence increases reactivity within insula and related anxiety-associated 

regions [29].  Hypermobility has also been associated with increased bilateral amygdala 

volume [27] and insula structural differences, which correlate with increased orthostatic 
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heart rate and interoceptive accuracy in anxious-hypermobile participants [35]. However, no 

brain imaging studies have examined neural mechanisms that may link hypermobility to 

anxiety through autonomic interoception in a clinical sample. 

 

To investigate interoceptive mismatch in dysautonomia, we developed an interoceptive 

measure of autonomic perceptual mismatch (APM) – corresponding to the magnitude of 

mismatch in objective and subjective sensitivity to autonomic signals. This fMRI study 

investigates the functional neural correlates of autonomic perceptual mismatch using the 

hypermobility-anxiety interaction as a clinical model. 

 

2. Materials and Methodology 

Participants and psychometric measures  

Fifty-one participants, matched for age and gender, were recruited to the study at the 

Clinical Imaging Sciences Centre at the University of Sussex, Brighton, UK (Table 1). Of 

the participants, 26  had a diagnosis of generalized anxiety disorder (GAD; DSM-IV) as 

confirmed by a clinician using the Mini-International Neuropsychiatric Interview (MINI; [36]). 

The remaining 25 participants were healthy controls with no diagnosed psychiatric 

condition. The Brighton diagnostic criteria [37] were applied to the classification of 

hypermobility. Of those with a diagnosis of generalised anxiety disorder, 18 were classified 

as hypermobile. Six of the healthy controls were classed as hypermobile. 

  % (N) % hypermobile (N) mean age (SD) % female (N) 

Anxiety diagnosis 51 (26) 69 (18) 41.4 (12.2) 65 (17) 

Non-anxious controls 49 (25) 24 (6) 37.8 (14.4) 44 (11) 

total 100 (51) 47 (24) 39.6 (1.9) 55 (28) 

Table 1 | Anxiety diagnosis (GAD) case and control demographics for hypermobility status, 
age and gender 
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Participant exclusion criteria included MRI incompatibility, neurological condition and any 

other psychiatric condition except anxiety and depression in the anxious group. In addition 

to categorical classification of anxiety and/or hypermobility status, the Beck Anxiety 

Inventory (BAI;  [38]) and the Beighton scale of joint laxity (BS; [39]) were used to quantify 

the degree of anxiety and hypermobility respectively. Subjective scores for orthostatic 

intolerance were recorded using the orthostatic subscale of the Autonomic Symptoms and 

Quality of Life scale (AQQoL; [40]). 

 

Clinically anxious participants were recruited from Sussex Partnership NHS trust and via 

electric bulletin boards. Controls were recruited via bulletin boards at Sussex and Brighton 

Universities. The study procedure was ethically approved by the Brighton and Hove NRES 

committee (ref 12/LO/1942). 

 

Statistical analyses 

Behavioural results were first assessed using bivariate correlations between continuous 

variables, autonomic perceptual mismatch and anxiety score. Subsequently, independent 

samples t-tests (two-tailed) were performed to investigate differences in mean autonomic 

perceptual mismatch scores for hypermobile and anxious participants versus controls. 

Psychophysiological interactions were computed using univariate interaction analyses in 

the General Linear Model (GLM). Variables were entered as fixed factors (categorical) or 

dependent variables (continuous), and perceptual mismatch was entered as the covariate. 

Sum-of-squares Type III method was used with intercept included in the model. 
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Autonomic perceptual mismatch computed as orthostatic intolerance mismatch 

Objective autonomic testing was performed using an active stand test of orthostatic 

intolerance, which measured heart rate (HR) change from lying down to one minute of 

standing. Participant heart rates were recorded using a pulse oximeter (NONIN, Nonin 

Medical, Minnesota, USA). Heart rates from lying to standing were recorded at baseline, 

peak and after one minute of standing. Changes in heart rate for each participant were 

calculated as absolute values and proportional to baseline for peak rate or rate after 

standing. Subjective scores for orthostatic intolerance were recorded based on the 

autonomic subsection of the AQQoLS. 

 

Autonomic perceptual mismatch was computed as the mismatch between signs (OI stand 

test) and symptoms (AQQoLS) of orthostatic intolerance in the same framework as 

interoceptive trait prediction error [14]. This was calculated as 

��� � ���	
�
	��
�� �� ������ � �����
�� ��
	�� � 

where � is the standard Z-score, �� � ��/�. Absolute values were used to investigate the 

magnitude of error with neural activation. Final APM scores were assigned to participants 

as the transformed mismatch between orthostatic intolerance signs and symptoms based 

on predictive coding models. The results of all autonomic testing are available in 

Supplementary Table 1. 

