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ABSTRACT 

 
Resistant starch (RS) consumption can have beneficial effects on human health, but the response, 
in terms of effects on the gut microbiota and host physiology, varies between individuals. Factors 
predicting the response to RS are not yet established and would be useful for developing 
precision nutrition approaches that maximize the benefits of dietary fiber intake. We sought to 
identify predictors of gut microbiota response to RS supplementation. We enrolled 76 healthy 
adults into a seven-week crossover study. Participants consumed RS type 2 (RS2), RS type 4 
(RS4), and a digestible starch, for ten days each with five-day washout periods in between. We 
collected fecal and saliva samples and food records before and during each treatment period. We 
performed 16S rRNA gene sequencing and measured fecal short-chain fatty acids (SCFAs), 
salivary amylase gene copy number, and salivary amylase activity (SAA). Dietary fiber intake 
was predictive of relative abundance of several amplicon sequence variants (ASVs) at the end of 
both RS treatments. Treatment order (the order of consumption of RS2 and RS4), alpha 
diversity, and a subset of ASVs were predictive of SCFA changes after RS supplementation. 
SAA was only predictive of the relative abundance of ASVs after digestible starch 
supplementation. Based on our findings, dietary fiber intake and gut microbiome composition 
would be informative if assessed prior to recommending RS supplementation. Using a precision 
nutrition approach to optimize the benefits of dietary fibers such as RS could be an effective 
strategy to compensate for the low consumption of dietary fiber nationwide.  
 
KEYWORDS: resistant starch, gut microbiome, short-chain fatty acid, precision nutrition, 
interindividual, AMY1, amylase 
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Introduction 

Resistant starch (RS) resists degradation by human enzymes and reaches the large intestine 

where it can be fermented by colonic microbes to produce beneficial metabolites.1 RS is 

classified into five subtypes (RS1-RS5), and most human studies use RS types 2, 3 and 4. 

Different microbes can selectively ferment different types of RS to produce short-chain fatty 

acids (SCFAs).2 Butyrate and propionate, two such SCFAs, have numerous health benefits 

including inducing satiety and improving glucose homeostasis and lipid metabolism.1,3–5 

 

Interestingly, several groups have reported interindividual variability in gut microbiota response 

and host physiological response (e.g. improvements in glucose metabolism) to supplementation 

with RS2 and RS4.6–13 Host and microbial factors prior to RS supplementation may be predictive 

of, and responsible for the interindividual variability in, gut microbiota response to RS. Previous 

studies have shown that habitual dietary fiber intake,14,15 and baseline microbiome composition16 

affect gut microbiota response to several nonstarch polysaccharides. Also, host dietary practice 

can alter microbial diversity, which in turn can affect response to dietary interventions.17 

 

In addition, the genotype of the host may influence microbial response. A proposed genetic 

factor that may predict variable response to RS is AMY1, a gene copy number (CN) variant, 

which encodes the salivary amylase enzyme.10,18 AMY1 CN is correlated with salivary amylase 

activity (SAA), which helps to initiate starch digestion. AMY1 CN has been associated with BMI, 

glucose metabolism, and gut microbiome composition.18–23 For this reason, we posited that 

AMY1 CN or SAA may be predictive of response to dietary fiber intake. 
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Although differences in preintervention host and microbial characteristics are thought to be 

responsible for the reported variability, as of yet, the field has not established predictors of gut 

microbiota or host physiological response to RS supplementation. This knowledge would aid in 

developing precision nutrition approaches and, in particular, tailoring dietary fiber 

recommendations to individuals seeking health benefits from RS consumption. 

 

Here, we address a gap in knowledge regarding the factors underlying interindividual variation in 

gut microbiota response to RS supplementation. In this dietary intervention study, we 

supplemented participants’ diets with two types of RS, RS2 and RS4, as well as a control 

digestible corn starch to assess the resulting changes in gut microbiota composition and function. 

Then we evaluated the ability of the candidate predictors—AMY1 CN, SAA, prior gut 

microbiome composition, and dietary fiber intake—to explain interindividual differences in the 

response to each treatment. Further, because we used a crossover design, we were able to 

evaluate the effect of the order of treatments on the observed results.  

