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Abstract 

Understanding how a child's social and economic surroundings influence their 

mental development and potential for psychological disorders is essential for unpacking the 

origins of mental health issues. This study, using up-to-date machine learning-based causal 

inference methods, tested the relationships between neighborhood socioeconomic deprivation, 

delay discounting, and psychotic-like experiences (PLEs) in 2,135 children considering the 

wide range of covariates. We found that a greater neighborhood deprivation led to steeper 

future reward discounting and a higher psychosis risk, evident over 1-year and 2-year follow-

ups. We also discovered, across children, significant individual differences in the effect of 

neighborhood adversity on childhood PLEs, particularly hallucinational symptoms. Children 

particularly vulnerable to PLEs in adverse neighborhoods exhibited steeper future reward 

discounting, higher cognitive performance polygenic scores, notable neuroanatomical 

alterations, including reduced volume, surface area, and white matter in limbic regions. 

Furthermore, these children displayed increased BOLD reactivity within the prefrontal-limbic 

system during Monetary Incentive Delay tasks across various reward/loss versus neutral 

conditions. These findings underscore the intricate interaction between the brain's reward 

processing mechanisms and external socioeconomic elements in shaping the risk of psychosis 

in children.  
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Introduction 

In Critique of Practical Reason, Immanuel Kant champions the inherent power of human 

reason, suggesting that it is an a priori capacity independent of external factors, enabling 

individuals to engage in responsible actions1. Nevertheless, a wealth of scientific studies in 

recent decades stands in opposition to the Enlightenment philosopher's claims, highlighting 

the significant impact of environmental factors on the development of personal identity and 

behavior. 

Adverse childhood environments, such as low family income, malnutrition, physical or 

sexual abuse, and unsafe neighborhoods, are linked to an heightened risk of various mental or 

physical health issues, including psychosis2-4, impoverished cognitive ability5-7, anxiety, 

bipolar disorder, self-harm, depression3,4,8, substance abuse, and obesity9,10. Furthermore, 

these environments are associated with negative social outcomes, such as poor academic 

performance11,12, low income, unemployment13-18, higher rates of imprisonment, and 

increased likelihood of teen pregnancy19. Additionally, exposure to these adverse conditions 

in childhood is associated with a propensity for engaging in risky behaviors, including 

criminal activity20, excessive consumption of calorie-dense foods21, substance use22,23, 

deficient self-control24, and disrupted reward processing25.  

The intricate relationship between challenging childhood environments, irresponsible 

behavior, and adverse social and health outcomes raises important questions. We 

hypothesized that childhood adversity causes impairment in one’s valuation system, leading 

to negative life outcomes. Children who experienced social adversities such as poverty show 

steeper discounting of future rewards in adulthood and have greater risk of psychosis2,3,26-28. 
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Lower socioeconomic status positively correlates with functional brain activity concordance 

and grey matter volume within reward-related areas (i.e., ventral striatum, putamen, caudate 

nucleus, orbital frontal cortex) and negatively with executive-related areas (i.e., frontal, 

medial frontal cortex)29. A recent study reported that neuroanatomical features including total 

cortical volume, surface area, and thickness mediates the association of environmental risk 

factors and psychotic-like experiences (PLEs) in children3.  

In addition, individuals with steeper discounting of future rewards (i.e., value present 

rewards much higher than future rewards) were inclined to save less, invest less in education, 

more likely to engage in criminal behavior, exhibit lower academic performance, and have 

less economic wealth30-33. This impairment in the intertemporal valuation system is 

associated with psychiatric disorders, including psychosis, attention deficit/hyperactivity 

disorder (ADHD), and addiction34,35. Psychosis, in particular, has been consistently linked to 

steep delay discounting36-38. Individuals with psychosis may manifest as a skewed neural 

response to non-relevant rewards, possibly due to increased tonic dopamine34,39-41. Blunted 

dopaminergic projections from the ventral tegmental area to the mesocorticolimbic regions 

disrupt reward anticipation and perception39,40, potentially causing delusions or hallucinations.  

In the present study, our primary objective was to investigate the impact of neighborhood 

socioeconomic deprivation on adolescents' delay discounting and PLEs. Delay discounting, 

which is evidenced by the extent to which individuals’ discount future rewards, pertains to 

their intertemporal decision-making and impulsive behavior. Exposure to adversities at the 

neighborhood level during childhood has been shown to negatively influence neurocognitive 

development7,42,43, subsequently resulting in psychiatric disorders2,3,28 and unfavorable social 

outcomes, such as decreased income, reduced probability of college attendance, and limited 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2023.04.30.23289335doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

employment opportunities17. This phenomenon is particularly pronounced in societies where 

discrimination based on family income or race/ethnicity restricts underprivileged families 

from selecting neighborhoods that present greater opportunities for upward social mobility, as 

observed in the United States17.  

It is crucial to note that PLEs, frequently reported in children, are considered as a 

clinically significant risk indicator for psychosis and general psychopathology44,45. Around 17% 

of 9-12 years old children report PLEs46, and individuals with PLEs at age 11 had greater risk 

of developing psychotic disorders in adulthood47,48. Prior studies revealed that PLEs are 

correlated to heightened vulnerability to other psychopathologies including suicidal behavior2, 

mood, anxiety, and substance disorders44,46, and exhibit the strongest association with 

environmental risk factors in comparison to other internalizing/externalizing symptoms 

during early adolescence3. The present study endeavors to explore the potential causal 

mechanisms underlying these associations. 

Our second aim was to test whether the causal effects of neighborhood deprivation on 

children’s PLEs are heterogeneous based on individual’s delay discounting and its genetic, 

neural correlates. The heterogeneous nature of psychopathology has long posed significant 

challenges for clinical diagnosis and treatment49,50. Given that the genetic and neural 

correlates of delay discounting substantially overlap with those of psychosis40,41,51,52, the 

shared biological foundations between reward valuation and psychosis may result in 

heterogeneous effects of environmental exposure on an individual's PLEs. By investigating 

these potential variations, this study seeks to enhance the understanding of the complex 

interplay between environmental factors and individual predispositions in the development of 

psychopathology. 
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Identifying individual differences of treatment/exposure is crucial for the development of 

personalized health care. Delivering optimal health care for each patient necessitates the 

recognition of genetic markers, neurodevelopmental characteristics, and sociodemographic 

features associated with individual variations in treatment effects53,54. However, previous 

studies employing traditional methods of testing the individual differences in treatment 

effects have often been unsuccessful in discerning the intricate interplay between genetic and 

environmental factors55,56. Linear models with interaction terms of features selected a priori 

by the researcher may not fully reflect the complex and elusive gene-environment interplay, 

particularly in genetic and neuroscience research where the input features are usually high 

dimensional. 

Using an up-to-date causal machine learning approach57,58, we assessed the effects of 

neighborhood socioeconomic adversity on delay discounting and PLEs, and the potential 

individual differences within those effects. We leveraged multimodal magnetic resonance 

imaging (MRI) data from 11,876 preadolescent children aged 9 to 12 years old (the 

Adolescent Brain Cognitive Development (ABCD) Study). Integration of innovative 

analytical techniques and a large sample with diverse genetic and environmental backgrounds 

permits us to test the complex interactions between genetic and environmental factors, 

ultimately contributing to the development of more effective personalized health care 

strategies.  
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Results 

The demographic characteristics of the final sample (N=2,135) are presented in Table 1. 

Within the sample, 46.14% were female, 76.63% of participants had married parents, the 

mean family income was $70,245, and 65.57% identified their race/ethnicity as white. To 

ensure the representativeness of the final sample, a supplementary table comparing the 

sample's demographic characteristics with those of the general United States population is 

provided in the Supplementary Information (Supplementary Table 1). This comparison 

serves to reinforce the validity and generalizability of the study's findings. 

