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Abstract 

Early identification of Alzheimer’s Disease (AD) risk can aid in interventions before disease 

progression. We demonstrate that electronic health records (EHRs) combined with 

heterogeneous knowledge networks (e.g., SPOKE) allow for (1) prediction of AD onset and (2) 

generation of biological hypotheses linking phenotypes with AD. We trained random forest 

models that predict AD onset with mean AUROC of 0.72 (-7 years) to .81 (-1 day). Top identified 

conditions from matched cohort trained models include phenotypes with importance across 

time, early in time, or closer to AD onset. SPOKE networks highlight shared genes between top 

predictors and AD (e.g., APOE, IL6, TNF, and INS). Survival analysis of top predictors 

(hyperlipidemia and osteoporosis) in external EHRs validates an increased risk of AD. Genetic 

colocalization confirms hyperlipidemia and AD association at the APOE locus, and AD with 

osteoporosis colocalize at a locus close to MS4A6A with a stronger female association.  
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Introduction 

Neurodegenerative disorders are devastating, heterogeneous, and challenging to 

diagnose, and their burden in an aging population is expected to continue to grow1. Among 

these, Alzheimer’s Disease (AD) is the most common form of dementia after age 65, and its 

hallmark memory loss and other cognitive symptoms are costly and onerous to both patients 

and caregivers. Approaches to curb this impact are moving increasingly to targeting 

interventions in at-risk individuals prior to the onset of irreversible decline2–4. To this end, 

advancements in AD biomarkers, diagnostic tests, and neuroimaging have improved the 

detection and classification of AD, and disease-modifying treatments have been approved, but 

there is still no cure and much remains unknown about its pathogenesis5,6. This is in part due to 

limited availability of longitudinal data or data linking molecular and clinical domains.  

 

In the past few decades, electronic health records (EHRs) have become a source of rich 

longitudinal data that can be leveraged to understand and predict complex diseases, particularly 

AD. Prior applications of EHRs for studying AD include deep phenotyping of AD7, identification 

of AD-related associations and hypotheses8, and models classifying or predicting a dementia 

diagnosis from clinical data modalities9. Data available in clinical records can also better 

represent a clinician’s knowledge of a patient’s clinical history at a point in time prior to further 

diagnostic studies or imaging, allowing a prediction model to be low cost to implement as a first 

line application in primary care or for initial risk stratification10. While machine learning (ML) has 

been previously applied to EHRs for general dementia classification and prediction11–13, these 

approaches are limited in their specificity for the AD phenotype, lack of biological interpretability, 

or rely on data modalities that may not be readily available in the EHR to facilitate early 

prediction (e.g. neuroimaging14–16 or special biomarkers17,18). Sex as a biological variable is an 

important covariate for AD heterogeneity with potential contributions to differing risks and 

resilience, but sex-specific contributions have often been omitted from prior AD machine 

learning models19,20. To our knowledge, there have not yet been approaches that utilize vast 

EHR data for predicting future risk of AD with consideration of applicability and explainability of 

models.  

 

 With recent advances in informatics and curation of multi-omics knowledge, there is 

increasing interest in integrative approaches to derive insights into disease. Heterogeneous 

biological knowledge networks bring in the ability to synthesize decades of research and 

combine human understanding of multi-level biological relationships across genes, pathways, 

drugs, and phenotypes, with vast potential for deriving biological meaning from clinical data21. 

There has been much AD-research leveraging specific data modalities or combining a few 

modalities (transcriptomics22,23, genetics24, neuroimaging25), but there is still a need for 

meaningful integration that allows for the understanding of the relationship between 

pathogenesis and clinical manifestations. Heterogeneous knowledge networks provide an 

opportunity to derive biological hypotheses from clinical data by synthesizing knowledge across 

multiple data modalities to explain potential relationships between shared clinical 

associations26,27.  

 

In this paper, we utilize EHR data from the University of California, San Francisco 

(UCSF) medical center to develop ML models for AD onset prediction and generate hypotheses 

of high-level biological relationships between top predictors and AD. We carry out clinical model 
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construction for prediction and proceed with interpretation of matched patient models, 

controlling for demographics and visit-related confounding, to identify biologically relevant 

clinical predictors. We further demonstrate interpretability using heterogeneous knowledge 

networks (SPOKE knowledge graph)28 and validate predictors with supporting evidence in 

external EHR datasets and through genetic colocalization analysis. Our work not only has 

implications for determining clinical risk of AD based on EHRs, but also can lead to further 

research in identifying hypothesized early phenotypes and pathways to help further the field of 

neurodegeneration.  
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Results 

From the UCSF EHR database of over 5 million patients, 2,996 AD patients who had undergone 

dementia evaluation at the Memory and Aging Center and thus had expert-level clinical 

diagnoses were identified and mapped to the UCSF Observational Medical Outcomes 

Partnership (OMOP) EHR database. From the remaining patients, 823,671 control patients 

were extracted with over a year of visits and no dementia diagnosis. After identifying an index 

time representing AD onset (see Methods) and filtering for availability of at least 7 years of 

longitudinal data, 749 AD patients and 250,545 control patients were identified (demographics 

shown in Table 1). From that, 30% was held-out for model evaluation and 70% utilized for 

model training (Figure 1B). For each time point and within sex strata, ML models were either 

trained for AD onset prediction or trained on the AD cohort and a subset of propensity -score 

matched controls for hypothesis generation, where balancing was performed on demographics 

(sex, race, ethnicity, birth year, prediction age) and visit-related factors (years in EHR, first EHR 

visit age, number of visits, number of EHR concepts, and days since first EHR record, 

Supplemental Table 3, matched example in Table 1). 