 

Results 

Baseline characteristics of study participants 

We enrolled 76 individuals into a seven-week open-label crossover dietary intervention study 

with 59 individuals completing the full study (Figure 1A). Study enrollment and the number of 

participants completing each treatment are detailed in Figure 1B. We describe baseline 

characteristics for participants included in our analyses in Table 1. When comparing the two 

different treatment order groups, Group A and Group B, at baseline, there were no significant 

differences in age, sex, dietary fiber intake, body fat percent in males, or body fat percent in 
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females (p>0.05 for all). Of note, the average amount of dietary fiber consumed by all 

participants during the baseline period (11.88 g, SD=4.98 g) was lower than the Institute of 

Medicine’s recommendations of 25–38 g/day depending on sex and age,24 and below the dietary 

reference intake.25  

 

RS, but not digestible starch, elicits an overall change in gut microbiome composition 

For each treatment, we used MaAsLin2 models to assess overall microbial response, which was 

represented by ASVs that changed in relative abundance in the study cohort over the treatment 

period. We identified 34 ASVs that were differentially abundant between PreRS2 (before RS2) 

and EndRS2 (the end of RS2) treatment, 24 ASVs that were differentially abundant between 

PreRS4 and EndRS4, and no ASVs that were different between PreCtl (before control) and 

EndCtl (end of control) treatment (Supplementary Table 1). Of the 34 ASVs identified for RS2 

and the 24 ASVs identified for RS4, we found 9 ASVs shared between the two treatments. Mean 

log2 fold changes of relative abundances of the differentially abundant ASVs identified by 

MaAsLin2 are shown in Figure 2A. Although we observed these population level shifts, we 

detected noticeable variation between individuals (Figure 2B and 2C). Measuring the degree of 

interindividual variability, we found that an ASV for Ruminococcus bromii (var=11.09) and an 

ASV for Parabacteroides distasonis (var=17.37) had the greatest variance in log2 fold change 

between the beginning and end of treatment with RS2 and RS4, respectively.  
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Dietary fiber intake and mean SAA are predictive of differential abundance of ASVs at the 

end of treatment periods 

We used MaAsLin2 models to determine the ability of candidate predictors to predict differences 

in relative abundances between the Pre and End time points of the treatment periods. Our 

candidate predictors were: AMY1 CN, AMY1 CN Group (high: ≥ 9 copies versus low: ≤ 5 

copies),18 mean SAA, dietary fiber intake during baseline, dietary fiber intake during treatment 

(excluding study cracker consumption), and treatment order (whether participants consumed RS2 

or RS4 initially). The distribution of AMY1 CN and mean SAA for individuals included in the 

analyses can be found in Figure 3A and Figure 3B. Of note, each candidate, except AMY1 CN, 

had an interaction with time point for at least one ASV in at least one of the treatment periods at 

q<0.25 (Supplementary Table 2). We used the q<0.25 threshold here as this was a screening step. 

For the interaction terms with q<0.25, we next tested whether the corresponding candidate 

predictors could predict the relative abundance of ASVs at the End of each treatment period. 

High dietary fiber intake at baseline was predictive of lower relative abundance of Ruminococcus 

torques (q<0.03) and higher relative abundance of Dialister (q<0.03) at EndRS2, and high 

dietary fiber intake during the RS2 treatment period was predictive of higher relative abundance 

of Coprococcus at EndRS2 (q<0.04) (Table 2). High dietary fiber intake at baseline was 

predictive of lower relative abundance of Oscillospira at EndRS4 (q<0.002) (Table 2).   Finally, 

at EndCtl, high mean SAA was predictive of higher abundance of Sutterella (q=0.04). 

 

Changes in fecal SCFA concentration are predicted by alpha diversity and treatment order 

We found that, at the population level, both RS treatments decreased acetate, propionate, and 

total SCFA, while Ctl increased acetate, butyrate, propionate, and total SCFA (Figure 4A). 
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However, we found interindividual variability in the observed SCFA concentration changes 

associated with each treatment period (Figure 4B). Using logistic regression models with SCFA 

change scores as the response variable, we found that treatment order predicted propionate 

response to RS2 (Group B: ꞵ=-2.63, p=0.0003) and RS4 (Group B: ꞵ=2.94, p=0.0004) and total 

SCFA response to RS4 (Group B: ꞵ=1.57, p=0.02) (Figure 4C). β coefficient estimates indicate 

the difference in the log-odds of a response (a change score of 1) between Group A and Group B. 

Alpha diversity, as measured by Faith’s PD, prior to RS2 treatment was a significant predictor of 

butyrate change score (ꞵ: -0.2504, p = 0.03) and acetate change score (ꞵ: -0.2518, p = 0.04) 

(Figure 5). In other words, for every unit increase in Faith’s PD at PreRS2, the odds of an 

increase in butyrate and acetate were each 22% lower. 

