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Abstract

Apart from ancestry, personal or environmental covariates may contribute to differencesin
polygenic score (PGS) performance. We analyzed effects of covariate Stratification and
interaction on body massindex (BMI) PGS (PGSgwmi) across four cohorts of European
(N=491,111) and African (N=21,612) ancestry. Stratifying on binary covariates and quintiles for
continuous covariates, 18/62 covariates had significant and replicable R? differences among
strata. Covariates with the largest differencesincluded age, sex, blood lipids, physical activity,
and alcohol consumption, with R? being nearly double between best and worst performing
quintiles for certain covariates. 28 covariates had significant PGSgy-covariate interaction
effects, modifying PGSgwm, effects by nearly 20% per standard deviation change. We observed
overlap between covariates that had significant R differences among strata and interaction
effects — across all covariates, their main effects on BM | were correlated with their maximum R?
differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSgy
individuals have highest R? and increase in PGS effect. Using quantile regression, we show the
effect of PGSgy increases as BMI itself increases, and that these differencesin effects are
directly related to differencesin R? when stratifying by different covariates. Given significant
and replicable evidence for context-specific PGSgu performance and effects, we investigated
ways to increase model performance taking into account non-linear effects. Machine learning
models (neural networks) increased relative model R? (mean 23%) across datasets. Finally,
creating PGSgy directly from GxAge GWAS effects increased relative R? by 7.8%. These
results demonstrate that certain covariates, especially those most associated with BMI,
significantly affect both PGSgu performance and effects across diverse cohorts and ancestries,
and we provide avenues to improve model performance that consider these effects.
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I ntroduction

Polygenic scores (PGS) provide individualized genetic predictors of a phenotype by aggregating
genetic effects across hundreds or thousands of loci, typically estimated from genome-wide
association studies (GWAS). In recent years it has become increasingly apparent that the
transferability of PGS performance across different cohortsis poor (1). Most analyses to date
have focused on ancestry differences as the main driver of thislack of portability (2—4).
However, a growing body of evidence has demonstrated that PGS performance and effect
estimates are influenced by differencesin certain contextsi.e., environmental (classically termed
“gene-environment” effects or interactions) or personal-level covariates — different phenotypes
seem to be differently affected by these covariates, with adiposity traits such as body mass index
(BMI) having substantial evidence for these effects (5-14). In one previous study, they showed
that GWAS stratified by sample characteristics had better PGS performance in cohorts that
matched the sample characteristics of the stratified GWAS, and that differencesin heritability
between the stratified cohorts partially explained this observation (13).

There are several gaps in current knowledge about these covariate-specific effects. Many
analyses have assessed only a handful of these covariates due to the myriad of choices possible
in typical large-scale biobanks. Little investigation has been done to systematically understand
why certain covariates affect PGS performance, with such knowledge being useful to reduce the
potential search for variables that impart context-specific effects. Furthermore, most studies
investigating PGS-covariate interactions have been in European ancestry individuals; notably,
comparing differences in PGS performance and prediction while controlling for differencesin
ancestry versus differences in context has not been assessed in previous studies. Moreover,
covariate-specific effects are notorious for replicating poorly in human genetics studies, and
previous studies of PGS-covariate interactions have been predominantly performed in the UK
Biobank (UKBB) (15), where the majority of individuals are aged 40-69 (i.e., excluding young
adults), are overall healthier than those from other e.g., hospital-based cohorts, and are
predominantly European ancestry. Additionally, PGS performance is often assessed using linear
models and inisolation of clinical covariates, which in practice would often be available.
Machine learning models can have increased performance over linear models and are capable of
modeling complex relationships and interactions between variables, which may serve to increase
predictive performance, especially given evidence for PGS-covariate specific effects. Finally,
given evidence for context-specific effects, it should be possible to directly incorporate SNP-
covariate interaction effects from a GWAS directly to improve prediction performance, instead
of relying on post-hoc interactions from atypical PGS calculated from main GWAS effects.

