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Abstract 9 

Vaccination campaigns have been rolled out in most countries to increase the vaccination 10 

coverage and protect against case mortality during the ongoing pandemic. To evaluate the 11 

effectiveness of COVID-19 vaccination, it is vital to disentangle the herd effect from the 12 

marginal effect and parameterize them separately in a model. To demonstrate this, we 13 

study the relationship between the COVID-19 vaccination coverage and case fatality rate 14 

(CFR) based on a U.S. vaccination coverage at county level, with daily records from 15 

March 11th, 2021 to Jan 26th, 2022 for 3109 U.S. counties. Using segmented regression, 16 

we discovered three breakpoints of the vaccination coverage, at which the herd effects 17 

could potentially exist. Controlling for county heterogeneity, we found the size of the 18 

marginal effect was not constant but actually enlarged as the vaccination coverage 19 

increased, and only the herd effect at the first breakpoint was statistically significant, 20 

which implied indirect benefit of vaccination may exist at the early stage of a vaccination 21 

campaign. Our results have demonstrated that public health researchers should carefully 22 

differentiate and quantify the herd and marginal effects in analyzing vaccination data, to 23 

better inform vaccination campaign strategies as well as evaluate vaccination 24 

effectiveness.  25 
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regression.  27 

1 Introduction 28 

The world has been living in the tunnel of COVID-19 pandemic since the outbreak in 29 

2019, yet without a clear idea about its outlet. A great hope has been placed in COVID-30 

19 vaccines to end the pandemic, as clinical trial results suggested COVID-19 31 

vaccination can effectively prevent symptomatic infections especially severe symptoms, 32 

which protects against mortality associated with infections [1-3]. For this reason, public 33 

demand for COVID-19 vaccines was fervent and vaccination campaigns were initiated all 34 

over the world, for an early safe vaccine supply for populations at risk as well as a 35 

massive vaccine supply to match the public’s demand [4-5]. For an example, the Food 36 

and Drug Administration (FDA) issued emergency use authorizations (EUA) for Pfizer-37 

BioNTech and Moderna COVID-19 vaccines in December 2020, which marked the 38 

beginning of the vaccination campaign in the U.S. COVID-19 vaccines were then first 39 

allocated for populations at risk, the elderly population (age 65+) and the frontline 40 

(mostly healthcare and education) workers. After president Biden announced that all 41 

Americans would be eligible for COVID-19 vaccines by May 1st, 2021, the vaccination 42 

campaign was further accelerated [6]. Booster doses of COVID-19 vaccines were 43 

introduced to restore the level of protection (antibody) eroded by time [7-9]. By 44 

November 24, 2022, more than 80% of Americans have received at least one dose and 45 

more than 68% of Americans have completed a primary series of COVID-19 vaccine 46 

[10]. Literature has reported that the vaccination coverage is negatively associated with 47 
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case fatality rate (CFR), which refers to the mortality rate among those who are infected 48 

(i.e., confirmed COVID cases) [11-12].  49 

It is necessary to decompose the protection effect of COVID-19 vaccines in order to 50 

better understand the underlying mechanism [13]. The protection effect of COVID-19 51 

vaccines is in general a mix of two different effects, i.e., the direct effect and the indirect 52 

effect [14]. The direct effect refers to direct protection of inoculated individuals, as the 53 

vaccines can effectively reduce individual susceptibility to COVID-19 infection and 54 

severe symptoms [13-14]. The indirect effect, however, is a bit abstract and attributed to 55 

herd immunity, which is a conception states that transmission of the agent can be largely 56 

prevented if a fixed proportion of the population is immunized (either by vaccination or 57 

by recovery from infection; this proportion is called herd immunity threshold), rendering 58 

an infectious disease insignificantly dangerous for public health [15-16]. The indirect 59 

effect is defined as the protection gained by unvaccinated people, through the reduced 60 

number of infected people in the population as well as their reduced infectiousness, 61 

which can be achieved by vaccinating certain proportions of the population [13]. It 62 

should be noted here that those proportions we mentioned above are different from herd 63 

immunity threshold as they potentially correspond to different levels of herd immunity in 64 

a population [17]. In fact, those proportions are thresholds for triggering the indirect 65 

effect (with different sizes) in the course of a vaccination campaign for a target 66 

population.  67 

The above concepts of the direct and indirect effects should be contextualized in the 68 