 

Relative abundances of ASVs at PreRS2 predict propionate response to RS2 

We performed LASSO regression to select the most important variables, including ASVs at Pre, 

that predict butyrate, propionate, or acetate response to each treatment. We included ASVs at Pre 

as variables in our models to determine which microbes present in individuals prior to each 

treatment could be predictive of SCFA response. Similar to our logistic regression models, when 

applying LASSO, the predictor variables were most successful in predicting propionate response 

(Table 3). We found that 14 variables, treatment order and the relative abundances of 13 ASVs at 

PreRS2, were predictive of propionate response, defined as the log fold change of propionate 

between PreRS2 and EndRS2, with R2 = 0.64. Additionally, two variables, treatment order and 

the relative abundance of Clostridium symbiosum at PreRS4, were predictive of propionate 

response to RS4 (R2 = 0.31). No ASVs were predictive of change in acetate. Full results are 

presented in Table 3.  
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Discussion 

In this study, we identified predictors of gut microbiota response to two types of resistant starch, 

RS2 and RS4, and a digestible corn starch. We found that dietary fiber intake and mean SAA 

were the most significant predictors of changes in relative abundances of ASVs following RS 

and control treatments (Table 2). We also observed that treatment order and pretreatment gut 

microbiome alpha diversity significantly predicted fecal SCFA responses (Figure 4C and Figure 

5). 

 

Most of the significantly changed ASVs by the end of RS treatments were decreased in relative 

abundance, particularly for RS2 (Figure 2). Decreases in relative abundance after a dietary 

intervention are not necessarily surprising, because only the microbes that use the given substrate 

might be preferentially enriched over those that do not. In fact, the ASVs that were most 

significantly increased at EndRS2 corresponded to R. bromii and Blautia. These changes could 

be indicative of a shift towards increased capacity for SCFA production because R. bromii is a 

primary resistant starch degrader that breaks down starch into intermediate metabolites used by 

butyrate-producing microbes, and the Blautia genus plays a role in the production of acetate and 

propionate.26–28 Nevertheless, we also observed interindividual variability in relative abundances 

after both RS2 and RS4 consumption, in accordance with previous studies.6,10 Although two 

ASVs were increased at the population level, R. bromii during RS2 (q=0.044) and P. distasonis, 

which has beneficial effects,29 during RS4 (q<0.001), these ASVs also had the greatest variance 

in relative abundance between individuals. Consequently, determining factors that predict 

individual response in terms of these bacteria may be relevant to whether an individual can reap 

health benefits from consuming RS2 or RS4. 
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We found that prior dietary fiber intake could impact an individual’s response to RS 

supplementation, and the outcome differed depending upon the type of RS consumed (Table 2). 

This result suggests that dietary history should be considered when manipulating gut microbiome 

composition to promote beneficial species or decrease pathogenic species. This result is 

supported by our finding that treatment order also predicts SCFA response to RS 

supplementation (Figure 4C). 

 

We previously found that people with a high AMY1 CN have a greater abundance of gut 

microbes that ferment dietary fibers, such as RS, than people with a low AMY1 CN.18 Thus, we 

posited that individuals with high AMY1 CN or SAA would have greater enrichment of microbes 

that degrade RS and greater production of SCFAs resulting from RS supplementation compared 

to individuals with low AMY1 CN or SAA.18 Contrary to this, the only treatment after which an 

AMY1-related metric was significantly predictive of relative abundance was the control starch, 

which is digestible by host enzymes including salivary amylase. We found that mean SAA was 

positively correlated (Pearson’s r=0.46, p<0.001) with relative abundance of Sutterella at EndCtl 

(Table 2). Sutterella, an asaccharolytic microbe incapable of using polysaccharides as an energy 

source, is increased in individuals with metabolic syndrome on a low fiber diet compared to a 

dietary fiber- and RS-enriched diet.30 Our finding could be explained by competition between 

host and gut microbes for digestible substrate. With decreased availability of digestible starch 

because of host amylase degradation, the intestinal environment favors Sutterella. Interestingly, 

Sutterella and SCFAs have been observed in a positive feedback relationship. Peterson and 

colleagues found that, in vitro, increasing SCFAs can modulate an increase in Sutterella, 

speculating that the bacterium might have evolved to use SCFAs for energy due to its inability to 
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use polysaccharides.31 Although AMY1 CN was not a strong predictor of response to RS at the 

ASV level in this study, analysis of shotgun metagenomics data is warranted to determine the 

ability of AMY1 CN to predict changes in carbohydrate-active enzymes in response to RS.32 

 

At the population level, RS2 and RS4 treatments decreased SCFA concentrations by the End of 

each treatment compared to Pre (Figure 4A). These findings were surprising given our 

hypothesis that RS2 and RS4 would overall be associated with the enrichment of SCFA-

producing microbes and, in turn, increased SCFA concentrations. However, the interindividual 

variability in response to RS consumption that we observed would provide a plausible 

explanation for this result (Figure 4B). Further supporting the role of interindividual variability 

in our observations, studies on the impact of RS supplementation on host physiological 

outcomes, such as improvements in fasting blood glucose and insulin concentrations, have been 

conflicted.33–35 Because microbially generated SCFAs are involved in signaling pathways that 

impact blood glucose concentrations, these conflicts regarding the effectiveness of  RS at 

improving glucose homeostasis may be due, at least in part, to interindividual variability in gut 

microbiota response to the treatment.1,36,37 Future work would be required to determine the 

effectiveness of our predictors at predicting host physiological outcomes. 