Using genetic data with linked-phenotypic information from electronic health records, we
estimated the effects of covariate stratification and interaction on performance and effect
estimates of PGS for BMI (PGSgw) — aflowchart summarizing our analyses is presented in
Figure 1. These analyses were done across four datasets (Supplemental Table 1): UK Biobank
(UKBB), Penn Medicine BioBank (PMBB) (15), Electronic Medical Records and Genomics
(eMERGE) network dataset (16), and Genetic Epidemiology Research on Adult Health and
Aging (GERA). These datasets include participants from two ancestry groups (N=491,111
European ancestry (EUR), N=21,612 African ancestry (AFR)), and 62 covariates (25 present in
multiple datasets) representing laboratory, survey, and biometric data types typically associated
with cardiometabolic health and adiposity. After constructing PGSgw using out-of-sample multi-
ancestry BM| GWAS, we assessed effects of covariate stratification on PGSgy R?, the
significance of PGSgy-covariate interaction terms and their increases to model R? over models
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only using main effects, aswell as correlation of main effect, interaction effect, and R
differences. We then assessed ways to increase model performance through using machine
learning models, and creating PGSgm; using GxAge GWAS effects. This study addresses a
plethora of open issues considering performance and effects of PGS on individuals from diverse
backgrounds.

Results

Effect of covariate stratification on PGSgy_performance

We assessed 62 covariates for PGSy R? differences (25 present, or suitable proxies, in multiple
datasets (Supplemental Table 2) after stratifying on binary covariates and quintiles for
continuous covariates. With UKBB EUR as discovery (N=376,729), 18 covariates had
significant differences (Bonferroni p<.05/62) in R? among groups (Figure 2a), including age, sex,
alcohol consumption, different physical activity measurements, Townsend deprivation index,
different dietary measurements, lipids, blood pressure, and HbA 1c, with 40 covariates having
suggestive (p<.05) evidence of R? differences. From an original PGSgw R? of 0.076, R?
increased to 0.094-0.088 for those in the bottom physical activity, alcohol intake, and high-
density lipoprotein (HDL) cholesterol quintiles, and decreased to 0.067-0.049 for those in the top
quintile, respectively, comparable to differences observed between ancestries (1). We note that
the differences in R* due to alcohol intake and HDL were larger than those of any physical
activity phenotype, despite physical activity having one of the oldest and most replicable
evidence of interaction with genetic effects of BM1 (17,18). Despite considerable published
evidence suggesting covariate-specific genetic effects between BMI and smoking behaviors
(6,8), we were only able to find suggestive evidence for R? differences when stratifying
individuals across several smoking phenotypes (minimum p=0.016, for smoking pack years). R
differences due to educational attainment were also only suggestive (p=0.015), with published
evidence on this association being conflicting (19-21).

We replicated these analyses in three additional large-scale cohorts of European and
African ancestry individuals (Figure 2b, Supplemental Table 3), aswell asin African ancestry
UKBB individuals. Among covariates with significant performance differencesin the discovery
analysis, we were able to replicate significant (p<.05) R? differences for age, HDL cholesteral,
alcohol intake frequency, physical activity, and HbA1c, despite much smaller sample sizes. We
again observed mostly insignificant differences across cohorts and ancestries when stratifying
due to different smoking phenotypes and educational attainment. For each covariate and ancestry
combination, we combined data across cohorts and conducted a linear regression weighted by
sample size, regressing R? values on covariate values across groupings. Slopes of the regressions
across cohorts had different signs between ancestries for the same covariate (triglyceride levels,
HbA1c, diastolic blood pressure, and sex), although larger sample sizes may be needed to
confirm these differences are statistically significant.

Several observations related to age-specific effects on PGSgy we considered noteworthy.
First, in the weighted linear regression of all R? values across ancestries, expected R? for African
ancestry individuals can become greater than that of European ancestry individuals among
individuals within bottom and top age quintiles observed in these data. For instance, the
predicted R? of 0.048 for 80 year-old European ancestry individuals would be lower than that of
African ancestry individuals aged 24.7 and lower, indicating that differences in covariates can
affect PGSgm performance more than differences due to ancestry. Second, we obtained these
results despite the average age of GWAS individuals being 57.8, which should increase PGSg
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R? for individuals closest to this age (13). This result suggests that PGS performance due to
decreased heritability with age cannot be fully reconciled using GWAS from individuals of
similar age being used to create PGSy (as heritability is an upper bound on PGS performance).
Finally, we observed that PGSgy R? increases as age decreases, consistent with published
evidence suggesting that the heritability of BM | decreases with age (22,23).