investigation of the impact of COVID-19 vaccination on case fatality rate (CFR). The 69 

direct effect could be interpreted as the reduction in CFR associated with one unit/percent 70 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.11.23287133doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.11.23287133
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

increase in the vaccination coverage, i.e., the direct effect evaluates the marginal gain 71 

during a vaccination campaign. For this reason, the direct effect is referred to as the 72 

marginal effect in this paper. The indirect effect could be interpreted as the additional 73 

reduction in CFR if the vaccination coverage passes certain unknown thresholds, i.e., the 74 

indirect effect quantifies the additional gain potentially due to herd immunity in the 75 

process of vaccinating a target population. To better characterize its nature, the indirect 76 

effect is referred to as the herd effect in this paper. It’s particularly important to 77 

disentangle the herd effect from the marginal effect, for the following three reasons: First, 78 

the marginal and herd effects address different scientific questions with regard to distinct 79 

groups of people (i.e., the vaccinated individuals versus the unvaccinated individuals). 80 

Second, as discussed earlier, there are underlying thresholds for triggering the herd 81 

effects, and those thresholds essentially delineate different stages in a vaccination 82 

campaign where the marginal and herd effects may not be constant across those stages. 83 

Third, given the aforementioned two reasons, a deeper knowledge about the protection 84 

effect of vaccination is likely gained by learning the marginal and herd effects, and 85 

vaccination strategies could be optimized for a target population based on such 86 

knowledge. Unfortunately, we haven’t seen research on this important topic so far.  87 

Our goal in this paper is to estimate the herd and marginal effects based on a dataset from 88 

the U.S. Centers for Disease Control and Prevention (CDC), which records various 89 

vaccination coverages for each U.S. county daily [10]. We hypothesize that both the herd 90 

and marginal effects exist and are significantly negative for modeling CFR. The 91 

segmented regression is employed first to identify the breakpoints which are considered 92 

as the thresholds for triggering the herd effect, based on data of all the U.S. counties 93 
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included in our study. With the identified breakpoints, we estimate the herd and marginal 94 

effects at national level using segmented regression and at county level using mixed 95 

model. Data on social vulnerability index (SVI) for individual counties is also included to 96 

control for health disparities due to sociodemographic factors at county level [18]. 97 

Heterogeneity among individual counties is further evaluated by the random effects 98 

associated with the herd and marginal effects among in a mixed model.  99 

This paper is structured as follows: In the next section of materials and methods, the data 100 

used in this paper will be described in details, along with the models adopted for analyses 101 

at both national level and county level. The results from our analyses at national level and 102 

county level are presented and explained in the section of results, with a focus on the 103 

estimation and interpretation of the herd and marginal effects of vaccination regarding 104 

CFR. Our findings will be summarized in the discussion section, where important 105 

implications and limitations of our study will also be discussed.  106 

2 Materials and Methods 107 

2.1 Data 108 

Our data comes from three different sources. The US vaccine administration and equity 109 

dataset is obtained from the CDC website and has vaccination coverages of the general 110 

population and its subpopulations (defined by age) recorded daily at county level [10]. 111 

The percent of people who completed a primary series of vaccination in the general 112 

population was extracted from the dataset and served as the main covariate in our model. 113 

The daily CFR at county level was calculated as the ratio between the daily count of 114 

deaths and the daily count of COVID-19 cases, based on the time series summary tables 115 

of COVID-19 deaths and confirmed cases, which were accessed from the COVID-19 116 
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data repository by the Center for Systems Science and Engineering (CSSE) at John 117 

Hopkins University [19]. To further control for county heterogeneity, we used a dataset 118 

from the Centers for Disease Control and Prevention Social Vulnerability Index (CDC 119 

SVI) database, created by the Geospatial research, Analysis & Services Program under 120 

the Agency for Toxic Substances and Disease Registry [18]. The CDC SVI database was 121 

established to help health officials and emergency response planners identify counties 122 

that will most likely need support before, during, and after a hazardous event. CDC SVI 123 

ranks counties on 15 social factors and further groups them into four themes, namely 124 

socioeconomic status, household composition & disability, minority status & language, 125 

and housing type & transportation [20]. We chose to use the theme-specific ranking 126 

which was constructed by summing the percentiles of the factors under each theme. The 127 

theme-specific ranking was set in the range from 0 to 1, with higher values indicating 128 

greater vulnerability. 129 

The vaccination coverages and daily CFR for the period between March 11th, 2021 and 130 