 

The most striking result was that treatment order (the order in which participants received RS2 

and RS4) was a significant predictor of SCFA increase at End compared to Pre. Specifically, 

participants who received RS2 first (Group A) were more likely to have a propionate response to 

RS2 compared to those who received RS4 in the first treatment period (Group B). Conversely, 

participants in Group B were more likely to have a propionate response and a total SCFA 
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response to RS4 compared to Group A, who received RS2 first. Taken together, these results 

indicate a greater likelihood of a response to the RS received as the first of the three treatments 

during the study. The lack of a response during the third treatment, during which Group B 

switched to RS2 and Group A switched to RS4, could be suggestive of a priming effect from the 

first or second treatment on the microbial composition that carried over to the third treatment 

period. We speculate that the first treatment caused changes in the community’s functional 

capacity, which enhanced the efficiency of RS2 degradation in Group A and RS4 degradation in 

Group B. Finally, we found that lower alpha diversity prior to RS2 consumption was associated 

with higher odds of acetate and butyrate responses to RS2. The relationship between lower 

diversity and acetate and butyrate responses to RS2 may be due to the enrichment of microbes 

that ferment RS2 or produce SCFAs with the expense of a decrease in other microbes.  

 

Our study does have some limitations. The treatments could have caused the participants to 

adjust their dietary intake, e.g., the study crackers could have replaced another component of 

their usual diet or may have increased their overall caloric intake, which could have modified the 

effects attributed to the treatments. This is an inherent challenge of any dietary intervention study 

in which participants can consume their usual diets ad libitum. Nevertheless, the advantages of 

our approach were that participants were not asked to abandon their preferred habitual intake and 

the RS was provided in a purified form as opposed to being added in the form of RS-rich whole 

foods, which assured uniformity in supplementation of the RS types. Additionally, as in all 

studies that use measurement of SCFA concentrations in stool to quantify microbial community 

output, we were limited to capturing the 5-10% of SCFAs that are excreted in stool. This 

measure is typically used as a proxy for the amount of SCFAs produced by colonic microbes in 
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microbiome studies because more accurate procedures, such as sampling hepatic portal blood, 

can be impractical for human studies.  

 

Individualized gut microbial responses have the potential to influence the metabolic effects of 

the consumption of dietary fibers such as RS. In this study, we identified several factors that 

predict the variable response of gut microbiota to RS2 and RS4. Our findings support the 

premise that a personalized approach via characterizing features, such as host dietary fiber 

consumption and gut microbiota composition, prior to a nutritional intervention with RS may 

increase the likelihood of favorable health outcomes like increased beneficial SCFA production 

in the gut. 

 

Methods 

Study participants 

This study was conducted at Cornell University in Ithaca, New York. All human-related 

procedures and sample and data collection were approved by the Cornell University Institutional 

Review Board for Human Participant Research (Protocol Number: 1902008575) prior to 

recruitment and enrollment of participants. Study participants included healthy males and 

healthy, non-pregnant or lactating females 18-59 years old. Baseline participant characteristics 

can be found in Table 1. Exclusion criteria included a history of gastrointestinal diseases or 

surgeries; type 1 or type 2 diabetes, prediabetes or impaired glucose tolerance, self-reported 

untreated thyroid condition; use of antibiotics 6 months prior to the start of the study; and 

chronic alcohol intake (>5 drinks/day). This trial was registered at clinicaltrials.gov as 

NCT05743790 on February 24, 2023. 
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Study design 

We enrolled eligible participants into a seven-week open-label crossover dietary intervention 

study (Figure 1A). Each participant was assigned a study identification (ID) number based on the 

order in which they were enrolled in the study. All participants with an odd ID number were 

allocated to Group A, and all participants with an even ID number were allocated to Group B. A 

single participant with an odd ID number was allocated to Group B to balance the groups. 

Participants were instructed to consume crackers containing RS2, RS4, or a digestible control 

starch (Ctl), in their assigned treatment order, each for 10 days (Figure 1), in addition to their 

normal dietary intake. The groups received treatments in the following order. Group A: 

Treatment 1 = RS2, Treatment 2 = Ctl, Treatment 3 = RS4; Group B: Treatment 1 = RS4, 

Treatment 2 = Ctl, Treatment 3 = RS2. The three treatment periods were separated by 5-day 

washout periods when no study crackers were consumed. Participants collected fecal samples 

prior to (“PreRS2,” “PreCtl,” or “PreRS4”) and at the end of (“EndRS2,” “EndCtl,” or 

“EndRS4”) the treatment periods (Figure 1: see “Pre”and “End” time points).  