 

Neuroimaging paradigm:  Stimuli and experimental design 

The in-scanner task was modified from Umeda et al. [41]. Emotional faces were selected 

and grouped into five classes (angry, afraid, disgusted, neutral, happy) from the Karolinska 

Directed Emotional Faces (KDEF; [42]). Faces were presented in an event-related design 

and were randomised and counter-balanced across runs. Attendance to faces was ensured 
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by asking participants to determine whether they could see teeth in the faces or not. In total 

there were 96 trials per participant; there were 15 trials per class of emotional face and 21 

fixation cross trials used as the implicit baseline which served as the control condition. Each 

stochastically ordered trial was 4 seconds long, during which the face remained on screen, 

and the participant was expected to respond. The fixation cross duration was also 4 

seconds in duration. A total run lasted 384s (6m 24s) and each participant underwent two 

runs of the emotional faces task. 

 

Image acquisition 

Neuroimaging took place using a 1.5 Tesla Siemens Avanto Scanner with a 32-channel 

head coil (Siemens Medical Solutions, Erlangen, Germany). T1 structural scans were first 

acquired for each participant using a magnetisation-prepared rapid gradient-echo 

acquisition (repetition time TR = 2.73s per volume, echo time TE = 3.57msec, inversion 

time = 1000ms, flip angle = 7°). T2*-weighted whole-brain functional scans were taken 

using a single-shot 2D gradient echo-planar imaging (EPI) sequence. For the functional 

scans, voxel sizes were 3x3x3mm, repetition time TR = 2.52s per volume, echo time TE = 

43ms. 34 axial slices of 3mm thickness and 0.6mm interslice gap were taken. Slices were 

tilted at a 30° flip angle from the intercommissural plane to minimise signal artefacts. 

 

Pre-processing 

Imaging data were processed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm) on MATLAB 

R2021b (v9.9.0 Mathworks Inc.). Echo planar images were realigned to the mean image for 

motion correction, scanner drift and variation. Slice-time correction to slice 6 (which aligned 

with amygdala) and was performed for all volumes to remove artefacts. The first two 

volumes were discarded for scanner equilibration. T2*-functional scans were co-registered 
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with T1-structural scans for each participant. Images were normalised to the MNI-152 

(Montreal Neurologic Institute) brain space. The data were smoothed spatially with a 

Gaussian kernel of 8 mm full-width half-maximum. 

 

Univariate neuroimaging analysis 

First- and second-level designs were implemented and analysed under the general linear 

model (GLM) in SPM12 on the whole brain. First-level modelling included a regressor for 

each of the five emotional face conditions and the implicit baseline (control condition) of 

each individual. Participant motion from image realignment (3 translations and 3 rotations) 

was included as six regressors of no interest for each participant at the first level. Statistical 

comparison of voxel-wise parameters was conducted for first-level contrasts within subjects 

(emotional face>baseline), and these contrasts for the five emotions were entered into the 

second level where a full-factorial design (2x2x5) was used for component interaction 

analysis.  

 

The first factor had two levels (hypermobile, non-hypermobile), the second factor had two 

levels (anxious, non-anxious) and the third factor had five levels (angry, afraid, happy, 

neutral, sad). Regressors were entered for age and gender.  In this second-level model, 

autonomic perceptual mismatch was added as a covariate to investigate the correlations 

and interactions of autonomic perceptual mismatch on hypermobility and anxiety. All 

covariates were mean-centred at zero. 

 

Statistical comparison of voxel-wise parameters was conducted for second-level contrasts 

between subjects (anxious>non-anxious), (hypermobile>non-hypermobile). A family-wise 

error cluster correction (FWEc) was performed on the whole brain at P<0.05 to correct for 
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multiple comparisons. This reduced the likelihood of type-I errors, thus minimising false 

positives. Brain activations were interpreted as clusters that produced a significant change 

in BOLD response to the emotional faces fMRI task (relative to the baseline of fixation 

cross).  

 

Clusters were anatomically defined using the SPM Anatomy toolbox v3.0 [43]. Where 

labelling was not available in the anatomy toolbox, the Harvard-Oxford anatomical atlas 

was used by overlaying the relevant t-contrasts onto the ‘ch2better’ template on MRIcron 

v1.0.20190902 [44]. 

