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SIGNIFICANCE STATEMENT 

The Kidney Failure Risk Equation (KFRE) is a widely used prediction model for kidney failure 

risk assessment in patients with chronic kidney disease (CKD). However, its performance in 

Latin American populations remains unclear, particularly in primary care settings. This study 

externally validated the KFRE in Peruvian CKD patients, demonstrating high discrimination 

but revealing miscalibration that could lead to adverse patient outcomes resulting from over- 

or under-estimation of risk. These results underscore the need for model updating and 

further research to optimize the KFRE's use in clinical practice in Latin America, provide 

valuable insights for applying the KFRE in Latin American settings, and highlight the 

importance of continuous evaluation and refinement of prediction models in diverse 

populations. 

 

ABSTRACT 

Background 

 To externally validate the 4-variable Kidney Failure Risk Equation (KFRE) in the Peruvian 

population for predicting kidney failure at 2 and 5 years.  

Methods 

We included patients from 17 primary care centers from the Health's Social Security of Peru. 

Patients older than 18 years, diagnosed with chronic kidney disease (CKD) stage 3a-3b-4 and 

3b-4, between January 2013 and December 2017. Patients were followed until they 

developed kidney failure, died, were lost, or ended the study (December 31, 2019), 

whichever came first. Performance of the KFRE model was assessed based on discrimination 

and calibration measures considering the competing risk of death.  

Results 

We included 7519 patients in stages 3a-4 and 2,798 patients in stages 3b-4. KFRE 

discrimination at 2 and 5 years was high, with Time-Dependent Area Under the Curve (AUC-
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td) and C-index > 0.8 for all populations. Regarding calibration in-the-large, the Observed-to-

Expected (O/E) ratio and the calibration intercept indicated that KFRE underestimates the 

overall risk at two years and overestimates it at 5-years in all populations.  

Conclusions 

The 4-variable KFRE models have good discrimination but poor calibration in the Peruvian 

population. The model underestimates the risk of kidney failure in the short term and 

overestimates it in the long term.  

Keywords: Prognostic model, chronic kidney disease, chronic kidney replacement therapy, 

Kidney Failure Risk Equation 

 

INTRODUCTION 

Chronic kidney disease (CKD) is a major global public health challenge, imposing substantial 

economic burden on healthcare systems and displaying an ever-increasing prevalence [1,2]. 

With over 10% of the global population affected [2–4], the burden of CKD is particularly 

pronounced in low- and middle-income countries, where resource constraints and 

fragmented healthcare systems exacerbate the issue [2,5,6]. In Peru, a Latin American 

middle-income country, over 2.5 million adults suffer from varying degrees of CKD, with 

regional prevalence estimates ranging between 16% and 20% [7–10].  

 

Timely referral of CKD patients to nephrologists significantly reduces healthcare costs as the 

disease progresses towards kidney failure and death. Early referral is crucial in healthcare 

systems with limited health networks and scarce nephrology specialists [11]. CKD progression 

risk prediction models assist clinical decision-making by informing nephrologist referrals, 

providing kidney replacement therapy (KRT) counselling, and aiding in vascular access 

planning to prevent sudden, unplanned emergency admissions [12,13]. Accurate short-term 

predictions are particularly important for establishing individualised risk [14–16], while long-
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term predictions help identify patients requiring primary care for secondary prevention, 

treatment, and follow-up [14–16]. 

 

International guidelines recommend individualised risk prediction models to determine the 

optimal timing for nephrologist referral and KRT planning [17–20]. However, in Peru, referral 

recommendations rely mainly on eGFR, albuminuria, or ACR thresholds, either in isolation or 

combination [21]. These non-individualised criteria may lead to unnecessary referrals of low-

risk patients and missed referrals of high-risk patients [17,22].  

 

The Kidney Failure Risk Equation (KFRE) offers an individualised risk prediction for CKD 

patients' progression to kidney failure [23] and is recommended by some international 

guidelines for CKD management [14,18,19,24]. The KFRE has 8-variable and 4-variable 

versions, with the latter being an appealing option for the Peruvian health system, requiring 

only a few easily accessible variables. However, predictive errors can vary significantly 

between populations, emphasising the need for validating their predictive performance in 

the target population [25–27]. The absence of KFRE external validation studies in Latin 

America, including Peru, has delayed its adoption in local clinical practice. 

 

This study aims to externally validate the predictive performance of the 4-variable KFRE 

model in predicting 2 and 5-year risk of kidney failure within a large and heterogeneous 

cohort of patients presenting with CKD stages 3a, 3b, and 4 in primary care settings in Peru. 

 

METHODS 

Design, Study Population, and Data Source 

We conducted a retrospective cohort study following the Transparent Reporting of a 

multivariable prediction model for Individual Prognosis Or Diagnosis guidelines (see TRIPOD 
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checklist in Supplementary Material) [27,28] to validate the Kidney Failure Risk Equation 

(KFRE) model for predicting the risk of kidney failure at 2- and 5-year horizons in patients 

with chronic kidney disease (CKD).  

 

As part of the EsSalud National Kidney Health Plan, the Rebagliati Healthcare Network 

established an electronic registry of CKD patients treated at its affiliated health facilities from 

primary care until tertiary level. We obtained demographic and clinical data from the 

electronic medical records of the EsSalud Hospital Management System and the Chronic 

Kidney Disease Management Unit (UMERC) of the Kidney Health Surveillance Subsystem 

(VISARE) computer application [29]. 

 

The study population included patients aged 18 years or older with CKD between January 1, 

2013, and December 31, 2017, treated in 17 primary care healthcare centers in the Rebagliati 

Healthcare Network in Lima, Peru. Lima is the capital of Peru and concentrates most insured 

patients at national level. We included patients with an estimated glomerular filtration rate 

(eGFR) between 15 and 60 ml/min/1.73m², corresponding to categories 3a, 3b, and 4 of the 

Kidney Disease Improving Global Outcomes (KDIGO) classification [20], and those who had a 

recorded quantifiable albumin-to-creatinine ratio (ACR) measurement taken simultaneously 

with eGFR. The date of ACR measurement was the start point for beginning the follow-up 

and for predicting the risk of kidney failure using KFRE. 

 

We validated the KFRE models in two populations of interest: (i) a broad population of 

patients with CKD stages 3a, 3b, and 4 (3a-4), such as originally was validated, and (ii) a more 

specific population with CKD in more advanced stages (3b-4).  

 

Patient and Public Involvement 
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There was no direct patient and public involvement in the design, conduct, or reporting of 

this study. 

 

Sample size 

We did not conduct a formal sample size calculation, as we had access to all data collected 

routinely. Nevertheless, we were cognisant of the unreliability of performance assessment 

with insufficient sample sizes, particularly in the context of a low number of events. 