 

Dietary supplementation 

Participants were provided with crackers that contained RS2 (HI-MAIZE® 260 starch, 

Ingredion), RS4 (VERSAFIBE™ 1490 starch, Ingredion), or a digestible control starch 

(AMIOCA™ TF starch, Ingredion). Study cracker formulations are listed in Supplementary 

Table 3. During treatments 1 and 3, we aimed to provide 30 g of each type of RS per day. 

Following production, the crackers were analyzed for RS and dietary fiber content by Medallion 

Laboratories (Minneapolis, MN) using AOAC 2002.02 and AOAC 991.43 methods, respectively 

(Supplementary Table 4). After baking, the amount of RS in RS2 crackers was reduced from 30 
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g to 21.27 g per serving, possibly due to starch gelatinization. During each 10-day treatment 

period, we followed a dose escalation of study crackers where participants gradually increased 

the dosage over four days from the beginning of treatment to a final dose of 21.27 g per day for 

the last 7 days (Day 1: 25%, Day 2: 50%, Day 3: 75%, Day 4 - Day 10: 100%). Participants were 

asked to maintain their habitual dietary intake and physical activity across interventions and to 

avoid taking prebiotic- or probiotic-added foods, drinks, or supplements throughout the study. 

Study crackers were provided in individual bags containing a preportioned daily supply by 

weight. At the end of each treatment period, participants were asked to complete a short 

questionnaire to indicate the percentage of crackers consumed per day as an indicator of 

adherence to the protocol. Data from participants who reported a low adherence to cracker 

consumption were excluded from analysis. Low adherence was defined as having consumed 

<75% of study crackers for five or more days during the treatment or <50% on the day of or day 

before collecting their End time point fecal sample. 

 

Anthropometric measurements 

At baseline, we measured the participants’ total body fat percentage with a Tanita SC-240 Total 

Body Composition Analyzer using Bioelectrical Impedance Analysis (BIA) as per the 

manufacturer’s instructions. 

 

Dietary intake data 

During the baseline and treatment periods, we instructed participants to complete two 

nonconsecutive 1-day food records of one weekday and one weekend day, excluding study 

cracker consumption, using the Automated Self-Administered 24-hour (ASA24) Dietary 
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Assessment Tool 2020 developed by the National Cancer Institute, Bethesda, MD 

(https://epi.grants.cancer.gov/asa24).38 We adjusted dietary fiber intake by energy (g/1,000 

kcal/day) to account for differences in participants’ overall energy intake. Data were averaged 

from the two food records for each participant within the baseline week and each of the three 

treatments. Data were excluded if only one of the two records was completed. 

 

Saliva collection 

We obtained 5 ml of saliva at baseline and during each treatment for a total of four saliva 

samples throughout the study for each participant (Figure 1). Participants were instructed to 

refrain from brushing their teeth for a minimum of six hours and to avoid consuming any food or 

beverages including water for a minimum of 30 minutes prior to sample collection. They were 

then instructed to accumulate saliva in their mouth and express it into a 50 ml sterile conical 

tube. Saliva samples were stored on ice immediately after collection, aliquoted within three 

hours, and stored at -80˚C.  

 

AMY1 copy number determination by qPCR and ddPCR 

Genomic DNA was extracted from saliva samples using the QIAamp 96 DNA Blood Kit, 

QIAamp Blood Mini Kit, and the QIAamp Investigator Kit (Qiagen, cat # 51161, 51104, 56504). 

We performed qPCR using primers, previously described in Poole et al.,18 to amplify AMY1 

paralogs and our reference gene, EIF2B2 (CN=2). For each gene, each qPCR reaction consisted 

of 1 μl genomic DNA normalized to 5 ng/μl, 0.5 μl of each forward and reverse primer at 10 μM, 

3 μl of PCR grade H2O, and 5 μl iTaq™ Universal SYBR® Green Supermix (BioRad, cat # 

1725122), for a total volume of 10 μl per reaction. The qPCR conditions were as follows: initial 
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denaturation at 95°C for 5 minutes and 40 cycles of 95°C for 10 seconds and 60°C for 30 

seconds on a Roche LightCycler 480 Real-Time PCR Instrument. We made a standard curve 

using genomic DNA NA12286 (Coriell Institute; AMY1 CN = 2). The following genomic DNAs 

were used as positive controls on all qPCR plates, as their AMY1 copy numbers have previously 

been estimated: NA18972, NA12873, NA10472, NA12890, NA10852, NA12043, NA11992, 

NA12414, NA12340, NA06994, NA12342, NA12286, NA18522, and NA19138 (Coriell 

Institute). All reactions including standards and blanks were performed in quadruplicate and 

results were averaged for technical replicates with a coefficient of variation <0.05. At least two 

qPCR runs were performed for all participants and we calculated the median value of all qPCR 

results to determine the final qPCR AMY1 CN value. For digital PCR, genomic DNA was 

digested with the restriction enzyme HaeIII (New England Biolabs, cat # R0108S) and diluted to 

a final concentration of approximately 15 ng/µl. Digital PCR was performed using Life 