 

For each participant, the eigenvariates were extracted (weighted mean of Blood-Oxygen-

Level-Dependency (BOLD) time series) from the peaks of activation. Eigenvariates were 

averaged over the five conditions for each participant for each t-contrast of interest and 

used to generate scatter plots against autonomic perceptual mismatch.  

 

Mediation 

The interaction between hypermobility, autonomic perceptual mismatch and anxiety was 

investigated further as a secondary analysis using a Baron and Kenny [45] mediation 

analysis. Mediation testing conducts three regression correlations between pairs of 

variables. If when controlling for one factor (the potential mediator), the correlation between 

the remaining factors is reduced, then the controlled factor is said to partially mediate their 

relationship. Based on previous findings that autonomic dysfunction mediates the anxiety-

laxity link [19], we entered APM as our model mediator. Consistent with development 

chronology, hypermobility (status and score) was employed as the independent variable, 
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appearing in early childhood [26, 46]. Anxiety manifests later, thus being entered as the

dependent or outcome variable. 

3. Results 

Autonomic testing for orthostatic intolerance mismatch 

Both signs (Fig. 1A) and symptom scores (Fig. 1B) of orthostatic intolerance were higher in

anxious-hypermobile participants indicating a possible ‘mismatch error’ of autonomic

dysfunction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 | Orthostatic Intolerance (OI) in Hypermobility and Anxiety. Objective OI sign measured as 
the absolute heart rate change after 1 min sitting to standing (A). Subjective OI symptom score from the 
AQQoLS (B). Error bars represent ±1SE. 
 

Phenotypic correlations of autonomic perceptual mismatch 

Anxiety score was positively correlated with autonomic perceptual mismatch across all

participants (Rpcc=0.425, P=0.002, Fig. 2A). When subgrouping by clinical anxiety status,

the positive correlation of autonomic perceptual mismatch with anxiety score was

significantly higher in those with anxiety (independent samples t-test; t=-2.964, p= 0.005

SED=0.149, Fig. 2B). Similarly, the hypermobile group showed a significantly stronger
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positive correlation between anxiety score and autonomic perceptual mismatch

(independent samples t-test; t=-2.13, p=0.038, SED=0.155, Fig. 2C).  

Figure 2 | Autonomic perceptual mismatch in the hypermobility-anxiety association. Autonomic
perceptual mismatch correlates with anxiety score (A). Anxiety score is higher with increased autonomic
perceptual mismatch in clinically anxious (B) and hypermobile (C) individuals. 
 

GLM univariate analysis demonstrated a significant interaction between hypermobility and

anxiety on autonomic perceptual mismatch (Fig. 3, F=6.04, p=0.002). A significant

interaction between hypermobility and autonomic perceptual mismatch was found on

anxiety status (F=7.66, p=0.008). This interaction effect was also found on anxiety score

(F=4.20, p=0.046) with a main effect of autonomic perceptual mismatch (F=5.70, p=0.021).

There was no significant interaction between anxiety status and autonomic perceptual

mismatch on hypermobility. 

 

The APM score for one participant fell above the 95% percentile (APM = 2.56,

Supplementary Table 2). Although still representable of an extreme case of perceptual

mismatch in anxiety, we excluded the results of this individual from subsequent statistical

neuroimaging analyses. The significant interaction in Fig. 3 between anxiety and

hypermobility on APM remained after exclusion of this participant from the data. 

 

ch 

ic 
ic 

nd 

nt 

on 

re 

1). 

al 

6, 

al 

al 

nd 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 9, 2023. ; https://doi.org/10.1101/2023.05.25.23290230doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290230


 

 

 

 

 

 

 
 
 
 
 
 
Figure 3 | The hypermobility-anxiety interaction on autonomic perceptual mismatch.
Participants classed as anxious-hypermobile have significantly higher APM scores. Bars represent
+/- 1 SEM. 
 

Univariate functional neuroimaging results  

Neural correlations with autonomic perceptual mismatch  

The first t-contrasts modelled the BOLD response to emotional faces to identify significant

clusters of activation that varied with autonomic perceptual mismatch when added as a

covariate to the second-level model. Autonomic perceptual mismatch correlated with

response to emotional faces in the inferior frontal gyrus (pars triangularis and pars

opercularis) and middle insular cortex. Full results of all imaged activations are available in

Supplementary Table 2. 

 

Interaction with anxiety 

The interaction of anxiety and autonomic perceptual mismatch produced a positive

response (regions showing increased activation with APM in anxious participants) within the

right anterior cingulate gyrus (Fig. 4A) and left middle insular cortex (Fig. 4B). Autonomic

perceptual mismatch produced a negative response in the right inferior frontal gyrus (Fig.