In this non-randomized observational study, we addressed potential confounding factors, 

such as genetic, environmental variables, and their unobserved common causes, which can 

lead to biased estimations in studies like the ABCD study59. We used instrumental variable 

(IV) random forests (henceforth IV Forest)57,58—a random forest-based IV regression60—to 

adjust for unobserved confounding bias in identifying the causal effects of neighborhood 

socioeconomic adversity (measured with Area Deprivation Index, henceforth ADI) on delay 

discounting and PLEs. The IV Forest method enabled us to derive nonparametric, doubly 

robust estimates of the average (group-level) and heterogeneous (individual-level) treatment 

effects of ADI on these outcomes. Notably, this method is particularly useful for analyzing 

the complex, nonlinear interactions between genetic and environmental factors and their 

effects on neurocognitive development and psychosis risk, even within the confines of 

observational data57. 

Fig. 1 presents the analytical framework of our study, examining the effects of 

neighborhood socioeconomic adversity on children's decision-making and mental health. ADI, 
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recorded in the baseline year, serves as an indicator of this socioeconomic adversity. We 

assessed the impact of ADI on children’s intertemporal decision-making through delay 

discounting at a 1-year follow-up. PLEs, encompassing distress, delusional, and 

hallucinational symptoms, were evaluated at both 1-year and 2-year follow-ups. Our analysis 

spans multiple follow-up periods and PLE indicators to investigate the sustained influence of 

ADI over time and to explore differential effects on various PLE symptoms, particularly 

delusional versus hallucinational. 

 

Average Treatment Effects of Neighborhood Socioeconomic Adversity on 

Delay Discounting and PLEs 

IV Forest analyses revealed that a higher ADI has significant (causal) associations with a 

lower delay discounting (β= -1.73, p-FDR= 0.048) and a higher PLEs (distress score 1-year 

follow-up: β= 1.872, p-FDR= 0.048; distress score 2-year follow-up: β= 1.504, p-FDR= 

0.039; delusional score 1-year follow-up: β= 5.97, p-FDR= 0.048; delusional score 2-year 

follow-up: β= 4.022, p-FDR=0.048; hallucinational score 1-year follow-up: β= 3.761, p-

FDR= 0.048; hallucinational score 2-year follow-up: β= 4.786, p-FDR=0.039) (Table 2). 

Supplementary analyses were conducted using a conventional linear IV regression60 and an 

alternative causal machine learning method (i.e., Double ML61,62) to validate the results. The 

conventional IV regression also showed that ADI has negative influence on childhood delay 

discounting (β= -0.468, p-FDR= 0.03) and positive PLEs (distress score 1-year follow-up: β= 

0.609, p-FDR= 0.011; distress score 2-year follow-up: β= 0.78, p-FDR= 0.003; delusional 

score 1-year follow-up: β= 0.486, p-FDR= 0.028; delusional score 2-year follow-up: β= 
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0.578, p-FDR= 0.013; hallucinational score 1-year follow-up: β= 0.604, p-FDR= 0.011; 

hallucinational score 2-year follow-up: β= 0.827, p-FDR= 0.003). The partial-linear IV model 

of the Double ML algorithm showed significant effects of ADI on children’s delay 

discounting (β= -0.429, p-FDR= 0.044), distress score PLEs (1-year follow-up: β= 0.495, p-

FDR= 0.023; 2-year follow-up: β= 0.609, p-FDR= 0.005), hallucinational score PLEs (1-year 

follow-up: β= 0.498, p-FDR= 0.018; 2-year follow-up: β= 0.683, p-FDR= 0.002), and 2-year 

follow-up delusional score PLEs (β= 0.417, p-FDR= 0.044). The negative effects of ADI on 

1-year follow-up delusional score PLEs were marginally significant (β= 0.393, p-FDR= 

0.051). These results of the conventional linear IV regression and Double ML partial-linear 

IV regression confirm the findings obtained from the IV Forest (Supplementary Table 3), 

further supporting the primary analyses and conclusions drawn from the study. 

 

Heterogeneous Treatment Effects of Neighborhood Socioeconomic 

Adversity on PLEs, conditioned on the Genetic and Neural Correlates of 

Delay Discounting 

Next, we tested whether the impact of ADI was heterogeneous across children, and, if so, 

whether the heterogeneity is linked to individual’s neurodevelopmental characteristics and the 

relevant genetic factors—assessed with genome-wide polygenic scores (GPS) and structural 

MRI and monetary incentive delay (MID) task fMRI data—correlated to intertemporal 

valuation. To identify the best subset of genetic and neural correlates of delay discounting, we 

first selected GPS and MRI brain regions of interest (ROIs) specifically related to delay 

discounting. To analyze the nonparametric correlations of multiple input variables, we used a 
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random forest-based feature selection Boruta algorithm63. Its robustness and effectiveness in 

selecting relevant features in high dimensional, intercorrelated biomedical data (e.g., MRI) 

has been validated63 and consistently applied in genetics and neuroscience research64-66. The 

variables significantly correlated with delay discounting (p-Bonferroni<0.05) were GPS of 

cognitive performance, IQ, and education attainment; morphometric features (e.g., surface 

area, volume) in the limbic system (temporal pole, parahippocampal gyrus, caudate nucleus, 

rostral anterior cingulate, isthmus cingulate), inferior frontal gyrus (pars opercularis), and 

fusiform gyrus; mean beta activations of rewards/losses versus neutral feedback in the 

subcortical areas (thalamus proper, ventral diencephalon), precentral gyrus, supramarginal 

gyrus, temporal lobe (transverse temporal gyrus, superior temporal gyrus), and insula 

(Supplementary Table 4).  

We then assessed the heterogeneous treatment effects of ADI on PLEs using three 

distinct IV Forest models: (1) the Delay Discounting model, incorporating sociodemographic 

features and delay discounting; (2) the Gene-Brain model, which included sociodemographic 

features and genetic and neural correlates of delay discounting (i.e., GPS and brain ROIs 

identified using the Boruta algorithm); and (3) the Integrated model which combined all the 

variables from the previous two models. All three models satisfied the overlap assumption 

(i.e., the estimated propensity scores are not close to one or zero), which is crucial for the 

validity of the estimated heterogeneous treatment effects (Supplementary Fig. 1). In line 

with prior studies67,68, we obtained conditional average treatment effects, divided subjects 

into deciles (Q1: most vulnerable; Q10: most resilient) based on the conditional average 

treatment effects, and conducted three hypothesis tests69 on each model to determine the most 

effective model for capturing the individual differences (heterogeneity) in the effects of ADI 
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on PLEs: monotonicity, alternative hypothesis, and ANOVA. 

Among the three models, only the Integrated model successfully demonstrated 

significant individual differences in the ADI effects on PLEs. This was evident in the impact 

of ADI on 1-year follow-up distress score PLEs (monotonicity test: p-FDR=0.011; alternative 

hypothesis test: p=0.002; ANOVA test: p<0.001) and 1-year follow-up hallucinational score 

PLEs (monotonicity test: p-FDR=0.038; alternative hypothesis test: p=0.004; ANOVA test: 

p<0.001), as presented in Fig. 2 and Table 3.  In contrast, the Delay Discounting model and 

Gene-Brain model failed to pass the heterogeneity tests (monotonicity test: p-FDR≥0.05; 

alternative hypothesis and ANOVA test: p≥0.05). 

To elucidate the role of specific genetic and neural correlates within the heterogeneous 

effects of ADI on PLEs, we obtained Shapley additive explanation (SHAP) scores70. SHAP 

scores provide insights into how each variable contributes positively or negatively to the 

differential causal effects of ADI on 1-year follow-up observations of distress score and 

hallucinational score PLEs. These scores help differentiate the roles of these factors across 

subgroups, ranging from low to high conditional average treatment effects, thereby providing 

a nuanced understanding of how ADI influences PLEs through various genetic and neural 

pathways. 

