Efficacy and Safety of Cannabis Transdermal Patch for Alleviating Psoriasis Symptoms: Protocol for a 1 2 Randomized Controlled Trial (CanPatch).

- Pim Sermsaksasithorn¹, Pravit Asawanonda², Phanupong Phutrakool³, Thunnicha Ondee¹, Pajaree Chariyavilaskul⁴, Sunchai Payungporn⁵, Krit Pongpirul^{1,6,7,8*}, Nattiya Hirankarn^{9*} 3
- 4
- ¹ Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 5
- 6 Thailand.
- ² Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 7 8 Thailand.
- ³ Chulalongkorn Data Management, Research Affairs, Faculty of Medicine, Chulalongkorn University, 9
- 10 Bangkok, Thailand.
- ⁴ Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, 11
- Chulalongkorn University, Bangkok, Thailand. 12
- 13 ⁵ Department of Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok,
- 14 Thailand.
- ⁶ Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. 15
- ⁷ Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of 16 17 Liverpool, Liverpool, UK.
- 18 ⁸ Clinical and Research Center, Bumrungrad International Hospital, Bangkok, Thailand,
- ⁹ Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand 19
- 20 * Corresponding authors: doctorkrit@gmail.com, krit.po@chula.ac.th and nattiya.h@chula.ac.th, 21 nattiyap@gmail.com
- 22
- 23 Funding: The study has received financial support from the Thai Traditional Medical Knowledge Fund. The 24 funder has no role in the design, analysis, or writing of the study.
- 25
- 26 Competing interests: None. 27
- 28 Data availability: All data relevant to the study are included in the article and supplementary documents.
- 29

30 ABSTRACT

31

Background: Existing topical psoriasis treatments are partially effective or have long-term side effects for a proportion of people with psoriasis; therefore, effective and safe treatment options are required. Cannabidiol, a cannabinoid in *Cannabis sativa*, reverses the etiology of psoriasis through skin receptors according to in vitro research. Cannabidiol transdermal patches may be an effective treatment for psoriasis, although the efficacy and safety data are limited.

37

Methods and analysis: This is a randomized double-blind controlled trial comparing cannabidiol (CBD) with minimal tetrahydrocannabinol (THC) patches with placebo patches (1:1 ratio) daily applied to comparable lesions of each patient with mild to moderate plaque-type psoriasis performed in a university hospital in Thailand (n=60). The primary outcome is the local psoriasis severity index (LPSI). The local severity index of psoriasis, the itch score using the visual analog scale, and adverse events will be evaluated on day 0, 30, 60, and 90 of the study. Furthermore, on days 0 and 90 of this study, biological samples will be taken for the evaluation

44 of the skin, gut, and mouth microbial profile of 50% of randomly selected individuals.

45 Conclusions: This study aims to investigate the efficacy and safety of cannabidiol transdermal patches in 46 alleviating the symptoms of psoriasis. We will also examine personal impacts on the efficacy and safety of 47 patches, such as the microbial profile. The results of this study may highlight a novel topical treatment option

48 that reduces suffering in patients with psoriasis.

Ethics and dissemination: This study was registered with the . The protocol is being considered by the
 Institutional Review Board of the Faculty of Medicine, Chulalongkorn University. The results of this study will
 be faithfully presented through conferences or published articles.

52 Keywords: Cannabidiol, Cannabis, Microbiota, Psoriasis, Transdermal patch

53

54 INTRODUCTION

Psoriasis is a common chronic immune-mediated systemic disease with physical, psychological, and social
burden due to its disfiguring effects and substantial comorbidities, including psoriatic arthritis, metabolic
diseases, inflammatory bowel disease, cardiovascular diseases, and psychiatric disorders [1-4]. The prevalence
of this disease ranges from 0.27% to 11.4% in various countries and tends to increase [5, 6].

The pathophysiology of psoriasis is multifactorial, but the essential part is immune-mediated inflammation with IL-17 and IL-23 as key players that result in uncontrolled proliferation and dysfunctional differentiation [1, 7]. Interestingly, recent studies have shown a significant difference between the human microbiota of patients with psoriasis and the normal population, with particular genera and species of skin microbiota clearly identified on the lesional skin and disproportions of the gut microbiota that influence the pathogenesis of psoriasis via the gut-skin axis [8-16].

Most patients have psoriasis vulgaris or plaque-type psoriasis with mild to moderate severity; therefore,
topical therapies are the treatment of choice. However, in some individuals, conventional topical therapy options
are ineffective or accompanied by adverse effects [7, 17-23]. For these reasons, novel topical therapies are
warranted.

Emerging studies in recent decades have suggested that cannabidiol (CBD), a non-addictive
 cannabinoid of *Cannabis sativa*, reverses the primary pathogenesis of psoriasis through various skin receptors,
 including inhibiting keratinocyte proliferation, reducing inflammation, modifying Th1-Th2 balance, and
 inhibiting IL-17 [24-36]. However, limited clinical studies have been conducted.