 

ML models based on clinical data can accurately predict Alzheimer’s Disease onset up to 

7 years in advance  

Random forest (RF) models trained on only clinical features from time points between -7 years 

to -1 day to AD onset were evaluated on the held-out dataset with average bootstrapped Area 

Under the Receiver Operating Characteristic (AUROC) curve between 0.72 (median 0.75) for 

the -7 year time model to 0.81 (median 0.85) for the -1 day model. The RF models performed 

with Area Under the Precision Recall Curve (AUPRC) greater than the reference held-out test 

set AD prevalence of 0.003 (average/median of 0.05/0.01 for -7 year model and 0.10/0.06 for -1 

day model, Figure 1C). With addition of demographics and visit-related features, RF model 

performance improved with average bootstrapped AUROC between 0.86 (median 0.89) to 0.90 

(median 0.94) and AUPRC between mean 0.06 (median 0.04) and 0.27 (median 0.14) for the -7 

year to -1 day model, respectively (Figure 1C).  

 

Top features across each time point model (see Methods) included features across clinical data 

domains, including vaccines, abnormal feces content, hypertension, hyperlipidemia (HLD), and 

cataracts (Supplemental Figure 1A). Demographic and visit-related features became predictive 

for AD diagnosis when added to the model, which is not unexpected since these features may 

contribute to confounding that influence the identified features and predicted risk of AD 

diagnosis (Supplemental Figure 1A). EHR diagnoses mapped to phecode categories29 (see 

Methods) identified sense organs, circulatory, and musculoskeletal phecode categories for early 

models, and mental disorder category for late models (Supplemental Figure 1B). Among the 

clusters of top 50 ranked phecodes, one cluster identified phecode features that maintain high 

relative importance throughout the time models (HLD, hypertension, dizziness, abnormal stool 

contents), and other clusters contain features with relative importance at specific time points 

(Supplemental Figure 1C). While some of these features support prior identified AD risk factors, 

the lack of adjustment may lead to feature identification as proxies for age in risk determination 

but not directly relevant to disease pathogenesis. Therefore, we proceed to identify disease 

relevant features by training models on patients matched on demographics and hospital 

utilization for the goal of hypothesis generation.  
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Models trained on matched cohorts can identify hypotheses for biologically relevant AD 

predictors 

To train models that are robust for AD prediction for identifying predictors without demographic 

and visit-related confounding, we train time point models on a matched set of participants at a 

1:8 ratio between AD and controls. Sufficient balance was achieved on numerical covariates 

that were highly important in unmatched demographic models (Supplemental Figure 2, 

Supplemental Table 3).  

 

RF models trained on only clinical features from -7 years to -1 day performed with average 

bootstrapped held-out test set AUROC between .58 (median 0.57) for the -7 year time model to 

.77 (median 0.77) for the -1 day time model. The models performed with AUPRC greater than 

the held-out test set AD prevalence of 0.003 with improvement closer to time 0 (mean/median of 

0.02/0.008 for -7 year time model and 0.08/0.03 for -1 day model, Figure 2A). When 

demographics and visit-related information were added as features, the models performed with 

minimal improvement, with average bootstrapped test set AUROC between 0.61 (median 0.61) 

to 0.71 (median 0.72) and similar AUPRC (mean/median of 0.02/0.009 for -7 year time model 

and 0.05/0.03 for -1 day model, Figure 2A). 

 

Among top features sorted by average importance across time models, top features include 

amnesia and cognitive concerns, HLD, dizziness, cataract, congestive heart failure, 

osteoarthritis, and others (Figure 2B). These top features are consistently important even when 

demographics and visit information was added to the model, although demographic and visit 

features still had minimal influence on prediction (Figure 2B).   

 

Since matching allows for the control of the influence of visit and demographic-related variables 

utilized in matching on AD prediction, the remaining diagnoses features can be identified for 

hypothesis generation with greater specificity for AD predictive risk. Top phecode categories 

include mental disorders, sense organs, and endocrine/metabolic categories (Figure 2C). 

Among clusters of specific phecodes, one cluster included features with maintained predictive 

importance throughout time models (HLD and congestive heart failure), while other clusters 

include phecodes that are relatively predictive several years prior to AD onset (osteoarthritis, 

allergic rhinitis). A cluster of features emerges as important around -3 years (osteoporosis, 

dizziness, back pain, hemorrhoids, palpitations), and some features only emerge as important 

closer to the time of AD onset (memory loss, vitamin D deficiency, Figure 2C). Together, this 

shows that the model can identify a combination of conditions that can lead to AD risk 

identification for a patient of a given age and hospital utilization burden.  

 

Stratification by sex allows identification of features that are predictive within a subgroup 

Since sex plays a role in AD risk, models were trained within male or female-identified sex 

groups to perform sex-specific prediction and identify sex-specific predictive features, without 

and with matching on demographics and hospital utilization (demographics in Supplemental 

Table 4). Models trained on clinical features performed with average held-out test set AUROC 

between 0.75 (median 0.76) and 0.71 (median 0.71) for -7 year female and male models to 0.84 

(median 0.86) and 0.82 (0.89) for -1 day female and male models. For AUPRC, the models 

performed greater than the held-out test set prevalence (0.0036 for females, 0.0023 for males) 

with performance of 0.056-0.11(median 0.022-0.061) and 0.041-0.15(median 0.015-0.056) for 
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females and male -7 years to -1 day time models respectively. With addition of demographics 

and visit-related features, AUROC/AUPRC improved considerably (Supplemental Figure 

3A).Top features include sense organs and musculoskeletal phecode categories in female-only 

models, and circulatory system and digestive phecode categories as important among male-

only models (Supplemental Figure 3B).  

 

To identify sex-specific biologically relevant clinical predictors for hypothesis generation, models 

were also trained by matching on demographic and visit-related factors within each subgroup 

(matching results in Supplemental Table 4). Time point models trained only on clinical features 

performed with mean held-out test set AUROC between 0.60-0.68 (median 0.58-0.74) and 0.41-

0.75 (median 0.43-0.84) for female and male models respectively (Figure 2D). For AUPRC, 

models performed greater than held-out test set prevalence with performance ranging from 

0.031-0.095 (median 0.0076-0.046) and 0.0040-0.125 (0.0033-0.022) for female and male 

models respectively. Slight improvement in performance was observed with the addition of 

demographics and visit-related information (Figure 2D). 

