Effectiveness of Nirmatrelvir-Ritonavir for the treatment of patients with mild to moderate COVID-19 and at high risk of hospitalization: Systematic review and meta-analyses of observational studies

- 5 Kathiaja Miranda Souza¹, Gabriela Carrasco^{*2}, Robin Rojas-Cortés³, Mariana Michel Barbosa⁴,
- 6 Eduardo Henrique Ferreira Bambirra⁴, José Luis Castro⁵, Juliana Alvares-Teodoro^{4,6}
- 7

8 1 Independent Consultant, Belo Horizonte, Brazil.

- 9 2 Red Argentina Pública de Evaluación de Tecnologías Sanitarias (REDARETS), Neuquén,
 10 Argentina.
- 3 Pan American Health Organization, Department of Health Systems and Services, Unit of
 Medicines and Health Technologies, Washington DC, United States of America
- 13 4 Postgraduate Program in Medicines and Pharmaceutical Services, , Federal University of Minas
- 14 Gerais, Belo Horizonte, Minas Gerais, Brazil.
- 15 5 Fundación para la innovación, la formación, la investigación y el desarrollo comunitário
 16 (FUNDEC). San Isidro, S/C de Tenerife. España.
- 17 6 Department of Social Pharmacy, Faculty of Pharmacy, Federal University of Minas Gerais, Belo
- 18 Horizonte, Minas Gerais, Brazil.
- 19 * Corresponding author
- 20 E-mail: gabi_carrasco@hotmail.com
- 21

22 Abstract

23 **Objective**

To assess the effectiveness of nirmatrelvir-ritonavir in the treatment of outpatients with mild to moderate COVID-19 who are at higher risk of developing severe illness, through a systematic review with meta-analyses of observational studies.

27 Methods

A systematic search was performed, in accordance with the Cochrane search methods, to identify observational studies that met the inclusion criteria. The outcomes of mortality and hospitalization were analyzed. Search was conducted on PubMed, EMBASE, and The Cochrane Library. Two reviewers independently screened references, selected the studies, extracted the data, assessed the risk of bias using ROBINS-I tool and evaluated the quality of evidence using the GRADE tool. This study followed the PRISMA reporting guideline.

34 **Results**

A total of 16 observational studies and 1,482,923 patients were finally included. The results of the meta-analysis showed that in comparison to standard treatment without antivirals, nirmatrelvirritonavir reduced the risk of death by 62% (OR=0.38; 95% CI: 0.30-0.46; moderate certainty of evidence). In addition, a 53% reduction in the risk of hospital admission was observed (OR = 0.47; 95% CI: 0.36–0.60, with very low certainty of evidence). For the composite outcome of hospitalization and/or mortality, there was a 56% risk reduction (OR=0.44; 95% CI: 0.31-0.64, moderate certainty of evidence).

42 **Conclusion**

The results suggest that nirmatrelvir-ritonavir could be effective in reducing mortality and hospitalization. The results were valid in vaccinated or unvaccinated high-risk individuals with COVID-19. Data from ongoing and future trials may further advance our understanding of the

- 46 effectiveness and safety of nirmatrelvir-ritonavir and help improve treatment guidelines for COVID-
- 47 19.
- 48

49 Introduction

Declared a pandemic by the World Health Organization (WHO) in March 2020, COVID-19 (coronavirus disease) has posed a significant challenge to healthcare professionals, managers, and health systems, due to its rapid spread, lack of treatment, severity, and unpredictable nature. As of March 7, 2023, there were 759,408,703 confirmed cases of COVID-19, including 6,866,434 deaths (1).

WHO data indicates that about 15% of mild/moderate cases progress to severe disease requiring hospitalization and respiratory support, and 5% of patients develop the critical form requiring admission to the Intensive Care Unit (ICU). The high number of cases has resulted in a massive and sudden influx of patients to emergency services, leading to large number of hospitalizations, requiring isolation, oxygen support, intubation, and invasive mechanical ventilation (2).

In Latin America, the COVID-19 pandemic has affected countries differently. Among some of these
countries, the reported incidence rate ranged from 4.59% in Jamaica to 25.6% in Chile. In contrast,
Peru had the highest case fatality rate (5.1%) and Chile the lowest case fatality rate (1.3%) among the
countries analyzed (3).

In December 2020, the first dose of the COVID-19 vaccine was administered, and since then, 13.01 billion doses have been given worldwide, corresponding to 68.5% of the world's population receiving at least one dose of the vaccine. In Latin America, the proportions of vaccinated individuals vary significantly between countries. While in Jamaica 28.2% of people received at least one dose, and 24.8% received the second dose, in Chile, more than 90% of the population received two doses of the COVID-19 vaccine (1).

In the context of the appearance of new variants and, in some countries, low vaccination rates, either due to unavailability or lack of adherence, the existence of medicines capable of controlling symptoms and avoiding hospitalizations and deaths is becoming increasingly under focus. In April 2022, the WHO published a new update of the "Guideline Therapeutics and COVID-19: living

74 guideline". In this publication, WHO made a strong recommendation in favor of nirmatrelvir-75 ritonavir, for patients with mild and moderate COVID-19 at high-risk of hospital admission, qualifying it as the best therapeutic option for those patients, such as unvaccinated, elderly or 76 77 immunocompromised patients. The guideline development group concluded that nirmatrelvir-78 ritonavir represents a superior option as it may be more effective in preventing hospitalization than 79 the alternatives compared (standard treatment, molnupiravir and remdesivir), though with important 80 pharmacokinetic interactions, it apparently has fewer concerns than monulpiravir regarding adverse 81 effects, and it is easier to administer than intravenous remdesivir and monoclonal antibodies (4). The 82 Ongoing Living Systematic Review published by Pan American Health Organization (PAHO) 83 presented the same direction of the recommendations (5).

It is noteworthy that randomized clinical trials investigating the use of nirmatrelvir-ritonavir in nonhospitalized symptomatic COVID-19 patients with a full COVID-19 vaccination schedule and/or who are at risk of progressing to severe disease have not yet been published (5,6).

Nirmatrelvir-ritonavir is a high-cost medicine, the target population is quite large, and in several countries the medicine has yet to be approved for emergency use, marketing or reimbursement into the health system due to the uncertainties and challenges related to its efficacy, further information on safety, high risk (e.g., vaccination status), cost, and resource requirements for administration.

91 In order to support the pharmacotherapeutic committees, health technology assessment agencies, and 92 other decision-making bodies for the management of patients diagnosed with COVID-19 and eligible 93 for treatment with nirmatrelvir-ritonavir in countries, a systematic review for the assessment of the 94 effectiveness of nirmatrelvir-ritonavir was conducted.

95

96 Materials and methods

97 Search strategy

98 Two independent investigators conducted a thorough literature search on PubMed, EMBASE, and 99 The Cochrane Library. Validated filters for observational studies were applied to each database to 100 ensure relevant results. In addition, searches were conducted on Epistemonikos and ClinicalTrials to 101 identify possible systematic reviews and primary studies not retrieved in the main databases. The 102 search strategies developed for each platform are detailed in the Supporting Information (S1 file: 103 Table 1) and were executed until January 4, 2023. The records obtained from the databases were 104 imported into Mendeley® for the identification and elimination of duplicate studies. The report was 105 based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) (S1 106 file: Table 2). This study didn't need the approval of an ethics committee since it is a secondary 107 study (7).

108

109 Study selection

After exporting a single Mendeley® file, the records were imported into Rayyan (8). Two
independent researchers selected the records, and a third evaluator was consulted in case of doubts,
both for screening (reading titles and abstracts) and eligibility (reading full texts).

The inclusion criteria for this systematic review were: (1) observational studies comparing the use of nirmatrelvir-ritonavir versus standard treatment or no antiviral treatment; (2) involving outpatients with COVID-19 at high risk of developing severe disease as the research population; and (3) determining death and/or hospitalization as the evaluated outcomes. No restrictions were imposed on publication date, language, or follow-up time. Studies reported only in conference proceedings were excluded.

The exclusion criteria were: (a) the study was a review article, letters to the editor, comments,
consensus documents, clinical trials, pre-clinical studies, animal studies, or case reports; (b) the study
did not focus on patients with COVID 19 or the diagnosis was unclear.

123 Data extraction and quality assessment

124 Two independent researchers performed data extraction using a standardized collection method with 125 Microsoft Office Excel®. A third review author fully checked all extracted data. The following 126 information regarding the demographic characteristics of the studies was collected: first author, 127 publication year, country, study design, general characteristics of the population, time of follow-up, 128 predominant variant of SARS-CoV-2 at the time of the study, diagnostic criteria, number of 129 participants per alternative compared, average age, proportion of male population, proportion of 130 white population, comorbidities, body mass index (BMI), and COVID-19 vaccination status. 131 Additionally, for dichotomous outcomes, data were collected on the number of patients with events in each compared alternative, odds ratio (OR), hazard ratio (HR), relative risk (RR), confidence 132 133 interval (CI), or p-value.

The risk of bias was independently investigated by two researchers using the ROBINS-I tool, which assesses the risk of bias for non-randomized studies (9). Any discrepancies were resolved by consensus. To evaluate publication bias for the primary outcomes, visual inspection of the funnel plot was employed. The quality of evidence was assessed using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) tool (10).

139

140 Data synthesis and sensitivity analysis

The primary outcomes were hospitalization, mortality and the composite outcome of mortality and/or hospitalization within 35 days. Further subgroup analyses were conducted based on vaccination status and age group. To analyze the data, we used Review Manager® (RevMan) Version 5.4.1 (Review Manager, The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). The heterogeneity of the results was assessed using the Cochran's Q test and I² statistic. If the p-value was less than .05 in the Q statistic and I² was \geq 50%, the heterogeneity was considered significant. We used the Mantel-Haenszel statistical method, the Sidik-Jonkman estimator

for tau2, and the Hartung-Knapp adjustment for the random effects model to calculate pooled odd ratios (ORs) with corresponding 95% confidence intervals (CI). When numerical data were unavailable, we used the PlotDigitizer v3. 2022 free version to extract data from graphs. A sensitivity analysis was conducted to compare the published and unpublished studies, as well as those with and without techniques to adjust for patient characteristics (either through propensity score matching (PSM) or inverse probability treatment weighting (IPTW)).