73 Cannabidiol (CBD) and psoriasis

74 Cannabinoids were found to exert opposite effects on the pathogenesis of psoriasis through skin receptors, 75 including the CB1, CB2, GPCR55, TRPV1 and PPAR γ receptors [24-29, 37]. CBD, a cannabinoid derived 76 from *Cannabis sativa* that is highly effective with minimal addictive properties, inhibits keratinocyte 77 proliferation, reduces inflammation by inhibiting the function of NF-kB and TNF- α , modifies the balance of 78 Th1-Th2, and alters cytokines by inhibiting IL-17 and IFN- γ [24, 27, 28, 30, 37-42].

By affecting CB1, CB2, and TRP channels in cutaneous nerve fibers, mast cells, and keratinocytes,
cannabinoids also reduce itching. [38, 43, 44] In clinical trials, topical use of CBD reduced itching in patients
with atopic dermatitis. [45, 46]

82 CBD is added to a variety of skin products, including those for psoriasis. [34, 38]. Despite a small
83 number of clinical research studies, the current findings of the transdermal use of CBD ointment in the treatment
84 of psoriasis are encouraging, including a significant reduction in the Psoriasis Area Severity Index (PASI) score
85 on day 90 and the LPSI score on week 12 after the application of CBD ointment. [30, 34, 47]

86 Cannabidiol (CBD) transdermal patch

87 Transdermal patches have been widely used in transdermal drug delivery systems. [48] The advantages of 88 transdermal patches include non-invasiveness, painlessness, avoidance of first-pass metabolism, sustained 89 medication release, and lack of gastrointestinal adverse effects [48-50]. Furthermore, transdermal patches 90 provide better medication control and less dose variability than other transdermal drug delivery methods, such 91 as ointments [48]. However, the lipophilic nature of cannabis makes formulation and absorption challenging for 92 therapeutic impact, including poor skin diffusion [50-52]. Medium chain triglycerides (MCTs) have been found 93 to be pharmaceutical carriers of lipophilic drugs [53] and used for cannabis preparation in both in vitro and in 94 vivo studies [54-57].

95 Safety of Cannabidiol (CBD)

Cannabidiol accumulates in organs of high blood supply such as the heart, brain, liver, and lungs when it enters
 the body [50]. The serious adverse events of CBD are hepatocellular damage, pneumonia, cardiovascular

disease, and decreased fertility [58, 59]. However, many of the damage mentioned and alterations in vitro cell

99 viability occurred at doses of more than 200 mg/kg/day [60]. Appetite loss, diarrhea, drowsiness, and sedation

are other side effects [58, 59]. Chronic CBD causes the accumulation of CBD in adipose tissue, resulting in

101 weeks of lethargy and sedation [50]. With the topical application of CBD, previous studies have not reported

serious adverse events. Minorities experience minor adverse events, including erythema, skin irritation or pain,

103 changes in hair or skin color, somnolence, and diarrhea [31, 32, 61-66].

104 Gut, skin, and oral microbiota in psoriasis

105 Most of the research indicated significant changes in the microbial profile in patients with psoriasis. Substantial changes in overall biodiversity, decreased α -diversity, and increased β -diversity of the skin microbiota were 106 107 discovered in psoriatic skin compared to healthy and non-lesional skin [8, 12, 67, 68]. The discovery of the 108 hypothesis of the gut-skin axis stated that gut microbial dysbiosis leads to increased inflammatory cytokines and 109 lessened tight junction integrity that allows blood and skin access to bacterial components and metabolite 110 products [8, 11, 13, 15, 69, 70]. Subsequently, the studies revealed a reduction in the overall diversity of 111 intestinal microbials and significant changes in β -diversity of the intestinal microbiome diversity in patients with 112 psoriasis [15, 16, 68, 70, 71].

113 Some taxonomy of the microbiota distinguishes psoriasis from normal presentation. Compared to 114 normal skin, the combined relative abundance of Streptococcus spp., Staphylococcus spp. and Corynebacterium 115 spp. increases in psoriatic skin, while the abundance of Staphylococcus epidermidis, Cutibacterium acnes, and 116 Cutibacterium granulosum decreases [11, 12, 72]. The Firmicutes to Bacteroidetes ratio (F/B ratio), two main 117 phyla of the human gut microbiota, increases in patients with psoriasis, directly correlated with PASI scores and 118 psoriasis comorbidities [8, 13-16]. Augmentation of Ruminococcus gnavus increased and underrepresentation of 119 Faecalibacterium prausnitzii and Akkermansia muciniphila were also found in the intestinal microbiota of 120 patients with psoriasis [8-10, 13, 15, 16, 70, 73].

121 For the oral microbiome, the interaction with psoriasis pathogenesis is not well established. Compared 122 to healthy controls, patients with psoriasis are 1.55 times more likely to develop periodontal disease, a shared 123 mechanism involving elevated Th-17 cells and IL-17 [74]. The microbiome was distinct in the saliva of 124 periodontal disease [75-77]. No significance was found in α - or β -diversity of the oral microbiome of patients 125 with psoriasis compared to normal people, although 18 species did [71].