Jan 26th, 2022 were selected. We chose March 11th, 2021 as it was the date when 131 

president Biden announced that COVID-19 vaccine would be available for all American 132 

adults by May 1st, 2021, an event marked the beginning of massive vaccination campaign 133 

in the U.S. We chose Jan 26th, 2022 as the ending date of our study as it was reported on 134 

this date that Omicron variant accounted for 99.9% of the new infections. This would 135 

alleviate the concern of potential confounding effect of Omicron variant regarding the 136 

relationship between the vaccination coverage and CFR. 31 counties with missing values 137 

on county FIPS code, vaccination coverages, the CDC SVI or CFR were excluded, and 138 

the final dataset has 1001098 observations clustered by 3109 U.S. counties. To prepare 139 
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the dataset for analysis at national level, we further extracted the average CFR and 140 

average vaccination coverage (i.e., the percent of people who completed a primary series 141 

of COVID-19 vaccine) across all the counties in our dataset for each day during our study 142 

period.  143 

2.2 Models 144 

Segmented regression models were employed to estimate the herd and marginal effects. 145 

Segmented regression is very similar to ordinary regression, with the only difference that 146 

regression coefficients should be estimated repeatedly for different local regions whose 147 

boundaries are defined by breakpoints, which represent the thresholds of structural 148 

changes in regression models [21-22]. Typically, the first step is to determine the number 149 

of breakpoints, which can be achieved by a model selection alike procedure, i.e., models 150 

with different number of breakpoints are compared in terms of their model fit indices 151 

(such as AIC or BIC) to determine the optimized number of breakpoints. The second step 152 

is to estimate the locations of breakpoints given the number of breakpoints. The third 153 

step, based on the estimated breakpoints, is then to fit regression models to different local 154 

regions separated by the breakpoints. Normally, one would expect all regression 155 

coefficients to be changeable across different regions, unless otherwise specified.  156 

For our analysis at national level, we intend to examine the relationship between CFR 157 

and the vaccination coverage, based on the dataset comprising only the average 158 

vaccination coverage and CFR in the U.S. The following regression model is formulated 159 

for the analysis at national level:  160 

𝒚𝒕 = 𝜷𝟎 + 𝜷𝟏𝑿𝒕 + ∑ 𝜶𝒌

𝒎

𝒌=𝟏

𝑰{𝑿𝒕∈𝚿𝒌} + ∑ 𝜹𝒌

𝒎

𝒌=𝟏

𝑿𝒕𝑰{𝑿𝒕∈𝚿𝒌} + 𝜺𝒕 (1) 
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where 𝑦𝑡 and 𝑋𝑡 denote the average CFR and vaccinate coverage in the U.S on day t. The 161 

model (1) is built on the estimated breakpoints 𝑏1 < 𝑏2 < ⋯ < 𝑏𝑚, which implies there 162 

are 𝑚 + 1 different local regions and 𝑚 different breakpoints in total (except 𝑏0 and 163 

𝑏𝑚+1 which are the minimum and maximum of 𝑋𝑡). The local regions separated by the 164 

breakpoints are denoted by Ψ𝑘 = [𝑏𝑘 , 𝑏𝑘+1) for 𝑘 = 1, 2, ⋯ , 𝑚. The reference local 165 

region Ψ0, although omitted from the model (1), refers to the local region Ψ0 = [𝑏0, 𝑏1). 166 

The indicator function 𝐼{𝑋𝑡∈Ψ𝑘} creates the dummy variable which assigns value 1 if the 167 

value of 𝑋𝑡 falls in the local region Ψ𝑘 and 0 otherwise, which operationally divides the 168 

range of 𝑋𝑡 into the local regions. The marginal effects in those local regions are 169 

characterized by 𝛽1 for the reference region and 𝛽1 + 𝛿𝑘 for the local region Ψ𝑘, and 170 

these parameters quantify the marginal gain/drop in CFR if the vaccination coverage 171 

increases by one percent. The herd effects for the local region Ψ𝑘 relative to its previous 172 

region are characterized by 𝛼𝑘 − 𝛼𝑘−1 (for Ψ1 it is just 𝛼1), as 𝛼𝑘 quantifies the 173 

additional gain/drop in CFR if the vaccination coverage passes the threshold 𝑏𝑘, 174 