 

Top phecode categories in the female models include respiratory/circulatory system features 

earlier on, to musculoskeletal features in the -5 year model, to sense organs and mental 

disorders in the -1 year and -1 day model. Top categories in male models include endocrine/ 

metabolic/circulatory disorders earlier, to digestive and genitourinary in -5 and -3 models, to 

mental disorders in -1 day model (Supplemental Figure 3B). When comparing specific 

phecodes, some are general across the subgroups such as HLD, congestive heart failure (early 

models), and memory/cognitive symptoms (later models) (Figure 2E, Supplemental Figure 3C). 

Female-driven features across time models included osteoporosis, palpitations, allergic rhinitis, 

myocardial infarction, major depressive disorder, and abnormal stool contents. Male-driven 

features included chest pain, hypovolemia, sexual disorder, tobacco use disorder, and 

neoplasms (Figure 2E). 

 

Use of a knowledge graph allowed identification of potential biological explanations 

underlying predictive features 

Next, we utilized the SPOKE knowledge graph28 in order to explain potential biological 

relationships between top clinical model features and AD. We mapped biological features 

(genes, proteins, compounds, etc.) between top 25 clinical predictors (mapped to disease 

nodes) and AD node for each model (see Methods). 

 

Genes that appear in shortest path networks among matched models across multiple time 

include APOE, AKT1, INS, ALB, IL1B, INF, ALB, IL6, SOD1, etc. and compounds include 

atorvastatin, simvastatin, ergocalciferol, progesterone, estrogen, cyanocobalamin, and folic acid 

(Figure 3). These genes and compounds also share relationships to multiple occurring model 

input nodes, particularly familial hyperlipidemia and osteoporosis among all time point models 

(Figure 3). Notable nodes that appear over at least 2 models include C9orf72, TREM2, APP, 

MAPT with relationships to input nodes of musculoskeletal and joint disorders, deafness, and 

depression (Figure 3).  
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Hyperlipidemia validates as a top predictor of AD in external EHRs and a genetic link 

confirmed in APOE locus 

In order to further validate the utility of models to identify predictive disease associations, we 

followed up on HLD as a top feature that was a consistent predictor across all models. Utilizing 

a retrospective cohort study design in an EHR on five hospitals across the University of 

California system (University of California Data Discovery Platform (UCDDP)) with exclusion of 

UCSF, HLD-diagnosed patients (exposed group, n = 364,289) had a faster progression to AD 

event compared to matched unexposed patients (n = 364,289, matched demographics in 

Supplemental Table 6) (Figure 4A, Supplemental Figure 4A, log-rank test p-value<0.005). This 

was further confirmed with a Cox proportional hazards analysis (hazard ratio (HR) 1.52 (95% 

Confidence Interval (CI) 1.46-1.57), visit/demographic adjusted HR (aHR) 1.26 (1.21-1.31), p-

value <0.005, Supplemental Figure 4C).  

 

In order to investigate potential relationships between HLD and AD, the HLD-specific knowledge 

network demonstrated shared gene associations with LSS, APOE, INS, SMAD3, ALB, and 

GFPT1 (Figure 4B). Locus intersections between high LDL cholesterol and AD across two 

independent GWAS studies across 408,942 AD patients from Schwartzentruber et al.30 and 

94,595 LDL Cholesterol patients from Willer et al.31 respectively identified multiple shared 

variants, including ch19:44,892,362(hg38):A>G (rs2075650) and ch19:44,905,579(hg38):T>G 

(rs405509)(genetics.opentargets.org/study-

comparison/GCST002222?studyIds=GCST90012878). PheWAS for rs2075650 on the UK 

Biobank verified significant associations with cholesterol levels, HLD, AD, and family history of 

AD (Figure 4C). Colocalization H4 probability, a measure that determines the probability two 

traits are associated at a locus based on prior genetic studies, supports a causal link with locus 

variants for APOE protein QTL and both HLD traits and AD traits (Figure 4D). 

 

Female-specific predictor of osteoporosis validates in an external EHR with potential 

explanations given in SPOKE and genetic colocalization analysis 

 

Osteoporosis was identified as an important feature in the matched models as a female-specific 

clinical predictor of AD. In the UCDDP, osteoporosis-exposed patients (n=68,940) showed a 

quicker progression to AD compared to matched unexposed patients (n=68,940, matched 

demographics in Supplemental Table 7) (Figure 5A, Supplemental Figure 4B, log-rank test p-

value<0.005). When stratified by sex, this progression is significant when comparing between 

female osteoporosis (n=57,486) vs female controls (n=58,636). Cox hazard analysis further 

supported osteoporosis as a general risk feature for AD (HR 1.81 (95% CI 1.70-1.92), aHR 1.59 

(1.45-1.70), p<.005 Supplemental Figure 4D).    

 

Osteoporosis-specific SPOKE network demonstrated shared gene associations with IL6, 

SMAD3, TNF, HSPG2, GATA1, GFPT1, HFE, INS, and ALB (Figure 5B). Based on previous 

GWAS studies across 472,868 AD patients from Schwartzentruber et al.30 and 426,824 heel 

bone mineral density (HBMD) patients from Morris et al.32, a shared risk locus was found in 

Chromosome 11 between HBMD and AD among the MS4A gene family 

(https://genetics.opentargets.org/study-comparison/GCST006979?studyIds=GCST90012877), 

with the closest gene as MS4A6A. A comparison of prior GWAS of up to 71,880 AD patients 

from Jansen et al.33 and sex-stratified heel bone mineral density (HBMD) GWAS (111,152 

Female, 166,988 Male) of UK Biobank patients from Neale Labs (www.nealelab.is/uk-biobank/) 
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supports a female-specific association at the shared locus (Figure 5C). Colocalization analysis 

supports a link between MS4A6A and AD (H4 = 0.987), female-specific HBMD with AD, and 

phenotypes with MS4A6A expression (Figure 5D, AD vs Female HBMD H4 = 0.998, MS4A6A 

vs Female HBMD H4 = 0.997). This statistical significance is not replicated for male specific 

HBMD GWAS (Figure 5D, AD vs Male HBMD H4 = 0.00263, MS4A6A vs Male HBMD H4 = 

0.00266). MS4A6A weighted associations with other phenotypes from Open Targets Genetics 

found locus associations with many inflammatory phenotypes including c-reactive protein, 

lymphocyte percentage, and neutrophil count (Figure 5E).  