Consequently, we restricted our analysis to clinically relevant subpopulations, ensuring that 

each group contained a minimum of 100 events and non-events [27]. Given these 

constraints, we deemed it unreliable to analyse groups 3a, 3b, and 4 separately. Instead, we 

combined them into subgroups 3a-3b-4 and 3b-4 for the analysis. 

 

Validation Model 

Tangri et al. developed the KFRE model in Canada in 2011 to predict kidney failure in 

populations with CKD stages 3 to 5 [23]. The model was later recalibrated based on an 

extensive meta-analysis that included 31 cohorts from more than 30 countries and over 

72,000 participants [30]. The 4-variable KFRE includes age, patient sex, eGFR, and ACR 

collected on the same date for each patient and is an attractive alternative since it requires 

few variables that are easily accessible in the Peruvian health system. This version has two 

prediction horizons: short-term at 2 years and long-term at 5 years (equations in Table S1). 

 

Predictors 

The four predictors of the 4-variable KFRE are age (years), sex (male/female), eGFR 

(ml/min/1.73m2), and ACR (mg/g) (see Table S2). eGFR was calculated using the 2009 CKD 

Epidemiology Collaboration (CKD-EPI) formula [20,31], considering patient ethnicity, which 

clinicians ascertained through direct observation and recorded solely as black/non-black for 
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eGFR calculation purposes (see Supplementary Methods – section 1.3 for details). The 

health establishments in the Rebagliati Network have standardized care protocols for CKD 

patients, including laboratory procedures, as part of the Peruvian National Kidney Health 

Plan. Serum creatinine levels for eGFR estimation were determined from a blood sample. For 

ACR calculation, urine creatinine and albumin levels were determined by quantitative and 

automated laboratory tests from a random urine sample. Qualified personnel verified the 

preanalytical conditions in each hospital. The urine samples were collected in 10-15 ml 

bottles and transported between 4 and 8 ºC to the respective laboratory for daily processing. 

The entire analytical process followed good laboratory and analytical quality control 

practices. We obtained all data on these variables from UMERC, a computer app designed 

specifically for this purpose. 

 

Outcome variable 

The outcome variable was kidney failure, defined as KRT-treated end-stage renal disease 

(ESRD), which in Peru comprises the initiation of hemodialysis or peritoneal dialysis indicated 

by a nephrologist and based on clinical parameters of uremia and eGFR < 15ml/min/1.73m
2
. 

 

To estimate the observed risk of kidney failure, we considered the competing event of death 

without KRT. The data on the date of admission to KRT were obtained from the dialysis 

database and were verified in the digital clinical history. The date of death until December 

31, 2019, was obtained from the National Registry of Identification and Civil Status (RENIEC) 

of Peru. 

 

Follow-up time 

We followed patients until they developed kidney failure, death, or censorship, whichever 

occurred first. We censored observations until the patient was lost to follow-up or the end of 
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the study (December 31, 2019). We chose to end the study on this date to avoid having data 

from the pandemic, during which the health system collapsed, kidney care services were 

affected, and the reliability of the information was altered. 

 

Statistical analysis 

Initial data analysis 

We performed an initial data analysis to identify implausible extreme values, missing data, 

and inconsistencies. Plausible extreme data was retained without any transformation in the 

main analysis. Numerical and categorical variables were described using median 

(interquartile ranges) and absolute frequencies (percentages), respectively. 

 

Estimate of observed risk 

We estimated non-parametric cumulative incidence function (CFI) curves and their 95% 

confidence intervals (95% CI) using the Aalen-Johansen estimator [32] for kidney failure and 

considering the competing risk of death without kidney failure. 

 

Predictive Performance of KFRE 

We estimated the individual predicted risks of developing kidney failure using the 4-variable 

KFRE for 2- and 5-year horizons (prediction formulas in Table S1). We assessed the 

performance of the models based on discrimination and calibration measures [27,28] 

according to TRIPOD guidelines. Additionally, we considered the risk of death without kidney 

failure and based our analysis workflow on two recently published methodological guides on 

external validation of prediction models in the presence of competing risks [33,34]. 

 

Discrimination is a relative measure of how well the model distinguishes between patients 

with or without the condition of interest [34,35]. To assess discrimination, we estimated the 
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truncated concordance index (C-index) at 2- and 5-years for each model and the areas under 

the ROC time-dependent curves of cumulative sensitivity and dynamic specificity (C/D AUC-

td) [36]. A C-index or C/D AUC-td of 1 indicates perfect discrimination, 0.5 indicates no 

discrimination, and values ≥ 0.8 are generally considered appropriate for prognostic models 

[35]. We accounted for the competing risk for death without kidney failure by censoring 

patients who die at infinite, indicating that they may not develop kidney failure in the future 

[33,34].  

 

Calibration is a measure that indicates how well the absolute predicted risks agree with the 

observed risks. These observed risks were estimated using CFI to takte into account the 

competing risk of death without kidney failure [33,34]. We assessed calibration-in-the-large 

using the observed to expected results (O/E), a measure of mean calibration, and the 

calibration intercept, a measure of weak calibration. We also assessed weak calibration 

through calibration slope. Moderate calibration was assessed inspecting calibration plots.  

 

We estimated the ratio of observed to expected results (O/E). An O/E indicates perfect global 

calibration, an O/E > 1 indicates an underestimation of the average risk, and an O/E < 1 

reveals an overestimated of the average risk. The calibration intercept is another measure 

that evaluates the average over or underestimation that we estimate in this study. An 

intercept of 0 indicates perfect agreement between the predicted and observed risk average. 

An intercept significantly < 0 indicates an overestimation, and an intercept > 0 indicates an 

underestimation of the risk average. We also estimated the calibration slope. A slope of 1 

reflects ideal agreement. A slope less than 1 indicates that the predicted risks are too 

extreme (very high and low), while a slope greater than 1 indicates that the predictions do 

not show enough variation. To formally test statistical evidence of miscalibration, we first 
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performed a Wald test of the joint contribution of the intercept and slope, as previously 

described for calibration models in prediction models [33,34].   

Calibration plots allow calibration to be assessed in detail by comparing observed individual 

risks with those predicted. A curve exactly following the 45º straight line would indicate a 

perfect situation named strong calibration that is ideal and utopic. A more realistic goal is to 

assess if the curve is close to the diagonal indicating moderate calibration. We plotted 

calibration curves estimated by smoothed local linear regression (loess) based on 

pseudovalues obtained from cumulative incidence estimates that account for the competing 

risk of death [33,34,37].  

 

Sensitivity analysis 

We perform two sensitivity analyses: 

1) The same analysis approach after eliminating the extreme values of ACR by winzoring at 

the 1st and 99th percentiles of the distribution of this variable. 