Technologies Taqman Copy Number Assay Id Hs07226361_cn for the AMY1 locus and TaqMan 

Copy Number Reference Assay Hs06006763_cn for the AP3B1 gene to normalize for total 

DNA. The reactions were run on a QX100 Droplet Digital PCR System in duplicate. We 

averaged the median of all qPCR results and the two digital PCR results to determine the final 

AMY1 CN used in our analyses. 

 

Salivary amylase activity assay 

We measured SAA for each saliva sample in triplicate, from up to four saliva samples donated 

from each participant throughout the duration of the study, using the Salimetrics Salivary Alpha-

Amylase Enzymatic Kit (SALIMETRICS, cat # 1-1902). The manufacturer’s protocol was 
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followed except for the use of 300 µl amylase substrate per reaction instead of 320 µl. We 

averaged SAA determined for each participant to obtain the mean SAA used in our analyses. 

 

Fecal sample collection 

Participants collected fecal samples at seven time points throughout the study (Figure 1). 

Samples were collected from a single bowel movement and stored at -80°C within 24 hours of 

collection. We lyophilized an aliquot from each sample for 16S rRNA gene sequencing. Samples 

from study participants who reported collection of fecal samples ≥ two days after completion of 

the treatment were excluded from analysis.  

 

16S rRNA gene sequencing 

DNA extraction was performed on 0.030–0.045 g lyophilized fecal samples using the DNeasy 

PowerSoil 96 HTP Kit (Qiagen, cat # 12888-100), following the manufacturer’s instructions with 

the specifications: samples were loaded into PowerBead Plates and stored at -20 °C in Bead 

Solution until extraction, and instead of vortexing to mechanically lyse samples, samples were 

placed in a BioSpec 1001 Mini-Beadbeater-96 for three minutes. We amplified the V4 region of 

the 16S rRNA gene using the universal primers 515F and barcoded 806R39 and approximately 

100 ng of genomic DNA from each sample in duplicate PCR reactions using 25 µl Classic++™ 

Hot Start Taq DNA Polymerase Master Mix (Tonbo Biosciences, cat # TB-31-5011-1000R), 22 

µl PCR water, 0.5 µl of each 10 nM primer, and 2 µl DNA. We used the PCR program 

previously described but with 25 cycles of amplification.39 We purified amplicons using Mag-

Bind TotalPure (Omega Bio-tek, cat # M1378-01) using a 1.8X bead ratio, pooled 100 ng of 

amplicons from each sample, and performed 2x250bp sequencing on an Illumina MiSeq 
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instrument. We performed microbiome bioinformatics with QIIME 2.40 We demultiplexed and 

quality filtered raw sequence data via q2-demux, denoised with DADA241 via q2-dada2, aligned 

ASVs with mafft42 via q2-alignment, and constructed a phylogenetic tree using fasttree43 via q2-

phylogeny. We used q2-diversity to calculate alpha-diversity (Faith’s Phylogenetic Diversity, 

Faith’s PD)44 after samples were subsampled without replacement to 23081 sequences per 

sample based on the sample with the lowest sequence count. We used the q2-feature-classifier45 

classify-sklearn naïve Bayes classifier against the Greengenes 13_8 99% OTUs reference 

sequences46 to assign taxonomy to ASVs.  

 

Short-chain fatty acid measurements 

SCFAs including acetate, propionate, isobutyrate, butyrate, isovalerate, valeric acid, isocaproic 

acid, caproic acid, and heptanoic acid were quantified using ultra-performance liquid 

chromatography (Acquity UPLC system, Waters Corporation, Milford, MA) at the PennCHOP 

Microbiome Program Microbial Culture & Metabolomics Core. Total SCFA concentration was 

calculated as the sum of all nine SCFAs quantified.  

 

Statistical analysis 

We performed all statistical analyses using RStudio version 4.2.1.47 We considered p-values < 

0.05 to be statistically significant. When adjusting p-values we used the Benjamini–Hochberg 

false discovery rate correction and considered a q-value (adjusted p-value) of <0.05 to be 

statistically significant. To calculate fold changes of ASVs, we added a pseudocount of 1 to all 

ASV counts prior to calculating relative abundances. We used R package ComplexHeatmap48 

and circlize49 to generate all heat maps. 
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To assess the response of ASVs to each treatment, we used the R package MaAsLin2 

(Microbiome Multivariable Association with Linear Models 2).50 We normalized ASVs using 

total sum scaling then fit log-transformed linear mixed models after 10% prevalence filtering. 