To perform the meta-analyses, we assessed the homogeneity and transitivity by comparing the PICO abbreviations of each study (population inclusion and exclusion criteria, definitions of subpopulations, intervention and controls, and definitions of outcomes). As important discrepancies were identified, we discussed them as possible limitations of the meta-analyses.

We presented the characteristics of the studies, the characteristics of the participants, the individual results, and the methodological quality assessment of the included studies in a narrative and descriptive statistical form (absolute and relative frequency, mean and SD or median and interquartile range [IQR]), including tables to assist in the presentation of results. The narrative results were grouped by outcome, highlighting the alternatives compared.

163

164 **Results**

165 Search results and study selection

From the search strategy used, 182 publications were retrieved, with 162 citations remaining after identifying and eliminating duplicates. All records were subjected to a peer review process, and the full text of 32 potentially eligible articles was carefully considered. Of these 32 studies, 16 original articles were either not observational studies or did not have comparison groups. Therefore, records pertaining to sixteen (16) observational studies were included in the analysis. Fig 1 demonstrates the flow of our studies' selection.

172 Fig 1. PRISMA Flow chart of literature screening.

173 **Study characteristics**

The sixteen studies finally considered were conducted in 5 countries (Canada, China, United States, Israel, and United Kingdom). Of these, as of the last update of the search, 12 studies were published (11–22) and 4 were unpublished studies (preprint) (23–26). All studies were retrospective cohorts of data obtained from electronic records of hospitals and other healthcare centers, collected from January 2021 to October 2022.

For the meta-analysis, fourteen studies were considered. Data from the studies by Wai et al., 2022 (n=27,872) and Lewnard et al., 2023 (n=133,426) were not meta-analyzed, as the former did not contain all the necessary data for the proposed meta-analysis and the latter introduced a potential critical bias, as the evaluated cohort was a sample analysis where one or more baseline characteristics were retained in the evaluation, rather than all relevant baseline characteristics for an effectiveness assessment that make the groups minimally comparable. As a result, the cohort was still completely unbalanced (15,26).

All patients evaluated in the included studies, eligible for treatment with nirmatrelvir-ritonavir, met the high-risk criteria for progression to severe COVID-19 defined by their respective countries, which included criteria such as age, vaccination status, and presence of comorbidities. In the study by Aggarwal et al., 2023, the decision to seek antiviral treatment was made by patients and physicians, without necessarily meeting the eligibility criteria defined by the United States government (22).

Regarding the initiation of treatment with nirmatrelvir-ritonavir, 8 studies were strict with the initiation of treatment within the fifth day of symptom onset or positive COVID-19 test (11,12,17– 20,24,25). In the other 6 studies, there was greater flexibility, as patients started treatment with nirmatrelvir-ritonavir within 10 days of symptom onset or positive test (15,16,21–23,26). This was not mentioned in the other two meta-analyzed studies.

- 197 In total, data from 1,482,923 patients from 14 studies were included in the meta-analysis. The
- 198 characteristics of the included studies are shown in Tables 1 and 2.

199 Table 11: Characteristics of included studies

Study	Study design	Characteristics of included patients.	Country	Study period	Time of follow-up	Predominant SARS-CoV- variants.	Funding
Ganatra et al., 2022 (11)	retrospective cohort	Adults aged 18 or older who were vaccinated and subsequently contracted COVID-19 at least 1 month after vaccination and were not hospitalized.	United States	1 December 2021 to 18 April 2022	30 days	Not reported	Not reported
Yip et al., 2022 (12)	retrospective cohort	Outpatient patients, regardless of vaccination status, who attended one of the selected clinics	China	16 February 2022 to 31 March 2022	30 days	Omicron	None declared
Wai et al., 2023 (15)	retrospective cohort	Hospitalized and non- hospitalized patients aged 60 years or older or with at least one chronic disease with mild to moderate COVID-19.	China	22 February 2022 to 15 April 2022	30 days	Omicron	The Tung's Foundation, Innovation and Technology Comission of Hong Kong
Hedvat et al., 2022 (16)	retrospective cohort	Non-hospitalized adult solid organ transplant recipients with asymptomatic, mild, or moderate COVID-19.	United States	16 December 2021 to 19 January 2022	30 days	Omicron (BA.1)	Not reported
Dryden- Peterson et al., 2022 (17)	retrospective cohort	Outpatient patients aged 50 years or older with COVID-19.	United States	1 January 2022 to 17 July 2022 to	14 days 28 days	Omicron (BA.1.1, BA.2, BA.2.12.1 y BA.5)	U.S. National Institutes of Health.
Wong et al., 2022 (18)	retrospective cohort	Outpatient patients with mild clinical presentation of COVID-19 and high risk of disease severity.	China	26 February 2022 to 26 June 2022	28 days	Omicron (BA.2.2)	Health and Medical Research Fund
Arbel et. al, 2022 (19)	retrospective cohort	Outpatient patients aged 40 years or older with mild clinical presentation of COVID-19 and high risk of disease severity.	Israel	9 January 2022 to 31 March 2022	35 days	Omicron	None declared
Schwartz et. al., 2023 (14)	retrospective cohort	Outpatient patients aged 18 years or older with COVID-19.	Canada	4 April 2022 to 31 August 2022.	30 days	Omicron	Ontario Ministry of Health (MOH); the Ministry of Long- Term Care (MLTC); Public Health Ontario
Aggarwal et al., 2023 (22)	retrospective cohort	All non-hospitalized patients within the Colorado healthcare system with a positive test result for SARS-CoV-2.	United States	26 March 2022 to 25 August 2022	28 days	Omicron (BA.2/BA2.12.1)	U.S. National Institutes of Health
Najjar- Debbiny et al., 2022 (20)	retrospective cohort	Patients ≥18 years old with COVID-19 who are not hospitalized and have at least one comorbidity or condition associated with high risk of severe COVID-19.	Israel	1 January 2022 to 28 February 2022	28 days	Omicron (BA.1)	Not reported
Qian et al., 2022 (13)	retrospective cohort	Patients ≥18 years old with COVID-19 and a diagnosis of systemic autoimmune rheumatic disease.	United States	23 January 2022 to 30 May 2022	30 days	Omicron	Rheumatology Research Foundation
Shah et al., 2022 (21)	retrospective cohort	Patients aged ≥18 years with COVID-19 who are not hospitalized and have at least 1 comorbidity or condition associated with a high risk of severe COVID-19.	United States	1 April 2022 to 31 August 2022	30 days	Omicron	Not reported

Study	Study design	Characteristics of included patients.	Country	Study period	Time of follow-up	Predominant SARS-CoV-	Funding
						variants.	
Bajema	retrospective	Non-hospitalized veteran	United	1 January	30 days	Omicron	Veterans Health
et. al.,	cohort	patients with at least one risk	States	2022 to 28	31 - 180	(B.1.1.529 y	Administration Health
2022		factor, clinical presentation of		February	days	BA1.1)	Services Research &
(23)*		COVID-19, and high risk of		2022			Development
		disease severity.					(HSR&D)
Lewnard	retrospective	Outpatient patients aged 12	United	8 April 2022	30 days	Omicron (BA.2;	US Centers for Disease
et. al.,	cohort	years and older with COVID-	States	to 7 October	60 days	BA.4 y BA.5)	Control & Prevention
2023		19 within Kaiser Permanente,		2022			National Institute for
(26)*		Southern California healthcare					Allergy and Infectious
		system.					Diseases of the US
							National Institutes of
							Health.
Zhou et.	retrospective	Outpatient patients aged 12	United	22 december	15 days	Omicron	Pfizer Inc.
al., 2022	cohort	years and older with COVID-	States	2021 to 8	30 days		
(27)*		19 within Optum repository,		May 2022			
		with >700 hospitals and 7000					
		clinics from all states in the US.					
Patel et	retrospective	Outpatient patients, aged ≥ 12	England	1 december	28 days	Omicron (BA.1,	GlaxoSmithKline
al., 2022	cohort	years at study initiation, and		2021 to 31		BA.2 y BA.5)	Pharmaceuticals Ltd.
(24)*		diagnosed with COVID-19		May 2022			
* preprint	t study	· · · · · · · · · · · · · · · · · · ·					