Discussion 

While there is great potential in ML on clinical data, balancing clinical utility and biological 

interpretability can be challenging. Cohort selection and data preprocessing is a crucial first 

step. To address this, we used thousands of EHR concepts to develop prediction models for 

expert-identified AD diagnosis, and selected an index time suggesting AD onset. Our general 

prediction model shows predictive power up to -7 years before the defined index time of AD 

onset. This model can help assess disease risk before time-consuming and costly detailed 

neuropsychological, biomarker, or neuroimaging assessments. The model may also identify at-

risk patients for follow-up or inclusion in early intervention or clinical trials. Furthermore, 

interpretable models allow clinicians to understand what clinical features were used in 

determining prediction probability and assess the model output with greater trust compared to 

“black box” models. 

 

In order to identify early clinical predictors that may be biologically relevant for AD diagnosis, we 

trained models on patients matched by pre-identified confounding variables such as 

demographics and visit-related features so that these features have less influence in AD 

prediction. Machine learning models still retain the ability to predict AD diagnosis with mean 

AUROC over .70 after the -3 year time model for random forests. Inclusion of demographic and 

visit-related features minimally improved model performance, which is expected since matching 

increased the specificity of the task to predict AD onset controlled on demographics and visit-

related features. In terms of clinical utility, the models trained on matched patients provide 

predictive power for a given clinical scenario between two patients with similar pre-test 

probability of AD risk (e.g. same age and disease burden), with application of this model as a 

tool for determining post-test probability of future AD risk. Furthermore, by balancing on pre-

identified confounders such as demographics and visits, top features may be interpreted with 

more biological relevance for AD risk. For example, while we identified essential hypertension 

as an important feature in the models trained on the full cohort, this diagnosis became less 

important in the models trained on matched cohorts, suggesting hypertension may be 

nonspecific for AD and may instead be more directly related to aging or disease burden.  

 

Our time models trained on matched cohorts identify or strengthen known or suggested 

hypotheses for early clinical predictors of AD, such as hyperlipidemia as a feature for all time 

point models. We also identify relative importance of features years in advance, such as allergic 

rhinitis and atrial fibrillation as early predictors, osteoporosis and dizziness as non-neurological 

predictors, and cognitive impairment and vitamin D deficiency as late predictors of AD. These 

findings potentially support hypotheses suggesting AD can be associated with general aging or 

frailty, which might present in non-neurologic body systems either prior to or concurrent with AD 
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34–38. Nevertheless, while these models can identify hypotheses of predictive features, EHR data 

can still capture clinical biases or misdiagnoses, and further studies can investigate the 

influence of behavioral bias vs biological relevance.  

 

We further trained models on sex-stratified subgroups (female vs male), with and without 

matching on demographics and visit-related covariates, in order to identify sex-specific drivers 

of clinical predictors. Given evidence that sex may influence different pathways to AD 

diagnosis22,39,40, it is important to consider how patient heterogeneity may impact the training, 

utility, and interpretation of a prediction model. From the matched cohort models, we identified 

clinical features in each subgroup that were consistent with the general models, such as 

hyperlipidemia as important in every model and memory loss as important in late models. 

Furthermore, we identified features that were sex-specific, such as osteoporosis, depression, 

allergic rhinitis, and abnormal stool contents as predictors enriched among women, and chest 

pain, hypovolemia, and prostate hyperplasia as predictive among men. Further work can seek 

to disentangle the biological meaning of these sex-specific predictive features: whether they 

reflect sex-specific non-neurological manifestation of prodromal states, contributing risk factors, 

or even sex biases in clinician evaluation and treatment (e.g., bone density evaluation may arise 

more often after a fall). These models also demonstrate that for a heterogeneous disorder like 

AD, subgroup composition, like sex ratio of a cohort, can influence features that are identified as 

important. For example, the higher preponderance of females leading to sex-specific predictive 

factor, osteoporosis, being identified as a general predictive variable in the general group. This 

further indicates that both generalizable models and subgroup-specific models can provide 

valuable insight, both general and personalized, for a complex disease.  

 

We investigated shortest paths between top model predictors and heterogeneous networks 

(SPOKE) in order to identify biological hypotheses that may explain the relationship between 

identified early clinical phenotypes and AD. This allowed us to identify multiple genes that may 

be relevant that can give insight into the high order constellation of clinical symptoms and AD. 

For example, we were able to identify known genetic associations with dementia based upon 

symptoms from the rest of the body, such as through identification of known autosomal 

dominant early AD genes such as APP and PSEN 1/241. Other genes identified with possible 

associations with AD include APOE, HFE, and HSPG2 variants that impact AD risk42–46. While 

these associations are included in the SPOKE network due to evidence in literature, the 

association of these genes with other early clinical predictors is less established, and thus this 

analysis allowed us to identify a novel constellation of phenotypes observable in a clinical 

setting that can lead a clinician to suspect future AD risk. 

 

To validate top clinical predictors, we utilized a hypothesis-driven approach to investigate the 

relationship between two identified features (hyperlipidemia and osteoporosis) and progress to 

AD diagnosis in an external database across the University of California EHR system. For both 

phenotypes, the UC-wide EHR database supports a potential increased AD diagnosis risk due 

to evidence of decreased time to AD and increased hazard of AD diagnosis in patients exposed 

to the predictor of interest. The association between hyperlipidemia and AD has been identified 

in prior clinical studies and systematic reviews47–50. In particular, APOE is a well-established 

associated genetic locus51, and APOE polymorphism is known to modify AD risk, particularly in 

individuals carrying the ε4 allele52. Many studies have also shown APOE association with 

elevated lipid levels and cardiovascular risk factors53,54. The validation of these well-known 
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associations not only show that our ML models on clinical data can pick up hyperlipidemia as a 

risk factor, but also by utilizing the SPOKE network we can integrate known relationships in 

literature to potentially explain the association between hyperlipidemia and AD and identify the 

APOE locus as a potential shared causal mechanism as demonstrated in the colocalization 

results. Beyond the ability to identify known relationships, the SPOKE network also proposes 

biological explanations of higher-order shared associations between clinical predictors, such as 

ALB as a shared genetic association between congestive heart failure, malnutrition, 

hyperlipidemia, and AD, or INS as a shared association between osteoporosis, hypertension, 

hyperlipidemia, and AD. Prior studies have identified potential mechanisms underlying the 

relationship between energy utilization, lipid levels, nutrition, and neurodegeneration55–57, 

although specific hypotheses of mechanistic relationships are an area for exploration in future 

studies. 