2) A predictive performance analysis ignoring competitive risk. This analysis relied extensively 

on the methodology described by McLernon DJ et al [37]. 

 

General approach 

The data preparation and all the analyzes were carried out with the statistical program R 

version 4.2.1 for Windows 11 x 64 bits. As there were no missing data in critical variables, all 

analysis were case-complete. Except for the C-index, all the 95% confidence interval (CI) were 

Wald-type [33,34]. The 95% CI for C-index was obtained using the percentile bootstrap 

method using 1000 bootstrapped samples [33,34]. 

 

RESULTS 

Study population 
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Of the 22,745 patients screened from 2013 to 2017 at 17 Lima hospitals, 7,519 with CKD 

stages 3a-4 and 2,798 with CKD stages 3b-4 were eligible, having complete ACR data (Figure 

1). All eligible patients had complete data on age, sex, and outcome. The median observation 

time was 4.9 years in the CKD 3a-4 group.  

[Figure 1] 

 

Table 1 outlines the baseline characteristics of the study population, while Supplementary 

Results present the characteristics of the study population according to kidney failure at 2 

and 5 years for CKD 3a-4 (Table S3) and CKD 3b-4 (Table S4) subgroups, respectively. Kidney 

failure case numbers at 2 years were low for subpopulations with stages 3a (n=26), 3b 

(n=36), and 4 (n=52) (Table S5), and similarly low for 5-year case numbers in stages 3a 

(n=57), 3b (n=81), and 4 (n=101) (Table S5). Consequently, evaluating predictive performance 

in these specific subgroups was deemed unreliable. The distribution of patients in stages 3a-4 

and 3b-4 across the EsSalud Rebagliati Network's 17 health facilities is detailed in 

supplementary material Tables S6 and S7.  

[Table 1] 

 

Observed and predicted risk of kidney failure 

Figure 2 displays the observed risk of kidney failure and death without kidney failure for both 

study populations. The 2- and 5-year observed risks of kidney failure in patients with CKD 

stages 3a-4 were 1.52% and 3.37%, respectively (Table S7). In patients with CKD 3b-4, the 2- 

and 5-year observed risks of kidney failure were 3.15% and 6.87%, respectively (Table S8). 

The distribution of the 2- and 5-year predicted risk by KFRE are shown in Figure S1.  

[Figure 2] 

 

KFRE predictive performance 
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KFRE demonstrated good discriminatory ability across all time horizons and study 

populations, as evidenced by C-index and C/D AUC-td values exceeding 0.8 (Table 2). 

However, miscalibration tests indicate low compatibility with good calibration of KFRE at all-

time horizons and groups (all p-values ≤0.001) (Table 2). 

[Table 2] 

Regarding calibration in the large, for patients with CKD stages 3a-4, the 2-year average 

observed risk of kidney failure was 1.52%, while KFRE predicted a lower average risk at 

0.96%, yielding an O/E ratio of 1.57, indicating an overall 2-year risk underestimation. A 

similar pattern was observed for CKD stages 3b-4 patients (O/E ratio: 1.33). In contrast, the 

imprecision of calibration intercepts hindered the evaluation of KFRE's 2-year calibration in-

the-large. 

 

For the 5-year KFRE model, evidence of poor calibration in the large was also observed, 

although in the opposite direction, suggesting an overprediction. The O/E ratio was less 

useful for evaluating long-term KFRE calibration due to high imprecision, but calibration 

intercepts showed overestimation of 5-year risk for both CKD stages 3a-3b-4 (calibration 

intercept: -0.26) and CKD stages 3b-4 subgroups (calibration intercept: -0.29) (Table 2). 

 

Poor weak calibration was also evident at 2-years, with extreme predictions for CKD stages 

3a-3b-4 (calibration slope: 0.79) and CKD stages 3b-4 (calibration slope: 0.82). The 5-year 

KFRE also showed extreme predictions for both groups, with calibration slopes of 0.75 for 

CKD stages 3a-3b-4 and 0.79 for CKD stages 3b-4 (Table 2). 

 

Regarding evidence of poor moderate calibration, calibration curves (Figure 3) displayed 2-

year risk underestimation mainly in patients with predicted risk less than 0.3-0.4 for both 

CKD stages 3a-4 and CKD stages 3b-4 subgroups (Figures 3A and 3C). In contrast, 5-year risk 
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overestimation mainly occurred in individuals with predicted risk greater than 0.2 for both 

CKD stages 3a-4 subgroups.  

[Figure 3] 

Sensitivity analysis: Impact of outliers in ACR 

The distribution of the four KFRE equation variables and the distribution of risks predicted by 

KFRE are shown in Figure S1 and Figure S2, respectively. We noted very extreme values in 

the ACR variable (Figure S2C and Figure S2D), leading to a sensitivity analysis assessing the 

robustness of our predictive performance after mitigating these extreme values.  

 

Winsorisation of ACR's extreme values was applied at its 1st and 99th percentiles, and risks 

predicted by KFRE were recalculated using the winsorised ACR variable. Despite notable 

changes in ACR's distribution after winsorisation (Figure S3), the distribution of risks 

predicted by KFRE in the original data remained largely unaltered (Figure S4). Median and 

mean values of risks predicted by KFRE before and after winsorisation were strikingly similar, 

as were variability measures such as standard deviation, interquartile range, and range 

(Table S10). The predictive performance of KFRE on the winsorised data closely resembled 

the original data (Table S11 and Figure S5). 

 

Sensitivity analysis: Predictive performance assessment ignoring competing risk 

We evaluated the predictive performance results when not accounting for competing risks. 

We discovered that the 2-year incidence of kidney failure in CKD stages 3a-4, without 

considering competing risk, was 1.58%, only marginally higher than when accounting for 

competing risk (1.52%) (Fig S6). At 5 years, these differences became more pronounced but 

remained relatively small, with a 3.37% incidence when considering competing risk and 

4.24% when not considering competing risk. In the CKD stages 3b-4 population, the 5-year 

differences were approximately 2% (6.89% when considering competing risk vs. 8.99% when 
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not considering competing risk) (Fig S6). Thus, the assessment of KFRE's predictive 

performance without considering competing risks also identified KFRE as miscalibrated 

(Table S12 and Fig S6); however, the magnitude of miscalibration was substantially smaller 

when ignoring competing risks compared to when considering competing risks (Fig S7). 