200 -

Study	Compared alternatives	Number of participants	Mean age (SD).	Male n (%)	White n (%)	Comorbidities * n (%)	BMC ≥30 kg/m2 n (%)	Primary series of COVID-19 vaccine and/or boosters n (%)
Ganatra et al.,	Nirmatrelvir-ritonavir for 5 days.	1,130	57.5 (16.3)	418 (37.0)	925 (81.9)	> 50% had at least 1 comorbidity.	237 (21)	1,130 (100)
2022 (11) ^a	Standard treatment	1,130	57.7 (16.3)	406 (35.9)	941 (83.3)	> 50% had at least 1 comorbidity.	208 (18)	1,130 (100)
Yip et al., 2022	Nirmatrelvir-ritonavir for 5 days.	4,921	70.8 (12.1)	2,247 (45.7)	NR	1,970 (40)	24.0 (4.2) ^{b,d}	42.6 (15.8) ^e
(12) ^a	No antiviral treatment.	4,758	70.5 (12.2)	2,178 (45.8)	NR	1,907 (40)	24.5 (4.7) ^{b,d}	42.8 (15.7) ^e
Wai et al., 2023	Nirmatrelvir-ritonavir for 5 days.	4,442	4,366 (98,	2,016 (45.4)	NR^{f}	> 10% had at least 1 comorbidity.	NR	NR
(15)	No antiviral treatment.	23,430	21,904 (93,5%) ^c	11,078 (47.3)	NR^{f}	> 50% had at least 1 comorbidity.	NR	NR
Hedvat et al.,	Nirmatrelvir-ritonavir for 5 days.	28	57.6 (44.3–68.6)	11 (39.3)	NR	28 (100)	25.3 (22.3– 30) ^b	23 (82.1)
2022 (16)	No antiviral treatment.	75	53.3 (37.6–64.6)	32 (42.7)	NR	75 (100)	27 (23.3– 29.5) ^b	61 (81.3)
Dryden-Peterson	Nirmatrelvir-ritonavir for 5 days.	11,797	50–64 years – 6,388 (54%) ≥ 65 years - 5,408 (46%)	4,880 (41)	10,164 (86)	$ \leq 3:6,727(57) \\ \geq 4:5,070(43)^{i} $	4,013 (34)	10, 752 (91)
et al., 2022 (17) ^a	No antiviral treatment.	32,248	50–64 years - 17,881(55%) ≥ 65 years 14,367 (45%)	12,603 (39)	27,266 (85)	≤3: 18,464 (57) ≥4: 13,784 (43)i	10,661 (33)	29,158 (90)
Wong et al., 2022	Nirmatrelvir-ritonavir for 5 days.	5,542	4,758 (85.9%) ^c	2,566 (46.3)	NR	0-4: 5291 (95.5) ^k 5-14: 251 (4.5)	NR	1,850 (33.4)
$(18)^{a}$	No antiviral treatment.	54,672	46,601 (85.2%) ^c	25,490 (46.6)	NR	0-4: 52,345 (95.7) 5-14: 1,327 (4.3)	NR	18,138 (33.2)
Arbel et. al, 2022	Nirmatrelvir-ritonavir for 5 days.	3,902	67.4 (11.2)	1,553 (40)	NR	3,902 (100)	1,626 (42)	3,520 (90)
(19)	No antiviral treatment.	105,352	59.6 (12.8)	41,987 (40)	NR	105,352 (100)	36,140 (34)	81,861 (78)
Schwartz et al	Nirmatrelvir-ritonavir for 5 days.	8,876	74.3 (NI)	3,613 (40.7)	NR	$ \ge 3 \ 3,805 \ (42.9) \\ < 3 \ 5,071 \ (57.1) $	NR	8,326 (93.8)
2023 (14) ^a	No antiviral treatment.	168,669	52.4 (NI)	61,733 (36.6)	NR	$ \ge 3\ 26,888\ (15.9) \\ < 3\ 141,781 \\ (84.1) $	NR	156,525 (92.8)
Aggarwal et al.,	Nirmatrelvir-ritonavir for 5 days.	7,168	18–44 years 3,288 (45.9%) 45-64 years 1,582 (22.1%) ≥ 65 years 2,298 (32.1%)	2,966 (41.4)	5,826 (81.3)	4,378 (61.1)	1,924 (26.8)	5,416 (75.5)
2023 (22) ^a	No antiviral treatment.	9,361	18–44 years 5,964 (63.7%) 45-64 years 1,442 (15.4%) ≥ 65 years 1,955 (20.9%)	3,899 (41.7)	7,365 (78.7)	4,450 (47.5)	1,793 (19.2)	6,932 (74)
Najjar-Debbiny	Nirmatrelvir-ritonavir for	4,737	68.5 (12.5)	1,992 (42.1)	NR	4,737 (100)	1,938 (40.9)	3,686 (77.8)

201 Table 22: Characterization of participants included in the studies, according to the evaluated alternative.

Study	Compared alternatives	Number of participants	Mean age (SD).	Male n (%)	White n (%)	Comorbidities * n (%)	BMC ≥30 kg/m2 n (%)	Primary series of COVID-19 vaccine and/or boosters n (%)
et al., 2022 (20) 5 days.								
	No antiviral treatment.	175,614	53.9 (16.8)	71,967 (41.0)	NR	175,614 (100)	97,938 (55.8)	131,796 (75.0)
Qian et al., 2022	Nirmatrelvir-ritonavir for 5 days.	307	57.1 (14.9)	72 (23.5)	259 (84.4)	260 (84.4)	27.7 (7.3) ^b	299 (97.4)
(13)	No antiviral treatment.	278	58.3 (15.6)	73 (26.3)	223 (80.2)	234 (84.2)	27.0 (8.3) ^b	260 (93.5)
Shah et al., 2022	Nirmatrelvir-ritonavir for 5 days.	198,927	18–49 years 56,620 (28.5%) 50-64 years 66,929 (33.6%) ≥ 65 years 75,378 (37.9%)	75,984 (38.2)	158,696 (79.8)	182,768 (91.9)	98,892 (49.7)	156,248 (78.5)
(21)	No antiviral treatment.	500,921	18–49 years 221,089 (44.1%) 50-64 years 147,274 (29.4) ≥ 65 years 132,558 (26.5)	184,184 (36.8)	368,109 (73.5)	463,849 (92.6)	243,331 (48.6)	325,058 (64.9)
Bajema et. al.,	Nirmatrelvir-ritonavir for 5 days.	1,587	65.0 (54.0,74.0)	1,412 (89.0)	1,111 (70.0)	1,587 (100)	818 (51.5)	1,050 (66.3)
2022 (23)*	No antiviral treatment.	1,587	66.0 (54.0,74.0)	1,416 (89.3)	1,149 (72.4)	1,587 (100)	817 (51.5)	1,035 (65.2)
Lewnard et. al.,	Nirmatrelvir-ritonavir for 5 days.	7,274	12–39 años -686 (9.4%) 40-59años-2,659 (36.6%) ≥ 60 anos 3,929 (54.0%)	3,080 (42.3)	1,921 (26.4)	3,534 (48.6)	3,253 (44.7)	6,831 (93.9)
2023 (26)	No antiviral treatment.	126,152	$12-39 \text{ años-}44,862 (35.6\%) 40-59 \text{ años-}49,864 (39.5\%) \geq 60 \text{ anos } 31,425 (24.9\%)$	56,357 (44.7)	26,884 (21.3)	6,636 (21,1)	39,482 (31.3)	107,377 (85.1)
Zhou et. al., 2022	Nirmatrelvir-ritonavir for 5 days.	2,808	60.6 (15.8)	1,183 (42.1)	2,381 (84.8)	1.38 (2.2) ^h	1,214 (43.2)	1,897 (67.6) ^g
$(27)^{a}$	No antiviral treatment.	10,849	60.7 (16.7)	4,539 (41.8)	9,132 (84.2)	1.36 (2.3) ^h	4,870 (44.9)	7,207 (66.4) ^g
Patel et al., 2022	Nirmatrelvir-ritonavir for 5 days.	337	52.6 (15.5)	178 (52.8)	227 (67.4)	337 (100)	5 (1.5) ^j	301 (89.3)
(24)	No antiviral treatment.	4,044	52.4 (17.5)	2,210 (54.7)	1,986 (49.1)	4,044 (100.0)	72 (1.8) ^j	3,488 (86,3)

* Cardiovascular diseases; digestive diseases; diabetes mellitus; malignant tumor; nervous system diseases; respiratory diseases; kidney diseases; HIV infection. SD: Standard Deviation; BMI: Body Mass Index; NR: Not Reported. a) Propensity Score Matching (PSM) or Weighted Analytic Cohort matched cohort; b) Mean BMI (SD); c) Studies by Wai et al., 2022, Wong et al., 2022 reported the number of patients over 60 and 65 years old (%); d)Yip et al, 2022, refers to BMI data before PSM; e) Rate of complete vaccination specified by age and sex (% and SD); f) 92.6% of the patients are of Chinese ethnicity.; g) Zhou et al., 2022,

vaccination status was measured considering at least one dose (≥ 1 dose); h) Deyo-Charlson Comorbidity Index Score; i) Dryden-Peterson et al., 2022 used the Monoclonal Antibody Screening Score - a comorbidity index that predicts the risk of hospitalization from COVID-19; j) Class 3 obesity: BMI ≥ 40 kg/m2; k) Charlson Comorbidity Index score

207 **Risk of bias**

208 The included studies were evaluated using the ROBINS-I tool, which assesses the risk of bias in non-209 randomized studies. The supporting information provides further details on the risk of bias 210 assessments for studies that reported data on mortality, hospitalization, and the composite outcome of 211 hospitalization or mortality. Regarding the mortality outcome, 4 of the 13 included studies had a low 212 risk of bias, while 7 had a moderate risk. However, for the outcome of hospitalization within 35 213 days, 9 of the 11 studies were at risk of serious or critical bias, primarily due to outcome 214 measurement bias (S1 file; Table 3). There was low risk of bias due to missing results or reporting 215 bias.

216

217 Effectiveness outcomes

Table 3 shows the effect measures reported by the studies included in this review, stratified by subgroup. In the supplementary material (S1 file, Table 4), we report the aggregated results reported and used in the meta-analysis. The following are the results of the meta-analyses conducted by the evaluated outcome.