 

The association between osteoporosis and AD is also validated to a lesser extent in clinical 

studies and meta-analysis58,59, with unclear but possible sex-modification of this effect. Our 

study identifies osteoporosis as a predictor for AD among females prior to AD, but shows less of 

a relative predictive effect for males compared to other clinical features. Nevertheless, it is still 

possible that shared relationships between osteoporosis and AD exist in males. A bone mineral 

density GWAS analysis of female patients shows p-value association with AD GWAS around 

the MS4A family locus, and this is further supported by MS4A6A eQTL colocalization with both 

Alzheimer and female HBMD. Prior studies have established the MS4A gene cluster as a risk 

for AD, with one study identifying the cluster based on mendelian randomization60, and another 

that identifies a stronger female-specific effect size for MS4A6A61. Some studies investigating 

the role of the MS4A family suggest mechanisms that involve immune function, particularly 

among microglia62. While this gene may not have been identified in SPOKE, SPOKE did capture 

direct pathways through known markers of inflammation such as IL6 and TNF, and we also see 

MS4A6A as highly associated with measurements of immune cells in the blood. Further studies 

will be needed to validate the exact associative mechanism between osteoporosis and AD, 

although some prior hypotheses suggest the potential impact of genetic variants on osteoclast 

function, amyloid clearance, or oxidative stress response63,64.  

 

This study has several limitations. First, EHR data complexity and quality can affect prediction 

models, and it is challenging to distinguish the influence of clinician/patient behavior, 

sociological factors, or underlying biology on identification of features. Matching can improve 

interpretability by removing influence of non-biological covariates, but follow-up validation of 

hypotheses across omics data types is needed. Due to changing patient demographics and 

societal factors, prediction models should be continuously trained, updated, and evaluated if 

implemented in the clinical setting to ensure effective utilization and account for biases that may 

have been learned from the data. Second, clinical EHR data is sometimes sparse and provides 

a superficial interval snapshot of a patient’s health, so the absence of a record may not 

necessarily reflect the absence of a condition. Third, survival models have extensive right 

censorship and do not take into account competing risks. Fourth, since AD is heterogeneous 

and differential diagnosis is nuanced and subjective even in expert hands, predictive 

performance can be limited by label quality and the signal from clinical features can be noisy, 

limiting performance and generalizability. Future work investigating heterogeneity may identify 

subgroup-specific features where subgroups can be divided based on biotype, dementia 

syndromes, racialization, and so on. Future applications with hierarchical models, transfer 
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learning, or fine-tuning on a subpopulation can increase personalization of models. Fifth, our 

sex-stratified analysis was restricted to patients that identified as female or male. Future studies 

could explore AD patterns among intersex individuals. Lastly, predictive features identified are 

relevant prior to AD onset, and future work is needed to identify diagnostic-relevant AD 

comorbidities, or conditions that can occur after AD progression. Since predictive features are 

identified as hypotheses, the direct mechanism and causal pathway relating a phenotype to AD 

is not known. Future work can investigate causality with mendelian randomization or 

mechanistic studies. 

 

In this study, we demonstrate how formulation of prediction models can influence utility for 

predictive application or biological interpretation. We show how models can be utilized to 

identify early predictors, and utilize SPOKE to explain relationships via shared biological 

associations. Lastly, we show that our models can pick up known associations with HLD 

through APOE, and identify a lesser known association with osteoporosis through MS4A6A that 

may be female-specific. This study contributes to the field of EHR integrative research that can 

inform future directions in both AD care and research. 
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Methods 

Patient Identification 

Alzheimer’s Disease (AD) patients were identified based on UCSF Memory and Aging Center 

database containing over 9000 patients mapped to the UCSF OMOP-format EHR. These 

patients have undergone dementia evaluation at the Memory and Aging Center and thus had 

expert-level clinical diagnoses. The remaining control patients were obtained from the rest of the 

UCSF EHR, with over 1 year of records and no existing records of dementia diagnosis among 

the G[123]* ICD-10 categories (Supplemental Table 1).  

 

An index time was determined to filter the input features prior to first clinical indication of 

dementia. This was defined among the AD cohort as the first time of any AD diagnosis, 

dementia diagnosis, or prescription of cognitive drug (ATC codes N06D, Supplemental Table 2) 

as determined to be the first time point of AD manifestation. For controls, the index time was 

defined as 1 year before the last recorded EHR visit date. In order to maintain a consistent 

patient population for training and evaluation of machine learning models, the final AD and 

control cohort was identified by filtering to patients who are at least 55 years of age at the index 

time and have existing clinical visits and concepts 7 years prior to the index time.  

Data Extraction and Preparation 

Demographics (birth year, gender, race, ethnicity), clinical concepts (conditions, drug 

exposures, abnormal measures), and as visit-related features (age at prediction, first visit age, 

years in UCSF EHR) were extracted before the index time for the AD and Control cohort from 

the UCSF Observational Medical Outcomes Partnership (OMOP) EHR database. Abnormal 

measures were extracted from the OMOP measurement table based on the numeric value 

falling either above range_high or below range_low.  