PGS-covariate interaction effects

Next, we estimated difference in PGS effects due to interactions with covariates, by modeling
interaction terms between PGSgy and the covariate for each covariate in our list (described in
Methods). We implemented a correction for shared heritability between covariates of interest and
outcome (which can inflate test statistics (24)) to better measure the environmental component of
each covariate, and show that this correction successfully reduces significance of interaction
estimates (Supplemental Figure 1). Again, using UKBB EUR asthe discovery cohort, we
observed 28 covariates with significant (Bonferroni p<.05/62) PGS-covariate interactions (Table
1), with 38 having suggestive (p<.05) evidence (Supplemental Table 4). We observed the largest
effect of PGS-covariate interaction with alcohol drinking frequency (20.0% decrease in PGS
effect per 1 standard deviation (SD) increase, p=2.62x10"°), with large effects for different
physical activity measures (9.4%-12.5% decrease/SD, minimum p=3.11x10°), HDL cholesterol
(15.3% decrease/SD, p=1.71x10"*) and total cholesterol (12.7% decrease/SD, p=1.64x10""). We
observed significant interactions with diastolic blood pressure (10.8% increase/SD, p=6.06x10"
%) but interactions with systolic blood pressure were much smaller (1.17% increase/SD,
p=4.41x10"%). Significant interactions with HbA1c (4.63% increase/SD, p=5.37x10™"*) and type 2
diabetes (27.2% PGS effect increase in cases, p=1.83x10™") were also observed. Other significant
PGS-covariate interactions included lung function, age, sex, and LDL cholesterol — various
dietary measurements also had significant interactions, albeit with smaller effects than other
significant covariates. We were able to find significant interaction effects for smoking pack years
(4.78% increase/SD, p=3.68x10"), but other smoking phenotypes had insignificant interaction
effects after correcting for multiple tests (minimum p=2.7x10"); interactions with educational
attainment were also insignificant (p= 4.54x1079).

We replicated these analyses across ancestries and the other non-UKBB EUR cohorts
(Figure 3, Supplemental Table 4). For age and sex, which were available for al cohorts,
interactions were significant (p<.05) and directionally consistent across cohorts and ancestries
(except for GERA AFR which had small sample size (N=1,789)). We were able to test
interactions with alcohol intake frequency and physical activity in GERA, and replicated
significant and directionally consistent associations. We observed poor replication for LDL
cholesterol, HbA1c, and smoking pack years, with insignificant and directionally inconsi stent
interaction effects across cohorts. Educational attainment was availablein GERA, and
interactions were once again insignificant. We observed significant and directionally consistent
interaction effects for TG in eMERGE EUR and PMBB EUR, while the effect was incons stent
in UKBB EUR despite much larger sample size.

However, despite significance of interaction terms, increases in model R? when including
PGS-covariate interaction terms were small. For instance, the maximum increase among all
covariatesin UKBB EUR was only 0.0024 from a base R? of 0.1049 (2.1% relative increase), for
alcoholic drinks per week. Across all cohorts and ancestries, the maximum increase in R? was
only 0.0058 from a base R? of 0.09454 (6.1% relative increase), when adding a PGS-age
interaction term for eM ERGE EUR (p=5.40x10"*) — this was also the largest relative increase
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among models with significant interaction terms. This result suggests that, while interaction
effects can significantly modify PGSgy, effect, their overall impact on model performanceis
relatively small, despite large differences in R? when stratifying by covariates.

Correlations between R? differences, interaction effects, and main effects

We next investigated the relationship between interaction effects, maximum R? differences
across quintiles, and main effects of covariates on BMI. We first estimated main effects of each
covariate on BMI (Methods, Supplemental Table 5), and then calculated the correlation wei ghted
by sample size between main effects, maximum PGSgy; R? across quintiles, and PGS-covariate
interaction effects (Figure 4) across all cohorts and ancestries — GERA data were excluded from
these analyses due to sightly different phenotype definition (Supplemental Table 6), aswere
binary variables. Interaction effects and maximum R? differences had a0.80 correlation
(p=2.1x10"*"), indicating that variables with larger interaction effects also had larger effects on
PGSgm| performance across quintiles, and that covariates that increase PGSgwv effect also have
the largest effect on PGSgy performancei.e., individuals most at risk for obesity will have both
disproportionately larger PGSgw effect and R?. Main effects and maximum R? differences had a
0.56 correlation (p=1.3x10""%), while main effects and interaction effects had a 0.58 correlation
(p=7.6x10"%) again suggesting that PGSg\ are more predictive in individuals with higher values
of BMI-associated covariates, although less predictive than estimating the interaction effects
themselves directly. However, this result demonstrates that covariates that influence both PGSgy,
effect and performance can be predicted just using main effects of covariates, which are often
known for certain phenotypes and easier to calculate, as genetic data and PGS construction
would not be required.