223	Table 3.	Effectiveness	results o	of studies	included	in the	review,	by sul	ogroups

	< 60 years	≥60 years	Primary series of COVID-19 vaccine	Non- vaccinated	Comorbidities	Without comorbidities					
			n (%)								
Hospitalization											
Aggarwal et al., 2023 ^a	aOR: 0.53 (0.34- 0.80)	aOR= 0.37 (0.23-0.57)	aOR=0.47 (0.29- 0.74) ^d	aOR= 0.46 (0.27-0.77)	aOR: 0.37 (0.25- 0.654)	aOR: 0.68 (0.41-1.12)					
Arbel et al., 2022 ^e	aHR: 0.74 (0.35 to 1.58)	aHR: 0.27 (0.15-0.49)	≥ 65 aHR: 0.32 (0.17-0.63) < 65 años: aHR: 1.13 (0.50-2.58)	 ≥ 65 años: aHR: 0.15 (0.04-0.60) < 65 años: aHR: 0.23 (0.03-1.67) 	Not reported	NI					
Shah et al., 2022	18-49: aHR: 0.59 (0.48-0.71) 50-64: aHR: 0.40 (0.34-0.58)	AHR: 0.53 (0.48-0.58)	≥3 doses: aHR: 0.50 (0.45–0.55) 2 doses aHR: 0.50 (0.42–0.58)	aHR: 0.50 (0.43–0.59)	1 aHR: 0.57 (0.45–0.71) ≥2 aHR: 0.47 (0.44–0.51)	aHR: 0.89 (0.58–1.36)					
Qian et al., 2022	aOR: 0.07 (0.02- 0.31)	aOR: 0.11 (0.02-0.54)	aOR: 0.09 (0.03 – 0.32)	Not reported	Not reported	Not reported					
Yip et. al., 2022	Not reported	aHR: 0. 76 (0.63–0.92) ^a	Not reported	Not reported	aHR: 0. 76 (0.63– 0.92) ^c	Not reported					
Zhou et al., 2022	aHR: 0.19 (0.09, 0.38)	aHR: 0.17 (0.12, 0.26)	aHR: 0.18 (0.12, 0.28)	NI	Not reported	Not reported					
Wong et al., 2022	HR: 0.50 (0.31, 0.81)	HR: 0.80 (0.69, 0.91)	HR: 0.71 (0.51, 1.01)	HR: 0.76 (0.66, 0.87)	Not reported	Not reported					
Ganatra et al., 2022	Not reported	Not reported	0.43 (0.2-0.9)	Not reported	Not reported	Not reported					
	°	1	Mortality		1						
Schwartz et al., 2022 ^d	OR: 0.13 (0.03 - 0.57) ⁱ	OR: 0.48 (0.39 - 0.59)	1-2 doses: OR 0.23 (0.11 - 0.51) 3+ doses: OR 0.54 (0.43 - 0.67)	OR 0.34 (0.16 - 0.74)	3+: 0.48 (0.34 - 0.67) <3: 0.50 (0.39 - 0.64)	Not reported					
Arbel et al., 2022 ^b	aHR: 1.32 (0.16- 10.75)	aHR: 0.21 (0.05-0.82)	Not reported	Not reported	Not reported	Not reported					
Wong et al., 2022	Not reported	HR: 0.48 (0.32, 0.74)	Not reported	HR: 0.44 (0.30, 0.66)	Not reported	Not reported					
	I.	Mort	ality or hospitalization		1	ſ					
Najjar-Debbiny et al., 2022	aHR: 1.06 (0.36- 0.73)	aHR: 0.52 (0.36-3.15)	aOR: 0.62 (0.39- 0.98)	aOR: 0.52 (0.32-0.82)	Not reported	Not reported					
Dryden-Peterson et al, 2022	aRR: 0.55 (0.30 - 1.03)	aRR: 0.55 (0.40 to 0.77)	aRR: 0.69 (0.50 - 0.94)	aRR: 0.19 (0.08 - 0.49)	aRR: 0.56 (0.40 to 0.78) ^e	Not reported					
Bajema et al., 2022	aRR: 0.81 (0.46- 1.42)	aRR: 0.46 (0.31-0.66)	aRR: 0.48 (0.32- 0.73)	aRR:0.61 (0.38-0.97)	Not reported	Not reported					
Lewnard et. al., 2022	Not reported	Not reported	HR: 0.45 (0.21 - 0.94)	Not reported	Not reported	Not reported					
Schwartz et al., 2023 ^f	OR 0.34 (0.15 – 0.79)	OR 0.55 (0.45 - 0.66)	1-2 doses: OR 0.25 (0.12 - 0.50) 3+ doses: OR 0.62 (0.51 - 0.75)	OR 0.44 (0.23 - 0.84)	3+: 0.54 (0.39 - 0.73) <3: 0.57 (0.46 - 0.71)	Not reported					

a) Aggarwal et al., 2023 - considered comorbidities 0-1 as with comorbidities; b) Arbel et al., 2022 defined previous immunity to SARS-CoV-2 as previous vaccination or SARS-CoV-2 infection while the rest of the studies defined it only as previous vaccination; c) Yip et al. al evaluated >60 years or <60 years with comorbidity; d) Schwartz et al., 2022 analyzed age groups < and > 70 years; e) Dryden-Peterson et al, 2022, Monoclonal Antibody Screening Score \geq 4; f) iSchwartz et al., 2022 analyzed age groups of < and > 70 years

228

229 Mortality

230 Thirteen studies reported mortality data, including 1,159,467 patients and 7,133 deaths (11,13– 231 19,21–25). In comparison to standard treatment without antivirals, nirmatrelvir-ritonavir reduced the 232 risk of death by 62% (OR= 0.38; 95% CI: 0.30-0.46; moderate certainty of evidence) (Fig 2). 233 234 Fig 2. Forest plot of all-cause mortality outcome within 35 days - nirmatrelvir-ritonavir versus 235 control. 236 237 Three studies reported subgroup data by vaccination status (11,14,18) and four other studies reported 238 data by age group (14,18,19,24). In the analysis by vaccination status, nirmatrelvir-ritonavir reduced 239 the risk of mortality both in the unvaccinated group (OR=0.41; 95% CI: 0.29-0.58) and in the 240 vaccinated group (OR=0.31; 95% CI: 0.14-0.68), with no significant difference between the groups 241 (Fig 3A). 242 In the subgroup of patients under 60 years of age, there appears to be no difference between 243 treatment with nirmatrelvir-ritonavir compared to standard treatment (OR=0.48; 95% CI: 0.09-2.50), 244 while treating patients over 60 years of age with nirmatrelyir-ritonavir suggests greater protection 245 against the risk of death (OR=0.47; 95% CI: 0.40-0.55) (Fig 3B). 246 It should be noted that the subgroup meta-analysis could only be performed among those studies that 247 reported data that could be grouped. Table 3 presents the results of the effect measures from other 248 studies that reported the evaluation of these subgroups. 249 250 Fig 3. A: Forest plot of all-cause mortality outcome by vaccination status subgroup. B: Forest 251 plot of all-cause mortality outcome by subgroup of age group. 252

253	Furthermore, the sensitivity analysis did not reveal significant changes in the mortality rate of
254	published studies (OR = 0.42 ; 95% CI: $0.35-0.50$) and unpublished studies (OR = 0.23 ; 95% CI:
255	0.13–0.42). There were also no significant differences between matched studies (OR = 0.34 ; 95% CI:
256	0.25–0.47) and unmatched studies (OR = 0.38; 95% CI: 0.27–0.54) (S1 file: Fig 1 and Fig 2).
257	
258	Hospitalization
259	Eleven studies reported data on hospitalization within 35 days of follow-up after the initiation of the
260	treatment, which included 963,626 patients, with the occurrence of 11,903 events (11-13,17-19,21-
261	25)
262	Compared to standard treatment or no antiviral treatment, the use of nirmatrelvir-ritonavir resulted in
263	a 53% reduction in the risk of hospital admission (OR = 0.47 ; 95% CI: $0.37-0.60$, with very low
264	certainty of evidence) (Fig 4).
265	
266	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir
266 267	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control.
266 267 268	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control.
266 267 268 269	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control. Four studies reported subgroups data by vaccination status (11,18,22,25) and five studies reported
266 267 268 269 270	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control. Four studies reported subgroups data by vaccination status (11,18,22,25) and five studies reported age subgroups data (18,19,22,24,25). In the subgroup analysis of state vaccination, nirmatrelvir-
266 267 268 269 270 271	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control. Four studies reported subgroups data by vaccination status (11,18,22,25) and five studies reported age subgroups data (18,19,22,24,25). In the subgroup analysis of state vaccination, nirmatrelvir-ritonavir reduced the risk of hospitalization in both groups, non-vaccinated (OR= 0.41; 95%CI: 0.16-
266 267 268 269 270 271 272	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control. Four studies reported subgroups data by vaccination status (11,18,22,25) and five studies reported age subgroups data (18,19,22,24,25). In the subgroup analysis of state vaccination, nirmatrelvir-ritonavir reduced the risk of hospitalization in both groups, non-vaccinated (OR= 0.41; 95%CI: 0.16-1.05) and vaccinated (OR=0.45; 95%CI: 0.25-0.81). It is worth noting that when using the random
266 267 268 269 270 271 272 272	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control. Four studies reported subgroups data by vaccination status (11,18,22,25) and five studies reported age subgroups data (18,19,22,24,25). In the subgroup analysis of state vaccination, nirmatrelvir-ritonavir reduced the risk of hospitalization in both groups, non-vaccinated (OR= 0.41; 95%CI: 0.16-1.05) and vaccinated (OR=0.45; 95%CI: 0.25-0.81). It is worth noting that when using the random effects method, the meta-analysis result introduced greater inaccuracy in the data. Although each
266 267 268 269 270 271 272 273 273	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control. Four studies reported subgroups data by vaccination status (11,18,22,25) and five studies reported age subgroups data (18,19,22,24,25). In the subgroup analysis of state vaccination, nirmatrelvir-ritonavir reduced the risk of hospitalization in both groups, non-vaccinated (OR= 0.41; 95%CI: 0.16-1.05) and vaccinated (OR=0.45; 95%CI: 0.25-0.81). It is worth noting that when using the random effects method, the meta-analysis result introduced greater inaccuracy in the data. Although each study showed a reduction in risk favoring the treatment of nirmatrelvir-ritonavir in the non-
266 267 268 269 270 271 272 273 273 274 275	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control. Four studies reported subgroups data by vaccination status (11,18,22,25) and five studies reported age subgroups data (18,19,22,24,25). In the subgroup analysis of state vaccination, nirmatrelvir-ritonavir reduced the risk of hospitalization in both groups, non-vaccinated (OR= 0.41; 95%CI: 0.16-1.05) and vaccinated (OR=0.45; 95%CI: 0.25-0.81). It is worth noting that when using the random effects method, the meta-analysis result introduced greater inaccuracy in the data. Although each study showed a reduction in risk favoring the treatment of nirmatrelvir-ritonavir in the non-vaccinated group, the effect magnitude was very different between the studies in this analysis. In the
266 267 268 269 270 271 272 273 274 275 276	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control. Four studies reported subgroups data by vaccination status (11,18,22,25) and five studies reported age subgroups data (18,19,22,24,25). In the subgroup analysis of state vaccination, nirmatrelvir-ritonavir reduced the risk of hospitalization in both groups, non-vaccinated (OR= 0.41; 95%CI: 0.16-1.05) and vaccinated (OR=0.45; 95%CI: 0.25-0.81). It is worth noting that when using the random effects method, the meta-analysis result introduced greater inaccuracy in the data. Although each study showed a reduction in risk favoring the treatment of nirmatrelvir-ritonavir in the non-vaccinated group, the effect magnitude was very different between the studies in this analysis. In the subgroup analysis by age, nirmatrelvir-ritonavir reduced the risk of hospitalization in both the group
266 267 268 269 270 271 272 273 274 275 276 277	Fig 4. Forest plot of all-cause hospitalization outcome within 35 days - nirmatrelvir-ritonavir versus control. Four studies reported subgroups data by vaccination status (11,18,22,25) and five studies reported age subgroups data (18,19,22,24,25). In the subgroup analysis of state vaccination, nirmatrelvir-ritonavir reduced the risk of hospitalization in both groups, non-vaccinated (OR= 0.41; 95%CI: 0.16-1.05) and vaccinated (OR=0.45; 95%CI: 0.25-0.81). It is worth noting that when using the random effects method, the meta-analysis result introduced greater inaccuracy in the data. Although each study showed a reduction in risk favoring the treatment of nirmatrelvir-ritonavir in the non-vaccinated group, the effect magnitude was very different between the studies in this analysis. In the subgroup analysis by age, nirmatrelvir-ritonavir reduced the risk of hospitalization in both the group of individuals under 60 years (OR=0.45; 95%CI: 0.25–0.82) and the group of individuals over 60

years (OR=0.30; CI95%: 0.13–0.70), without a significant difference between the two groups (Fig
5).