In both distress score and hallucinational score PLEs, children who showed higher levels 

of ADI’s adverse effects on PLEs exhibited distinct neuroanatomical and functional brain 

patterns, particularly in the limbic system. These patterns included reduced neuroanatomical 

features such as smaller white matter and surface area in the right temporal pole, reduced area 

and volume in the right parahippocampal region, decreased left white surface area, smaller 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2023.04.30.23289335doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

area in the right isthmus cingulate, reduced intracranial volume, smaller caudate nucleus 

volume, and lower total grey matter volume. Functionally, greater activation during MID 

tasks was observed in several areas including the posterior cingulate, right ventral 

diencephalon, right insula, left thalamus proper, and left precentral gyrus. Additionally, 

children more adversely affected by ADI, as indicated by higher conditional average 

treatment effects on PLEs, exhibited larger right fusiform volume, decreased activation in the 

left superior temporal gyrus, younger parental age, and lower BMI (Fig. 3). 

The analysis also revealed that higher conditional average treatment effects on distress 

score PLEs was associated with higher cognitive performance GPS and a lower likelihood of 

being Hispanic. In contrast, for hallucinational score PLEs, greater importance was attributed 

to increased activation in the left supramarginal gyrus during MID tasks and more 

pronounced discounting of future rewards. These nuanced associations are depicted in Fig. 3. 

Lastly, we conducted a supplementary analysis to test whether the effects of delay 

discounting between the causal impact of ADI on PLEs are captured with a conventional 

linear mediation model71. This linear IV mediation model showed no significant mediation 

effects of delay discounting (β= -6.929E-6 [95% CI, -0.012~0.026] ~ 4.582E-6 [95% CI, -

0.009~0.03]) (Supplementary Table 5).  
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Discussion 

In this study, we examined how neighborhood socioeconomic deprivation impacts 

children’s intertemporal choice behavior (delay discounting) and psychotic risk, considering 

the multifaceted effects of neighborhood adversity and its underlying biological, 

environmental, and behavioral drivers. Our findings can be distilled into two main points. 

Firstly, there was a notable link of living in socioeconomically disadvantaged neighborhoods 

to the propensity for children to prefer immediate rewards over larger, delayed ones—a 

behavior known as steep delay discounting (indicative of lower impulse control) and to a 

higher rate of PLEs. This association was significant even after adjusting for a range of 

confounding factors, both observed (e.g., familial socioeconomic status) and unobserved. 

Secondly, the influence of disadvantaged neighborhood environments on PLEs was found to 

be heterogeneous. This individual variability is influenced not just by delay discounting, but 

also by a confluence of factors including genetic predisposition for cognitive intelligence, and 

brain morphometry and functioning (task activation). Causal machine learning models 

utilized in our study have identified a spectrum of conditions that either exacerbate 

vulnerability or contribute to resilience, accounting for the diverse effects of neighborhood 

environments on children's risk of developing psychosis. 

Our findings hold implications for social science. Using causal machine learning models, 

such as IV Forest and Double ML, we provide consistent and clear results that residential 

adversity during childhood leads to steeper discounting of future rewards. This finding 

challenges the longstanding economic theory that an individual's rate of discounting future 

rewards (time preference) is an exogenous parameter of intertemporal choice, established a 
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priori, and impervious to external influences32. Since the introduction of the discounted utility 

model72 by Paul Samuelson in 1937, there has been limited exploration into whether 

environmental factors affect the development of an individual's parameter32,73. Although 

recent studies has hinted at the impact of socioeconomic status33,74-77 and cultural norms73,78 

on one’s intertemporal decision making, however, the causal mechanisms have remained 

elusive. Our study builds on these inquiries, offering concrete evidence that the development 

of an individual's time preference is subject to environmental influences, and thereby opening 

new avenues for understanding the dynamics of intertemporal decision-making. 

We address this knowledge gap by identifying the potential causal influence of 

neighborhood environment on intertemporal choice, leveraging longitudinal observations of 

preadolescent children aged 9-12 years, a critical period for neurocognitive development. 

Given that an individual's intertemporal valuation of rewards contributes to economic and 

health disparities between individuals30,34,52, early socioeconomic deprivation may result in a 

behavioral poverty trap33. In such scenarios, individuals raised in impoverished environments 

are prone to shortsighted behavior, exacerbating the challenge of escaping poverty. A 

plausible mechanism for this phenomenon is the effects of glucocorticoid on brain’s reward 

system. Prior studies indicate that adverse social environments induce chronic stress to 

children, elevating glucocorticoid hormones like cortisol79-83. In particular, neighborhood 

socioeconomic deprivation has a more pronounced association with cortisol increases in 

children compared to any other social environmental factors84. Long-term chronic stress from 

growing up in disadvantaged neighborhoods could result in epigenetic modifications 

affecting the mesocorticolimbic dopaminergic system, thereby altering the reward system82,83. 

This alteration may lead to a heightened preference for immediate rewards and impulsive 
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behaviors, such as unhealthy eating and substance abuse81-83,85-89, further entrenching the 

cycle of socioeconomic disadvantage. 

Our second findings extend this understanding by linking the heterogeneous effects of 

ADI on children’s PLEs with the intricate relationship between childhood social adversity 

and the reward system. Our findings suggest that these differential effects of neighborhood 

socioeconomic adversity are modulated by genetic predispositions and neurodevelopmental 

traits associated with delay discounting. Children who experience residential deprivation and 

are at a higher psychotic risk demonstrate several distinct characteristics, including lower 

BMI, younger parental age, and altered brain structures and functions associated with delay 

discounting. Notably, these children showed reduced volume or white matter in specific brain 

regions (right temporal pole, right parahippocampal gyrus, right caudate nucleus, right 

isthmus cingulate), along with a smaller intracranial and total grey matter volume. 

Functionally, these children showed greater activation during MID tasks in regions including 

the right posterior cingulate, right ventral diencephalon, right insula, left precentral gyrus, left 

thalamus proper, and left superior temporal. This is particularly pronounced in children with a 

greater propensity for hallucinatory symptoms, who also show increased activity in the left 

supramarginal gyrus.  

It appears that variations in structural and functional aspects of the limbic system (the 

posterior cingulate, ventral diencephalon, insula, temporal pole, parahippocampal gyrus, and 

isthmus cingulate) play a crucial role in how socioeconomic hardship affects PLEs. This 

individual variability may be linked to individual differences in the glucocorticoid and reward 

system. The interaction between our genes and neurons, in response to chronic stress from 

poor socioeconomic conditions, may determine the differing impacts of such adversity on 
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PLEs. 

Although direct testing of this association within the ABCD Study samples was not 

feasible due to lack of relevant data, extensive animal and human corroborate our hypotheses. 

These studies suggest that maladaptive valuation of intertemporal rewards, namely the 

excessive discounting of future rewards, is linked to dysfunction of the prefrontal-limbic 

system, associated with psychopathologies such as psychosis in adolescents and adults34,35,38-

41,90. Animal models have demonstrated that adverse social environments trigger chronic 

dysregulation of glucocorticoid signaling in the hypothalamic-pituitary-adrenal axis and the 

dopaminergic mesocortical circuit83, through epigenetic control82,83. This dysregulation 

disrupts the adolescent reward circuit. In humans, childhood exposure to social adversity 

leads to changes in the hypothalamic-pituitary-adrenal axis and contributes to psychosis 

through abnormal neurodevelopment of the limbic regions, the temporal pole, cingulate 

cortices, parahippocampal gyrus, and caudate nucleus91-94. Young adults with a history of 

childhood social deprivation often show impaired reward processing, particularly in the 

cingulate and mesostriatal dopaminergic system25,94-96.  

The age of our study’s participants, 9-12 years old, is a critical period for development of 

the prefrontal-limbic system94,97,98. Children with psychotic disorders often exhibit greater 

reductions in grey matter and lower synaptic density compared to their healthy peers99,100. 