126 OBJECTIVES AND HYPOTHESES

127 Given the findings of a brief review of the literature showing promising therapeutic effects of CBD on psoriasis, 128 we hypothesized that CBD with minimal transdermal patches of THC would be an effective and safe treatment 129 option for psoriasis. Therefore, the main objective of this trial is to compare the efficacy of alleviating CBD 130 psoriasis symptoms with minimal transdermal THC patches with placebo patches among patients with mild to 131 moderate plaque-type psoriasis. Secondary objectives are to (1) report adverse events of CBD with minimal 132 THC transfermal patches in patients with psoriasis (2) explore the microbial alteration of the gut, skin, and oral 133 microbiome in patients with psoriasis who receive CBD with minimal THC transdermal patches and the 134 relationship between the microbial profile and the clinical presentation of those patients.

135 MATERIAL AND METHODS

136 Study design

This is a randomized, double-blind, controlled study. This study is being approved by the Chulalongkorn
 University Faculty of Medicine Institutional Review Board (number XX) and registered with the Thai Clinical

139 Trials Registry (TCTR No. 20220518004).

140 Participants

Participants will be recruited through direct encounter and telephone contact. The participants will be from the Division of Dermatology of King Chulalongkorn Memorial Hospital's database. Furthermore, the online poster will be advertised (e.g., on Facebook). Participants in this trial will be selected based on medical history, medical records, and physical examination by physicians to verify if they meet eligibility criteria and consent forms in accordance with the research ethics requirements outlined in the Declaration of Helsinki. Inclusion and exclusion criteria are shown in **Table 1**.

147 **Table 1.** Inclusion and exclusion criteria.

Inclusion criteria	Exclusion criteria
Inclusion criteria - Aged 18 years and older - Have been diagnosed with mild to moderate plaque- type psoriasis with a baseline PASI score of less than ten by a board-certified dermatologist - Have two or more plaques of psoriasis of comparable size and severity - Refrain from using topical psoriasis therapies for at least two weeks prior to research. - Able and willing to give written informed consent	 Exclusion criteria Pregnant or breastfeeding Have contraindications to cannabis transdermal patches (Known allergy to medical cannabis, or patches' ingredients, history of severe liver or kidney disease, history of schizophrenia or other serious psychiatric diseases) Addictive behavior is defined as cannabis, opioids, or other recreational or pharmaceutical drug abuser (Determined by patient interview and medical records) Receive biologic therapy for psoriasis treatments Have had less than 12 weeks of conventional systemic therapy for psoriasis (oral medications or phototherapy) Have received conventional systemic therapy for psoriasis (oral medications or phototherapy) for more than 12 weeks but have seen variations in
	psoriasis symptoms or adjustments in their medication or phototherapy regimen within the past 12 weeks

148

149 Study medication

150Intervention patches (P patches) will include 1.0 ± 0.1 mg of CBD in an MCT solvent on 2.0 ± 0.2 g of yellow151adhesive layer covered with aluminum foil whereas placebo control patches (C patches) will be 2.0 g of yellow152adhesive layer covered with aluminum foil.

153 Procedures

All participants who meet the eligibility criteria and provide their written consent are invited to respond to the baseline demographic and clinical characteristics. For each participant, two similar psoriasis lesions are selected and then randomly assigned to the intervention plaque or the control plaque in a 1:1 ratio. An overview of the progress of the current trial is shown in the consolidated standards of reporting trials diagram (**Figure 1**). The study and control participants are instructed to apply a P or C patch, respectively, on a selected plaque of psoriasis every day for 90 days and at least 6 hours a day.

160 Adherence

161 Face-to-face reminder sessions are conducted at initial product dispensing and three subsequent visits. This 162 session reviews the application of transdermal patches, including scheduling, storage, and missing dosage 163 solutions. At each follow-up appointment, unused patches and used patches' packages are tallied and 164 documented.

165 Randomization

166 Two similar psoriasis lesions of each patient are randomly assigned to the intervention group or control group

by block randomization with a ratio 1: 1 with blocks of 4 by STATA version 15.0 (StataCorp. 2017. Stata

168 Statistical Software: Release 15. College Station, TX: StataCorp LLC.).

169 Blinding

170 After double-blind randomization, individuals not involved in the study translate the randomization code into

instructions on which patches should be used on which lesion. They place the instructions in sealed envelopes

that are then delivered to patients randomly by a physician. Each lesion is instructed in the same type of patch

every day. The front of an opaque sealed envelope is the study ID and the date the envelope will be opened.

174 Therefore, patients and physicians are blinded. Allocation concealment is ensured, as the service will not release 175 the randomization code until data collection has been completed. A code might be broken in extraordinary cases

where knowledge of the actual therapy is vital for future patient care.

177 Trial sites

178 Division of Dermatology, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok,

- 179 Thailand.
- 180 Biological sample collection for genetic analysis

181 Biological sample collection includes 1 ml of saliva and a spoon of feces collected by participants in separate 182 containers prepared by researchers and skin samples from three regions, two lesional skin samples, and one 183 sample of nonlesional skin collected by skin taping by physicians. The five containers per individual containing 184 nucleic acid preservation buffer will be transported to the laboratory in 30 minutes at room temperature or as 185 soon as possible at 4 degrees Celsius. Upon arrival at the laboratory of the Faculty of Medicine, Chulalongkorn 186 University, the sample will be extracted by Quick-DNA™ H M W MagBead Kit (cat. no. D6060, Zymo 187 Research) and then amplified by the PCR method. The PCR amplification products will be purified by AMPure 188 XP (Beckman Coulter) and the quantity will be measured by NanoPhotometer[®] C40 (Implen, USA). After that, 189 DNA will be combined with the solution for the Ligation Sequencing Kit (LSK-109, Oxford Nanopore 190 Technologies) to perform DNA sequencing using the Nanopore MinION sequencing system. All samples will 191 be recorded and barcoded with a unique storage ID.