280

Fig 5. A: Forest plot of all-cause hospitalization outcome within 35 days by vaccination status subgroup. B: Forest plot of all-cause hospitalization outcome within 35 days by subgroup of age group.

284

The sensitivity analysis revealed significant changes in the hospitalization rate between published studies (OR = 0.57; 95%CI: 0.46-0.71) and unpublished studies (OR = 0.29; 95 %CI: 0.10-0.84). There were also differences between adjusted studies (OR = 0.52; 95 %CI: 0.37-0.73) and not adjusted (OR = 0.29; 95 %CI: 0.15-0.56) (S1 file: Fig 3 and Fig 4).

289

290 Outcome composed of mortality and/or hospitalization

Five studies reported effectiveness data based on the outcome composed of mortality and/ or hospitalization within 35 days of follow-up after the start of treatment, which included 225,452 patients, with the occurrence of 7,019 events (13,14,16,17,23)

Compared to standard treatment or no antiviral treatment, nirmatrelvir-ritonavir reduced the risk of mortality or hospitalization by 56% (OR = 0.44; 95% IC: 0.31-0.64, moderate certainty of evidence) (Fig 6).

297

Fig 6. Forest plot of all-cause mortality or hospitalization outcome within 35 days –
 nirmatrelvir-ritonavir versus control

In the subgroup analysis of vaccinated and non-vaccinated individuals, the treatment with nirmatrelvir-ritonavir reduced the risk of mortality or hospitalization by 47% (OR= 0.53; 95%CI: 0.39–0.72) and 58% (OR= 0.42; 95%CI: 0.24–0.73), respectively.

303	Among patients under 60 years of age, nirmatrelvir-ritonavir reduced the risk of mortality or
304	hospitalization by 45% (OR= 0.55; 95%CI: 0.36-0.85), while in patients over 60 years of age, it
305	reduced the risk by 46% (OR= 0.54; 95%CI: 0.47–0.61) (Fig 7).

306

Fig 7. A: Forest plot of hospitalization or mortality outcome within 35 days by vaccination
 status subgroup. B: Forest plot of hospitalization or mortality by subgroup of age group.

309

Certainty of the evidence

The GRADE tool (Grading of Recommendations Assessment, Development and Evaluation) was utilized to assess the quality of evidence. A total of 16 studies were included as evidence, with 14 of these being meta-analyzed for the three primary outcomes of interest. All studies demonstrated significant results in reducing the risk of death and/or hospitalization with the use of nirmatrelvirritonavir (Table 4).

Regarding the hospitalization outcome within 35 days, the majority of studies exhibited a high risk of bias, thus the overall bias risk domain was considered very serious. The domain of inconsistency was also rated as serious, despite the absence of contrasting results, as the summary of study results revealed considerable heterogeneity ($I^2 = 92\%$, p < 0.00001). Conversely, the remaining domains were classified as non-serious due to the absence of studies with discrepant results, and we consider that the summary result was not subject to significant imprecision.

In relation to mortality outcomes within 35 days and mortality or hospitalization within 35 days, the majority of studies exhibited a moderate risk of bias and therefore the global risk of bias domain was considered serious. However, the remaining domains were considered non-serious, due to the absence of discrepant results and we considered that the summary result had no important imprecision.

Moreover, despite acknowledging that most studies measured mortality and hospitalization outcomes for all causes rather than specifically for COVID-19, it was determined that the domain of indirect evidence would be classified as non-serious for all outcomes. This decision was made due to COVID-19 being a novel disease with poorly elucidated mechanisms, which means that certain hospitalizations and deaths for all causes may be directly linked to COVID-19. Regarding factors that can increase the quality of the evidence, we assessed the publication bias of the main outcome measures by qualitatively evaluating the funnel plot. No significant asymmetries

were detected, leading us to conclude that there was no suspicion of publication bias. Since all the

included studies used the same dose of nirmatrelvir-ritonavir, it was not possible to detect a dose-

response gradient. We considered that there was no residual confounding effect from observational

337 studies that could reduce or increase the demonstrated effect. Moreover, we determined that the

magnitude of the effect was not sufficiently large to increase the quality of the evidence.

339 Table 4. Summary of evidence about treatment with nirmatrelvir-ritonavir versus standard treatment (without antivirals) for COVID-

		(Certainty assessme	ent			№ of patients		Effect		Certainy	Importance
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Nirmatrelvir-ritonavir	Control	Relative (95% CI)	Absolute (95% CI)		
Hospitalizatio	on in 35 days											
11	observational study	very serious ^a	not serious	not serious ^b	not serious	none	1559/234872 (0.7%)	10243/720674 (1.4%)	OR 0.47 (0.36 to 0.61)	7 fewer per 1.000 (from 9 fewer to 5 fewer)	⊕222 Very low	IMPORTANT
Mortality in 3	Mortality in 35 days											
13	observational study	serious ^c	not serious	not serious ^b	not serious	none	218/243297 (0.1%)	6907/908090 (0.8%)	OR 0.38 (0.30 to 0.46)	5 fewer per 1.000 (from 5 fewer	⊕⊕⊕ Moderate	CRITICAL

Mortality or hospitalization in 35 days

5	observational study	serious ^d	not serious	not serious ^b	not serious	none	309/22595 (1.4%)	6710/202857 (3.3%)	OR 0.44 (0.31 to	18 fewer per 1.000	⊕⊕⊕ 2 Moderate	CRITICAL
									0.64)	to 12 fewer)		

341 **CI:** Confidence interval; **OR:** Odds ratio

342 Explications:

343 a. Most studies were at serious risk of bias, with the study by Zhou et al., 2022 showing critical risk of bias for the outcome of hospitalization within 30 days using the ROBINS-I tool.

b. Do not go down because it is mortality / hospitalization for all causes, since COVID -19 is a new disease in which all the mechanisms that cause possible hospitalizations for other causes are not yet well understood.

c. Most of the studies had a moderate risk of bias. However, two studies Aggarwal, et al., 2022 and Patel et al., 2022 showed a high risk of bias for the outcome of 30-day mortality using the ROBINS-I tool. d. All studies showed a moderate risk of bias for the ROBINS-I tool

348 **Discussion**

The aim of this systematic review and meta-analysis was to evaluate the effectiveness of nirmatrelvir-ritonavir treatment in real-world situations, using observational studies that considered different scenarios of the target population, who were at high risk of hospitalization, such as vaccination status, age group, presence of comorbidities, and other associated risk factors in patients with mild to moderate COVID-19.

354 This study found that nirmatrelvir-ritonavir treatment was linked to a decreased risk of 355 hospitalization and mortality, which is consistent with the results of previous reviews conducted by 356 Amani B et al. and Cheema et al. (28,29). In the same direction as these results, although with a 357 different magnitude, Hammond et al. conducted a phase 2-3 clinical trial (EPIC-HR) to evaluate the 358 efficacy and safety of nirmatrely ir-ritonavir for non-hospitalized adult patients with mild to moderate 359 COVID-19 at high risk of severe illness, resulting in an 88.9% relative risk reduction of 360 hospitalization or death (30). The differences observed in the effectiveness of nirmatrelvir-ritonavir 361 treatment across different populations and contexts reflect the challenges posed by significant 362 interindividual variations in COVID-19. These variations can be influenced by factors such as 363 individual risk, the several mutations in coronavirus genotypes (variants), vaccination coverage, 364 geographic location, and healthcare systems, and can impact hospitalization criteria, timing, and 365 treatment effectiveness. In addition to inherent variations in study methodology, these factors make it 366 challenging to compare studies results across different populations and contexts (31–34). This also 367 means that the issue of discrepancies between results from randomized controlled trials (RCTs) and 368 observational studies can be explained by the obvious efficacy-effectiveness gap and should not 369 promote direct comparisons (35).

Aligned with the main findings, subgroup analyses comparing vaccinated and unvaccinated patients indicated a significant reduction in the risk of mortality and hospitalization. Despite the varied vaccination status of the studies included in this review, it was observed that some high-risk patients

373 did not receive a COVID-19 vaccine. In this group, treatment with nirmatrelvir-ritonavir may confer 374 protection against mortality and hospitalization. It is also important to consider that despite the 375 immunological escape of the Omicron variant, the vaccines still provide important protection against 376 COVID-19 (36,37). Moreover, the Omicron variant of COVID-19 has been demonstrated to have 377 lower rates of hospitalization and mortality compared to previous variants. These factors can affect 378 the effect of treatment with Nirmatrelvir-ritonavir (38,39). Additionally, the efficacy of nirmatrelvir-379 ritonavir use within the context of the availability of bivalent COVID-19 vaccines requires further 380 consideration and evaluation.

381 Our meta-analysis results by age group indicate that nirmatrelyir-ritonavir treatment may provide 382 benefits for both younger and older COVID-19 patients in terms of hospitalization and composite 383 outcome of mortality or hospitalization, suggesting that the findings of this study may be applicable 384 to a broad population. However, in terms of mortality for population under 60 years, the risk 385 reduction could not be confirmed by the meta-analysis. A separate study conducted by Arbel et al., 386 found that only high-risk COVID-19 positive outpatients aged 65 years and older experienced 387 reduced deaths and hospitalizations with nirmatrelvir-ritonavir treatment. The possible reasons that 388 explain this difference include the study period, taking into account the new variants of COVID-19, 389 hospitalization criteria for young patients, vaccination status, and presence of comorbidities (19,22). 390 This review suggest that nirmatrelvir-ritonavir is effective in treating non vaccinated or vaccinated, 391 non-severe COVID-19 patients with high risk for hospitalization. This may have potential 392 implications for clinicians and decision-makers and could alleviate the pressure on the healthcare 393 system due to COVID-19 hospitalizations. The living clinical guideline developed by the WHO 394 makes a strong recommendation in favor of nirmatrelvir-ritonavir as the first-choice treatment for

treatment for pregnant and lactating women as well (4). Another COVID-19 antiviral, molnupiravir

non-severe patients with a high risk of hospital admission, and the recent update recommends

395

397 (Lagevrio®) got a refusal of the marketing authorization by the European Medicines Agency (EMA)

398 on the grounds that the risk-benefit balance could not be established and that it was not possible to

identify a specific group of patients in which a clinically relevant benefit could be demonstrated (40).