These neurodevelopmental alterations are associated with increased neuronal excitation, 

reduced inhibitory neural activities, and the resultant impulsive behaviors101. In line with our 

findings, previous research has shown a correlation between higher psychotic risk and 

neuroanatomical alterations in the right temporal fusiform, right temporal pole, and right 

parahippocampal gyrus93, as well as  greater neural activations in limbic regions such as the 
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insula and cingulate cortices during reward outcomes in MID task102. Overall, our findings on 

the heterogeneous effects of neighborhood deprivation contribute to the growing body of 

literature showing the role of glucocorticoid and reward systems in modulating the adverse 

effects of environmental deprivation on psychosis92,94,96,103,104. 

In our study, we discovered that children, when exposed to deprived neighborhoods and 

already facing the challenges of residential disadvantage, were more likely to experience 

PLEs. Surprisingly, these children also showed a higher GPS for cognitive performance. At 

first glance, this finding seems to contradict prior research, which has consistently identified 

a negative relationship between PLEs and cognitive performance28,105. 

To understand this complex relationship, we turned to the bioecological model and the 

Scarr-Rowe hypothesis on gene-environment interactions106-108. This theory proposes that the 

impact of genetic factors is lessened in unfavorable environments.  An easy way to visualize 

this is by comparing it to plant growth: in poor soil, a plant can't get the nutrients it needs, 

which limits its growth despite its genetic potential to grow tall109. But, when these children 

face residential disadvantages, this protective gene-psychosis link weakens. Their genetic 

resilience decreases, making them more vulnerable to the negative impacts of such 

disadvantages on PLEs. Essentially, those with higher cognitive ability GPS lose more of 

their potential genetic protection, making them more susceptible to the adverse effects of 

their environment on PLEs. 

Consistent with our findings, recent large-scale studies have demonstrated that the 

impact of genetics on brain structure, cognitive functions, and mental health disorders 

becomes less significant in harmful environments (e.g., abuse)110,111. Conversely, in more 
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supportive and enriched settings, like those associated with higher socioeconomic status, 

genetic influences are more noticeable (e.g., high socioeconomic status)107,112,113. Together 

with these findings, our study contributes to a deeper understanding of how genetic and 

environmental factors interact to influence the development of psychopathology in children. 

In this study, we utilized innovative causal machine learning techniques to test the 

negative impacts of neighborhood deprivation on childhood psychopathology. Specifically, 

we employed the IV Forest method that allows us to discern how residential deprivation 

influences children’s risk of psychosis in a manner dependent on a variety of genetic risk 

factors (e.g., GPS of cognitive performance, educational attainment, and IQ105,114,115) and 

environmental risk factors (e.g., family income3,116), as identified in existing literature. Our 

findings were adjusted to account for potential biases from both observed and unobserved 

variables.  

The machine learning algorithm we used was adept at modelling the complex interplay 

gene-environment interactions. Among the three IV Forest models we tested (i.e., Delay 

Discounting, Gene-Brain, Integrated), only the Integrated model—which included delay 

discounting, sociodemographic characteristics, and genetic and neural correlates of delay 

discounting—identified the significant heterogeneous effects of ADI on children’s PLEs. This 

suggests that the intricate interactions among environmental, genetic, neural factors, and 

delay discounting play a crucial role in how socioeconomic adversity impacts psychotic risk.  

In contrast, traditional linear mediation analysis, which relies on predefined interaction 

terms in a deductive statistical framework, failed to identify any significant mediation effect 

of delay discounting between neighborhood deprivation and PLEs. This underscores the 
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effectiveness of our advanced causal machine learning approach over conventional methods 

in detecting the subtle effects of various interacting factors on childhood psychopathology.  

The IV Forest model, unlike traditional methods, allows for data-driven feature selection 

and stratification of heterogeneous treatment effects57,58. It inductively identifies nonlinear 

and complex patterns of these effects, which are not predetermined by researchers, offering a 

more nuanced understanding of the data. Prior studies relying on the deductive approach 

often suffer from low statistical power and bias59,117, inadequately reflecting the complexity 

of gene-environment interactions55,56. Consequently, we believe that causal modeling 

approaches that assess heterogeneous treatment effects hold significant potential as powerful 

tools for advancing precision science in psychology and medicine. These approaches provide 

a more dynamic and accurate framework for understanding the multifaceted influences on 

psychopathology, demonstrating significant promise for future research in these fields. 

Several limitations of this study warrant consideration. Firstly, interpretations of our 

findings as true causality should be approached with caution. Our research is based on the 

ABCD Study, a non-randomized, observational study, making it prudent to be cautious in 

interpreting these findings as definitively causal. Secondly, since the majority of participants 

identified their race/ethnicity as white (63.76%, similar to the US population), the 

generalizability of our findings to other minor race/ethnicity might remain to be tested. 

Nonetheless, recent research suggests that temporal discounting measures are consistent 

across diverse populations worldwide (61 countries, n=13,629)78, which may mitigate 

concerns regarding the representativeness of our findings. Thirdly, the short follow-up 

periods in our study (1-year and 2-year follow-up) may not adequately capture the long-term 

neurodevelopmental processes underlying intertemporal valuation and related 
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psychopathology. As the ABCD Study continues to collect more longitudinal observations, 

longer follow-up periods in future studies could yield deeper insights. Fourthly, despite 

efforts to ensure representativeness by recruiting from diverse school systems across 21 

research sites in the United States, our sample does not fully mirror the entire US 

population118. To address this, we provide a supplementary table (Supplementary Table 1) 

comparing the demographic characteristics of our final sample with the general United States 

population enhancing the relevance and generalizability of our results. Lastly, future research 

should examine the heterogeneous effects of additional environmental risk factors, such as 

parenting behavior28 and early life stress111, to provide a more comprehensive understanding 

of the environmental influences on psychopathology.  

This study highlights the differential effects of neighborhood disadvantage on 

intertemporal economic decisions and psychotic risk during early childhood. It underscores 

the importance of identifying diverse treatment effects by integrating genetic and 

environmental factors to guide personalized healthcare approaches. Furthermore, we propose 

that enhancing the childhood environment could contribute to the reduction of economic and 

health inequality gaps. Economic policies promoting positive intertemporal choice (e.g., 

increased savings, healthy diet) have predominantly focused on paternalistic welfare policies 

in adulthood. These policies often assume that an individual’s tendency to discount future 

rewards is fixed (“exogenous”)32. However, our findings suggest that policies or interventions 

aimed at enhancing the socioeconomic environment during childhood may foster improved 

intertemporal choice behavior, thereby reducing economic33 and health inequality23,119. By 

addressing the root of the problem, this indirect approach may assist individuals in 

developing the capacity to make more informed choices, ultimately promoting better 
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outcomes. 

The insights gleaned from our novel analytical methods revive longstanding 

philosophical inquiries: do humans possess reason or free will independent of their 

environment? If our ability to act responsibly is indeed shaped by external circumstances, this 

challenges the traditional rationale for penalizing criminal and morally objectionable 

behavior based on the assumption of free will. This inquiry underscores the need for further 

interdisciplinary research, bridging insights from psychology, sociology, neuroscience, ethics, 

and law, to explore the nuanced relationship between individual agency and environmental 

influences. Such research is crucial for understanding how external factors impact decision-

making and behavior, thereby informing more nuanced approaches to ethical and legal 

accountability. It invites a reevaluation of responsibility and justice, suggesting that effective 

interventions and policies must consider the complex interplay of individual predispositions 

and environmental conditions in shaping behavior. 
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Methods 

Study Participants 

The ABCD Study recruited participants from 21 research sites across the nation, utilizing 

a stratified, probability sampling method to capture the sociodemographic variation of the US 

population120. We used the baseline, first year, and second year follow-up datasets included in 

ABCD Release 4.0, downloaded on February 10, 2022.  