 

To train models in advance of the index time, clinical information was extracted for each patient 

including all data up to a time point X before the index time, where X includes -7 years, -5 years, 

-3 years, -1 years, and -1 day. These time points represent the knowledge of a patient’s clinical 

history leading up to time X before time 0, which represents the knowledge of a clinician when a 

patient comes for a visit. All existing clinical features (conditions, drugs, measurements) were 

one-hot encoded. Demographic and visit-related features (prediction age, first visit age, years in 

UCSF EHR, log(number prior visits), log(number prior concepts), log(days since first clinical 

event)) were scaled between 0-1 on the training data (log indicates natural logarithm, feature 

scaling allows for multiple ML model approaches). All features with no variance were removed.  

Machine Learning Preparation and Training 

Random forest (RF) binary classification time point models for AD were trained using the patient 

representation at each time point before the index time. Training was performed on the 70% 

split, and the 30% held-out test set was utilized to evaluate the performance of all models. 

Models were trained with clinical features only (clinical model) and with clinical features + 

demographics and visit-related information (clinical + demo/visits model). For the models trained 

on matched samples, control patients were matched to AD patients at a 1:8 ratio on 

demographics and visit-related information utilizing propensity score matching65 (propensity 
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score estimated based upon a logistic regression model, nearest neighbor matching without 

replacement). 

 

Random forests were trained using scikit-learn package66, with balanced class weight 

parameter. Hyper-parameters were tuned (grid search) based on cross-validation performance 

(5 folds) of AUROC to determine parameters of n_estimators (n_features, n_features*2, 

n_features*3), max_depth (3, 5, None), and max_features (sqrt, log2). The number of 

estimators and max depth were tuned to balance between performance and overfitting, while a 

subset of features (max_features) was utilized per tree to help account for high correlation 

between features67,68. Models were evaluated on bootstrapped subsamples (50-200 iterations, 

1000 samples) of the 30% held-out test set and evaluated on AUROC (area under the receiver 

operating curve) and AUPRC (aura under the precision-recall curve).  

 

Stratification: Both models for full patient cohorts and matched cohorts were re-performed in sex 

strata in the same fashion (female strata, male strata). AD patients were re-matched to controls 

within each strata for the matched patient trained models. Models were evaluated similarly 

based on AUROC/AUPRC on the bootstrapped held-out test set.  

Top Feature Interpretation 

Random forest models were investigated for feature interpretation due to the combined 

interpretable nature of the models (compared to neural networks) and the ability to capture 

nonlinear relationships (compared to logistic regression models)69. Average gini impurity 

decrease for each feature was utilized to evaluate the importance of each feature in the random 

forest models (feature importance). The average importance for each feature was taken across 

each time point models (-7yr, -5yr, -3yr, -1yr, -1day) to obtain an across-model importance for 

each model type, and normalized by the maximum importance value across all time point 

models within each model type (e.g. random forest) and group (e.g. female strata). Feature 

importances are then ranked within each model to obtain relative importance within each of the 

time points.   

 

Since a patient’s exposure to a medication or a laboratory test is often a result of a diagnosis, 

we pursued interpretability based on diagnostic features that have been mapped to phecodes, 

which is a semi-manual hierarchical aggregation of meaningful EHR phenotypes29. This allows 

for a lossy categorization of detailed OMOP features (OMOP IDs) to phecodes (OMOP ID → 

SNOMED → ICD10 → phecode) and phecode category. SNOMED IDs were mapped to ICD10 

based upon recommended rule-based mappings from the National Library of Medicine (NLM) 

September 2022 release (www.nlm.nih.gov/healthit/snomedct/us_edition.html). ICD10 codes 

were then mapped to phecodes based on the release from Wu et al.70 To obtain the importance 

within each phecode or phecode category, the average importance for the top 5 detailed OMOP 

features per phecode or phecode category was computed, and ranked between phecodes or 

categories. For phecodes across all models and sex-stratified models, the ranking of importance 

of phecodes across each time model was hierarchically clustered with Ward linkage. 

 

To compare top phecodes between sex-stratified models to identify sex-specific features, top 

random forest features over an average importance threshold of 1e-6 were identified per time 
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model trained on matched participants. Upset plots were then generated for each time point 

based upon this overlap. Female-driven features are defined as features that exist in both the 

full model and female models, or only female models, and male-driven features defined 

analogously.  

UC-wide validation analysis with hypothesis-driven retrospective cohort analysis  

Two top clinical features were selected from the matched all patient model (hyperlipidemia) and 

matched sex-specific models (osteoporosis) and further followed up on an external EHR 

database to validate the feature as predictive and conferring risk for AD diagnosis. With these 

features defined as exposures, hypothesis-driven analysis was performed with a retrospective 

cohort study design on the University of California hospital EHR database (University of 

California Data Discovery Platform (UCDDP)) with exclusion of any patients seen at UCSF, so 

with included institutions consisting of UC Davis, UC Los Angeles, UC Riverside, UC San 

Diego, and UC Irvine. Exposed patients were identified with the exposure (hyperlipidemia or 

osteoporosis) and with recruitment age as the age of exposure diagnosis. Exposures were 

identified by string-matching and mapping to all descendants or related concepts based on the 

OMOP relationship tables, and final SNOMED codes are shown in Supplementary Information 

8. Controls were identified among the remaining patients and with recruitment age defined as 

the first visit age in the visit_occurrence table. All patients are then filtered to have at least 2 

years of records in the EHR, and last visit age was utilized for right censorship. 

 

The outcome of interest was AD diagnosis, which was identified based on SNOMED codes 

26929004, 416780008, 416975007 (Supplementary Information 7). Exposed and control 

(unexposed) groups were then matched based on demographics (gender, race, ethnicity), birth 

year, and recruitment age. Analysis of time to AD diagnosis includes Kaplen Meyer survival 

analysis with log-rank test to compare survival curves between groups, and cox proportional 

hazard models were utilized to obtain unadjusted hazard ratios (HR) and adjusted hazard ratios 

(aHR) by demographics, visit information, with and without stratification by recruitment age or 

birth year. 