400 In this scenario, the therapeutic arsenal for treating COVID-19 is more restricted.

Treating non-severe patients might be of interest, considering that antiviral drugs may be more useful in non-severe cases of COVID-19, where viral replication is the primary mechanism driving disease progression. This contrasts with severe cases, where the primary cause of illness is an inflammatory response (41–43). Furthermore, a randomized clinical trial conducted by Liu et al. in 2023, which evaluated the efficacy of nirmatrelvir-ritonavir in adult patients hospitalized with SARS-Cov-2 (Omicron BA.2.2 variant) infection and severe comorbidities, did not show any additional benefits in terms of all-cause mortality up to day 28 when compared to standard treatment (39).

408 The strengths of our systematic review are several. Firstly, only ambulatory patients considered at 409 high risk of hospitalization were included in the review. Secondly, we conducted subgroup analyses 410 by vaccination status and age group. Thirdly, we updated the data from the included preprint studies 411 that had been published at the time of article writing. Additionally, the study was conducted in 412 accordance with PRISMA guidelines, with the assessment of the risk of bias according to ROBINS-I 413 and the GRADE assessment of available evidence. We conducted our search accounting for the latest 414 publications with broad geographical distribution. To our knowledge, this is the first systematic review with meta-analysis that highlights differences in vaccination status, age group, and 415 416 comorbidity presence. Our review included studies with heterogeneous populations as compared to 417 the EPIC-HR trial, where 71% of the participants were Caucasians and the high-risk patients were 418 mostly obese. This heterogeneity increases the external validity of our results.

419 Our systematic review also has some limitations. Firstly, all the studies included were retrospective 420 cohorts, which are more susceptible to bias and confounding. However, to mitigate this limitation, 421 most of the studies were matched by propensity score or other balancing methods between groups. 422 Additionally, all the studies underwent assessment by the ROBINS-I bias risk tool, which enabled us

to conduct a more rigorous evaluation and determine the confidence of the results using the GRADE method (10). Despite these efforts, the high heterogeneity between the studies and the subgroups evaluated, especially for the outcome of hospitalization within 35 days, suggests the possibility of variations in criteria for patient hospitalization decisions, different COVID-19 variants, patient characteristics, geographical location, and other factors (33,34).

428 A further limitation is that standard treatment or no use of antiviral treatment was considered as the 429 control group in the studies. This may have affected the reported effect size and should be considered 430 when interpreting our results (4).

Another limitation of our study is that only a few studies could be meta-analyzed by subgroup, which may distort the actual effect in these specific groups. To address this limitation, we reported effect measures adjusted by studies that conducted such analyses but were not included in the meta-analysis due to the absence of data.

435 The timing of antiviral therapy initiation is a critical consideration for the management of COVID-19 436 patients. The World Health Organization recommends starting treatment within five days of 437 symptom onset (4). However, in the studies we analyzed, the duration of symptoms or the date of 438 positive COVID-19 test before treatment initiation varied widely (up to 10 days), and data on the 439 timing of treatment initiation was often unavailable in some studies. This lack of data poses challenges in interpreting our findings regarding the optimal timing of oral antiviral therapy 440 441 initiation. Nevertheless, the available evidence suggests that delaying the initiation of nirmatrelyir-442 ritonavir therapy beyond five days of symptom onset significantly reduces treatment efficacy against 443 hospitalization and death (26,44). It is important to highlight that the beginning of treatment should 444 be accompanied by early diagnosis, and therefore, it is crucial that countries have access to and 445 implement efficient testing programs, especially in low- and middle-income countries (45).

Safety data, rebound effect and long-term outcomes of COVID-19 reported in some studies were notincluded in our analysis. Hammond et al, demonstrated a lower frequency of serious adverse events,

448 and adverse events leading to discontinuation in the Nirmatrelvir-ritonavir group compared to the 449 placebo group. Similarly, the systematic review by Amani et al., demonstrated that there was no 450 significant difference in the incidence of adverse events between the treatment and control groups in 451 their pooled analysis (OR = 2.20; 95% CI: 0.42-11.47) (28,30). In addition, it should be noted that 452 ritonavir is a CYP3A4 inhibitor, an enzyme responsible for metabolizing several medications, and 453 potential drug interactions should be taken into consideration during treatment, especially among 454 poly-treated patients and those who are taking corticosteroids and other immunosuppressive 455 medications (46).

456 Retrospective studies have suggested a low incidence of rebound phenomenon after treatment with 457 nirmatrelvir-ritonavir, which was described in a limited number of individuals, all of whom 458 developed virological rebound approximately between 7 and 30 days after symptom onset and were 459 likely infected with Omicron variants. Among patients who developed symptom rebound after 460 treatment with nirmatrelvir-ritonavir, the clinical presentation was mild and did not require COVID-461 19 directed therapies (28,47–50). It should be noted that prospective epidemiological studies are still 462 needed to more accurately measure the incidence and risk factors for COVID-19 rebound and 463 compare them in those treated with nirmatrelvir-ritonavir versus those not treated.

Finally, considering the potential benefits of treatment with nirmatrelvir-ritonavir and the necessary precautions to guide treatment. There are challenges to consider in the healthcare systems of countries, given that it is an expensive treatment with limited availability. There is a need to further evaluate prioritization, cost-effectiveness and the impact of its use, especially in low and middleincome countries (51,52).

469

470 **Conclusion**

The results of our meta-analysis suggest that nirmatrelvir-ritonavir could be effective in reducing
hospitalization and/or mortality in high-risk individuals with COVID-19, compared to those who did

473 not receive antiviral treatment, either vaccinated or unvaccinated. Although it is important to mention 474 that the effect on mortality reduction was uncertain for those under 60 years. The present review 475 underscores the critical importance of early initiation of antiviral therapy. It is crucial to 476 acknowledge that there are still several limitations to consider, and additional evidence is necessary 477 to identify the subgroups of patients who may benefit the most from this treatment. It is important to 478 highlight that observational studies are more prone to bias and confounding, and therefore cannot 479 provide conclusive evidence of causality. Data from ongoing and future randomized controlled trials 480 may further expand our understanding of the efficacy and safety of nirmatrelvir-ritonavir and help 481 improve standard treatment guidelines for COVID-19.

483 **References**

484

- WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020. Available online:
 https://covid19.who.int/ (last cited: [12-02-2022]).
- World Health Organization. (2022). Clinical care for severe acute respiratory infection:
 toolkit: COVID-19 adaptation, update 2022. World Health Organization.
 https://apps.who.int/iris/handle/10665/352851. Licença: CC BY-NC-SA 3.0 IGO.
- 490 3. Edouard Mathieu, Hannah Ritchie, Lucas Rodés-Guirao, Cameron Appel, Charlie Giattino,
- 491 Joe Hasell, Bobbie Macdonald, Saloni Dattani, Diana Beltekian, Esteban Ortiz-Ospina and
- 492 Max Roser (2020) "Coronavirus Pandemic (COVID-19)". [Internet]. [citado 30 de novembro
- de 2022]. Available at: https://ourworldindata.org/coronavirus
- 494 4. Lamontagne F, Agarwal A, Rochwerg B, Siemieniuk RA, Agoritsas T, Askie L, et al. A living
 495 WHO guideline on drugs for covid-19. BMJ. 4 de setembro de 2020;m3379.
- 496 5. Pan AmericanHealth Organization. Ongoing Living Update of Potential COVID-19
 497 Therapeutics Options: Summary of Evidence. Rapid Review. Washington, D.C.: OPS; 2022.
 498 Available at: https://iris.paho.org/handle/10665.2/52719.
- 499 6. Consideraciones sobre el uso de antivirales, anticuerpos monoclonales y otras intervenciones 500 para el manejo de pacientes con COVID-19 en América Latina y el Caribe, 26 de abril del 501 2022. Washington, D.C.: OPS: 2022. [Internet]. Available at: 502 https://iris.paho.org/bitstream/handle/10665.2/56002/OPSIMSEIHCOVID-19220016 spa.pdf
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The
 PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 29 de
 março de 2021;n71.

- Solo 8. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for
 systematic reviews. Syst Rev. 5 de dezembro de 2016;5(1):210.
- 508 9. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-
- I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ.
 2016;355:4–10.
- 511 10. Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: A
 512 new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. abril de
 513 2011;64(4):380–2.
- 514 11. Ganatra S, Dani SS, Ahmad J, Kumar A, Shah J, Abraham GM, et al. Oral Nirmatrelvir and
 515 Ritonavir in Nonhospitalized Vaccinated Patients With Coronavirus Disease 2019 (COVID516 19). Clin Infect Dis. 20 de agosto de 2022;
- 517 12. Yip TCF, Lui GCY, Lai MSM, Wong VWS, Tse YK, Ma BHM, et al. Impact of the Use of
 518 Oral Antiviral Agents on the Risk of Hospitalization in Community Coronavirus Disease 2019
 519 Patients (COVID-19). Clin Infect Dis. 29 de agosto de 2022;
- Qian G, Wang X, Patel NJ, Kawano Y, Fu X, Cook CE, et al. Outcomes with and without
 outpatient SARS-CoV-2 treatment for patients with COVID-19 and systemic autoimmune
 rheumatic diseases: a retrospective cohort study. Lancet Rheumatol. março de
 2023;5(3):e139–50.
- Schwartz KL, Wang J, Tadrous M, Langford BJ, Daneman N, Leung V, et al. Populationbased evaluation of the effectiveness of nirmatrelvir–ritonavir for reducing hospital
 admissions and mortality from COVID-19. Can Med Assoc J. 13 de fevereiro de
 2023;195(6):E220–6.
- 528 15. Wai AK-C, Chan CY, Cheung AW-L, Wang K, Chan SC-L, Lee TT-L, et al. Association of

529	Molnupiravir and Nirmatrelvir-Ritonavir with preventable mortality, hospital admissions and
530	related avoidable healthcare system cost among high-risk patients with mild to moderate