Increase in PGS effect for increasing percentiles of BMI itself, and its relation to R? differences
when stratifying by covariates

Given large and replicable correlations between main effects, interaction effects, and maximum
R? differences for individual covariates, it seemed these differences may be dueto the
differencesin BMI itself, rather than any individual or combination of covariates. To assessthis,
we used quantile regression to evaluate the effect of PGSgy on BMI at different deciles of BMI
itself. We observed that the effect of PGSgy| consistently increases from lower deciles to higher
deciles across al cohorts and ancestries (Figure 5) — for instance, in European ancestry UKBB
individuals, the effect of PGSgwm (in units of log(BMI)) when predicting the bottom decile of
log(BMI) was 0.716 (95% ClI: 0.701-.732), and increased to 1.31 (95% CI: 1.29-1.33) in thetop
decile. Across al cohorts and ancestries, the effect of PGSgu between lowest and highest effect
decile ranged from 1.43-2.06 times larger, with all cohorts and ancestries having non-
overlapping 95% confidence intervals between their effects (except for African ancestry
eMERGE individuals, which had much smaller sample size).

While this analysis showed that the effect of PGSgy, increases as BMI itsalf increases,
which may help explain significant interaction effects between PGSgy and different covariates,
it does not directly explain differences in R? when stratifying by different covariates —we
describe several pointsthat help explain thisresult and suggest they may actually be closely
related. Essentially, as the magnitude of the slope of aregression line increases while the mean
squared residual does not increase, model R? will increase — we demonstrate this using simul ated
data (Supplemental Figure 2). Asthe magnitude of the regression lin€' s slope decreases, the
regression line becomes a comparatively worse predictor compared to just using the mean, which
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decreases R? despite the mean error being the same across models. To demonstrate thisin real
data, we compared simple univariable models of log(BMI) ~ PGSgw; (in units of log(BMI))
between the bottom and top age quintiles in the European ancestry UKBB (Supplemental Figure
3). As shown in previous sections, R? and PGSgy beta are higher in younger individuals (R* =
0.088 versus R? = 0.066, and beta=1.12 and 0.87, respectively), which seem to be adirect
consequence of one another, as the mean squared error in younger individuals is actually higher
(0.027 versus 0.022, respectively). This description suggests that the use of R? asthe sole
performance metric for evaluation of PGS may not always be appropriate, despite its
overwhelming usage. Furthermore, this explanation helps explain the seemingly paradoxical
results of significant interaction terms yet small increases in overall model R?, and comparably
much larger differencesin R?in the stratified analyses.

Effects of machine learning approaches on predictive performance

Given evidence of PGS-covariate dependence, we aimed to assess increases in R*when using
machine learning models (neural networks), which can inherently model interactions and other
nonlinearities, over linear models even with interaction terms. We first included age and sex as
the only covariates (along with genotype PCs and PGSgw), as age and sex were present in all
datasets and had significant and replicable evidence for PGS-dependence across our analyses.
Three models were assessed — L 1-regularized (i.e., LASSO) linear regression without any
interaction terms, LASSO including a PGS-age and PGS-sex interaction term, and neural
networks (without interaction terms). When comparing neural networksto LASSO with
interaction terms, the relative 10-fold cross-validated R? increased up to 67% (mean 23%) across
cohorts and ancestries (Figure 6, Supplemental Table 7). The inclusion of interaction terms
increased cross-validated R? up to 12% (mean 3.9%) when comparing LASSO including
interaction terms to LASSO with main effects only.

We then modeled al available covariates and their interactions with PGS for each cohort
and did similar comparisons. Cross-validated R? increased by up to 17.6% (mean 9.5%) when
using neural networks versus LASSO with interaction terms, and up to 7.0% (mean 2.0%) when
comparing LASSO with interaction terms to LASSO with main effects only. Increases in model
performance using neural networks were smaller in UKBB, perhaps due to the age range being
smaller than other cohorts (all participants aged 39-73). This result suggests that additional
variance explained through non-linear effects with age and sex are explained by other variables
present in the remainder of the datasets. Our findings show machine learning methods can
improve model R? that include PGSgw; as variables beyond including interaction terms in linear
models, even when variable selection is performed using LASSO, demonstrating that model
performance can be increased beyond modeling nonlinearities through linear interaction terms
and a feature selection procedure.