 

DISCUSSION 

Principal findings 

We independently validated the 4-variable KFRE for kidney failure prognosis at 2- and 5-years 

in Peruvian patients with CKD stages 3a-4 and 3b-4. Although KFRE demonstrated good 

discrimination, its calibration was poor. The model underestimated average short-term risk 

(2-years) and overestimated average long-term risk (5-years) of kidney failure in CKD stages 

3a-4 patients. This pattern persisted in the CKD stages 3b-4 subgroup. KFRE also had poor 

weak calibration manifested as very extreme predictions, while poor moderate calibration 

was evident in the underestimation of actual short-term risk in patients with KFRE-predicted 

risks below 0.3-0.4 and overestimation of individual long-term risks, primarily in individuals 

with a KFRE-predicted risk greater than 0.2. 

 

Comparison with previous literature 

The KFRE has been externally validated in numerous global studies, mainly in North American 

[23,30,39,41,43–48], European [16,30,40,49], and Asian countries [38,42]. However, few 

validations have been conducted in Latin America, particularly at the primary care level [30]. 

Existing validations in Latin American may not accurately represent current CKD populations 

due to advancements in CKD management [30]. This highlights the need for updated KFRE 

validation studies in Latin America. 
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In line with prior research, the non-North American versions of the KFRE models at 2- and 5-

year intervals exhibited good discrimination in our study and across diverse population 

groups from countries [16,30,38,40,42,49]. The initial external validation of the non-North 

American KFRE, a meta-analysis comprising 13 cohorts including Chilean and Brazilian 

patients [30], reported pooled C-statistics of 0.9 and 0.88 for predicting 2- and 5-year kidney 

failure, respectively [30]. A more recent study observed lower discrimination values, with C-

indexes ranging from 0.76-0.84 for 2-year KFRE and 0.75-0.81 for 5-year KFRE in cohorts from 

Germany, Italy, the Netherlands, Poland, Switzerland, and the United Kingdom, none of 

which included Latin American countries [16]. Despite the lower values in the recent study, 

the discrimination remained good. These findings are consistent with other studies reporting 

C-index values greater than 0.8 for the non-North American KFRE at 2- and 5-years 

[38,40,42,49]. 

 

In contrast to discrimination, our study's calibration assessment results differ from the initial 

study that recalibrated and validated KFRE for non-North American populations [30]. 

Although the few studies that assess calibration of the non-North American version of KFRE 

have reported poor calibration [33,40,42,49], most primarily focus on moderate calibration 

using calibration curves, with limited attention given to calibration in the large or weak 

calibration. Our findings for moderate calibration are in line with previous studies that 

identified overprediction of kidney failure risk at 5 years [33,40,42,49], particularly in 

individuals with high predicted risk groups (>0.3 to 0.4) [42,49].  

 

On the other hand, the 2-year results display greater heterogeneity among existing studies: 

some cohorts show good calibration [33,42], others overpredict risk in high- and low-risk 

groups [40]. In our study, we found that KFRE exhibits an opposite pattern of underprediction 

at 2 years. Regarding calibration in the large, only Ramspek et al. assessed this aspect, finding 
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an overprediction of the average 5-year risk by >10% while observing good calibration in the 

large at 2 years. This contrasts with our study, which also identified underestimation of the 

actual average risk by KFRE at 2 years in patients with CKD 3a-4 and CKD 3b-4.  

 

Differences in CKD severity or stages between the initial study validation and our 

investigation may account for these discrepancies. In our study, for instance, over half of the 

patients were classified as having moderate CKD severity (stage G3a), and we excluded 

patients with advanced CKD (stage G5) (Table 1). In contrast, Tangri et al. incorporated stage 

5 CKD patients; however, it is challenging to evaluate the impact of these differences as stage 

distribution information was not reported by Tangri et al. We also found no significant 

differences in eGFR and albuminuria distributions, which are recognised prognostic markers 

for kidney failure in CKD patients (Table S13). The initial study reported mean (standard 

deviation) eGFR values of 47 ml/min/1.73m2 (12 ml/min/1.73m2) and a 34% prevalence of 

albuminuria for their non-North American population, while our study reported similar 

values of 46.2 ml/min/1.73m2 (9.8 ml/min/1.73m2) and 36.5%, respectively (Table S13). The 

actual event risk may also explain the model's miscalibration. Kidney failure incidence rates 

suggest a lower risk of kidney failure in our study's CKD stages 3a-4 patients (7.4 per 1000 

person-years) compared to 9.2 per 1000 person-years. 

 

Another explanation for the pattern of overprediction we found in the long term for the KFRE 

model, especially in advanced CKD populations [43–45], is partly due to not accounting for 

death without kidney failure as a competing risk [33,34]. This competing risk is crucial for 

patients with advanced CKD, especially in frail or older populations requiring long-term 

predictions with more frequent death events [50]. Most existing models censor patients who 

die, leading to overestimation of the actual risk [51]. Ramspek et al. [16] and Ravani et al. 

[52] found that KFRE overestimated the actual average risk of terminal CKD by 10-18% and 1-
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27% at 5 years, respectively, with overestimation increasing over time among high-risk 

individuals atributable to competing event. By this reason, we considered the competing risk 

of death without kidney failure in our study. Initial study validating KFRE for non-North 

American populations also evaluated the impact of competing risk but found no significant 

differences.  

 

In our study involving patients with CKD stages 3a-4, 7.5% died without kidney failure at 2 

years of follow-up, and 20.5% at 5 years (Table S8). Conversely, the cumulative incidence of 

kidney failure was low, with 1.5% at two years and 3.4% at 5 years. This demonstrates the 

relatively minor impact of competing risk at 2 years, which becomes substantially more 

significant at 5 years. Even without considering competing risk, the Cox analysis revealed 

miscalibration, displaying the same patterns as the competing risk analysis, although the 

degree of miscalibration would have been less pronounced. 

 

It is important to note that, while differences exist between using Cox and competing risk 

analyses at the 2-year horizon, these disparities are minimal in our study. In contrast, at 5 

years, marked differences emerge, with the Cox analysis evidently biasing the performance 

evaluation. Therefore, we chose to report the competing risk analysis as our primary method 

and the Cox analysis as secondary. This approach better reflects the increasing impact of 

competing risk when the incidence of the competing event (death without renal failure) 

becomes more frequent, as observed in the 5-year assessment. 

 

Strengths and limitations of this study 

The present study offers the first external validation of KFRE in Peru, utilising a retrospective 

cohort of over 7,000 patients from 17 primary and secondary care EsSalud health 

establishments in Lima. Furthermore, as far as we know, this investigation serves as the 
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second study of the Kidney Failure Risk Equation (KFRE) in Latin America, boasting several 

strengths. The prior research was a meta-analysis validating the original equation for non-

North American populations, including cohorts from Chile and Brazil [30].   