- 531 COVID-19. Lancet Reg Heal West Pacific. janeiro de 2023;30:100602.
- 16. Hedvat J, Lange NW, Salerno DM, DeFilippis EM, Kovac D, Corbo H, et al. COVID 19
- therapeutics and outcomes among solid organ transplant recipients during the Omicron BA.1
 era. Am J Transplant. 18 de novembro de 2022;22(11):2682–8.
- 535 17. Dryden-Peterson S, Kim A, Kim AY, Caniglia EC, Lennes IT, Patel R, et al. Nirmatrelvir Plus
 536 Ritonavir for Early COVID-19 in a Large U.S. Health System. Ann Intern Med. 13 de
 537 dezembro de 2022;
- Wong CKH, Au ICH, Lau KTK, Lau EHY, Cowling BJ, Leung GM. Real-world effectiveness
 of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and inhospital outcomes among community-dwelling, ambulatory patients with confirmed SARSCoV-2 infection during the omicron wave in Hong Kong: a. Lancet. outubro de
 2022;400(10359):1213–22.
- Arbel R, Wolff Sagy Y, Hoshen M, Battat E, Lavie G, Sergienko R, et al. Nirmatrelvir Use
 and Severe Covid-19 Outcomes during the Omicron Surge. N Engl J Med. 1 de setembro de
 2022;387(9):790–8.
- 20. Najjar-Debbiny R, Gronich N, Weber G, Khoury J, Amar M, Stein N, et al. Effectiveness of
 Paxlovid in Reducing Severe Coronavirus Disease 2019 and Mortality in High-Risk Patients.
 Clin Infect Dis. 2022;1–8.
- Shah MM, Joyce B, Plumb ID, Sahakian S, Feldstein LR, Barkley E, et al. Paxlovid associated
 with decreased hospitalization rate among adults with COVID-19 United States, AprilSeptember 2022. Am J Transplant. janeiro de 2023;23(1):150–5.

552	22.	Aggarwal NR, Molina KC, Beaty LE, Bennett TD, Carlson NE, Mayer DA, et al. Real-world
553		use of nirmatrelvir-ritonavir in outpatients with COVID-19 during the era of omicron variants
554		including BA.4 and BA.5 in Colorado, USA: a retrospective cohort study. Lancet Infect Dis.
555		fevereiro de 2023;
556	23.	Bajema KL, Berry K, Streja E, Rajeevan N, Li Y, Yan L, et al. Effectiveness of COVID-19
557		treatment with nirmatrelvir-ritonavir or molnupiravir among U.S. Veterans: target trial
558		emulation studies with one-month and six-month outcomes. medRxiv Prepr Serv Heal Sci. 16
559		de dezembro de 2022;
560	24.	Patel V, Yarwood MJ, Levick B, Gibbons DC, Drysdale M, Kerr W, et al. Characteristics and
561		outcomes of patients with COVID-19 at high- risk of disease progression receiving
562		sotrovimab, oral antivirals or no treatment in England. 2022;5:1-38.
563	25.	Zhou X, Kelly SP, Liang C, Li L, Shen R, Leister-Tebbe HK, et al. Real-World Effectiveness

of Nirmatrelvir/Ritonavir in Preventing Hospitalization Among Patients With COVID-19 at
High Risk for Severe Disease in the United States: A Nationwide Population-Based Cohort
Study. medRxiv. 2022;2022.09.13.22279908.

26. Lewnard JA, McLaughlin JM, Malden D, Hong V, Puzniak L, Ackerson BK, et al.
Effectiveness of nirmatrelvir-ritonavir against hospital admission or death: a cohort study in a
large US healthcare system. medRxiv. 1 de janeiro de 2023;2022.10.02.22280623.

570 27. HSS A-S, Koh M-T, Tan KK, Chan LG, Zhou L, Bouckenooghe A, et al. Safety and
571 immunogenicity of a tetravalent dengue vaccine in healthy children aged 2–11 years in
572 Malaysia: A randomized, placebo-controlled, Phase III study. Vaccine. 2013;31(49):5814–21.

57328.Amani B, Amani B. Efficacy and safety of nirmatrelvir/ritonavir (Paxlovid) for COVID□19:

A rapid review and meta analysis. J Med Virol. 10 de fevereiro de 2023;95(2).

575	29.	Cheema HA, Jafar U, Sohail A, Shahid A, Sahra S, Ehsan M, et al. Nirmatrelvir–ritonavir for
576		the treatment of COVID 19 patients: A systematic review and meta analysis. J Med Virol.
577		12 de fevereiro de 2023;95(2).

- 578 30. Hammond J, Leister-Tebbe H, Gardner A, Abreu P, Bao W, Wisemandle W, et al. Oral
- 579 Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19. N Engl J Med.
 580 2022;386(15):1397–408.
- 31. Buchan SA, Chung H, Brown KA, Austin PC, Fell DB, Gubbay JB, et al. Estimated
 Effectiveness of COVID-19 Vaccines Against Omicron or Delta Symptomatic Infection and
 Severe Outcomes. JAMA Netw Open. 22 de setembro de 2022;5(9):e2232760.
- 32. Pereira NL, Ahmad F, Byku M, Cummins NW, Morris AA, Owens A, et al. COVID-19:
 Understanding Inter-Individual Variability and Implications for Precision Medicine. Mayo
 Clin Proc. fevereiro de 2021;96(2):446–63.
- Smith KT, Monti D, Mir N, Peters E, Tipirneni R, Politi MC. Access Is Necessary but Not
 Sufficient: Factors Influencing Delay and Avoidance of Health Care Services. MDM policy
 Pract. 2018;3(1):2381468318760298.
- Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction
 models for diagnosis and prognosis of covid-19: systematic review and critical appraisal.
 BMJ. 7 de abril de 2020;m1328.
- 593 35. Zhang X, Fu S, Meng R, Ren Y, Shang Y, Tian L. Is there an efficacy-effectiveness gap
 between randomized controlled trials and real-world studies in colorectal cancer: a systematic
 review and meta-analysis. Transl Cancer Res. novembro de 2020;9(11):6963–87.
- 596 36. Zhang X, Zhang W, Chen S. Shanghai's life-saving efforts against the current omicron wave
 597 of the COVID-19 pandemic. Lancet. maio de 2022;399(10340):2011–2.

- 598 37. Rosenberg ES, Holtgrave DR, Dorabawila V, Conroy M, Greene D, Lutterloh E, et al. New
- 599 COVID-19 Cases and Hospitalizations Among Adults, by Vaccination Status New York,
- 600 May 3-July 25, 2021. MMWR Morb Mortal Wkly Rep. 27 de agosto de 2021;70(34):1150–5.
- 601 38. Madhi SA, Kwatra G, Myers JE, Jassat W, Dhar N, Mukendi CK, et al. Population Immunity
- and Covid-19 Severity with Omicron Variant in South Africa. N Engl J Med. 7 de abril de
 2022;386(14):1314–26.
- Liu J, Pan X, Zhang S, Li M, Ma K, Fan C, et al. Efficacy and safety of Paxlovid in severe
 adult patients with SARS-Cov-2 infection: a multicenter randomized controlled study. Lancet
 Reg Heal West Pacific. fevereiro de 2023;100694.
- 607 40. CHMP. (2023). Refusal of the marketing authorisation for Lagevrio (molnupiravir). European
 608 Medicines Agency (2023). [Internet]. Available at:
 609 https://www.ema.europa.eu/en/documents/smop-initial/questions-answers-refusal-marketing610 authorisation-lagevrio-molnupiravir_en.pdf
- 41. Anka AU, Tahir MI, Abubakar SD, Alsabbagh M, Zian Z, Hamedifar H, et al. Coronavirus
 disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and
 management. Scand J Immunol. abril de 2021;93(4):e12998.
- 42. Pitre T, Jones A, Su J, Helmeczi W, Xu G, Lee C, et al. Inflammatory biomarkers as
 independent prognosticators of 28-day mortality for COVID-19 patients admitted to general
 medicine or ICU wards: a retrospective cohort study. Intern Emerg Med. setembro de
 2021;16(6):1573–82.
- 43. Pitre T, Van Alstine R, Chick G, Leung G, Mikhail D, Cusano E, et al. Antiviral drug
 treatment for nonsevere COVID-19: a systematic review and network meta-analysis. CMAJ.
 25 de julho de 2022;194(28):E969–80.

- 44. Wong CKH, Lau KTK, Leung GM. Real-world effectiveness of nirmatrelvir–ritonavir against
- 622 BA.4 and BA.5 omicron SARS-CoV-2 variants. Lancet Infect Dis. fevereiro de 2023;
- 45. Pepperrell T, Ellis L, Wang J, Hill A. Barriers to Worldwide Access for Paxlovid, a New
 Treatment for COVID-19. Open Forum Infect Dis. 2 de setembro de 2022;9(9).
- 46. Conti V, Sellitto C, Torsiello M, Manzo V, De Bellis E, Stefanelli B, et al. Identification of
- Drug Interaction Adverse Events in Patients With COVID-19. JAMA Netw Open. 19 de abril
 de 2022;5(4):e227970.
- 47. Wong GL-H, Yip TC-F, Lai MS-M, Wong VW-S, Hui DS-C, Lui GC-Y. Incidence of Viral
- Rebound After Treatment With Nirmatrelvir-Ritonavir and Molnupiravir. JAMA Netw Open.
 6 de dezembro de 2022;5(12):e2245086.
- 48. Wang L, Volkow ND, Davis PB, Berger NA, Kaelber DC, Xu R. COVID-19 rebound after
 Paxlovid treatment during Omicron BA.5 vs BA.2.12.1 subvariant predominance period.
 medRxiv Prepr Serv Heal Sci. 6 de agosto de 2022;
- Wang L, Berger NA, Davis PB, Kaelber DC, Volkow ND, Xu R. COVID-19 rebound after
 Paxlovid and Molnupiravir during January-June 2022. medRxiv Prepr Serv Heal Sci. 22 de
 junho de 2022;
- 637 50. Ranganath N, O'Horo JC, Challener DW, Tulledge-Scheitel SM, Pike ML, O'Brien M, et al.
 638 Rebound Phenomenon After Nirmatrelvir/Ritonavir Treatment of Coronavirus Disease 2019
 639 (COVID-19) in High-Risk Persons. Clin Infect Dis. 14 de junho de 2022;
- Medicines Patent Pool (MPP). 35 generic manufacturers sign agreements with MPP to
 produce low-cost, generic versions of Pfizer's oral COVID-19 treatment nirmatrelvir in
 combination with ritonavir for supply in 95 low- and middle-income countries [Internet].
 Available at: https://medicinespatentpool.org/news-publications-post/35-generic-