192 Data collection and management

Data collection in this study is based on personal characteristics, clinical evaluations, and self-reported measures. Baseline demographic and clinical characteristics include age (years), sex, weight, body mass index (BMI), familial history of psoriasis, duration of psoriasis, comorbidities (diabetes mellitus, hypertension, dyslipidemia, obesity, metabolic syndrome, cardiovascular disease, psoriatic arthritis, inflammatory bowel disease, psychiatric disorders, among others) and concurrent therapies for systemic psoriasis. The local psoriasis severity index (LPSI), self-reported itching on the visual analog scale, reported adverse events, and microbial profile are collected at the time points below.

All investigators will have access to the final trial data set. All documents will be safely stored in the
 Skin Unit Research Facilities for Academic and Clinical Excellence (SURFACE), Division of Dermatology,
 Department of Medicine, Faculty of Medicine, Chulalongkorn University, for ten years. No identifiable data
 will be recorded and all documents will be recorded with the research identification number.

204 Outcome measures

Evaluations are collected at four time points: 0th, 30th, 60th and 90th day of the study. Fifty percent of the

206 participants are chosen at random to have their saliva, feces, and skin samples collected if they consent to the

storage and future testing of biological materials. An overview of all the assessment points and results is shown

208 in **Table 2.**

209 Table 2. SPIRIT Schedule for enrollment, interventions, and assessments.

						210
	Enrolment	Allocation	Intervention		Close 2011	
TIMEPOINT**	0	0	30 th	60 th	90 th	120 th
ENDOLMENT.						213
ENROLMENT:						214 215
Eligibility screen	Х					213
Engiointy serven						210
Informed consent	Х					218
						219
ollect demographics and	Х					220
baseline clinical data						221
llect a biological sample	0				0	222
						223
Allocation		х				224
						225
NTERVENTIONS:						226
						227
[Intervention group]		←				228
					•	229 230
[Control group]		~				≥30≥31
		<u>`</u>				231
ASSESSMENTS:						232
						233
Local Psoriasis Severity	Х		х	X	Х	234
Index						235
			х	X	X	236
Reported adverse events		ļ				237
nographics and baseline	Х					238
clinical data						239
Microbial profile						⁰ 240
						241

242 asis severity index (LPSI)

Each lesion will be assessed with a modified psoriasis area severity index called the local psoriasis severity
index (LPSI). The LPSI is the sum of the following symptoms evaluated by the physician: erythema (redness),
induration (thickness) and desquamation (scaling infiltration). Each score was classified as follows: 0 = no
symptoms, 1 = slight symptoms, 2 = moderate symptoms, 3 = marked symptoms, 4 = very marked symptoms
P.A., a dermatology professor, conducts all LPSI evaluations for this study.

248 Secondary outcome measure

249 The itch score by the visual analog scale

The visual analog scale consists of a line 10 cm long, with verbal anchors at either end. The patient places a mark on the line corresponding to the patient's intensity rating. VAS is one of the most commonly used methods

for assessing the severity of pruritus, as it provides an easy, rapid and valid estimate of the itch [79-81].

253 Participants will be asked to indicate the point within three minutes of this study.

7

254 The alpha-diversity, beta-diversity, and relative abundance of microbiota

255 Biological samples, including saliva, feces, and skin, will be analyzed for microbial alteration in the form of

256 microbial diversity. The diversity of microbes will be defined as the proportion and abundance distribution of

257 different types of organism. The abundance distribution includes alpha diversity, which is an abundance of

258 different bacterial taxa in a single sample, and beta diversity, which is microbial diversity in different samples.

259 Relative abundance is the ratio of the absolute abundance of a taxon to the total absolute abundance of all taxa

in a unit volume of an ecosystem. [8, 82, 83]

261 Reporting of adverse events

262 Participants are encouraged to contact research staff if they have concerns about mental or physical health

- 263 decline. Upon the occurrence of an adverse event, the patient would receive treatment for the adverse event at
- 264 King Chulalongkorn Memorial Hospital for free.

265 Discontinuation and withdrawal

Patients who experience major adverse effects after enrolling in the study, participate less than 80% of the research period, or are unwilling to continue participating in the trial will be excluded. However, the data already collected and the reason for the cessation of study participation may be included in the final report.

269 STATISTICAL ANALYSIS

270 Sample size calculation

271 This study compares the mean LPSI score of transdermal CBD and placebo use. With the 80% power, $\alpha = 0.05$,

effect size 0.58, and allocation ratio 1:1, the determined sample size per group is 48 individuals. However, there

is a potential for around 20% of the individuals to drop out of the study. The researchers determine that the total

sample size is 60 individuals.