compared to the intercept term 𝛽0 in the reference region Ψ0.  175 

The breakpoints 𝑏𝑘 𝑘 = 1, 2, ⋯ , 𝑚, are estimated based on the model (1) and the dataset 176 

for the analysis at national level (i.e., with only average daily CFR and vaccination rate in 177 

the U.S.). Naturally, they reflect the structural changes in the relationship between CFR 178 

and the vaccination coverage in general, and they can be applied to the analysis at county 179 

level where we use the longitudinal data (322 days) for all the counties (3109 counties), 180 

along with the CDC SVI indicators for explaining county heterogeneity. We build the 181 

following mixed model for the analysis at county level: 182 
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𝒚𝒊𝒕 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊𝒕 + ∑ 𝜶𝒌

𝒎

𝒌=𝟏

𝑰{𝑿𝒊𝒕∈𝚿𝒎} + ∑ 𝜹𝒌

𝒎

𝒌=𝟏

𝑿𝒊𝒕𝑰{𝑿𝒊𝒕∈𝚿𝒎} + 𝜸𝒁𝒊 + 𝒖𝟏𝑿𝒊𝒕 + 𝒖𝟎

+ ∑ �̃�𝒌

𝒎

𝒌=𝟏

𝑰{𝑿𝒊𝒕∈𝚿𝒎} + ∑ 𝜹𝒌

𝒎

𝒌=𝟏

𝑿𝒊𝒕𝑰{𝑿𝒊𝒕∈𝚿𝒎} + 𝜺𝒊𝒕 

(2) 

where 𝑦𝑖𝑡 and 𝑋𝑖𝑡 denote the CFR and vaccination coverage for county i at day t. 𝑍𝑖 is the 183 

covariate vector that contains CDC SVI theme-specific rankings on the four main themes 184 

for county i. 𝛽0, 𝛽1, 𝛼𝑘 , 𝛿𝑘 are the parameters characterize the herd and marginal effects, 185 

as similarly defined in the model (1), except in the model (2) they are fixed effects. 186 

Correspondingly, we have their random effects characterized by 𝑢0, 𝑢1, �̃�𝑘 , 𝛿𝑘 that are 187 

due to the heterogeneity among the counties that cannot be explained away by the fixed 188 

effects of county rankings on CDC SVI, which are represented by 𝛾. The Model (2) is 189 

built on the same set of breakpoints 𝑏𝑘, 𝑘 = 1, 2, ⋯ , 𝑚, that are obtained based on the 190 

model (1) and the dataset for the analysis at national level. This means the model (2) 191 

shares the same local regions Ψ𝑘 = [𝑏𝑘 , 𝑏𝑘+1) for 𝑘 = 1, 2, ⋯ , 𝑚, across all the counties 192 

in our study. The significances of the fixed effects 𝛽0𝑖 , 𝛽1𝑖 , 𝛼𝑘 , 𝛿𝑘 as well as their 193 

corresponding random effects 𝑢0, 𝑢1, �̃�𝑘 , 𝛿𝑘 will be checked via model outputs and 194 

comparison tests.  195 

3 Results 196 

3.1 The results of the analysis at national level 197 

As mentioned above, the dataset used for the analysis at national level has two variables, 198 

i.e., average daily CFR and average vaccination coverage in the U.S.. The breakpoints 199 

were estimated based on this dataset using the “segmented” package in R (version 4.2.0) 200 

[22]. To avoid overfitting, we set the maximum number of the breakpoints as 3, based on 201 
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the curve between the average daily CFR and the average daily vaccination coverage 202 

depicted in Figure 1. The segmented package then does an automatic selection of the 203 

number of breakpoints based on BIC, and it estimated the locations of the breakpoints 204 

conditional on the optimized number of the breakpoints. The estimated breakpoints were 205 

superimposed on the curve in Figure 1, to further validate those estimates align with the 206 

observed structural changes.  207 

The breakpoints were estimated as 32%, 36% and 47%, which suggested that the herd 208 

effect of vaccination may be associated with the thresholds of 32%, 36% and 47% in the 209 

vaccination coverage. Based on those breakpoints, we have four different local regions, 210 

namely Ψ1 = [8.66%, 32%); Ψ2 = [32%, 36%); Ψ3 = [36%, 47%); Ψ4 =211 

[47%, 49.28%), with the minimum and maximum of the average daily vaccination 212 

coverages as 8.66% and 49.28% respectively. Table 1 lists the estimates of the regression 213 