Of the initial 11,876 ABCD samples, we removed participants without genotype data, 

MRI data, NIH Toolbox Cognitive Battery, delay discounting, residential address, ADI, PLEs. 

As recommended by the ABCD team121, Johnson & Bickel’s two-part validity criterion122 

was used to exclude subjects with inconsistent responses (i.e., indifferent point for a given 

delay larger than that of an indifference point for a longer delay). Missing values of 

covariates were imputed using k-nearest neighbors. The final samples included 2,135 

multiethnic children.  

 

Data 

Neighborhood Disadvantage 

Neighborhood disadvantage was measured with Residential History Derived Scores 

based on the Census tracts of each respondent’s primary addresses by the ABCD team. 

Consistent with prior research3,42, we chose national percentile scores of the Area Deprivation 

Index, calculated from the 2011~2015 American Community Survey 5-year summary. It has 

17 sub-scores regarding various socioeconomic factors such as median household income, 
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income disparity, percentage of population aged more than 25 years or more with at least a 

high school diploma, and percentage of single-parent households with children aged less than 

18 years, etc. Higher values of the Area Deprivation Index and poverty and fewer years of 

residence indicate greater residential disadvantage. 

 

Delay Discounting 

Delay discounting was measured by the adjusting delay discounting task in the 1-year 

follow-up ABCD data121,123. Each child was asked to make choices between a small 

immediate hypothetical reward or a larger hypothetical $100 delayed reward at multiple 

future time points (6h, one day, one week, one month, three months, one year, and five years). 

By increasing or decreasing the smaller immediate reward depending on the child’s response, 

the task records the indifference point (i.e., the small immediate amount deemed to have the 

same subjective value as the $100 delayed reward) at each of the seven delay intervals. Test-

retest reliability of this delay discounting measure has been validated124,125. Studies show that 

preadolescent children are capable of comprehending the delay discounting task and show 

similar patterns of discounting as adults126.  

To avoid methodological problems regarding mathematical discounting models 

(hyperbolic vs. exponential) and positively skewed parameters of discounting functions125,127, 

we used the area under the curve, a model-free measure of delay discounting127. The area 

under the curve measure of delay discounting rates (henceforth discount rates) ranges from 0 

to 1, with lower values indicating steeper discounting and higher impulsivity.  
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Psychotic-Like Experiences 

First and second-year follow-up observations of psychotic-like experiences (PLEs) were 

measured using the Prodromal Questionnaire-Brief Child Version (PQ-BC; child-reported). 

PQ-BC has a 21-item scale validated for use with a non-clinical population of children aged 

9-10 years128,129. In line with the previous research3,114,128,129, we computed Total Score and 

Distress Score, each indicating the number of psychotic-like symptoms and levels of total 

distress. Total Score is the summary score of 21 questions ranging from 0 to 21, and Distress 

Score is the weighted sum of responses with the levels of distress, ranging from 0 to 126. 

Additionally, to test whether the heterogeneous treatment effects of neighborhood adversity 

differ among psychotic symptoms, Distress Score was divided into two separate scores: 

Delusional Score and Hallucinational Score2,130. A higher value indicates greater severity of 

PLEs. 

 

Genome-wide Polygenic Scores 

Children’s genetic predispositions were assessed with genome-wide polygenic scores 

(GPS). Summary statistics from genome-wide association studies were used to generate GPS 

of cognitive intelligence (cognitive performance131, education attainment131, IQ132), 

psychiatric disorders (major depressive disorder133, post-traumatic stress disorder134, 

attention-deficit/hyperactivity disorder135, obsessive-compulsive disorder136, anxiety137, 

depression138, bipolar disorder139, autism spectrum disorder140, schizophrenia141, cross 

disorder142), and health and behavioral traits (BMI143, neuroticism144, worrying144, risk 

tolerance145, automobile speeding propensity145, eating disorder146, drinking145, smoking145, 
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cannabis use147, general happiness148, snoring149, insomnia149, alcohol dependence150). PRS-

CSx, a high-dimensional Bayesian regression framework that places continuous shrinkage 

prior on single nucleotide polymorphisms effect sizes151, was applied to enhance cross-

population prediction. This method has consistently shown superior performance compared 

to other methods across a wide range of genetic architectures in simulation and real data 

analyses151. Hyperparameter optimization for the GPSs was conducted using a held-out 

validation set of 1,579 unrelated participants. Adjustments for population stratification were 

performed based on the first ten ancestrally informative principal components to account for 

potential confounding effects.  

 

Anatomical Brain Imaging: T1/T2, Freesurfer 6 

Baseline year T1-weighted (T1w) 3D structural MRI acquired in the ABCD study were 

processed following established protocols152,153: To maximize geometric accuracy and image 

intensity reproducibility, gradient nonlinearity distortion was corrected154. After correcting 

intensity nonuniformity using tissue segmentation and spatial smoothing, images were 

resampled to 1 mm isotropic voxels. We used Freesurfer v6.0 

(https://surfer.nmr.mgh.harvard.edu) for the following procedures: cortical surface followed 

by skull-stripping155, white matter segmentation, and mesh creation156, correction of 

topological defects, surface optimization157, and nonlinear registration to a spherical surface-

based atlas158,159. Using Desikan–Killiany atlas160, a standard atlas for Freesurfer and ABCD 

study, we extracted 399 brain ROI measures, including volumes, surface area, thickness, 

mean curvature, sulcal depth, and gyrification. 
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Functional MRI (fMRI): Monetary Incentive Delay (MID) task 

The MID task was used measure the neural activation during anticipation and receipt of 

monetary gains and losses. In each trial, participants were shown a graphical cue of the 5 

possible incentive types: large reward ($5), small reward ($0.20), large loss (-$5), small loss 

(-$0.20), or neutral ($0). The incentive cue is presented for 2,000 ms, followed by a jittered 

anticipatory delay (1,500–4,000 ms). Subsequently, a target to which participants respond to 

gain or avoid losing money was shown (150–500 ms), and feedback of their performance was 

provided (2,000 ms). A total of 40 reward, 40 loss, and 20 neutral trials were presented in 

pseudo-random order across the two task runs. Task parameters was dynamically manipulated 

for each subject to maintain 60% success rate152. We used baseline year observations of 

average beta weights of the MID task fMRI with Desikan-Killiany parcellations160.  

 

Covariates 

To adjust for the potential confounding effects, sociodemographic covariates were 

included. Consistent with existing research on psychiatric disorders in ABCD 

samples3,114,128,161, we controlled for the child’s sex, age, race/ethnicity, caregiver’s 

relationship to a child, BMI, parental education, marital status of the caregiver, household 

income, parent’s age, and family history of psychiatric disorders. The family history of 

psychiatric disorders, measured as the proportion of first-degree relatives who experienced 

psychosis, depression, mania, suicidality, previous hospitalization, or professional help for 

mental health issues3 was included as a covariate. Given that delay discounting and PLEs are 
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associated with an individual's neurocognitive capabilities162-164, NIH Toolbox total 

intelligence was used as a covariate. All covariates were from baseline year observations. 

 

Statistical Analyses 

Instrumental Variable Regression 

The IV method controls unobserved confounding bias by identifying an instrumental 

variable Z which causally affects the independent variable of interest X but has no direct 

effect on the dependent variable Y60. Our instrument variable for ADI was a variable 

indicating whether the state in each subject resides at baseline year has legislation prohibiting 

discrimination by the source of income (SOI laws) in the housing market. According to a 

report by the US Department of Housing and Urban Development, landlords accept housing 

vouchers 20.2%p~59.3%p higher in local areas with SOI laws165. Research shows significant 

reductions in neighborhood poverty rates in locations with SOI laws166, and those who 

receive the benefits of housing vouchers in childhood show lower hospitalization rates, less 

impulsive consumption167, and substantially better mental health168. Taken together, we 

hypothesized that living in states with SOI laws would lead to more moderate discounting of 

future rewards and fewer PLEs, only through a positive influence on the neighborhood 

socioeconomic conditions of the subjects.  