 

The study employs robust statistical methods and sound analytical techniques for assessing 

KFRE performance, considering the competing risk of death without renal failure. This 

approach helps avoid overestimation of the observed risk and reduces bias in performance 

assessment [33,34,50,53]. The decision to use this competing risk approach as a primary 

analysis, with Cox methods employed in a sensitivity analysis, was informed by contemporary 

evidence demonstrating that accounting for competing risks offers a less biased and more 

accurate estimation of the actual kidney failure risks [33,52]. As such, this study adheres to 

best practices in the field and contributes essential knowledge regarding KFRE's performance 

in Peru and Latin America more broadly. 

 

Although our study presents valuable findings; it is important to acknowledge several 

limitations. Firstly, we utilized secondary data routinely recorded by multiple evaluating 

clinicians across 17 healthcare centers in Lima. On one hand, using routine clinical data has 

the advantage of potentially reflecting the model's performance more accurately in real-

world clinical practice. However, despite standardization of laboratory measurements as part 

of the National Kidney Program in Peru, clinical registries are inherently susceptible to errors 

in data recording, thereby introducing the potential for measurement error. 

 

Another limitation stems from our use of RRT initiation as an indicator of kidney failure in 

patients. This approach carries the risk of misclassification for patients who may have opted 

for conservative management. Nevertheless, it is worth noting that conservative 

management is relatively rare in Peru. Furthermore, access to RRT for EsSalud beneficiaries in 
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Lima is fully covered by EsSalud, which bears the entire cost reducing the risk of not access to 

RRT, specially in Lima. These factors imply that the risk of bias might be reduced; 

nevertheless, we still regard this as a significant limitation that should be appropriately 

addressed in future prospective studies. 

 

Lastly, although the similarities among EsSalud service networks in Lima may support the 

notion that our findings could be generalizable to other networks in the city, it is crucial to 

recognize that Lima is not representative of the entirety of Peru, and EsSalud is not the sole 

healthcare system in the country [54,55]. Significant disparities exist in healthcare services 

provided outside Lima and between different healthcare systems, such as Comprehensive 

Health Insurance and the Health of the Armed and Police Forces. These variations may 

influence KFRE's predictive performance, necessitating specific external validation studies in 

these populations due to the distinct differences among Peruvian health subsystems. 

 

Implications for clinical practice 

The observed differences in KFRE model performance among various cohorts highlight the 

necessity of broadening external validation across diverse populations and settings [25]. 

Although our study demonstrates KFRE's capacity to effectively discriminate between 

patients who will develop kidney failure at 2 and 5 years, it also reveals the model's 

shortcomings in accurately predicting individual risks, underestimating them in the short 

term and overestimating them in the long term. Sole reliance on KFRE's discrimination ability 

may have adverse implications for patients. Given our findings that short-term 

overestimation of kidney failure risk occurs in patients with low predicted risk and long-term 

underestimation occurs in those with high predicted risk, this pattern of poor moderate 

calibration could result in detrimental patient outcomes. 
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For instance, if KFRE overestimates the risk of kidney failure in patients with a lower true 

progression risk, this could result in unnecessary referrals for dialysis preparation, which may 

cause undue distress to patients and potentially increase the risk of death from preventable 

cardiovascular events if patients had remained under primary care. Conversely, if KFRE 

underestimates the risk of kidney failure in patients with a higher true progression risk, it 

could lead to delays in their referral and preparation for dialysis. 

 

Future research 

Future research should focus on model updating for clinically relevant populations in Peru in 

a national scale. It is also essential to examine the influence of patient mix heterogeneity on 

model performance and propose specific updates for enhanced local performance [33]. 

Moreover, the clinical utility of KFRE and its impact on significant patient and healthcare 

system outcomes should be evaluated. 

 

Conclusions 

The KFRE model exhibited good discrimination at 2 and 5 years for patients with CKD stages 

3a-3b-4 and CKD stages 3b-4. However, the model was found to be miscalibrated, 

underestimating short-term risks and overestimating long-term risks. Despite its considerable 

discriminative capacity, the KFRE model requires updating before being recommended for 

use in clinical practice guidelines for the Peruvian population. In light of this evidence, Latin 

American countries should consider externally validating and updating this model prior to 

recommending its use in clinical practice. 

 

DISCLOSURES 

JBZ and RCG are full-time employees of EsSalud, and PSB has received consultancy fees from 

EsSalud. However, the authors affirm that their respective affiliations with EsSalud have not 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


21 

 

influenced any aspect of the study, including study design, data collection, analysis, 

interpretation, or manuscript preparation. The authors declare that there are no other 

competing interests or potential conflicts of interest related to the content of this 

manuscript. 

 

FUNDING 

This study was entirely self-funded by the authors and did not receive any external financial 

support. 

 

ACKNOWLEDGMENTS 

The authors would like to acknowledge the methodological advisoring of the Instituto de 

Evaluación de Tecnologías en Salud e Investigación – IETSI, during the initial stages of the 

project, through its Personalised Mentoring Programme 2020, in the development of this 

study. 

 

AUTHOR CONTRIBUTORS 

JBZ served as the principal investigator, conceived the study concept, developed the 

proposal, contributed to the study design, coordinated the project, and participated in 

drafting the manuscript. RCG co-authored the proposal, contributed to the study design, 

oversaw data acquisition and preprocessing, and assisted in drafting the manuscript. PSB co-

authored the proposal, contributed to the study design, was responsible for cleaning the raw 

data, conducting the analysis, and preparing the manuscript. JBZ and PSB serve as 

guarantors, ensuring the integrity of the study. The corresponding author attests that all 

listed authors meet authorship criteria and that no others meeting the criteria have been 

omitted.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


22 

 

DATA SHARING STATEMENT 

The analysis code essential for the replication of study findings can be accessed at this link: 

https://github.com/psotob91/kfre-ckd-reba-peru. As per the privacy policies of EsSalud, the 

minimal data set is not open to public access. However, we are amenable to providing the 

anonymised data upon receipt of a reasonable request directed to the corresponding author 

(psoto@continental.edu.pe). 

 

ETHICAL APPROVAL 

The Research Ethics Committee of the Edgardo Rebagliati National Hospital approved this 

study (575-GRPR-ESSALUD-2021). Because all the data from clinical registries were 

anonymized before being processed for the research, the ethics committee accepted the 

waiver of informed consent from the patients. 