coefficients based on the model (1). We further calculated the herd and marginal effect 214 

estimates which are tabulated in Table 2. The marginal effect in the first local region Ψ1 215 

was insignificant, which suggested that the drop in the CFR per percent increase in the 216 

vaccination coverage was not significantly different from 0, if the vaccination coverage 217 

did not surpass 32%. The herd effect at the threshold 32% was also insignificant, which 218 

was largely due to the insignificant marginal effect in the region Ψ1. We found a 219 

significant marginal effect in the second local region Ψ2 (-0.057), which indicated that 220 

there was a drop of 0.057 percent in the CFR for every percent increase in the vaccination 221 

coverage in this region, evidencing that the protection effect of COVID vaccination 222 

against mortality. In addition, the herd effect at the threshold 36% was significant too (-223 

0.233), suggesting that there was a further drop of 0.233 percent in the CFR besides the 224 
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marginal CFR reduction per percent increase in the vaccination coverage. In the third 225 

local region Ψ3, however, we observed a slight positive marginal effect in the CFR 226 

(0.003), which means the marginal gain of vaccination (in terms of the reduction in CFR) 227 

disappeared and vaccination was somehow harmful for protecting against mortality. 228 

Correspondingly, the herd effect at the threshold 47% was also positively significant 229 

(0.009), suggesting again that vaccination was not helpful at this stage. The marginal 230 

effect in the fourth local region Ψ4 was strongly negative, specifically there was a drop of 231 

0.115 percent in the CFR associated with every percent increase in the vaccination 232 

coverage at this stage.    233 

 234 

Figure 1. The relationship between the average vaccination coverage and the average 235 
CFR in the U.S. The solid dots represent the breakpoints estimated by the “segmented” 236 
package in R.  237 
  238 
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Table 1. The regression model parameter estimates for the analysis at national level. 239 

Parameter Estimate T Ratio p-value 

 𝛽0 1.976 624.70 <0.001 

 𝛽1 0.000 0.28 0.78 

 𝛼1 -0.003 -0.90 0.37 

 𝛿1 -0.057 -45.32 <0.001 

 𝛼2 -0.236 -80.67 <0.001 

 𝛿2 0.003 7.50 <0.001 

 𝛼3 -0.227 -55.09 <0.001 

 𝛿3 -0.115 -47.03 <0.001 

 240 

Table 2. The herd and marginal effect estimates for the analysis at national level. 241 

Effect Location Estimate p-value 

1st Marginal Effect  Ψ1 = [8.66%, 32%) 0.000 0.78 

1st Herd Effect  𝑏1 = 32% -0.003 0.37 

 2nd Marginal Effect Ψ2 = [32%, 36%) -0.057 <0.001 

 2nd Herd Effect 𝑏2 = 36% -0.233 <0.001 

 3rd Marginal Effect Ψ3 = [36%, 47%) 0.003 <0.001 

 3rd Herd Effect 𝑏3 = 47% 0.009 0.02 

 4th Marginal Effect Ψ4 = [47%, 49.28%) -0.115 <0.001 

 242 
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3.2 The results of the analysis at county level 243 

We further investigated the marginal and herd effects of COVID vaccination based on an 244 

analysis at county level, where the daily CFR and vaccination coverages from March 245 

11th, 2021 to Jan 26th, 2022 as well as the CDC SVI rankings for 3109 U.S. counties were 246 

used. The estimated breakpoints of 32%, 36% and 47%, obtained based on the analysis at 247 

national level, were adopted for our analysis at county level. The mixed model (2) was 248 

employed to account for the clustered data at county level, and its fixed and random 249 

effect estimates are tabulated in the Table 3. Furthermore, the estimates of herd and 250 

marginal effects, as well as their corresponding random effect estimates, are listed in the 251 

Table 4. To determine the significance of the random effects, we compared the full model 252 

(i.e., the model (2)) with two different reduced models (one without the random effects 253 

associated with all the marginal effects, i.e., 𝑢1, 𝛿1, 𝛿2, 𝛿3; another one without the 254 

random effect associated with the first marginal effect only, i.e., 𝑢1), and the resultant 255 

tests gave p-values smaller than 0.001, suggesting that it was necessary to include 256 

random effects for all the marginal and herd effect parameters.  257 

Across all the U.S. counties in our data, the marginal effect was significantly negative in 258 

the first local region Ψ1 (i.e., when the vaccination coverage was between 8.66% and 259 