275 Statistical method

276 Statistical analysis will be performed using STATA version 15.0 (StataCorp. 2017. Stata Statistical Software:

277 Release 15. College Station, TX: StataCorp LLC.). Categorical data will be expressed as a number and

depending on which is more appropriate, continuous data will be reported as mean +/- standard deviation or
 median +/- interquartile range. Qualitative variables will be presented in a table and then analyzed by the Chi square test or Fisher's exact test. The paired T-test or the unpaired T-test will be applied for quantitative data

with normal distribution. The Wilcoxon signed ranks test or Mann-Whitney U test will be used for the quantitative data, which is not present with normal distribution.

283 Sequencing and Microbiome data analysis

The taxonomic classification will be assigned for the V3/V4 16S region. All taxonomic classifications will be implemented within QIIME2. Bacterial diversity is determined by alpha diversity and beta diversity, which will be calculated by the QIIME 2 pipeline. Alpha diversity will be analyzed using Shannon's diversity and Simpson's diversity. Beta diversity will be analyzed by Bray-Curtis dissimilarity.

288 TRIAL STATUS AND TIMELINE

289 The research will be advertised from April 2023 to May 2023. Subsequently, subject recruitment will occur

from May 2023 to June 2023. The duration of the intervention will be between July 2023 and September 2023.

291 Data analysis will be conducted from September 2023 to December 2023. The presentation of the data and the

292 preparation of the manuscript will be completed by January 2024.

293 DISCUSSION

294 This study will be the first randomized controlled study to assess the efficacy and safety of CBD-containing 295 transdermal patches with minimal THC in patients with mild to moderate plaque-type psoriasis. It will also be 296 the first to investigate the correlation of the baseline and alteration of the microbial profile and the efficacy and 297 safety of CBD with minimal THC patches, which can help with customized patches, in addition to age, sex, 298 BMI, and genetic variables. If the intervention shows significant positive results, the promise of minimal THC 299 transdermal CBD patches as an alternative topical therapy option for psoriasis sufferers will be emphasized, and 300 additional studies on a larger scale may be conducted on this issue. Further research could examine (i) the 301 efficacy and cost-effectiveness compared to the standard of care, (ii) barriers to implementation (e.g. social 302 stigma, cost of administration, and legalization policies)

303 The strengths of this study include (i) a double-blind randomized design, (ii) a review of the aspects of 304 the patients and physicians of the psoriasis symptoms, (iv) transdermal patches that could better control the 305 amount of CBD than the previous form of transdermal CBD administration, and (v) investigation of 306 personalized factors that include the microbial profile and demographic and clinical characteristics. However, 307 this study also has several limitations including (i) recruiting and providing intervention at a single site and in an 308 academic medical center setting that could limit generalizability and (ii) the subjective nature of the itch score, 309 which includes individual variation. The study results will be released to the participating physicians, patients, 310 and the general medical community. For reproducible research, we will transfer a collection of entirely 311 anonymized data to a suitable data archive for sharing purposes. Any protocol amendment will be approved by 312 the Institutional Review Board of Chulalongkorn University and the Thai Clinical Trials Registry prior to 313 implementation.

314 Authors' contributions

PS, KP, PA, PP, SV, TO, and SC conceived of the study and initiated the study design. PS wrote original draft.
PS, KP, PA, and PP review and edit the draft. KP and PA supervised. PP provided statistical expertise in clinical
trial design and primary statistical analysis. All authors contributed to the refinement of the study protocol and
antropy of the final menuagrint.

- 318 approved the final manuscript.
- 319 Acknowledgements
- 320 None.
- 321 Supporting Information
- Supplementary 1. SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and relateddocuments.