 

TRANSPARENCY DECLARATION 

JBZ and PSB, as the manuscript's guarantors, affirm that the manuscript presents an honest, 

accurate, and transparent account of the study reported. They confirm that no significant 

aspects of the study have been omitted, and any discrepancies from the planned study have 

been duly explained. 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


23 

 

REFERENCES 

1  Xie Y, Bowe B, Mokdad AH, et al. Analysis of the Global Burden of Disease study 

highlights the global, regional, and national trends of chronic kidney disease 

epidemiology from 1990 to 2016. Kidney Int 2018;94:567–81. 

doi:10.1016/j.kint.2018.04.011 

2  Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl 

2022;12:7–11. doi:10.1016/j.kisu.2021.11.003 

3  Hill NR, Fatoba ST, Oke JL, et al. Global Prevalence of Chronic Kidney Disease - A 

Systematic Review and Meta-Analysis. PloS One 2016;11:e0158765. 

doi:10.1371/journal.pone.0158765 

4  Sundström J, Bodegard J, Bollmann A, et al. Prevalence, outcomes, and cost of chronic 

kidney disease in a contemporary population of 2·4 million patients from 11 countries: 

The CaReMe CKD study. Lancet Reg Health – Eur 2022;20. 

doi:10.1016/j.lanepe.2022.100438 

5  Stanifer JW, Muiru A, Jafar TH, et al. Chronic kidney disease in low- and middle-income 

countries. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 

2016;31:868–74. doi:10.1093/ndt/gfv466 

6  Suriyong P, Ruengorn C, Shayakul C, et al. Prevalence of chronic kidney disease stages 3–

5 in low- and middle-income countries in Asia: A systematic review and meta-analysis. 

PLOS ONE 2022;17:e0264393. doi:10.1371/journal.pone.0264393 

7  Francis ER, Kuo C-C, Bernabe-Ortiz A, et al. Burden of chronic kidney disease in resource-

limited settings from Peru: a population-based study. BMC Nephrol 2015;16:114. 

doi:10.1186/s12882-015-0104-7 

8  Bravo-Zúñiga J, Gálvez-Inga J, Carrillo-Onofre P, et al. Early detection of chronic renal 

disease: coordinated work between primary and specialized care in an ambulatory renal 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


24 

 

network of Peru. J Bras Nefrol Orgao Of Soc Bras E Lat-Am Nefrol 2019;41:176–84. 

doi:10.1590/2175-8239-JBN-2018-0101 

9  Herrera-Añazco P, Taype-Rondan A, Lazo-Porras M, et al. Prevalence of chronic kidney 

disease in Peruvian primary care setting. BMC Nephrol 2017;18:246. 

doi:10.1186/s12882-017-0655-x 

10  Loza Munarriz CA, Ramos Muñoz WC. Análisis de la situación de la enfermedad renal 

crónica en el Perú, 2015. 1a. Lima 11, Peru: : Dirección General de Epidemiología, 

Ministerio de Salud del Perú 2016. https://www.gob.pe/institucion/minsa/informes-

publicaciones/285012-analisis-de-la-situacion-de-la-enfermedad-renal-cronica-en-el-

peru-2015 

11  Martínez-Castelao A, Soler MJ, Górriz Teruel JL, et al. Optimizing the timing of 

nephrology referral for patients with diabetic kidney disease. Clin Kidney J 2021;14:5–8. 

doi:10.1093/ckj/sfaa125 

12  Lerner B, Desrochers S, Tangri N. Risk Prediction Models in CKD. Semin Nephrol 

2017;37:144–50. doi:10.1016/j.semnephrol.2016.12.004 

13  Wojciechowski P, Tangri N, Rigatto C, et al. Risk Prediction in CKD: The Rational 

Alignment of Health Care Resources in CKD 4/5 Care. Adv Chronic Kidney Dis 

2016;23:227–30. doi:10.1053/j.ackd.2016.04.002 

14  Eckardt K-U, Bansal N, Coresh J, et al. Improving the prognosis of patients with severely 

decreased glomerular filtration rate (CKD G4+): conclusions from a Kidney Disease: 

Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 

2018;93:1281–92. doi:10.1016/j.kint.2018.02.006 

15  Chapter 2: Definition, identification, and prediction of CKD progression. Kidney Int Suppl 

2013;3:63–72. doi:10.1038/kisup.2012.65 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


25 

 

16  Ramspek CL, Evans M, Wanner C, et al. Kidney Failure Prediction Models: A 

Comprehensive External Validation Study in Patients with Advanced CKD. J Am Soc 

Nephrol JASN 2021;32:1174–86. doi:10.1681/ASN.2020071077 

17  Oliva-Damaso N, Delanaye P, Oliva-Damaso E, et al. Risk-based versus GFR threshold 

criteria for nephrology referral in chronic kidney disease. Clin Kidney J 2022;15:1996–

2005. doi:10.1093/ckj/sfac104 

18  Chronic kidney disease: assessment and management. London: : National Institute for 

Health and Care Excellence (NICE) 2021. 

http://www.ncbi.nlm.nih.gov/books/NBK574714/ (accessed 12 Jan 2023). 

19  Farrington K, Covic A, Aucella F, et al. Clinical Practice Guideline on management of older 

patients with chronic kidney disease stage 3b or higher (eGFR <45 mL/min/1.73 m2). 

Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc 2016;31:ii1–66. 

doi:10.1093/ndt/gfw356 

20  Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes (KDIGO) 

CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and 

management of chronic kidney disease. Kidney Int Suppl 2013;3:1–150. 

doi:10.1038/kisup.2012.73 

21  Bravo-Zúñiga J, Hinostoza-Sayas J, Goicochea Lugo S-, et al. Guía de práctica clínica para 

el tamizaje, diagnóstico y manejo de la enfermedad renal crónica en estadios 1 al 3 en el 

Seguro Social del Perú (EsSalud). Acta Médica Peru 2020;37:518–31. 

doi:10.35663/amp.2020.374.1843 

22  Bhachu HK, Fenton A, Cockwell P, et al. Use of the kidney failure risk equation to inform 

clinical care of patients with chronic kidney disease: a mixed-methods systematic review. 

BMJ Open 2022;12:e055572. doi:10.1136/bmjopen-2021-055572 

23  Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney 

disease to kidney failure. JAMA 2011;305:1553–9. doi:10.1001/jama.2011.451 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


26 

 

24  Chan CT, Blankestijn PJ, Dember LM, et al. Dialysis initiation, modality choice, access, and 

prescription: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) 

Controversies Conference. Kidney Int 2019;96:37–47. doi:10.1016/j.kint.2019.01.017 

25  Ramspek CL, Jager KJ, Dekker FW, et al. External validation of prognostic models: 

what, why, how, when and where? Clin Kidney J 2021;14:49–58. doi:10.1093/ckj/sfaa188 

26  Bleeker SE, Moll HA, Steyerberg EW, et al. External validation is necessary in prediction 

research: a clinical example. J Clin Epidemiol 2003;56:826–32. doi:10.1016/s0895-

4356(03)00207-5 

27  Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable 

prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and 

elaboration. Ann Intern Med 2015;162:W1-73. doi:10.7326/M14-0698 

28  Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable 

prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. 