32%), specifically one percent increase in the vaccination coverage was associated with 260 

0.004 percent drop in the CFR. The first herd effect at the threshold of 32% was -0.025 261 

and significant, meaning there was an additional drop of 0.025 percent in the CFR as the 262 

vaccination coverage reached 32%, beyond the marginal effect observed in Ψ1. The 263 

marginal effect in the second local region Ψ2 was also significantly negative (-0.01), 264 

which showed that there was 0.01 percent drop in the CFR per one percent increase in the 265 
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vaccination coverage, when the vaccination coverage was between 32% and 36%. The 266 

second herd effect, however, was overall insignificant, which suggested additional 267 

protection effect at the threshold 36% may not exist. Similarly, we found significant 268 

marginal effect (-0.023) for the third local region Ψ3 but insignificant herd effect at the 269 

threshold 47%. The marginal effect within the fourth local region Ψ4 was the strongest, 270 

as every percent increase in the vaccination coverage was associated with 0.043 percent 271 

reduction in the CFR, if the vaccination coverage surpassed 47%.  272 

Furthermore, heterogeneity among the U.S. counties regarding the herd and marginal 273 

effect estimates was evident. For the first herd effect (at 32%), the fixed effect estimate 274 

was -0.025 with a random effect of 0.024, and this means roughly 56% of the counties 275 

had negative herd effects as expected, but the other 44% of the counties could have no 276 

herd effect or even positive herd effects at the threshold 32%. For the second and third 277 

herd effect (at 36% and 47% respectively), roughly 49% of the counties have negative 278 

herd effects, which further demonstrated that those two herd effects were not significant 279 

among the counties. Regarding the marginal effects: although their fixed effect estimates 280 

were all very significant (p-value < 0.001), their random effect estimates suggested the 281 

fourth marginal effect was the strongest one (was negative in 73% of the counties). The 282 

first, second and third marginal effects were negative in approximately 57%, 54% and 283 

62% of the U.S. counties. All taken, the protection effect of COVID vaccination was 284 

confirmed in general and for the majority of the U.S. counties, while substantial 285 

heterogeneity that defined the size and the validity of the protection effect for individual 286 

county still existed. We also found that only one CDC SVI theme ranking, i.e., rankings 287 

on household composition & disability, could help explain the county heterogeneity. 288 
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Unsurprisingly, this CDC SVI theme ranking was positively related to CFR, and 289 

specifically one percentile rise in the theme ranking could result in 0.8 percent increase in 290 

CFR.  291 

 292 

Table 3. The mixed model parameter estimates pertaining to fixed effects (F.E.) and 293 
random effects (R.E.) for the analysis at county level. The standard errors (S.E.) of the 294 
random effects (R.E.) are also provided. 295 

Parameter F.E. Est F.E. T Ratio F.E. p-value R.E. Est S.E. of R.E. 

 𝛽0 1.64 28.88 <0.001 1.33 0.03 

 𝛽1 -0.004 -8.85 <0.001 0.0005 0.00001 

 𝛼1 -0.025 -7.35 <0.001 0.024 0.0008 

 𝛿1 -0.007 -3.74 <0.001 0.007 0.0002 

 𝛼2 -0.018 -2.84 0.005 0.091 0.003 

 𝛿2 -0.02 -13.07 <0.001 0.006 0.0002 

 𝛼3 -0.004 -0.35 0.728 0.2 0.007 

 𝛿3 -0.039 -23.49 <0.001 0.004 0.0002 

 𝛾1 0.0004 0.33 0.744 n/a n/a 

 𝛾2 0.807 11.00 <0.001 n/a n/a 

 𝛾3 -0.057 -0.73 0.467 n/a n/a 

 𝛾4 0.004 0.05 0.961 n/a n/a 

 296 

 297 

 298 

 299 

 300 
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Table 4. The herd and marginal effect estimates for the analysis at county level. The fixed 301 
effect estimates (F.E. Est), the random effect estimates (R.E. Est) as well as the p-value 302 
for the F.E Est are provided.  303 