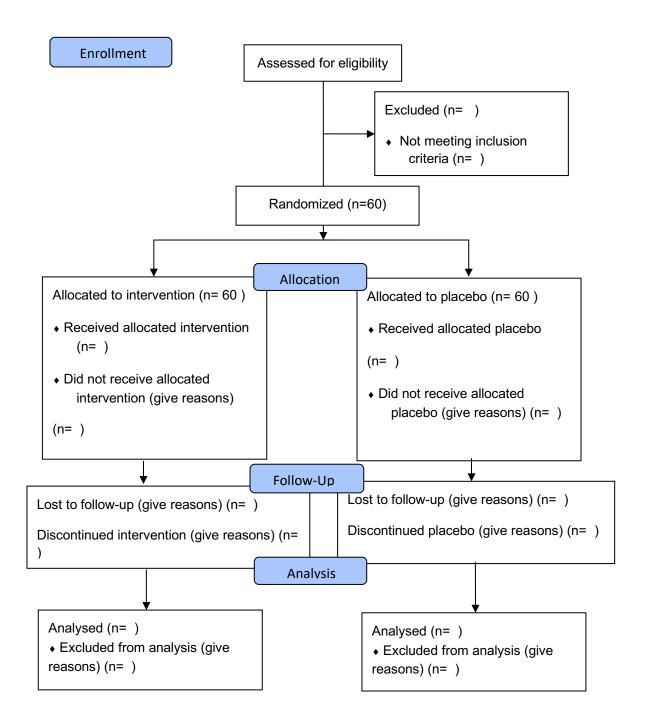
324 References

- 1. Griffiths CEM, Armstrong AW, Gudjonsson JE, Barker J. Psoriasis. Lancet (London, England).
- 326 2021;397(10281):1301-15. Epub 2021/04/05. doi: 10.1016/s0140-6736(20)32549-6. PubMed PMID:
 33812489.
- Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. Journal of the European Academy of Dermatology and Venereology : JEADV. 2017;31(2):205-12. Epub 2016/08/31. doi: 10.1111/jdv.13854. PubMed PMID: 27573025.
- Naldi L, Mercuri SR. Epidemiology of comorbidities in psoriasis. Dermatologic therapy. 2010;23(2):114 Epub 2010/04/27. doi: 10.1111/j.1529-8019.2010.01304.x. PubMed PMID: 20415817.
- Oliveira Mde F, Rocha Bde O, Duarte GV. Psoriasis: classical and emerging comorbidities. Anais
 brasileiros de dermatologia. 2015;90(1):9-20. Epub 2015/02/13. doi: 10.1590/abd1806-4841.20153038.
 PubMed PMID: 25672294; PubMed Central PMCID: PMCPMC4323693.
- Iskandar IYK, Parisi R, Griffiths CEM, Ashcroft DM. Systematic review examining changes over time and variation in the incidence and prevalence of psoriasis by age and gender. The British journal of
 dermatele are 2021/184(2):242-58. Erruh 2020/05/02. doi:10.1111/bid.10160. PubMed PMID: 22258700
- dermatology. 2021;184(2):243-58. Epub 2020/05/03. doi: 10.1111/bjd.19169. PubMed PMID: 32358790.
 Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM, Ashcroft DM. National, regional,
- and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ (Clinical research
 ed). 2020;369:m1590. Epub 2020/05/30. doi: 10.1136/bmj.m1590. PubMed PMID: 32467098; PubMed
 Central PMCID: PMCPMC7254147.

343	7.	Rendon A, Schäkel K. Psoriasis Pathogenesis and Treatment. International journal of molecular sciences.
344		2019;20(6). Epub 2019/03/27. doi: 10.3390/ijms20061475. PubMed PMID: 30909615; PubMed Central
345		PMCID: PMCPMC6471628.
346	8.	Olejniczak-Staruch I, Ciążyńska M, Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A.
347		Alterations of the Skin and Gut Microbiome in Psoriasis and Psoriatic Arthritis. International journal of
348		molecular sciences. 2021;22(8). Epub 2021/05/01. doi: 10.3390/ijms22083998. PubMed PMID: 33924414;
349		PubMed Central PMCID: PMCPMC8069836.
350	9.	Chen G, Chen ZM, Fan XY, Jin YL, Li X, Wu SR, et al. Gut-Brain-Skin Axis in Psoriasis: A Review.
351		Dermatology and therapy. 2021;11(1):25-38. Epub 2020/11/19. doi: 10.1007/s13555-020-00466-9.
352		PubMed PMID: 33206326; PubMed Central PMCID: PMCPMC7859123.
353	10	Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W, et al. Skin and Gut Microbiome in Psoriasis: Gaining
354	10.	Insight Into the Pathophysiology of It and Finding Novel Therapeutic Strategies. Frontiers in
355		microbiology. 2020;11:589726. Epub 2021/01/02. doi: 10.3389/fmicb.2020.589726. PubMed PMID:
356		33384669; PubMed Central PMCID: PMCPMC7769758.
357	11	De Francesco MA, Caruso A. The Gut Microbiome in Psoriasis and Crohn's Disease: Is Its Perturbation a
358	11.	Common Denominator for Their Pathogenesis? Vaccines. 2022;10(2). Epub 2022/02/27. doi:
359		10.3390/vaccines10020244. PubMed PMID: 35214702; PubMed Central PMCID: PMCPMC8877283.
360	12	Ferček I, Lugović-Mihić L, Tambić-Andrašević A, Ćesić D, Grginić AG, Bešlić I, et al. Features of the