Calculating PGS directly from GxAge GWAS effects

Previous studies (13) have created PGS using GWAS stratified by different personal-level
covariates, but for practical purposes thisleads to alarge loss of power as the full size of the
GWAS s not utilized for each strata and continuous variables are forced into bins. We developed
anove strategy where PGS are instead created from a full-size GWAS that includes SNP-
covariate interaction terms (M ethods). We focused on age interactions, given their large and
replicable effects based on our results — similar to a previous study (13), we conducted these
analyses in the European UKBB. We used a 60% random split of study individuals to conduct
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three sets of PGS using GWAS of the following designs. main effects only, main effects also
with a SNP-age interaction term, and main effects but stratified into quartiles by age. 20% of the
remaining data were used for training and the final 20% were held-out as atest set. The best
performing PGS created from SNP-age interaction terms (PGSgxage) iNncreased test R?t0 0.0771
(95% bootstrap CI: 0.0770-0.0772) from 0.0715 (95% bootstrap Cl: 0.0714-0.0716), a 7.8%
relative increase compared to the best performing main effect PGS (Figure 7, Supplemental
Table 8 — age-stratified PGS had much lower performance than both other strategies
(unsurprising given reasons E)revi ously mentioned). Including a PGSgxage-age interaction term
only marginally increased R (0.0001 increase), with similar increases for the other two sets of
PGS, further demonstrating that post-hoc modeling of interactions cannot reconcile performance
gained through directly incorporating interaction effects from the original GWAS. The strategy
of creating PGS directly from full-sized SNP-covariate interactionsis potentially quite useful as
it increases PGS performance without the need for additional data— there are amost certainly a
variety of points of improvement (described more in Discussion), but we consider their
investigation outside the scope of this study.

Discussion

We uncovered replicable effects of covariates across four large-scale cohorts of diverse ancestry,
on both performance and effects of PGSgui. When stratifying by quintiles of different covariates,
certain covariates had significant and replicable evidence for differencesin PGSgyw R?, with R?
being nearly double between top and bottom performing quintiles for covariates with the largest
differences. When testing PGS-covariate interaction effects, we also found covariates with
significant interaction effects, where, for the largest effect covariates, each standard deviation
change affected PGSgw; effect by nearly 20%. Across analyses, we found age and sex had the
most replicable interaction effects, with levels of serum cholesterol, physica activity, and
alcohol consumption having the largest effects across cohorts. Interaction effects and R
differences were strongly correlated, with main effects also being correlated with interaction
effects and R? differences, suggesting that covariates with the largest interaction effects also
contribute to the largest R? differences, with simple main effects also being predictive of
expected differences in R? and interaction effects. Relatedly, we observed the effect of PGSgw
increases as BM| itself increases, and reason that differencesin R? when stratifying by covariates
are largely a consequence of difference in PGSgy effects. Next, we employed machine learning
methods for prediction of BMI with models that include PGSgy; and demonstrate that these
methods outperform regularized linear regression models that include interaction effects. Finaly,
we employed anovel strategy that directly incorporates SNP interaction effects into PGS
construction, and demonstrate that this strategy improves PGS performance when modeling
SNP-age interactions compared to PGS created only from main effects.

These observations are relevant to current research and clinical use of PGS, asindividuals
above a percentile cutoff are designated high-risk (40), implying that individuals most at-risk for
obesity have both disproportionately higher predicted BMI and increased BMI prediction
performance compared to the general population. More broadly, these results may likely extend
to single variant effects instead of those aggregated into a PGS, which may inform the cause of
previous GXE discoveries — for instance, variants near FTO that interact with physical activity
discovered through GWAS of BMI are robust and well-documented. However, individuals
engaging in physical activity will generally have lower BMI than those that are sedentary, and
these results suggest it may not be the difference in physical activity that’s driving the
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interaction, rather the difference in BMI itself. This concept may also apply to other traits—for
instance, sex-specific analyses are commonly performed, and variants with differing effects
between males and females GWAS may largely be explained by phenotypic differences, rather
than any combination of biological or lifestyle differences.