We fit three types of models. First, we fit main effects models using time point (PreRS2 vs 

EndRS2, PreRS4 vs EndRS4, or PreCtl vs EndCtl) as a fixed effect and participant as a random 

effect in each model to identify ASVs that, on average, changed in relative abundance from Pre 

to End of each treatment period. Then we added interaction terms to each of these separate 

models (AMY1 CN x time point, AMY1 Group x time point, mean SAA x time point, baseline 

dietary fiber intake x time point, treatment dietary fiber intake x time point, and treatment order x 

time point), to evaluate the ability of the candidate predictors to affect changes in relative 

abundances. We also fit main effects models at End time points only, with each candidate 

predictor as an independent variable in a separate model, to detect whether they were predictive 

of relative abundance of ASVs at the end of each treatment.  

 

For SCFA analysis we fit linear mixed models with log SCFA concentration as the response 

variable, time point (Pre vs End) as a fixed effect and participant as a random effect. We also fit 

logistic regression models with SCFA change score as the response variable (1= increase in 

concentration and 0 = decrease or no change in concentration from Pre to End of each treatment 

period), and treatment order and Faith’s PD as fixed effects in separate models. Since the limit of 

detection of the quantification method was 5.0 µmol/g of stool, a count of 2.5 µmol/g was added 

to all raw SCFA measurements for analyses where fold change was calculated. 
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We used the R package glmnet51 to perform 10-fold cross-validated Least Absolute Shrinkage 

and Selection Operator (LASSO) linear regressions to model the log fold change of acetate, 

propionate, and butyrate concentrations between Pre and End of each treatment period. For 

variable selection, we included the predictors: 10% prevalence-filtered ASVs at Pre, body fat 

percentage, sex, treatment order, AMY1 CN, AMY1 Group, mean SAA, and self-reported 

physical activity (minutes/week of vigorous, moderate, and low intensity activity) at baseline.  
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TABLE AND FIGURE LEGENDS 
 
Table 1. Baseline characteristics for all participants assigned to a study arm. 
There were 35 participants in Group A and 33 in Group B, for a total of 68 who were assigned to 
a study arm. Data are presented as mean (standard deviation) or n (%). There were no significant 
differences between Group A and B at baseline for age, sex, body fat percentage for males, body 
fat percentage for females, and energy-adjusted dietary fiber intake at baseline. T-tests and 
Wilcoxon rank sum tests were used for numerical variables and chi-squared tests were used for 
binary variables. 
  
Table 2. Candidates that predict the relative abundance of ASVs at the End of treatment. 
Candidates that significantly predict the relative abundance of ASVs at the End of treatment at 
(q<0.05). The 𝛽 column represents the change in relative abundance for the specified ASV for 
each unit of change in the specified candidate predictor variable. SE: standard error. 
 
Table 3. ASVs at Pre RS and treatment order are predictive of propionate response to RS. 
This table shows the contributions of independent variables included in LASSO models to 
predict the log fold change of propionate and butyrate concentrations, as represented by their 𝛽 
coefficient values, as well as the percentage of the dependent variable explained by the 
independent variables (R2). The relative abundances of the ASVs at Pre of the specified 
treatment period were used in the models. Repeated taxa within the same treatment indicate the 
same taxonomic assignment for different ASVs. Empty cells indicate the specified variable did 
not contribute to the model. 
 
Figure 1. Study Design.  
(a) Participants were enrolled in one of two arms of a seven-week crossover dietary intervention 
study during which we supplemented their diets with crackers containing one of three starches: 
RS2 = resistant starch type 2, RS4 = resistant starch type 4, Control = digestible starch. (b) Flow 
diagram of participant enrollment and completion of treatments. 
 
Figure 2. Change in gut microbiome composition after RS2 and RS4 treatments varies between 
individuals. 
(a) Heat map showing the change in mean relative abundance of ASVs across all participants by 
treatment (RS2, RS4, and control) for taxa that significantly differed in abundance from start to 
end of the RS2 and RS4 treatments in our MaAsLin2 models (q<0.05). No ASVs significantly 
changed in response to the control treatment. For each cell, colors indicate the log2 fold change 
in relative abundance of taxa between Pre treatment and End treatment time points 
 (𝑙𝑜𝑔2(!"#$%&'"	$)*+,$+-"	$%	.+,	%/"$%0"+%

!"#$%&'"	$)*+,$+-"	$%	1/"	%/"$%0"+%
)). Color annotations on the left (ASVs significant) 

denote the treatment period during which the marked taxa were significantly differentially 
abundant between Pre and End of treatment. Repeated taxa indicate the same taxonomic 
assignment to different ASVs. 
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(b,c) Log2 fold changes of the relative abundances of the ASVs for individual participants. ASVs 
included in these heat maps were identified to be significantly different between Pre and End of 
RS2 (b) or RS4 (c) by MaAsLin2.  
 