4C) and anterior mid-cingulate cortex (Fig. 4D) in anxious participants. Weighted mean
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BOLD estimates for the anterior cingulate gyrus and mid-insula were positively correlated

with APM; inferior frontal gyrus and mid-cingulate estimates were negatively correlated with

APM in anxiety (Fig. 4E). 

 

 

 

 

Figure 4 | T-contrast estimates of the interaction between anxiety and autonomic perceptual
mismatch. Emotional face stimuli increased activation in the anterior cingulate (A) and mid-insula (B).
Activation was decreased in the IFG (C) and mid-cingulate (D). Colour bars represent peak-level t-
statistics at FWEc P<0.05. Crosshairs represent MNI co-ordinates of cluster peak activation. Scatter
plots show the interaction between APM and anxiety at mean peak-clusters of activation from extracted
eigenvariates for positive and negative responses in anxious individuals vs. controls (E). 
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Interaction with hypermobility 

The interaction of hypermobility and autonomic perceptual mismatch produced a positive

response (regions showing increased activation with APM in hypermobile participants) in

the left mid cingulate gyrus (Fig. 5A). Autonomic perceptual mismatch produced a negative

response in the left inferior frontal gyrus in hypermobile participants (Fig. 5B). Weighted

mean BOLD estimate for the anterior cingulate gyrus was positively correlated with

autonomic perceptual mismatch and inferior frontal gyrus estimates was negatively

correlated in hypermobility (Fig. 5C). 

 

 
 
Figure 5 | T-contrast estimates of the interaction between hypermobility and autonomic
perceptual mismatch. Emotional face stimuli induced an increased response in the anterior cingulate
(A) and reduced response in the IFG (B). Colour bars represent peak-level t-statistics at FWEc P<0.05.
Crosshairs represent MNI co-ordinates of cluster peak activation. Scatter plots show the interaction
between APM and hypermobility at mean peak-clusters of activation from extracted eigenvariates for
positive and negative responses in anxious individuals vs. controls (C).  
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Mediation 

Upon mediation testing, we found autonomic perceptual mismatch to partially mediate the

relationship between hypermobility and anxiety status (Fig. 6A; categorical variables) when

controlled for. Autonomic perceptual mismatch fully mediated the relationship between

hypermobility and anxiety scores (Fig. 6B; continuous variables) when controlled for. 

 

 

 

 

 

 

 

Figure 6 | Baron and Kenny mediation. Partial mediation of APM on effect of hypermobility status on
anxiety status (A). Full mediation of APM on effect of Beighton score on Beck’s anxiety score (B).
Reported correlations are standardised beta coefficients. 

 

 

4. Discussion 

This study has shown that autonomic perceptual mismatch – a measure of autonomic

dysfunction inspired by predictive coding models – implicates functional brain activity and is

positively associated with anxiety. In a clinical sample, we provide evidence that

dysautonomia may be a mechanism by which hypermobility evokes anxiety through a

discrete set of brain regions that support interoceptive representation and autonomic

control. 

 

Our findings are consistent with prior research which showed differences in brain activity

and a mediating effect of objective interoception on anxiety, in a non-clinical hypermobile
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group [29]. However, this previous study did not consider the mismatch between objective 

and subjective awareness. 

 

Altered emotion-autonomic processing in anterior cingulate cortex 

Increased anterior cingulate cortex (ACC) activation was observed in both anxious and 

hypermobile participants with autonomic perceptual mismatch. ACC is implicated in 

emotion processing, particularly negative emotions like anxiety, and interoceptive accuracy 

[3, 47–49]. Imaging studies demonstrate high ACC activity in people with high trait anxiety 

and involvement in the physiological response to stress as a locus of autonomic regulation 

[50–54]. Our findings support the significant role of ACC in emotion-autonomic regulation, 

contributing to the development and persistence of anxiety disorders. 

 

Mid-insula as a locus linking interoception and anxiety 

Interestingly, we found a positive response to emotional faces in the middle insula cortex in 

the interaction of APM with anxiety. Mid-insula is often overlooked in interoception 

research, as the focus is usually on anterior insula as the mismatch comparator [10, 33, 55, 

56]. However, some hypotheses suggest mid-insula to implicate polymodal integration of 

emotion-interoception processing, with somatosensory and bodily afferent information 

projecting to the anterior insula to inform emotional experience and intensity [57–61]. 

Functional connections also exist to cingulate and frontal cortices, where autonomic control 

pertaining to interoceptive information is elicited and feedback integrated [55, 62–64].  