Future work may include replicating these analyses across additional traits, and trying to
understand why these differences occur, as well as further exploring machine learning and deep
learning methods on other phenotypes to determine if thistrend of inclusion of PGS along with
covariate interaction effects outperforms linear models for risk prediction. Additionally,
inclusion of a PGS for the covariate to better measure its environmental effect is potentially
worth exploring further, and should improve in the future as PGS performance continues to
increase. A dlight limitation of this method in our study is that for the UKBB analyses the
GWAS used for PGS construction were also from UKBB thus not out-of-sample, although many
of the covariates only have GWAS available through UKBB individuals. Furthermore, a variety
of improvements are likely possible when creating PGS directly from SNP-covariate interaction
terms. First, we used the same SNPs that were selected by pruning and thresholding based on
their main effect p-values, but selection of SNPs based on their interaction p-values should also
be possible and would likely improve performance. Additionally, performance of pruning and
thresholding-based strategies have largely been overtaken by methods that first adjust all SNP
effects for LD and don’t require exclusion of SNPs, and a method that could do asimilar
adjustment for interaction effects would likely outperform most current methods for traits with
significant context-specific effects. Next, incorporating additional SNP-covariate interactions
(e.g., SNP-sex) would also likely further improve prediction performance, although any SNP
sel ection/adjustment procedures may be further complicated by additional interaction terms.
Finally, if SNP effects do truly differ according to differences in phenotype, then SNP effects
would differ depending on the alleles one has, implying epistatic interactions are occurring at
these SNPs.

While difference in phenotype itself may be able to explain difference in genetic effects,
it still may be that specific environmental or lifestyle characteristics are driving the differences.
We propose several ideas about why BMI-associated covariates have larger interaction effects
and impact on R? for PGSgy. First, age may be a proxy for accumulated gene-environment
interactions as younger individuals have less exposure to environmental influences on weight
compared to older individuals; therefore, one may expect that in younger individuals their
phenotype could be better explained by genetics compared to environment. Second, PGS may
more readily explain high phenotype values especially for positively skewed phenotypes, as
large effect variants (e.g., associated with very high weight or height (25)) may be more
responsible for extremely high phenotypic values. For example, the distribution of BMI is often
positively skewed, and effects in trait-increasing alleles may have alarger potential to explain
trait variation compared to trait-reducing variants. This explanation would likely be better suited
to positively skewed traits and is not fully satisfactory as first log-transforming or rank-normal
transforming the phenotype, as was done in this study, may invalidate this explanation.

PGS is a promising technique to dtratify individuals for their risk of common, complex
disease. To achieve more accurate predictions as well as promote equity, further researchis
required regarding PGS methods and assessments. This research provides firm evidence
supporting the context-specific nature of PGS and the impact of nonlinear covariate effects for
improving polygenic prediction of BMI, promoting equitable use of PGS across ancestries and
cohorts.
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Methods

Study datasets

Individual inclusion criteria and sample sizes per cohort are described bel ow — additional
information is available in Supplemental Table 1.

UKBB

Individual-level quality-control and filtering have been described elsewhere (26) for European
ancestry individuals. Briefly, individuals were split by ancestry according to both genetically
inferred ancestry and self-reported ethnicity (15). Individuals with low genotyping quality and
sex mismatch were removed, only unrelated individuals (pi-hat < 0.250) were retained, and
variants were filtered at INFO > 0.30 and minor alele frequency (MAF) > 0.01. For African
ancestry, individuals were first selected based on self-reported ethnicity “Black or Black
British”, “Caribbean”, “African”, or “Any other Black background”. Individuals that were low
quality i.e., “Outliers for heterozygosity or missing rate”’, and that were Caucasian from “Genetic
ethnic grouping” were removed. Of these individuals, those that were +/- 6 standard deviations
from the mean of the first 5 genetic principal components provided by UKBB were excluded.
Finally, only unrelated individuals were retained up to the second degree using plink2 (27) “-
king-cutoff 0.125”. After QC and consideration of phenotype, atotal of 7,046 individualsin the
UKBB AFR data who also had BMI available were used for downstream analyses. In total,
383,775 individuals were used for analysis (Neyr=376,729, Narr=7,046).

eMERGE

Ancestry and relatedness inference have been described elsewhere (15). Individuals were split
into European and African ancestry cohorts, and related individuals were removed (pi-hat >
0.250) such that all were unrelated. 35,064 individuals (Neur=31,961, Narr=3,103) were used
for analysis.

GERA

Ancestry inference has been described elsewhere (28), and study individuals were divided into
European and African ancestry cohorts. Related individuals were removed using plink2 “-king-
cutoff 0.125”. 57,838 individuals (Neur=56,049, Narr=1,789) were used for analysis.