Heterogeneous Network analysis 

Heterogeneous knowledge networks, such as SPOKE, integrate known relationships across 

biological and phenotypic data realms in databases and literature. Such a network could provide 

hypotheses to explain relationships between phenotypes that may not be immediately 

known21,26. We proceed with interpretation on the matched models, with the top 25 model 

features taken per time point and mapped to SPOKE nodes based on Nelson et al.27 Note that 

mappings may not be 1 to 1. All shortest paths were then computed from each input node to the 

Alzheimer’s Disease node (DOID: 10652), and shortest paths were filtered to exclude certain 

node types (Anatomy, SideEffect, AnatomyCellType,Nutrient) and edges 

(CONTRAINDICATES_CcD, CAUSES_CcSE, LOCALIZES_DlA, ISA_AiA, PARTOF_ApA, 

RESEMBLES_DrD). Edges were also filtered based on the following criteria: TREATS_CtD at 

least phase 3 clinical trial, UPREGULATES_KGuG/ DOWNREGULATES_KGdG p-value at 

most 1E-4, PRESENTS DpS enrichment at least 5 and fisher p-value at most 1E-4.  

 

If multiple detailed OMOP features map to the same node, the importance of the node was 

obtained by the average of OMOP feature importances. Networks for all time models were 

combined into a single network (union of nodes and edges), and total node importance was 
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determined by the maximum across time. Network metrics were then computed with Cytoscape 

‘Network Analyzer’ function71. The combined time model networks were then sorted by 

eccentricity metric on the x-axis (representing maximum distance to all other nodes, with lower 

number representing higher importance) and number of individual time model network 

occurrences in the y-axis (showing node importance persistence across time). Note that due to 

heterogeneous nature of edges and lack of edge weighting, distance in the figure is not 

meaningful.  

 

To focus on two selected features for the full matched model (hyperlipidemia (HLD)) and the 

female-specific matched model (osteoporosis), the combined network was filtered based on first 

and second degree neighbors of the starting feature of interest. This allows for visualization of 

associated genes and AD, as well as relationships with other top model features found from the 

clinical models.  

Validation with Genetic Datasets 

We further explored the association between clinical predictors and AD by identifying shared 

genetic loci between top model phenotypes and AD, based on colocalization probability and 

weighted evidence association scores computed from Open Targets Genetics72,73 

(genetics.opentargets.org). Colocalization analysis is a method that determines if two 

independent signals at a locus share a causal variant, which helps increase the evidence that 

the two traits (e.g. hyperlipidemia and AD, or protein expression and AD) also share a causal 

mechanism. It is a Bayesian method which, for two traits, integrates evidence over all variants at 

a single locus to evaluate the following hypothesis that two associated traits share a causal 

variant. This is the H4 probability.  

 

We first identified shared loci between the selected phenotypes (HLD or osteoporosis) and AD 

by identifying the genetic intersection between AD and related phenotypes in Open Targets 

Genetics.  

 

For HLD and AD, we utilized the Open Targets Genetics platform to identify overlapping 

variants and shared locus between LDL Cholesterol and Family History of AD or AD. PheWAS 

between a shared SNP and UK Biobank phenotypes were plotted and extracted from the Open 

Targets Genetics platform. Coloc analysis tables between the gene, molecular QTLs, and 

phenotypes were extracted, with protein QTLs for APOE specifically identified based on blood 

plasma data from Sun et al.74  and Suhre et al.75   

 

Similarly for osteoporosis and AD, we utilized the Open Genetics platform to identify shared 

locus between heel bone mineral density (proxy for osteoporosis) and Family History of AD or 

AD. To further investigate the locus, we extracted GWAS summary statistics from Jansen et 

al.43 for AD and sex-stratified GWAS summary statistics for heel bone mineral density (HBMD) 

from Neale’s Lab GWAS round 2, Phenotype Code:3148, based on data from the UK Biobank 

(www.nealelab.is/uk-biobank/)76. We then conducted colocalization analysis using the coloc 

method described in Giambartolomei et al.77, from R package coloc 5.1.0. Summary statistics 

for MS4A6A cis eQTLs in blood were extracted from eQTLGen78, and colocalization analysis 

was performed between AD, sex-stratified HBMD, and MS4A6A eQTLs on the Locus Region 

60050000-60200000 of Chromosome 11. To investigate further associations with the locus, 
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MS4A6A associations with all other phenotypes was extracted from Open Targets Genetics 

platform with inclusion of a weighted literature evidence association scores.  

 

Ethical Approval 

This study was approved by the Institutional Review Board of University of California San 

Francisco (IRB #20-32422). 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 19, 2023. ; https://doi.org/10.1101/2023.03.14.23287224doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.14.23287224
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Code and Data Availability 

EHR concepts and identification approaches are described in Methods, and concepts are provided in 

Supplemental Tables 1 and 2. Phecodes can be downloaded at phewascatalog.org/phecodes_icd10 or 

phewascatalog.org/phecodes, and mappings between ICD-10 codes and SNOMED can be accessed at 

www.nlm.nih.gov/healthit/snomedct/us_edition.html. Data for UK Biobank phenotype GWAS can be found 

at www.nealelab.is/uk-biobank/, and eQTL data can be downloaded from www.eqtlgen.org/. The UCSF 

EHR database can be accessed to UCSF-affiliated. The SPOKE knowledge network can be accessed at 

spoke.rbvi.ucsf.edu/, and more details about the network can be found in Morris et al.28 and mappings to 

EHR concepts can be found in Nelson et al.27 
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Figures and Tables 

Figure 1:  Overview of Patient Selection and Random Forest Model 

Performance

 

A. From the UCSF electronic health records and the UCSF Memory and Aging center 

database, patients and clinical information was extracted, filtered, and prepared for time 

points before the index time. All clinical features extracted were one hot encoded and 

trained on random forest models to predict future risk of Alzheimer’s Disease diagnosis. 

Models were evaluated on a 30% held-out test set to compute AUROC/AUPRC, and 

interpreted based on feature importances and using a heterogeneous knowledge 

network (SPOKE). Top features were then further validated in external databases. 