F-statistic above ten is considered a strong instruments169. The F-statistic for each model 

was F= 34.031 (p<0.0001), suggesting that our IV model is not likely to suffer from weak 

instrument bias. Also, testing endogeneity of ADI (i.e., whether ADI as a treatment variable 

or predictor correlates with the error term), we found that the model was significantly biased 
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by unobserved confounding (all Hausman test170 for differences, p≤0.0158). This justifies the 

need for the IV regression approach to control for the significant confounding effects and to 

test the causal relationship of neighborhood disadvantage with delay discounting and 

psychopathology. All continuous variables were standardized (z-scaled), and analyses were 

run using ivreg171 in R version 4.1.2. For all analyses, threshold for statistical significance 

was set at p<0.05, with multiple comparison correction based on false discovery rate.  

 

Causal Machine Learning for Treatment Effects 

IV Forest (grf R package version 2.2.1)57,58 is a novel causal machine learning approach 

extends from the conventional random forest framework172 with recursive partitioning, 

subsampling, and random splitting to identify the average treatment effects and its individual 

differences. We obtained augmented inverse propensity weighted estimates of average 

treatment effects, a doubly-robust estimator which can capture complex patterns of individual 

differences and do not rely on a priori model assumptions57 such as linearity. This is 

particularly advantageous when the relationship between environmental variables and 

neurocognitive development is likely nonlinear7,173,174. To measure the average outcome 

between treated versus untreated subjects, ADI was binarized (i.e., mean split).  

In line with prior studies67,68, we evaluated heterogeneous treatment effects by testing 

whether the average treatment effects are significantly different among subgroups defined by 

their relative resilience/vulnerability69. These subgroups were defined across a decile 

spectrum, with Q1 representing the most vulnerable and Q10 the most resilient. We 

considered a model to have significant heterogeneous treatment effects only if it satisfied all 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2023.04.30.23289335doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

three of the following criteria:  

(i) The monotonicity test evaluates the existence of at least one inequality in the 

average treatment effects across the deciles. This is achieved by whether to accept 

or reject the null hypothesis (���, which states that treatment effects are equal 

across all deciles. Essentially, the test determines whether there is a consistent, 

ordered relationship in the treatment effects from one decile to the next, 

indicating a monotonic trend. 

(ii) The alternative hypothesis test evaluates whether the average treatment effect in 

the highest decile exceeds the combined average treatment effects in the 

remaining deciles Q2 through Q10. 

(iii) The ANOVA test determines whether the average treatment effects are 

statistically different across deciles. In this context, the group mean in the 

ANOVA corresponds to the average treatment effect of each decile. 

To ensure that the IV Forest estimations are robust across different random seeds, we 

developed 100-seed ensemble IV Forest model. Specifically, we used the following 

procedures: 

1) For each iteration, randomly split the data in half (i.e., train vs test sets) to build a 

forest model with the first half and perform estimation with the other half. We 

repeated this process 100 times using different seeds in each iteration to build 100 

forest models. 

2) Combine the 100 forest models into one big IV Forest model and then rank the 

observations into deciles according to their estimated conditional average treatment 
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effects. 

3) Obtain augmented inverse propensity weighted average treatment effects for each 

decile and perform monotonicity, alternative hypothesis, and ANOVA tests. 
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Tables and Figures 

Table 1. Socioeconomic/demographic characteristics of the participants. Age is rounded to chronological month. Race/Ethnicity denote child’s self-

reported racial / ethnic identity. Household Income is assessed as the total combined family income for the past 12 months. Parental Education is measured 

as the highest grade or level of school completed or highest degree received. Family History of Psychiatric Disorders represents the proportion of first-

degree relatives who experienced mental illness.  

Demographic Characteristics  N Ratio (%) Mean (SD) 

Age  2,135  120.1541 (7.4658) 

Sex 
Male 1,517 53.86% 

 
Female 985 46.14% 

 

Marital Status of the first caregiver 

Married 1,636 76.63% 
 

Widowed 12 0.56% 
 

Divorced 193 9.04% 
 

Separated 62 2.9%  

Never Married 142 6.65%  

Living with Partner 90 4.22%  

Race/Ethnicity 

White 1,400 65.57%  

Black 136 6.37%  

Hispanic 373 17.47%  
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Asian 7 0.33%  

Other 219 10.26%  

Parent’s Identity 

Biological Mother 1,848 86.56%  

Biological Father 215 10.07%  

Adoptive Parent 39 1.83%  

Custodial Parent 12 0.56%  

Other 21 0.98%  

Household Income  2,135  $70,245 (1.937) 

Parental Education  2,135  17.2838 (2.3046) 

BMI  2,135  18.4298 (3.8572) 

Parental Age  2,135  40.8775 (6.3825) 

Family History of Psychiatric Disorders  2,135  0.0958 (0.1125) 
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Table 2. Causal effects of neighborhood socioeconomic adversity on intertemporal valuation and psychotic risk. Average treatment effects of ADI on 

delay discounting and PLEs in the IV Forest models are shown. All p-values were corrected for multiple comparison using false discovery rate. 

 
IV Forests: Average Treatment Effects 

 
Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR 

Delay Discounting 
(1-year follow-up) 

-1.730 0.748 -3.195 -0.265 0.048 

Distress Score PLEs 
(1-year follow-up) 

1.872 0.612 0.673 3.071 0.048 

Distress Score PLEs 
(2-year follow-up) 

1.504 0.592 0.345 2.664 0.039 

Delusional Score PLEs 
(1-year follow-up) 

5.970 2.911 0.264 11.676 0.048 

Delusional Score PLEs 
(2-year follow-up) 

4.022 1.987 0.127 7.917 0.048 

Hallucinational Score PLEs 
(1-year follow-up) 

3.761 1.902 0.033 7.489 0.048 

Hallucinational Score PLEs 
(2-year follow-up) 

4.786 1.861 1.139 8.433 0.039 
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Table 3. Evaluation of individual differences in the causal effects of neighborhood socioeconomic adversity on children’s psychotic risk. We 

employed three distinct tests to evaluate the heterogeneous treatment effects of ADI on PLEs: monotonicity test, alternative hypothesis test, and ANOVA 

test. These tests were applied to three developed IV Forest models: Delay Discounting model, Gene-Brain model, and Integrated model. All p-values were 

corrected for multiple comparison using false discovery rate. A star (*) denotes overall significance, indicating that a model passed all three heterogeneity 

tests. 