BMC Med 2015;13:1. doi:10.1186/s12916-014-0241-z 

29  Oficina de Gestión y Desarrollo de Salud renal - EsSalud. Directiva de la Gerencia Central 

de Prestaciones de Salud N
o
 03-GCPS-ESSALUD-2012: Subsistema de Vigilancia de Salud 

Renal (VISARE) - ESSALUD. 2012. 

30  Tangri N, Grams ME, Levey AS, et al. Multinational Assessment of Accuracy of Equations 

for Predicting Risk of Kidney Failure: A Meta-analysis. JAMA 2016;315:164–74. 

doi:10.1001/jama.2015.18202 

31  Levey AS, Stevens LA, Schmid CH, et al. A New Equation to Estimate Glomerular Filtration 

Rate. Ann Intern Med 2009;150:604–12. 

32  Aalen OO, Johansen S. An Empirical Transition Matrix for Non-Homogeneous Markov 

Chains Based on Censored Observations. Scand J Stat 1978;5:141–50. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


27 

 

33  Ramspek CL, Teece L, Snell KIE, et al. Lessons learnt when accounting for competing 

events in the external validation of time-to-event prognostic models. Int J Epidemiol 

2022;51:615–25. doi:10.1093/ije/dyab256 

34  Geloven N van, Giardiello D, Bonneville EF, et al. Validation of prediction models in the 

presence of competing risks: a guide through modern methods. BMJ 2022;377:e069249. 

doi:10.1136/bmj-2021-069249 

35  Riley RD, Windt D van der, Croft P, editors. Prognosis research in healthcare: concepts, 

methods, and impact. First edition. Oxford: : Oxford University Press 2019.  

36  Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve analysis in 

medical research: current methods and applications. BMC Med Res Methodol 

2017;17:53. doi:10.1186/s12874-017-0332-6 

37  McLernon DJ, Giardiello D, Van Calster B, et al. Assessing Performance and Clinical 

Usefulness in Prediction Models With Survival Outcomes: Practical Guidance for Cox 

Proportional Hazards Models. Ann Intern Med 2023;176:105–14. doi:10.7326/M22-0844 

38  Wang Y, Nguyen FNHL, Allen JC, et al. Validation of the kidney failure risk equation for 

end-stage kidney disease in Southeast Asia. BMC Nephrol 2019;20:451. 

doi:10.1186/s12882-019-1643-0 

39  Thanabalasingam SJ, Iliescu EA, Norman PA, et al. Independent External Validation and 

Comparison of Death and Kidney Replacement Therapy Prediction Models in Advanced 

CKD. Kidney Med 2022;4:100440. doi:10.1016/j.xkme.2022.100440 

40  Major RW, Shepherd D, Medcalf JF, et al. The Kidney Failure Risk Equation for prediction 

of end stage renal disease in UK primary care: An external validation and clinical impact 

projection cohort study. PLoS Med 2019;16:e1002955. 

doi:10.1371/journal.pmed.1002955 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


28 

 

41  Hundemer GL, Tangri N, Sood MM, et al. Performance of the Kidney Failure Risk 

Equation by Disease Etiology in Advanced CKD. Clin J Am Soc Nephrol CJASN 

2020;15:1424–32. doi:10.2215/CJN.03940320 

42  Kwek JL, Pang HQJ, Li H, et al. Validation of the kidney failure risk equation in predicting 

the risk of progression to kidney failure in a multi-ethnic Singapore chronic kidney 

disease cohort. Singapore Med J 2022;63:313–8. doi:10.11622/smedj.2020170 

43  Peeters MJ, van Zuilen AD, van den Brand JAJG, et al. Validation of the kidney failure risk 

equation in European CKD patients. Nephrol Dial Transplant Off Publ Eur Dial Transpl 

Assoc - Eur Ren Assoc 2013;28:1773–9. doi:10.1093/ndt/gft063 

44  Potok OA, Nguyen HA, Abdelmalek JA, et al. Patients,’ Nephrologists,’ and Predicted 

Estimations of ESKD Risk Compared with 2-Year Incidence of ESKD. Clin J Am Soc Nephrol 

CJASN 2019;14:206–12. doi:10.2215/CJN.07970718 

45  Whitlock RH, Chartier M, Komenda P, et al. Validation of the Kidney Failure Risk Equation 

in Manitoba. Can J Kidney Health Dis 2017;4:2054358117705372. 

doi:10.1177/2054358117705372 

46  Grams ME, Sang Y, Ballew SH, et al. Predicting timing of clinical outcomes in 

patients with chronic kidney disease and severely decreased glomerular filtration rate. 

Kidney Int 2018;93:1442–51. doi:10.1016/j.kint.2018.01.009 

47  Naranjo FS, Sang Y, Ballew SH, et al. Estimating Kidney Failure Risk Using Electronic 

Medical Records. Kidney360 2021;2:415–24. doi:10.34067/KID.0005592020 

48  Bundy JD, Mills KT, Anderson AH, et al. Prediction of End-Stage Kidney Disease Using 

Estimated Glomerular Filtration Rate With and Without Race_: A Prospective Cohort 

Study. Ann Intern Med 2022;175:305–13. doi:10.7326/M21-2928 

49  Marks A, Fluck N, Prescott GJ, et al. Looking to the future: predicting renal replacement 

outcomes in a large community cohort with chronic kidney disease. Nephrol Dial 

Transplant 2015;30:1507–17. doi:10.1093/ndt/gfv089 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


29 

 

50  Li L, Yang W, Astor BC, et al. Competing Risk Modeling: Time to Put it in Our Standard 

Analytical Toolbox. J Am Soc Nephrol 2019;30:2284–6. doi:10.1681/ASN.2019101011 

51  Wolkewitz M, Cooper BS, Bonten MJM, et al. Interpreting and comparing risks in the 

presence of competing events. BMJ 2014;349:g5060. doi:10.1136/bmj.g5060 

52  Ravani P, Fiocco M, Liu P, et al. Influence of Mortality on Estimating the Risk of Kidney 

Failure in People with Stage 4 CKD. J Am Soc Nephrol JASN 2019;30:2219–27. 

doi:10.1681/ASN.2019060640 

53  Mehta P, Dhapte V, Kadam S, et al. Contemporary acupressure therapy: Adroit cure for 

painless recovery of therapeutic ailments. J Tradit Complement Med 2017;7:251–63. 

doi:10.1016/j.jtcme.2016.06.004 

54  Alcalde-Rabanal JE, Lazo-González O, Nigenda G. [The health system of Peru]. Salud 

Publica Mex 2011;53 Suppl 2:s243-254. 