PMBB

Ancestry inference and relatedness inference have been described elsewhere (29). Individuals
were split into European and African ancestry cohorts, and related individuals were removed at
pi-hat > 0.250. 36,046 individuals (Neur=26,372 , Narr=9,674) were used for analysis.

Choice of covariates

A total of 62 covariates were included in the analyses, 25 of which were present (or similar
proxies) in multiple datasets. These covariates were selected based on relevance to
cardiometabolic health and obesity, and previous evidence of context-specific effects with BMI
(5,6,8,30-32). For UKBB, phenotype values were used from the collection that was closest to
recruitment, and for PM BB the median values were used — for GERA and eMERGE only one
value was available. Additional details on covariate constructions, transformations, filtering, and
cohort availability are in Supplemental Table 2.
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PGS construction

PGS for BMI (PGSgnm) were constructed using PRS-CSx (33), using GWAS summary statistics
for individuals of European (34), African (35), and East Asian (36) ancestry that were out-of-
sample of study participants. A set of 1.29 million HapMap3 SNPs provided by PRS-CSx was
used for PGS calculation, which are generally well-imputed and variable frequency across global
populations. Default settings for PRS-CSx (downloaded November 22, 2021) were used, which
have been demonstrated to perform well for highly polygenic traits such asBMI (list of
parameters in Supplemental Table 9). The final PGSgwm per ancestry and cohort was calcul ated
by regressing log(BM1) on the PGSgw per ancestry without covariates — the combined, predicted
value was used as a single PGSgy in downstream analyses.

For GERA, BMI was not transformed, asit was already binned into a categorical variable with 5
levels (18<, 19-25, 26-29, 30-39, >40). Additionally, for GERA the uncombined ancestry-
specific PGSgy, were used in the final models, asit had higher R? than using the combined
PGSgy (data not shown).

PGSgw_performance after covariate stratification

Analyses were performed separately for each cohort and ancestry. For each covariate, individuals
were binned by binary covariates or quintiles for continuous covariates. Incremental PGSgw; R
was calculated by taking the difference in R? between:

log(BMI) ~ PGSgu + Age + Sex + PCsy.5
log(BMI) ~ Age + Sex + PCs;.5

We performed 5,000 bootstrap replications to obtain a bootstrapped distribution of R?. P-values
for differencesin R? were calculated between groups by calculating the proportion of overlap
between two normal distributions of the R? value using the standard deviations of the bootstrap
digtributions. Again for GERA, BMI was not transformed.

PGSgwmi_interaction modelling

Evidence for interaction with each covariate with the PGSg\ was evaluated using linear
regression. It has been reported that the inclusion of covariates that are genetically correlated
with the outcome can inflate test statistic estimates (24,37,38). To assuage these concerns, we
introduced a novel correction, where wefirst calculated a PGS for the covariate (PGScovariae) @nd
included it in the model, as well as an interaction term between PGSgy and PGScovariae. The
PGScovaiiate terms were calculated using the European ancestry Neale Lab summary statistics
(URLSs) and PRS-CS (39). To standardize effect sizes across analyses, PGSgy; and Covariate
were first converted to mean zero and standard deviation of 1 (binary covariates were not
standardized). We demonstrate inclusion of PGScovariae terms successfully reduced significance
of the PGS * Covariate term (Supplemental Figure 1). The final model used to evaluate
PGSswmi and Covariate interactions was:

log(BMI) ~ PGSs\ * Covariate + PGSgy + Covariate + PGScovariae + PGSem* PGScovariae + AgE + SeX + PCsy.5

We report the effect estimates of the PGSgy * Covariate term, and differencesin model R? with
and without the PGSgu* Covariate term. Again for GERA, BMI was not transformed.
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Correlation between R? differences, interaction effects, and main effects
We estimated main effects of each covariate on BMI with the following model:

log(BMI) ~ Covariate + Age + Sex + PCs,.5

Note that we ran new models with main effects only, instead of using the main effect from the
interaction models (as the main effects in the interaction models depend on the interaction terms,
and main effects used to create interaction terms are sensitive to centering of variables despite
the scale invariance of linear regression itself (40)). We then estimated the correlation between
main effects, interaction effects, and maximum R’ differences across all cohorts and ancestries
weighting by sample size, analyzing quantitative and binary variables separately.