Effect Location F.E. Est F.E. p-value R.E. Est 

1st Marginal 

Effect 
Ψ1 = [8.66%, 32%) -0.004 <0.001 0.0005 

1st Herd Effect 𝑏1 = 32% -0.025 <0.001 0.024 

2nd Marginal 

Effect 
Ψ2 = [32%, 36%) -0.01 <0.001 0.008 

2nd Herd Effect 𝑏2 = 36% 0.008 0.70 0.115 

3rd Marginal 

Effect 
Ψ3 = [36%, 47%) -0.023 <0.001 0.006 

3rd Herd Effect 𝑏3 = 47% 0.014 0.545 0.29 

4th Marginal 

Effect 
Ψ4 = [47%, 49.3%) -0.043 <0.001 0.005 

 304 

4 Discussion 305 

Vaccination has been acknowledged as an effective tool to reduce hospitalization and 306 

mortality related to COVID-19 infections, and vaccination campaign has been rolled out 307 

in virtually every country that has access to COVID-19 vaccines. Understanding the 308 

effect of COVID-19 vaccination in terms of case fatality rate (CFR) reduction has 309 

unquestionably profound meaning, for a successful implementation of the COVID-19 310 

vaccination campaign. Drawing on the direct and indirect effects of vaccination from 311 

literature, we rename the direct effect as the marginal effect of vaccination and the 312 

indirect effect as the herd effect of vaccination, to better describe the nature of those 313 

effects in terms of reducing the CFR. Defining the herd and marginal effects also helps 314 

build regression models for obtaining their estimates, as those two kinds of effects require 315 

different parameterization in the model. Analysis at the national level and county level 316 
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for the United States, were then implemented based on datasets containing the daily 317 

vaccination coverages and case reports in the U.S. Theme rankings for individual 318 

counties from the CDC SVI were also included to explain heterogeneity at county level. 319 

Our analysis at national level suggested three different locations (i.e., when the 320 

vaccination rate reached 32%, 36% and 47%) for possible herd effects and strong 321 

significance for the marginal effects, which was further confirmed by our analysis at 322 

county level after controlling for county heterogeneity.  323 

Our analyses have demonstrated how COVID-19 vaccination protects against COVID 324 

related mortality over the course of COVID-19 vaccination campaign in the U.S. In 325 

general, COVID-19 vaccination indeed can significantly reduce the CFR, but its effect is 326 

not constant during the vaccination campaign. The estimated breakpoints have divided 327 

the vaccination campaign into four different regions based on the vaccination coverage, 328 

i.e., Ψ1 = [8.66%, 32%), Ψ2 = [32%, 36%), Ψ3 = [36%, 47%) and Ψ4 =329 

[47%, 49.3%). The marginal effects in those four regions are correspondingly -0.004, -330 

0.01, -0.023 and -0.043, which are all significant. This shows the vaccination can directly 331 

result in meaningful reduction in the CFR and thus it should be recommended especially 332 

for the unvaccinated population, as the marginal effects largely quantify the reduced risks 333 

of mortality that one would benefit from the vaccination if he/she chooses to get 334 

vaccinated. We also observe that the sizes of the marginal effects enlarge as the 335 

vaccination coverages increases, which suggests that the direct benefit of COVID-19 336 

vaccination is becoming more and more significant as the vaccination coverage in the 337 

population increases. Our results also indicate the existence of herd effect, specifically at 338 

the threshold 32%. The herd effect at the threshold 32% is statistically significant (-339 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2023. ; https://doi.org/10.1101/2023.03.11.23287133doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.11.23287133
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

0.025), which demonstrates the indirect (additional) benefit brought by the vaccination 340 

once the vaccination coverage reaches 32% in the population. This implies that one 341 

would indirectly benefit from the COVID-19 vaccination even if he/she is not vaccinated 342 

as long as the vaccination coverage passes 32%, by a 0.025% reduction in the CFR. 343 

Our results have important implications for the COVID-19 vaccination strategies. First, 344 

our findings suggest that vaccination campaign should be rapidly carried out at the initial 345 

stage, to trigger the threshold for herd effects, in order to procure additional protection of 346 

COVID-19 vaccination against the CFR for the entire population regardless of individual 347 

vaccination statuses. This echoes our earlier finding of the significant herd effect at the 348 

first breakpoint 32% and is consistent with recommendations offered by the literature 349 

[3,4,23,24,25]. It is noteworthy that, a rapid effective implementation at the initial stage 350 

can pose considerable logistical challenges for a vaccination campaign [23,26,27]. 351 

Therefore, careful resource planning is required for the access, transportation, storage and 352 

distribution of vaccines, which has been exemplified by the vaccination campaign in the 353 