 
Monotonicity Alternative Hypothesis ANOVA 

Overall 
Significance 

p-FDR Estimate Std. Error t-value p-FDR F-value p-FDR 

Delay 
Discounting 

Model 

Distress Score PLEs 
(1-year follow-up) 0.037 -22.261 40.164 -0.554 0.799 1.114 0.48  

Distress Score PLEs 
(2-year follow-up) 0.094 -54.769 142.528 -0.384 0.799 1.081 0.48  

Delusional Score PLEs 
(1-year follow-up) 0.019 55.047 188.400 0.292 0.799 0.965 0.495  

Delusional Score PLEs 
(2-year follow-up) 0.303 23.289 91.550 0.254 0.799 0.852 0.568  

Hallucinational Score PLEs 
(1-year follow-up) 0.362 -86.756 241.597 -0.359 0.799 0.995 0.495  

Hallucinational Score PLEs 
(2-year follow-up) 0.098 -119.595 341.060 -0.351 0.799 1.010 0.495  
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Gene-Brain 
Model 

Distress Score PLEs 
(1-year follow-up) 0.058 -9.522 4.244 -2.244 0.05625 2.289 0.027  

Distress Score PLEs 
(2-year follow-up) 0.099 -9.202 7.016 -1.312 0.285 1.608 0.161  

Delusional Score PLEs 
(1-year follow-up) 0.086 -7.463 3.262 -2.288 0.05625 2.631 0.01  

Delusional Score PLEs 
(2-year follow-up) 0.043 -9.512 4.886 -1.947 0.0936 3.493 0.001  

Hallucinational Score PLEs 
(1-year follow-up) 0.022 -8.917 4.123 -2.163 0.062 1.878 0.083  

Hallucinational Score PLEs 
(2-year follow-up) 0.146 -9.382 5.681 -1.651 0.162 2.695 0.009  

Integrated 
Model 

Distress Score PLEs 
(1-year follow-up) 0.011 -8.922 2.922 -3.053 0.0252 8.388 <0.001 * 

Distress Score PLEs 
(2-year follow-up) 0.074 -9.343 3.469 -2.693 0.0252 7.361 <0.001  

Delusional Score PLEs 
(1-year follow-up) 0.172 -6.946 2.460 -2.824 0.0252 6.816 <0.001  

Delusional Score PLEs 
(2-year follow-up) 0.136 -6.854 2.617 -2.619 0.027 7.525 <0.001  

Hallucinational Score PLEs 
(1-year follow-up) 0.038 -8.246 2.834 -2.910 0.0252 7.182 <0.001 * 

Hallucinational Score PLEs 
(2-year follow-up) 0.089 -8.355 3.070 -2.721 0.0252 9.484 <0.001  
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Fig. 1. Study flow diagram. This figure illustrates the participant selection and data processing in our study. We initially included 11,876 participants aged 

9-12 years from the Adolescent Brain Cognitive Development (ABCD) Study, utilizing the release 4.0 dataset which encompasses baseline, 1-year follow-

up, and 2-year follow-up observations. Sociodemographic features underwent kNN imputation. Subsequently, we excluded observations not meeting the 

ABCD Study’s MRI quality control standards and those failing the Johnson-Bickel validation criterion for delay discounting. This resulted in a final sample 

size of N=2,351. Using this cohort, our study first investigated the average treatment effects of neighborhood socioeconomic deprivation on children’s 

intertemporal valuation of rewards and psychotic risks. We then explored the individual differences of these effects in relation to children’s delay 

discounting behaviors and associated genetic and neural factors. 
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Fig. 2. Delineation of heterogeneous treatment effects by vulnerable/resilient subgroups. 

Heterogeneity in the average treatment effects of the ADI on PLEs are shown as a bar plot, 

specifically focusing on 1-year follow-up distress score PLEs (A) and hallucinational score 

PLEs (B). These effects are plotted across ten deciles, which are organized based on the 

relative vulnerability or resilience of the participants, with Q1 denoting the most vulnerable 

and Q10 indicating the most resilient. Point estimates of the conditional average treatment 

effect of each decile were derived via a doubly-robust estimation method within the IV Forest 

algorithm. 95% confidence intervals are depicted using error bars. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2023.04.30.23289335doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 6, 2024. ; https://doi.org/10.1101/2023.04.30.23289335doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Fig. 3. Beeswarm summary plots of Shapley additive explanation (SHAP) values for 

Integrated model. Contributions of the top 20 variables of highest importance in the 

Integrated model for the heterogeneous treatment effects of neighborhood socioeconomic 

deprivation on 1-year follow-up distress score PLEs (A) and 1-year follow-up hallucinational 

PLEs (B) are shown. Variables are ordered by their relative importance in the model. Negative 

SHAP values indicate greater vulnerability (lower resilience) to the effects of ADI on PLEs; 

Positive values indicate lower vulnerability (greater resilience). Contrasts of average beta 

activations of the given brain ROIs during MID tasks are shown in parenthesis. GPS: genome-

wide polygenic scores; Ventral dc: ventral diencephalon. 
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Supplementary Information 

Supplementary Fig. 1. Assessment of the overlap assumption. Histograms of propensity 

scores for the three distinct IV Forest models: Delay Discounting model (A), Gene-Brain 

model (B), and Integrated model (C). The IV Forest algorithm relies on the overlap assumption, 

which posits that there should be sufficient overlap in the covariate distributions between the 

treated and control groups. In other words, this means that the treatment status of an individual 

should not be deterministically predictable based on their covariates. The validity of the 

overlap assumption is evaluated using the histograms of propensity scores1,2. The fact that none 

of the estimated propensity scores are extremely close to either one or zero indicates that the 

overlap assumption holds, suggesting an appropriate level of randomness in treatment 

assignment relative to the covariates. 
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Supplementary Table 1. Comparison of the sample and national demographics. Since Household income for subjects in the study is presented as 

deciles, it is transformed into a monetary value by considering the income limits for each decile. The data for the US national demographics is available at 

Data is available at https://www.census.gov/en.html.  

 
Mean or Ratio (%) 

Subjects in our study US National Demographics 

Family Income $70,245 $60,336 

Sex Male 53.86% 51.16% 

Ethnicity/Race 

White 65.57% 57.8% 

Black 6.37% 12.1% 

Hispanic 17.47% 18.7% 

Asian 0.33% 6.1% 

Other 10.26% 12.4% 
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Supplementary Table 2. Results of linear IV regression. Conventional linear IV regression was conducted to confirm the average treatment effects of 

neighborhood socioeconomic adversity on children’s delay discounting and psychotic risk. All p-values were corrected for multiple comparison using false 

discovery rate. 

 

Conventional Linear IV Regression 

Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR 

Delay Discounting -0.468 0.216 -0.891 -0.045 0.03 

PLEs 

Distress Score PLE 
(1-year follow-up) 

0.609 0.224 0.170 1.047 0.011 

Distress Score PLE 
(2-year follow-up) 

0.780 0.234 0.320 1.239 0.003 

Delusional Score PLEs 
(1-year follow-up) 0.486 0.215 0.066 0.906 0.028 

Delusional Score PLEs 
(2-year follow-up) 0.578 0.223 0.141 1.015 0.013 

Hallucinational Score PLEs 
(1-year follow-up) 0.604 0.221 0.172 1.036 0.011 

Hallucinational Score PLEs 
(2-year follow-up) 0.827 0.241 0.354 1.299 0.003 
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Double ML models 

To confirm robustness of the IV Forest results, we used double machine learning (Double ML). This up-to-date causal machine learning method can 

utilize any state-of-the-art machine learning models to obtain consistent, unbiased estimates of average treatment effects by partialling out the confounding 

effects of covariates3. It is particularly effective when the covariates are high-dimensional and have complex interactions.  

We used partial linear model instrumental variable model. In the partial linear model, we only assume linearity of the treatment variable ADI while the 

relationships between the outcome variable Y and covariates X and between instrument variable SOI and covariates X remain as an unknown function. 

Below shows the simple mathematical representation of the model: 

� �  ���� � 	
�� � , ��� � �
�� � �      
1� 

Here, Y denote for outcome variable (in our study, delay discounting and psychotic-like experiences), ADI the treatment variable, X multidimensional 

covariates, SOI the instrument variable. 	
 �, �
 � are unknown functions and , � are random errors. In the partial linear model (Equation 1), we assume that 

the treatment variable (i.e., ADI) have linear relationship with the outcome variable Y. There are no model assumptions specifying the relationship between 

multidimensional covariates X, outcome Y, and the instrumental variable SOI.  

We built an ensemble machine learning pipeline consisting of elastic net, random forest, XGBoost, and support vector machine with parameters tuned 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted F

ebruary 6, 2024. 
; 

https://doi.org/10.1101/2023.04.30.23289335
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

via 10-fold cross validation. In general, ensemble methods can improve model performance with lower error and higher accuracy by combining several 

base models4. For each analysis, all continuous variables were standardized (z-scaled) beforehand to obtain standardized estimates, and analyses were run 

using DoubleML packages5 in R version 4.1.2. 