644		manufacturers-sig	gn-agreements-wit	h-mpp-to-p	roduce-low-cost-generic-versions-of-pfizers-
645		oral-covid-19-trea	atment-nirmatrelv	ir-in-combiı	nation-with-ritonavir-for-supply-in-95-low-and
646	52.	Reuters. Generic	drugmakers to sel	ll Pfizer's P	axlovid for \$25 or less in low-income countries
647		[Internet].	Available	at:	https://www.reuters.com/business/healthcare-
648		pharmaceuticals/	generic-drugmake	rs-sell-pfize	rs-paxlovid-25-or-less-low-income-countries-
649		2022-05-12/			

650 Supporting information

651 S1 File – Contains PRISMA checklist, supporting materials, tables and figures

	Nirm	-rit	Con	trol		Odds Ratio	Odds Ratio
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.9.3 Unvaccinated							
[preprint] Zhou et. al., 2022	14	911	340	3642	32.0N	0.15 [0.09, 0.26]	
Aggarwal et al., 2023	21	1460	50	2036	32.4%	0.58 [0.35, 0.97]	
Wong et al., 2022	204	3692	2630	36534	35.6N	0.75 [0.65, 0.87]	
Subtotal (95% CI)		6063		42212	100.0%	0.41 [0.16, 1.05]	-
Total events	239		3020				
Heterogeneity: Tau2 = 0.63; I	Chi ² = 33.	36. df -	20 <1	0.00001	k 1 ² = 94	×	
Test for overall effect: Z = 1.1	86 (P = 0.)	06)					
1.9.4 Vaccinated							
foregrint Zhou et. al., 2022	20	1897	412	7207	21.1%	0.18 [0.11, 0.28]	
Accurwal et. al., 2023 (b)	28	4354	54	5395	21.0%	0.64 10.40, 1.011	
Apparwal et al., 2023	12	1354	31	1930	18.35	0.55 [0.28, 1.07]	
Ganatra et al., 2022	10	1130	23	1130	17.35	0.43 [0.20, 0.91]	
Wong et al., 2022	34	1850	466	18138	22.2%	0.71 [0.50, 1.01]	
Subtotal (95% CI)		10585		33800	100.0%	0.45 [0.25, 0.81]	•
Total events	104		986				-
Heterogeneity: Tau ² = 0.37: 0	Chi ² = 27.	16. df -	40 <1	0.0001):	r - 85%		
Test for overall effect: Z = 2.6	65 (P = 0.)	(800					
							kas als de se
							0.01 0.1 1 10 10
Test for subgroup differences	: Chi ² = 0	02. df -	-10-	0.88), P	- 0%		ravous (mini-rig ravous (conool)
	Nirm	-rit	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.10.1 <60 years							
[preprint] Patel et al., 2022	2	263	131	2977	11.0%	0.17 [0.04, 0.68]	
foregrint Zhou et. al., 2022	8	1558	169	6126	20.3%	0.18 (0.09, 0.37)	
Apparwal et al., 2023	32	4870	71	7406	25.1%	0.68 [0.45, 1.04]	-
Arbel et al., 2022	7	1418	327	65015	19.6%	0.98 (0.46, 2.08)	
Wong et al., 2022	18	784	342	8071	24.1%	0.53 10.33, 0.861	
Subtotal (95% CI)		8893		89595	100.0%	0.45 [0.25, 0.82]	•
Total avants	67		1040				

lotal events 67 - 1040Heterogenehy: Tau² = 0.32; Ch² = 16.42, df = 4 (P = 0.003); $t^2 = 76N$ Test for overall effect: Z = 2.63 (P = 0.008)

1.10.5 ≥ 60 years Incention Patel et al., 2022 2 73 117 999 13.8% [preprint] Zhou et. al., 2022 26 1250 583 21.7% 4723 Apparwal et al., 2023 29 2298 64 1955 21.4% Arbel et al., 2022 11 2484 766 40337 20.4% Wong et al., 2022 219 4758 2698 46601 22.7% Subtotal (95% CI) 10863 94615 100.0% Total events 287 4228 Heterogeneity: Tau2 = 0.80; Chi2 = 80.93, df = 4 (P < 0.00001); P = 95% Test for overall effect: Z = 2.78 (P = 0.005)

611 B66, 637 688 B45, 164 648 B45, 1648 B45, 1

100

Test for subgroup differences: Chr = 0.57, df = 1 (P = 0.45), r = 0%

0.01 0.1 1 10 Favours [Nirm-rit] Favours [control]

Test for subgroup differences: Chi² = 0.50, df = 1 (P = 0.48), P = 0%

Ŧ

	Nirm	rit	Cor	trol		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	om, 95% CI	
1.13.1 < 60 years										
Schwartz et. al., 2023	7	2443	1037	129647	26.6N	0.36 [0.17, 0.75]				
Dryden-Peterson et al. 2022	16	5885	93	18931	43.7%	0.55 [0.32, 0.94]		-		
foreprint Balema et al., 2022	15	743	18	733	29.7%	0.82 [0.41, 1.64]				
Subtotal (95% CI)		9071		149311	100.0%	0.55 [0.36, 0.85]		+		
Total events	38		1148							
Heterogeneity: Tau* = 0.04; Chi	- 2.65.	df = 2 (P = 0.27	r = 25	6					
Test for overall effect: Z = 2.71	(P = 0.00	7)								
1.13.2 ≥ 60 years										
(preprint) Bajema et al., 2022	30	844	66	853	8.8N	0.44 [0.28, 0.68]				
Schwartz et. al., 2023	180	6433	1951	39022	72.0%	0.55 [0.47, 0.64]				
Dryden-Peterson et al, 2022	55	6656	194	13079	19.1%	0.55 [0.41, 0.75]		-		
Subtotal (95% CI)		13933		52954	100.0%	0.54 [0.47, 0.61]		•		
Total events	265		2211							
Heterogeneity: Tau2 = 0.00; Chi	- 0.88.	df = 2 (P - 0.64	: P - 0%						
Test for overall effect: Z = 9.24	(P < 0.00	001}								
							-			
							0.01	0.1	1 10	100
					10 I			Favours [Nirm-rit]	Favours [control]	

Test for subgroup differences: Chi² = 0.01, df = 1 (P = 0.90), P = 0%

	Nirm-	rit	Con	trol		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
1.4.1 Unvaccinated								
Schwartz et. al., 2023	9	467	574	10434	26.8%	0.34 [0.17, 0.66]		
Nong et al., 2022	25	3692	553	36534	73.2%	0.44 [0.30, 0.66]		
ubtotal (95% CI)		4159		46968	100.0%	0.41 [0.29, 0.58]	•	
lotal events	34		1127					
Heterogeneity: Tau ² = 0.00	; Chi ² = 0	48, df	-1(?-	0.49); 12	- 0%			
Test for overall effect: Z =	5.05 (P <	0.0000:	1)					
1.4.2 Vaccinated								
Ganatra et al., 2022	0	1130	10	1130	6.5%	0.05 [0.00, 0.81]	· · · · · · · · · · · · · · · · · · ·	
chwartz et. al., 2023	8	885	1153	30329	34.8%	0.23 [0.11, 0.46]	_	
chwartz et. al., 2023 (b)	128	7524	3965	127906	47.0%	0.54 10.45, 0.651		
Wong et al., 2022	1	1850	39	18138	11.7%	0.25 [0.03, 1.83]		
subtotal (95% CI)	-	11389		177503	100.0%	0.31 [0.14, 0.68]	-	
lotal events	137		5167					
Heterogeneity: Tau ² = 0.33	: Chi = 8	74. df	- 3 (? -	0.03): 1	66%			
Test for overall effect: Z =	2.91 (P =	0.004)						
							0.01 0.1 1 10	10
Total Annual							Favours [Nirm-rit] Favours [cont	rol]
lest for subgroup difference	es: unr =	0.39, 0	1 = 10	= 0.53), 1	- UA	Odds Basis	Odda Basia	
Study or Subaroun	Events	Total	Events	Total	Weight	M-H Random 95% CI	M-H Random 95% CI	
1.5.1 < 60 years								
foregrint Patel et al., 2022	0	263	17	2977	19.6%	0.32 10.02, 5.351		
Arbel et al., 2022	1	1418	16	65015	26.9%	2.87 10.38. 21.631		
chwartz et. al., 2023	2	2443	778	129647	34.2%	0.14 [0.03, 0.54]		
Wong et al., 2022	ō	784	9	8071	19.3%	0.54 [0.03, 9.30]		
Subtotal (95% CI)		4908		205710	100.0%	0.48 [0.09, 2.50]		
fotal events	3		820					
Heterogeneity: Tau ² = 1.59	Chi2 = 7.	01, df -	3(7-0	.07); 1 =	57%			
Test for overall effect: Z = 0	.88 (P = 0	.38)						
1.5.5 ≥ 60 years								
[preprint] Patel et al., 2022	2	73	58	999	1.2%	0.46 [0.11, 1.91]		
Arbel et al., 2022	2	2484	158	40337	1.3%	0.20 [0.05, 0.83]		
Schwartz et. al., 2023	142	6433	1756	39022	83.3X	0.48 [0.40, 0.57]		
Wong et al., 2022	23	4758	467	46601	14.2%	0.48 [0.32, 0.73]		
Subtotal (95% CI)		13748		126959	100.0%	0.47 [0.40, 0.55]	•	
Total events	169		2439					
	CL. 2 .	- 34 14	2 /0 - 0	701- 1-	0%			
Heterogeneity: Tau" = 0.00	CUL = 11	•1, QI =	20-0		v /•			
Heterogeneity: Tau* = 0.00 Test for overall effect: Z = 9	27 (P < 0	.00001))					
Heterogeneity: Tau" = 0.00 Test for overall effect: Z = 9	27 (P < 0	.00001))					
Heterogeneity: Tau" = 0.00 Test for overall effect: Z = 9	27 (P < 0	.00001))				0.01 0'1 1 10	100

Test for subgroup differences: Chi² = 0.00, df = 1 (P = 0.99), I² = 0%