B. Filtering of a consistent set of AD and Control patients from the UCSF EHR for model 

training and testing. Filtered patient cohorts are shown in Table 1, and split with 30% 

held-out set for testing.   
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C. Bootstrapped performance of random forest models on the full held-out test set 

(prevalence of AD on held-out set = 0.003). Bootstrapped AUROC performance for 

models trained and tested on female strata and male strata are also shown.  
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Table 1: Demographics of patients used in models, and an example 

matched cohort for the -1 year model 

 

All Filtered Patients (pre-test/train split)  
   

   

Control AD 
 

n 
  

250545 749 
 

Birth year, mean (SD)  1945.5 (10.2) 1933.9 (5.3) 
 

First visit age, mean (SD)  51.2 (11.4) 57.0 (10.4) 
 

Sex, n (%) Female  139548 (55.7) 468 (62.5) 
 

 

Male  110829 (44.2) 281 (37.5) 
 

 

Nonbinary/Unknow

n 

 
168 (0.1) 

  

R&E, n (%) Asian/NHPI  32427 (12.9) 151 (20.2) 
 

 

Black  17111 (6.8) 62 (8.3) 
 

 

Latinx  15036 (6.0) 53 (7.1) 
 

 

Other/Unknown  28177 (11.2) 45 (6.0) 
 

 

White  157794 (63.0) 438 (58.5) 
 

n 
 

 4184 523 
 

Year of birth, mean (SD)  1934.2 (5.6) 1934.0 (5.3) -0.042 Matched Patients for -1 year model     

  Control AD SMD 

n  4184 523  

Birth year, mean (SD)  1934.2 (5.6) 1934.0 (5.3) -0.042 

First visit age, mean (SD)  57.2 (9.4) 56.9 (10.5) -0.028 

Prediction age, mean (SD)  73.1 (5.8) 73.1 (5.8) -0.002 

Years in EHR, mean (SD)  15.9 (7.8) 15.9 (7.9) -0.004 

Log(n prev visits), mean (SD)  3.6 (1.5) 3.7 (1.6) 0.065 

Log(n concepts), mean (SD)  3.1 (1.3) 3.3 (1.4) 0.108 

Log(days since first event), mean (SD)  8.5 (0.4) 8.5 (0.4) 0.043 

Sex, n (%) Female  2343 (56.0) 317 (60.6) 0.094 

 

Male  1841 (44.0) 206 (39.4) 
 

R&E, n (%) Asian/NHPI  705 (16.8) 112 (21.4) 0.219 

 

Black  520 (12.4) 35 (6.7) 
 

 

Latinx  280 (6.7) 39 (7.5) 
 

 

Other/Unknown  223 (5.3) 32 (6.1) 
 

 

White  2456 (58.7) 305 (58.3) 
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Figure 2: Models trained on matched cohorts allows for identification of 

hypotheses for AD predictors 

 
A. Bootstrapped performance of models trained on cohorts matched by demographics and 

visit-related factors on the full held-out test set (prevalence of AD on held-out set = 

0.003).  

B. Top clinical phecode categories for matched models ranked by the average of the top 5 

importance for each phecode category. Sorting is based on this average across time 

models.  

C. Top 50 phecodes (detailed features) across time models, with features clustered based 

on ward distance of rankings.  
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D. Bootstrapped performances of sex-stratified matched models on the held-out test set 

(reference AUPRC = .0036 female, .0022 male). 

E. Overlap of top matched model features for models trained on all patients, female 

stratified patients, and male stratified patients, with model cutoff importance (RF average 

impurity decrease) greater than 1E-6. Specific features are listed, with bold features 

indicating top features across all 5 time models, and non-bolded features indicating top 

features across 4 time models.  
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Figure 3: SPOKE provides biological interpretation of hypotheses 

associated with shared clinical phenotypes 

 

Combined SPOKE network of all shortest paths to Alzheimer’s Disease node (DOID:10652) for 

top 25 input features from matched AD model at every time point. Network is organized based 

on the number of time point occurrences (y-axis) and eccentricity of a node in the subnetwork 

(x-axis). Specific time point occurrences are colored by the pie chart within each node.  
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Figure 4: The hyperlipidemia and AD association is validated externally 

with APOE as a shared causal genetic link 

 
A. Kaplan Meyer curve on UC-wide EHR for hyperlipidemia (HLD) as the exposure. Log 

rank test is significant for all HLD vs controls (p=2.36e-85), female HLD vs female 

controls (p=3.64e-69), and male HLD vs male controls (p=8.39e-22). 

B. 1st and 2nd degree neighbor of hyperlipidemia on the full network representing all 

shortest paths from the top 25 features per time model.  

C. PheWAS for variant rs2075650 on a shared loci associated with both hyperlipidemia and 

AD, plotted based on associations with phenotypes in the UK Biobank.  

D. Plot of APOE protein expression colocalization with H4 (probability two associated traits 

share a causal variant) from Open Targets Genetics. Each dot represents a specific 

phenotype categorized based on trait (x-axis). Each color represents an APOE 

molecular trait measured from blood plasma from Sun et al. and Suhre et al.  
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Figure 5: The association between osteoporosis and AD is validated 

externally with MS4A6A as a potential female-specific shared genetic link 

 

A.  Kaplan Meyer curve on UC-wide EHR for osteoporosis as the exposure. Log rank test is 

significant for all osteoporosis vs controls and similarly for female strata, * p<0.005. 

B. 1st and 2nd degree neighbors of osteoporosis node on the network representing all 

shortest paths from top 25 feature per time model. 
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C. P-P plots between Alzheimer’s Disease GWAS (Jensen et al. 2018, n= 455,258) and 

sex-stratified heel bone mineral density GWAS (Female n = 111,152, Male HBMD n = 

166,988, UK Biobank / Neale’s Lab GWAS) around the MS4A locus (left and middle 

plots) at region 60050000-60200000 of Chromosome 11 (locus plot on right).  

D. MS4A6A cis eQTL association with AD, and association with sex-stratified heel bone 

mineral density, from eQTLGen. 

E. Open Targets associated phenotype graph for MS4A6A with association score 

computed based on a weighted harmonic sum across evidence (described in platform-

docs.opentargets.org/associations#association-scores). Purple words indicate diseases, 

while black words indicate measurements. Circles are phenotypes colored by the 

association score, and boxes represent the most general categories. 
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