Figure 3. Characterization of candidate predictors in the study population.  
(a)  AMY1 CN and (b) mean SAA distribution in our study population for participants included in 
analyses. Low AMY1 CN ≤ 5, High AMY1 CN ≥ 9, and Medium AMY1 CN ≥ 6 and ≤ 8. (c) 
There were no significant differences (p<0.05) in dietary fiber intake between the treatment 
periods. (d) We determined gut microbiome alpha diversity using Faith’s PD at each time point 
and tested for differences between time points using a linear mixed model. There were no 
significant differences in Faith’s PD between time points except a decrease observed at End Ctl 
compared to Baseline (ꞵ = -0.60, SE = 0.18, p = 0.02). 
 
Figure 4. Conserved and variable fecal SCFA response to RS2, RS4 and control treatments. 
(a) This heat map depicts the results of linear mixed models with the time point (Pre vs End) of 
each treatment as a fixed effect, participant as a random effect, and log SCFA concentration as 
the response variable. Coefficient estimates (𝛽) indicate whether the specified SCFA increased 
or decreased at End compared to Pre for each treatment. (b) We observe interindividual 
variability in log2 fold changes of fecal SCFA concentrations between Pre and End of each 
treatment. (c) Spaghetti plots shown here depict change in propionate and total SCFA 
concentrations between Pre and End of each treatment period for individual participants. Panels 
are marked with an asterisk (*) where treatment order (see Figure 1A) was a significant predictor 
of change score as determined by logistic regression analysis.  
 
Figure 5. Gut microbiota diversity prior to RS2 treatment predicts change in butyrate and acetate 
in response to RS2 treatment.  
Faith’s PD prior to the consumption of RS2 is a significant predictor of butyrate change score 
(ꞵ=-0.2504, p=0.03) and acetate change score (ꞵ=-0.25, p=0.04) as determined by logistic 
regression analysis. 
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Table 1. Baseline characteristics for all participants assigned to a study arm 

 Group A 
(n=35) 

Group B 
(n=33) 

Total p value 

Age in years 28 (9) 27 (11) 27 (10) 0.376 

Sex, n (%)    0.542 

Female 22 (62.9%) 24 (72.7%) 46 (67.6%)  

Male 13 (37.1%) 9 (27.3%) 22 (32.4%)  

Body fat percentage     

Female 26.2 (7.9) 24.9 (6.6) 25.50 (7.2) 0.531 

Male 18.0 (5.1) 20.40 (7.0) 19.00 (5.9) 0.351 

Energy-adjusted 
dietary fiber intake at 
baseline in grams 

12.7 (5.5) 11.0 (4.3) 11.9 (5.0) 0.235 

 
 
Table 2. Candidates that predict the relative abundance of ASVs at the End of treatment. 

Treatme
nt 

Candidate 
Predictor 

ASV 𝛽 SE p value q value 

RS2 Dietary fiber 
intake during 
Baseline 

[Ruminococ
cus] torques 
 

-1.37 0.33 0.0001 
 

0.03 

Dialister 0.49 0.12 0.0002 0.03 

Dietary fiber 
intake during 
RS2 

Coprococcus 0.44 0.10 0.0001 0.04 

RS4 Dietary fiber 
intake during 
Baseline 

Oscillospira -1.4 0.27 6.45x10-6 0.002 

Ctl Mean SAA Sutterella 1.3 0.31 9.99x10-5  0.04 
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Table 3. ASVs at Pre RS and treatment order are predictive of propionate response to RS. 

Treatment Predictor Response: 
Propionate 

Response: 
Butyrate 

RS2 Treatment Order -1.58  

Lachnospiraceae 69.35  

Oscillospira 2428.80  

Anaerostipes -19.98  

Bacteroides plebeius -0.39  

Clostridium symbiosum 272.62  

Coprococcus 3.54  

Oscillospira 381.87  

Lachnospiraceae 31.31  

Alistipes massiliensis -23.35  

Lachnospiraceae 75.50  

Lactococcus 33.15  

Ruminococcus -109.28  

Ruminococcus -7.16  

Coprococcus  4.30 x 10-15 

 R2=0.64 R2=0 
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Treatment Predictor Response: 
Propionate 

Response: 
Butyrate 

RS4 Treatment Order 1.15  

Clostridium symbiosum 31.69  

  R2=0.31 R2=0 

Treatment Predictor 
 

Response: 
Propionate 

Response: 
Butyrate 

Control Bacteroides caccae  -6.74 

AMY1 Group  0.07 

 R2=0 R2=0.06 
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