U.S. [25,28]. Second, eligible unvaccinated individuals should be encouraged (even 354 

urged) to get vaccinated at all stages of a vaccination campaign, as the marginal effects 355 

were evident across all the local regions defined for the U.S. vaccination campaign in our 356 

analysis. More profoundly, we found the whole population would benefit more if more 357 

people got vaccinated, as the size of marginal effect was positively correlated with the 358 

vaccination coverage in the population. The gain from the marginal effects, on average, 359 

also outweighed the gain from the herd effects, as manifested by the Table 4. These key 360 

observations suggest that the marginal effect is more important than the herd effect for 361 

the protection against COVID mortality [15]. Thus, vaccination strategy should focus on 362 
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how to capitalize on the marginal effect, i.e., promote individual vaccination willingness 363 

and accessibility, in order to continuously push for a higher vaccination rate in the 364 

population [15,29]. Based on our results, the goal of a vaccination campaign should be 365 

pursuing a higher vaccination coverage in the population, rather than meeting a 366 

predefined threshold for triggering the herd effect [4,29,30].  367 

Heterogeneity among the U.S. counties in terms of the marginal and herd effects is 368 

considerable. The sizes and even the signs of the marginal and herd effects could vary 369 

across all the counties, which signals that the protection effect of COVID-19 vaccination 370 

is not constant and partially determined by county idiosyncrasy. For example, we took 371 

the social vulnerability index (SVI) into account in our analysis and did find the theme of 372 

household composition & disability significantly was significantly associated with the 373 

CFR after controlling for the vaccination coverage. This indicates that demographical 374 

features of individual county, such as the age distribution and disability proportion, play 375 

vital roles in explaining the heterogeneity existed for the relationship between the 376 

vaccination coverage and the CFR [31]. Although the other three SVI themes, namely 377 

socioeconomic status, minority status & language and housing type & transportation, 378 

were not statistically significant, factors such as environmental conditions [32], political 379 

atmosphere [33] and non-pharmaceutical interventions [34] could contribute to county 380 

heterogeneity, and potentially confound the relationship between the vaccination 381 

coverage and the CFR. Most notably, research has shown that vaccine hesitancy 382 

(willingness) is a key determinant of vaccination coverage, and it potentially mediates the 383 

relationship between the factors influencing the CFR (like SVI) and the CFR itself, and 384 
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therefore variation of vaccine hesitancy among the U.S. counties potentially accounts for 385 

a significant portion of the county heterogeneity observed in our paper [35-36].  386 

There are limitations in our analysis: We did not investigate the impact of COVID-19 387 

variants on the CFR and the vaccine effectiveness, considering there were different 388 

COVID-19 variants (and their lineages and sublineages), such as alpha, delta and 389 

omicron, spreading during our study period, as we can hardly identify the boundaries of 390 

the spreading period of each variant from the data. For the similar reason, the potential 391 

impact of different brands of vaccines (such as BioNTech and Moderna) was also not 392 

considered in our model, as the data did not contain information about the number of 393 

administered doses of every specific brand. Most importantly, our model treats the 394 

breakpoints as the fixed values across all the counties, which may not be true as the 395 

breakpoints could vary across different counties as a result of unique evolvement of 396 

vaccination campaign in individual counties. Unfortunately, allowing each county to have 397 

its own breakpoints would require a huge number of parameters and a complex Bayesian 398 

model, which goes beyond the scope of this paper [37]. Therefore, further robustness and 399 

sensitivity analyses may be warranted [38-41].   400 

To summarize, we have shown the existence of the herd effects via a segmented 401 

regression model. Specifically, we identified three different breakpoints that represented 402 

the locations of the herd effects. Accounting for county heterogeneity, we found one of 403 

the three herd effects to be statistically significant, and it suggested that additional 404 

indirect benefit of COVID-19 vaccination may exist at the earlier stage of a vaccination 405 

campaign. We also found the marginal effect size varied at different stages of the 406 

vaccination campaign, and specifically the marginal (direct) benefit of COVID-19 407 
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vaccination likely became larger as the vaccination coverage increased. Our findings 408 

demonstrate that the herd and marginal effects should be carefully differentiated and 409 

assessed in analyzing vaccination data, to better inform vaccination campaign strategies 410 

as well as evaluate vaccination effectiveness.  411 

 412 
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