361	12.	Skin Microbiota in Common Inflammatory Skin Diseases. Life (Basel, Switzerland). 2021;11(9). Epub
362		
363		2021/09/29. doi: 10.3390/life11090962. PubMed PMID: 34575111; PubMed Central PMCID: PMCPMC8468136.
	12	
364	13.	
365		Psoriasis: An Updated Review. Pathogens (Basel, Switzerland). 2020;9(6). Epub 2020/06/18. doi:
366	1.4	10.3390/pathogens9060463. PubMed PMID: 32545459; PubMed Central PMCID: PMCPMC7350295.
367	14.	Kierasińska M, Donskow-Łysoniewska K. Both the microbiome and the macrobiome can influence
368		immune responsiveness in psoriasis. Central-European journal of immunology. 2021;46(4):502-8. Epub
369		2022/02/08. doi: 10.5114/ceji.2021.110314. PubMed PMID: 35125950; PubMed Central PMCID:
370		PMCPMC8808298.
371	15.	Polak K, Bergler-Czop B, Szczepanek M, Wojciechowska K, Frątczak A, Kiss N. Psoriasis and Gut
372		Microbiome-Current State of Art. International journal of molecular sciences. 2021;22(9). Epub
373		2021/05/01. doi: 10.3390/ijms22094529. PubMed PMID: 33926088; PubMed Central PMCID:
374		PMCPMC8123672.
375	16.	Colucci R, Moretti S. Implication of Human Bacterial Gut Microbiota on Immune-Mediated and
376		Autoimmune Dermatological Diseases and Their Comorbidities: A Narrative Review. Dermatology and
377		therapy. 2021;11(2):363-84. Epub 2021/01/29. doi: 10.1007/s13555-021-00485-0. PubMed PMID:
378		33507493; PubMed Central PMCID: PMCPMC8018919.
379	17.	Le Roux E, Frow H. Diagnosis and management of mild to moderate psoriasis. Prescriber. 2020;31(7-8):9-
380		17. doi: <u>https://doi.org/10.1002/psb.1855</u> .
381	18.	
382		Jama. 2020;323(19):1945-60. Epub 2020/05/20. doi: 10.1001/jama.2020.4006. PubMed PMID: 32427307.
383	19.	Krueger GG, Feldman SR, Camisa C, Duvic M, Elder JT, Gottlieb AB, et al. Two considerations for
384		patients with psoriasis and their clinicians: what defines mild, moderate, and severe psoriasis? What
385		constitutes a clinically significant improvement when treating psoriasis? Journal of the American Academy
386		of Dermatology. 2000;43(2 Pt 1):281-5. Epub 2000/07/25. doi: 10.1067/mjd.2000.106374. PubMed PMID:
387		10906652.
388	20.	Papp KA, Gniadecki R, Beecker J, Dutz J, Gooderham MJ, Hong CH, et al. Psoriasis Prevalence and
389		Severity by Expert Elicitation. Dermatology and therapy. 2021;11(3):1053-64. Epub 2021/04/23. doi:
390		10.1007/s13555-021-00518-8. PubMed PMID: 33886086; PubMed Central PMCID: PMCPMC8163919.
391	21.	Chiricozzi A, Pimpinelli N, Ricceri F, Bagnoni G, Bartoli L, Bellini M, et al. Treatment of psoriasis with
392		topical agents: Recommendations from a Tuscany Consensus. Dermatologic therapy. 2017;30(6). Epub
393		2017/09/25. doi: 10.1111/dth.12549. PubMed PMID: 28940579.
394	22.	Kim WB, Jerome D, Yeung J. Diagnosis and management of psoriasis. Canadian family physician
395		Medecin de famille canadien. 2017;63(4):278-85. Epub 2017/04/14. PubMed PMID: 28404701; PubMed
396		Central PMCID: PMCPMC5389757.
397	23.	Kessler TR. Treating patients with moderate-to-severe psoriasis vulgaris. JAAPA : official journal of the
398		American Academy of Physician Assistants. 2022;35(3):28-35. Epub 2022/02/05. doi:
399		10.1097/01.JAA.0000819580.10133.b1. PubMed PMID: 35120363.
400	24.	
401		Cannabidiol (CBD) for Skin Health and Disorders. Clinical, cosmetic and investigational dermatology.