55  F S-M. [The national health system in Peru]. Rev Peru Med Exp Salud Publica 

2014;31.https://pubmed.ncbi.nlm.nih.gov/25597729/ (accessed 23 Nov 2022). 

 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2023. ; https://doi.org/10.1101/2023.03.27.23287771doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.27.23287771
http://creativecommons.org/licenses/by/4.0/


30 

 

Table 1. Baseline characteristics of the study population according to CKD stages. 

Characteristic CKD Stages 3a-3b-4  

(n = 7,519) 

CKD Stages 3b-4  

(n = 2,798) 

Sex   

Female 4,107 (54.6%) 1,398 (50.0%) 

Male 3,412 (45.4%) 1,400 (50.0%) 

Age (years)   

Mean (SD) 74.0 (10.2) 75.6 (10.6) 

Median (IQR) 75.0 (68.0 - 81.0) 77.0 (70.0 - 83.0) 

Range 23.0 - 97.0 23.0 - 97.0 

Ethnicity   

    Black 0 (0%) 0 (0%) 

    Non-black 7,519 (100%) 2,798 (100%) 

Hypertension 4,486 (59.7%) 1,636 (58.5%) 

Diabetes Mellitus 1,845 (24.5%) 674 (24.1%) 

Persistent albuminuria categories   

A1 4,772 (63.5%) 1,494 (53.4%) 

A2 2,018 (26.8%) 860 (30.7%) 

A3 729 (9.7%) 444 (15.9%) 

GFR categories   

G3a 4,721 (62.8%)  

G3b 2,207 (29.4%) 2,207 (78.9%) 

G4 591 (7.9%) 591 (21.1%) 

CKD KDIGO classification   

Moderately increased risk 3,278 (43.6%)  

High risk 2,460 (32.7%) 1,302 (46.5%) 

Very high risk 1,781 (23.7%) 1,496 (53.5%) 

Serum Creatinine (mg/dL)   

Mean (SD) 1.4 (0.4) 1.7 (0.5) 

Median (IQR) 1.3 (1.1 - 1.5) 1.6 (1.4 - 1.9) 

Range 0.8 - 3.9 1.1 - 3.9 

eGFR (ml/min/1.73m2)   

Mean (SD) 46.2 (9.8) 35.7 (7.3) 

Median (IQR) 48.7 (40.4 - 53.8) 37.3 (31.4 - 41.7) 

Range 15.0 - 60.0 15.0 - 45.0 

ACR (mg/g)   

Mean (SD) 248.6 (3,044.4) 334.1 (3,050.8) 

Median (IQR) 14.6 (4.5 - 66.1) 26.0 (6.5 - 153.8) 

Range 0.0 - 144,870.6 0.0 - 144,870.6 

Urine Albumin (mg/ml)   

Mean (SD) 8.3 (28.3) 13.1 (36.3) 

Median (IQR) 1.0 (0.3 - 4.0) 1.7 (0.4 - 10.1) 

Range 0.0 - 658.0 0.0 - 658.0 

Urine Creatinine (mg/dl)   

Mean (SD) 72.4 (47.5) 71.4 (47.0) 

Median (IQR) 63.3 (41.3 - 86.0) 64.9 (43.3 - 85.0) 

Range 0.1 - 722.1 0.7 - 722.1 

Death at 2 years* 640 (8.5%) 358 (12.8%) 

Outcome at 2 years   

Alive w/o Kidney Failure 6,842 (91.0%) 2,410 (86.1%) 
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Death w/o Kidney Failure 563 (7.5%) 300 (10.7%) 

Kidney Failure 114 (1.5%) 88 (3.1%) 

Death at 5 years* 1,539 (20.5%) 784 (28.0%) 

Outcome at 5 years   

Alive w/o Kidney Failure 5,880 (78.2%) 1,933 (69.1%) 

Death w/o Kidney Failure 1,400 (18.6%) 683 (24.4%) 

Kidney Failure 239 (3.2%) 182 (6.5%) 
SD: standard deviation, IQR: interquartile range, ACR: urine albumin to creatinine ratio, eGFR: glomerular filtration 

rate estimated by CKD-EPI formula 

* Death after or before kidney failure 
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Table 2. Performance measures of KFRE in the external dataset of patients with CKD stages 

3a-3b-4 and 3b-4. 

Validation aspect and 

performance measure 

CKD Stages 3a-3b-4 CKD Stages 3b-4 

t = 2 year t = 5 year t = 2 year t = 5 year 

Calibration 

Average predicted risk 0.96% 3.18% 2.36% 7.66% 

Average observed risk 

(95% CI) 

1.52% (1.24% 

to 1.79%) 

3.37% (2.95% 

to 3.8%) 

3.15% (2.5% 

to 3.79%) 

6.86% (5.89% 

to 7.84%) 

O/E ratio (95% CI) 
1.57 (1.39 to 

1.76) 

1.06 (0.93 to 

1.19) 

1.33 (1.13 to 

1.54) 

0.9 (0.75 to 

1.04) 

Calibration intercept 

(95% CI) 

0.18 (-0.1 to 

0.45) 

-0.26 (-0.45 

to -0.07) 

0.16 (-0.12 to 

0.44) 

-0.29 (-0.48 to 

-0.1) 

Calibration slope (95% CI) 
0.79 (0.61 to 

0.96) 

0.75 (0.65 to 

0.86) 

0.82 (0.6 to 

1.03) 

0.79 (0.66 to 

0.92) 

Discrimination 

C-index up to t-years 

(95% CI) 

0.853 (0.812 

to 0.892) 

0.845 (0.818 

to 0.872) 

0.848 (0.803 

to 0.885) 

0.827 (0.796 

to 0.857) 

C/D AUC, at t years (95% 

CI) 

0.855 (0.816 

to 0.895) 

0.847 (0.819 

to 0.875) 

0.853 (0.811 

to 0.895) 

0.836 (0.803 

to 0.869) 
CKD: chronic kidney disease, t: time, O/E: Observed versus expected outcome ratio %: percentage, 95%CI: 95% 

confidence interval, C-index: truncated agreement index, C/D AUC-td: area under ROC curves time dependent on 

cumulative sensitivity and dynamic specificity. 
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FIGURE LEGENDS  

 

Figure 1. Study flowchart. 

 

Figure 2. Cumulative incidence function curves for kidney failure (sky-blue line) and death 

before kidney failure (red line) in patients with (A) CKD stages 3a-3b-4 and (B) CKD stages 

3b-4. 

CKD: Chronic Kidney Disease.  

 

Figure 3. Calibration curves for each group and prediction horizon.  

The x-axis shows the risk predicted by the KFRE model, and the y-axis represents the observed risk estimated 

using the cumulative incidence function to consider the competing risk of death without kidney failure. CKD: 

Chronic Kidney Disease. 
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