Quantile regression to measure PGS effect across percentiles of BMI

The effect of PGSgy; on BMI at different deciles of BMI was assessed using quantile regression.
Tau —the parameter that sets which percentile to be predicted — was set to .10, .20, ..., .90.
Models included age, sex, and the top 5 genetic PCs as covariates. Analyses were stratified by
ancestry and cohort, and BM| wasfirst log transformed. GERA was excluded from these
analyses, as aportion of the models failed to run (as BMI values from GERA were already
binned, some deciles all had the same BMI value — additionally, difference in effects between
bins would be harder to evaluate as BMI within each decile would be more homogeneous).

Machine learning models

UKBB EUR and GERA EUR models were restricted to 30,000 random individuals, for
computational reasons—BMI distributions did not differ from the full-sized datasets
(Kolmogorov-Smirnov p-value of 0.29 and 0.57, respectively). PGSgm and top five genetic
principal components were included as features in all models. Two sets of models were
evaluated for each cohort and ancestry: including age and sex as features, and including all
available covariates in each cohort as features. Interactions terms between PGS and each
covariate were included for models using interaction terms. ‘ Ever Smoker’ status was used in
favor of ‘Never’ vs'‘ Current smoking’ status (if present), as individuals with ‘Never’ vs
‘Current’ status are a subset of those with ‘Ever Smoker’ status. UKBB AFR with al covariates
was excluded due to small sample size (N=53).

Neural networks were used as the model of choice, given their inherent ability model
interactions and other nonlinear dependencies. Prior to modeling, all features were scaled to be
between 0 and 1. We used average 10-fold cross validation R? to evaluate model performance.
Separate models were trained using untransformed and log(BM1). L1-regularized linear
regression was used with 18 values of lambda (1.0, 5.0x10?, 2.0x10™, 1.0x10™, 5.0x102, 2.0x10
2 ..., 1.0x10° 5.0x10°®, 2.0x10°). Models were trained without inclusion of interaction terms
(which neural networks can implicitly model), using 1,000 iterations of random search with the
following hyperparameter ranges: size of hidden layers[10, 200], learning rate [0.01, 0.0001],
type of learning rate [constant, inverse scaling], power t [0.4, 0.6], momentum [0.80, 1.0], batch
size[32, 256], and number of hidden layers[1, 2].

GxAge PGSgw_creation and assessment
Analyses were conducted in the European UKBB (N=376,629), as was done in a study on a
similar topic (13). Three sets of analyses were performed, using GWAS conducted in a 60%
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random split of individuals using the following models (BM1 was rank-normal transformed
before GWAYS):

1) BMI ~SNP+ Age + Sex + PCs;.5
2) BMI ~SNP+ Age*SNP + Age + Sex + PCsy.5

3) Using the model in 1) but stratified into quartiles by age. BM|1 was rank-normal transformed
within each quartile.

Using each set of GWAS, PGS was first calculated in a 20% randomly selected training set of
the dataset using pruning and thresholding using 10 p-value thresholds (0.50, 0.10, ..., 5.0x107,
1.0x10°®) and remaining settings as default in Plink 1.9. For 2), GxAge PGSgw were calculated
using SNPs clumped by their main effect p-values from 1), and additionally incorporating the
GxAge interaction effects per SNP. In other words, instead of typical PGS construction as:

PGS = Bik1 + Bok2 + ... + Brkn

For anindividual i’s PGS calculation, with main SNP effect B, and n SNPs, PGS incorporating
GxAge effects (PGSgxage) Was calculated as:

I:)GSGxAge,i = Blkl + BGxAge,lklAga + szz + BGxAge,ZkZAga et Bnkn + BGxAge,nknAga
Where Bexage IS the GxAge effect for each SNP nand Age isthe age for individual i.

For each of the three analyses, the parameters and models resulting in the best performing PGS
(highest incremental R?, using same main effect covariates as in the three GWAS) from the
training set were evaluated in the remaining 20% of the study individuals. For 3), models were
first trained within each quartile separately. To maintain sense of scale across quartiles (after
rank-normal transformation), R? between all predicted values and true values was calcul ated
together. For R? confidence intervals, the training set was bootstrapped and evaluated on the test
set 5,000 times.

URLSs
Neale Lab UKBB summary statistics:. http://www.neal €l ab.is/uk-biobank

Data Availability statement

UK Biobank data was accessed under project #32133. eMERGE datais available at dbGaP in
phs001584.v2.p2. GERA datais available at dbGaP in phs0D00674.v3.p3. Summary statistics for
PMBB are available from authors upon request.
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