 

Supplementary Table 3. Results of Double ML models. All p-values were corrected for multiple comparison using false discovery rate. 

 
Double ML Partial Linear IV Regression 

 
Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR 

Delay Discounting 
(1-year follow-up) 

-0.429 0.206 -0.834 -0.025 0.044 

Distress Score PLE 
(1-year follow-up) 

0.495 0.199 0.105 0.884 0.023 

Distress Score PLE 
(2-year follow-up) 

0.609 0.193 0.232 0.987 0.005 

Delusional Score PLEs 
(1-year follow-up) 0.393 0.201 -0.001 0.788 0.051 

Delusional Score PLEs 
(2-year follow-up) 0.417 0.196 0.032 0.801 0.044 

Hallucinational Score PLEs 
(1-year follow-up) 0.498 0.187 0.131 0.864 0.018 

Hallucinational Score PLEs 
(2-year follow-up) 0.683 0.188 0.316 1.051 0.002 
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Random Forest-based Feature Selection using Boruta algorithm 

We used Boruta6 to select GPS and brain ROIs of structural MRI and MID task fMRI significantly associated with delay discounting. Boruta first 

generates shadow attributes, which is irrelevant to the outcome, by shuffling all input features. It then confirms features that have significantly higher 

importance in predicting the outcome than the shadow attributes with 95% confidence level, Bonferroni-corrected two-tailed tests6. The selected features 

were included as covariates in the IV Forest models for assessing heterogeneous treatment effects of ADI.  

 

Supplementary Table 4. Genetic and neural correlates of delay discounting selected using random forest-based algorithm. Using the Boruta 

algorithm, we selected polygenic scores, neuroanatomical, and MID task functional activations related to delay discounting. meanImp, medianImp, minImp, 

and maxImp denote mean, median, maximal, and minimal importance, respectively. normHits indicate the number of hits normalized to number of 

importance source runs performed. Decision indicates the final decision of whether or not to select each feature. 

 Boruta Feature Selection 

 meanImp medianImp minImp maxImp normHits Decision 
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GPS 

Cognitive performance GPS 9.219 9.344 1.540 14.803 0.989 Confirmed 

Educational attainment GPS 3.941 3.862 0.426 7.543 0.868 Confirmed 

IQ GPS 
(2-year follow-up) 

6.798 6.806 1.975 9.841 0.995 Confirmed 

Structural MRI 

Left rostral anterior cingulate 
area 

6.414 6.475 -0.035 9.673 0.986 Confirmed 

Area of the left white surface 
area 

4.947 4.993 -0.651 8.320 0.966 Confirmed 

Right isthmus cingulate area 3.047 3.018 -1.526 6.367 0.748 Confirmed 

Right parahippocampal area 3.540 3.596 -0.736 7.584 0.848 Confirmed 

Right pars opercularis area 2.536 2.551 -2.733 5.521 0.597 Confirmed 

Right temporal pole area 3.646 3.642 -1.886 6.744 0.857 Confirmed 

Right fusiform volume 4.830 4.821 -0.220 8.109 0.960 Confirmed 

Right parahippocampal 
volume 

2.619 2.596 -1.650 6.457 0.644 Confirmed 

Right pars opercularis 
volume 

4.904 4.939 -2.184 8.229 0.969 Confirmed 

Right caudate volume 2.941 2.911 -1.467 6.777 0.703 Confirmed 

Total grey matter volume 5.226 5.237 -0.895 8.808 0.977 Confirmed 

Right Temporal pole white 
matter 

6.748 6.804 0.408 9.862 0.987 Confirmed 

MID task fMRI 

Left precentral (mean beta: 
any reward vs neutral) 

8.542 8.546 -0.835 12.054 0.997 Confirmed 

Left supramarginal (mean 
beta: any reward vs neutral) 

8.795 8.818 -0.407 13.136 0.997 Confirmed 

Right posterior cingulate (mean 10.082 10.104 -0.002 13.946 0.997 Confirmed 
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beta: any reward vs neutral) 

Left transverse temporal (mean 
beta: large reward vs neutral) 4.030 4.046 -1.268 7.737 0.901 Confirmed 

Left supramarginal (mean beta: 
small reward vs neutral) 7.297 7.319 0.857 11.480 0.997 Confirmed 

Left superior temporal (mean 
beta: large loss vs neutral) 2.781 2.782 -1.255 6.827 0.683 Confirmed 

Right insula (mean beta: small 
loss vs neutral) 3.419 3.437 -1.186 7.658 0.826 Confirmed 

Left thalamus proper (mean 
beta: any reward vs neutral) 7.081 7.078 -0.079 11.137 0.997 Confirmed 

Right ventral diencephalon 
(mean beta: small loss vs 

neutral) 
4.407 4.397 -1.777 9.689 0.939 Confirmed 

 

 

 

 

Mediation Analysis 

To test the role of delay discounting as a mediator between ADI and PLEs, we also used a linear mediation analysis. By utilizing mediation package7 in 

R, we conducted causal mediation analysis by decomposing local average treatment effect (LATE) into local average causal mediation effect (LACME) and 
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local average natural direct effect (LANDE). In order to control unobserved confounding bias, ivmediate function was utilized to incorporate the instrument 

variable in the causal mediation analysis. In this analysis, ADI and delay discounting were transformed as a binary variable (i.e., above or below mean).  

 

Supplementary Table 5. Results of conventional linear IV mediation. LACME represents the average hypothetical change in the outcome among 

compliers when the mediator is changed from the value under the treatment status to the control status while the treatment variable is fixed. LANDE 

represents the average hypothetical change in the outcome among compliers when the treatment variable is changed from the treatment status to the control 

status while the mediator is fixed. 

  Estimate 95% Lower CI 95% Upper CI 

Distress Score PLE 
(1-year follow-up) 

LACME (control) -6.929E-06 -0.012 0.026 
LACME (treated) 4.582E-06 -0.009 0.030 
LANDE (control) 0.965  0.154 2.007 
LANDE (treated) 0.965  0.153 2.006 

LATE 0.965  0.154 2.011 

Distress Score PLE 
(2-year follow-up) 

LACME (control) -2.23093E-06 -0.019 0.039 
LACME (treated) 2.79379E-06 -0.008 0.032 
LANDE (control) 1.291  0.534 2.389 
LANDE (treated) 1.291  0.534 2.398 

LATE 1.291  0.535 2.398 

Delusional Score PLE LACME (control) -6.244E-06 -0.014 0.021 
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(1-year follow-up) LACME (treated) 4.578E-06 -0.012 0.028 
LANDE (control) 0.677  -0.176 1.679 
LANDE (treated) 0.677  -0.178 1.681 

LATE 0.677  -0.179 1.687 

Delusional Score PLE 
(2-year follow-up) 

LACME (control) -6.040E-06 -0.011 0.024 
LACME (treated) 4.161E-06 -0.009 0.029 
LANDE (control) 0.947  0.212 1.939 
LANDE (treated) 0.947  0.211 1.942 

LATE 0.947  0.213 1.962 

Hallucinational Score PLE  
(1-year follow-up) 

LACME (control) -2.372E-06 -0.015 0.030 
LACME (treated) 2.347E-06 -0.007 0.027 
LANDE (control) 0.875 0.069 1.886 
LANDE (treated) 0.875 0.063 1.888 

LATE 0.875 0.066 1.889 

Hallucinational Score PLE  
(2-year follow-up) 

LACME (control) -2.631E-06 -0.023 0.043 
LACME (treated) 2.867E-06 -0.007 0.036 
LANDE (control) 1.482 0.723 2.630 
LANDE (treated) 1.482 0.726 2.609 

LATE 1.482 0.726 2.621 
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