 

Mid-insula is commonly activated in interoceptive neural activations across psychiatric 

conditions [65]. Its activity correlates with interoceptive accuracy and anxiety scores, 

indicating a role in anxiety-related interoception [34]. The insula is functionally graded, with 
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the mid lobe as an intermediary structure [66]. Interoceptive responses to bodily awareness 

and organ distension follow this graded response [67]. 

 

Paulus and Khalsa [55] propose re-evaluating the mid-insula’s role in integrating 

autonomic-interoceptive information. Our observed activity patterns suggest potential 

alterations of this integration, which could result in mismatched models in the brain and 

symptom anxiety, corresponding to interoceptive predictive coding. The mid-insula’s 

connections to cingulate and frontal regions may contribute to this effect.  

 

Reduced frontal control may predispose anxious symptoms 

Our study revealed reduced response in a distinct cluster in the anterior mid-cingulate 

cortex (aMCC) in the interaction of APM with anxiety. aMCC is linked to cognitive function 

and error detection, co-activating and functionally connected to insula cortex [1, 50, 62, 68–

70]. Important for pain perception [71–74], attenuation of aMCC activity demonstrated 

reduced awareness of error detection [75]. aMCC is also a key locus of the Salience 

Network for internal-external stimulus recognition [33, 76]. In line with this work, our 

observation suggests that reduced activity of the mid-cingulate may be a locus of 

autonomic perceptual mismatch. Connectivity and co-activation to insula may be a path to 

the onset of subsequent anxious symptoms. 

 

We observed reduced activation of bilateral inferior frontal gyri (IFG) with autonomic 

perceptual mismatch in both hypermobile and anxious individuals. IFG is associated with a 

variety of cognitive functions such as emotion regulation and response inhibition [77, 78]. 

IFG is functionally connected to the insula, playing a role in viscero-motor-autonomic 

functioning [79]. Thus, perceptual mismatch may implicate these functional networks, 
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resulting in altered autonomic function and related cognitive processes. The accumulation 

of interoceptive errors may contribute to decision-making errors at a higher level, potentially 

exacerbating anxiety. However, further research is needed to investigate the mechanisms 

underlying emotion-autonomic processing in networks involving IFG and insular cortex.  

 

Dysautonomia as a mediator in brain-body interactions  

We demonstrate that autonomic perceptual mismatch mediates the effect of hypermobility 

on anxiety. Our study adds to existing evidence that interoceptive accuracy [29] and 

orthostatic symptoms [19] mediate this association. We have employed the interoceptive 

mismatch framework [16], to elucidate the underlying mechanism of this relationship. Our 

findings support the hypothesis that dysautonomia in hypermobile individuals, resulting from 

altered vascular collagen [8], may explain the observed overlap between hypermobility and 

anxiety. 

 

Clinical relevance to the anxiety-hypermobility link 

The link between connective tissue disorders and psychiatric conditions requires a holistic 

approach to understanding brain-body interactions. The ‘Neuroconnective phenotype’ [25, 

80] is a clinical recognition of the hypermobility-anxiety link that combines somatic and 

sensory symptoms, behaviour, psychiatry and neurodevelopmental conditions [20, 81]. 

Autonomic symptoms are higher in neurodevelopmental conditions [19, 81, 82]  and autism 

is overrepresented by up to 52% in hypermobility [83].  

 

Our work utilising the Neuroconnective model suggests that somatic symptoms may be 

linked to differences in sensory processing, which is common to autism and hypermobility, 
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but needs further empirical research. These findings highlight the need for personalised 

screening for various conditions in those displaying autonomic dysfunction in hypermobility.  

 

One limitation is that we did not consider the influence of psychotropic medication on our 

results which may impact on autonomic symptoms to varying degrees [8]. Nonetheless, 

Eccles [8] demonstrated that robust differences in autonomic function of hypermobile 

individuals exist regardless of medication status. Exploring medication effect on brain 

function in the context of hypermobility and autonomic dysfunction may implicate 

personalised treatments and phenotyping that account for individual responses to 

psychotropic medication. 

 

Conclusions  

Our study demonstrates how autonomic dysfunction affects neural activity in emotion-

processing and cognitive control regions in hypermobility and anxiety. These findings offer 

a mechanistic explanation by which imprecise autonomic interoceptive signals from bodily 

afferents manifest as anxiety through autonomic mediation. The involvement of mid-insula 

in polymodal error weighting provides novel evidence for interoceptive predictive coding 

models. These findings have important implications for brain-body interactions in 

connective tissue disorders contributing to anxiety symptomatology.  
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