402		2020;13:927-42. Epub 2020/12/19. doi: 10.2147/ccid.S286411. PubMed PMID: 33335413; PubMed
403		Central PMCID: PMCPMC7736837.
404	25.	Río CD, Millán E, García V, Appendino G, DeMesa J, Muñoz E. The endocannabinoid system of the skin.
405		A potential approach for the treatment of skin disorders. Biochemical pharmacology. 2018;157:122-33.
406		Epub 2018/08/24. doi: 10.1016/j.bcp.2018.08.022. PubMed PMID: 30138623.
407	26.	Wilkinson JD, Williamson EM. Cannabinoids inhibit human keratinocyte proliferation through a non-
408		CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. Journal of
409		dermatological science. 2007;45(2):87-92. Epub 2006/12/13. doi: 10.1016/j.jdermsci.2006.10.009.
410		PubMed PMID: 17157480.
411	27.	Ramot Y, Sugawara K, Zákány N, Tóth BI, Bíró T, Paus R. A novel control of human keratin expression:
412		cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in
413		human keratinocytes in vitro and in situ. PeerJ. 2013;1:e40. Epub 2013/05/03. doi: 10.7717/peerj.40.
414	• •	PubMed PMID: 23638377; PubMed Central PMCID: PMCPMC3628749.
415	28.	Norooznezhad AH, Norooznezhad F. Cannabinoids: Possible agents for treatment of psoriasis via
416		suppression of angiogenesis and inflammation. Medical hypotheses. 2017;99:15-8. Epub 2017/01/24. doi:
417	20	10.1016/j.mehy.2016.12.003. PubMed PMID: 28110689.
418	29.	Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M. Cannabinoids as novel anti-inflammatory
419		drugs. Future medicinal chemistry. 2009;1(7):1333-49. Epub 2010/03/02. doi: 10.4155/fmc.09.93. PubMed
420	20	PMID: 20191092; PubMed Central PMCID: PMCPMC2828614.
421 422	30.	Palmieri B, Laurino C, Vadalà M. A therapeutic effect of cbd-enriched ointment in inflammatory skin
422 423		diseases and cutaneous scars. La Clinica terapeutica. 2019;170(2):e93-e9. Epub 2019/04/18. doi: 10.7417/ct.2019.2116. PubMed PMID: 30993303.
423	31.	Tijani AO, Thakur D, Mishra D, Frempong D, Chukwunyere UI, Puri A. Delivering therapeutic
424	51.	cannabinoids via skin: Current state and future perspectives. Journal of controlled release : official journal
425		of the Controlled Release Society. 2021;334:427-51. Epub 2021/05/09. doi: 10.1016/j.jconrel.2021.05.005.
427		PubMed PMID: 33964365.
428	32.	
429	02.	medicine and surgery. 2022;26(2):156-61. Epub 2021/11/21. doi: 10.1177/12034754211059025. PubMed
430		PMID: 34798780.
431	33.	Yeroushalmi S, Nelson K, Sparks A, Friedman A. Perceptions and recommendation behaviors of
432		dermatologists for medical cannabis: A pilot survey. Complementary therapies in medicine.
433		2020;55:102552. Epub 2020/11/22. doi: 10.1016/j.ctim.2020.102552. PubMed PMID: 33220620.
434	34.	Martins AM, Gomes AL, Vilas Boas I, Marto J, Ribeiro HM. Cannabis-Based Products for the Treatment
435		of Skin Inflammatory Diseases: A Timely Review. Pharmaceuticals (Basel, Switzerland). 2022;15(2).
436		Epub 2022/02/27. doi: 10.3390/ph15020210. PubMed PMID: 35215320; PubMed Central PMCID:
437		PMCPMC8878527.
438	35.	Tammaro A, Magri F, Chello C, Giordano D, Parisella FR, De Marco G, et al. A successful topical
439		treatment for cutaneous inflammatory diseases: an additional or alternative therapy to topical steroids.
440		European annals of allergy and clinical immunology. 2019;51(3):129-30. Epub 2019/05/14. doi:
441		10.23822/EurAnnACI.1764-1489.79. PubMed PMID: 31081604.
442	36.	Yeroushalmi S, Nemirovsky D, Mamlouk M, Feldman D, Nelson K, Sparks A, et al. Consumer
443		Perspectives on and Utilization of Medical Cannabis to Treat Dermatologic Conditions. Journal of drugs in
444		dermatology : JDD. 2022;21(1):31-6. Epub 2022/01/11. doi: 10.36849/jdd.2022.6540. PubMed PMID:
445	27	
446	37.	Sheriff T, Lin MJ, Dubin D, Khorasani H. The potential role of cannabinoids in dermatology. The Journal
447		of dermatological treatment. 2020;31(8):839-45. Epub 2019/10/11. doi: 10.1080/09546634.2019.1675854.
448 449	20	PubMed PMID: 31599175.
449 450	38.	Jhawar N, Schoenberg E, Wang JV, Saedi N. The growing trend of cannabidiol in skincare products. Clinics in dermatology. 2019;37(3):279-81. Epub 2019/06/11. doi: 10.1016/j.clindermatol.2018.11.002.
450		PubMed PMID: 31178109.
452	39.	Martinelli G, Magnavacca A, Fumagalli M, Dell Agli M, Piazza S, Sangiovanni E. Cannabis sativa and
453	59.	Skin Health: Dissecting the Role of Phytocannabinoids. Planta medica. 2022;88(7):492-506. Epub
453 454		2021/04/15. doi: 10.1055/a-1420-5780. PubMed PMID: 33851375.
455	40.	Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid Signaling in the Skin: Therapeutic Potential of the
456	10.	"C(ut)annabinoid" System. Molecules (Basel, Switzerland). 2019;24(5). Epub 2019/03/09. doi:
457		10.3390/molecules24050918. PubMed PMID: 30845666; PubMed Central PMCID: PMCPMC6429381.
458	41.	Osafo N, Yeboah OK, Antwi AO. Endocannabinoid system and its modulation of brain, gut, joint and skin
459		inflammation. Molecular biology reports. 2021;48(4):3665-80. Epub 2021/04/29. doi: 10.1007/s11033-
460		021-06366-1. PubMed PMID: 33909195.

_		
461	42.	Namazi MR. Cannabinoids, loratadine and allopurinol as novel additions to the antipsoriatic ammunition.
462		Journal of the European Academy of Dermatology and Venereology : JEADV. 2005;19(3):319-22. Epub
463		2005/04/29. doi: 10.1111/j.1468-3083.2004.01184.x. PubMed PMID: 15857457.
464	43.	Avila C, Massick S, Kaffenberger BH, Kwatra SG, Bechtel M. Cannabinoids for the treatment of chronic
465		pruritus: A review. Journal of the American Academy of Dermatology. 2020;82(5):1205-12. Epub
466		2020/01/29. doi: 10.1016/j.jaad.2020.01.036. PubMed PMID: 31987788.
467	44.	
468		new therapeutic opportunities. South African family practice : official journal of the South African
469		Academy of Family Practice/Primary Care. 2022;64(1):e1-e4. Epub 2022/06/14. doi:
470	15	10.4102/safp.v64i1.5493. PubMed PMID: 35695447; PubMed Central PMCID: PMCPMC9210160.
471	45.	
472		the Application of a Topical Cannabinoid Gel on Sensitive Dry Skin. Journal of drugs in dermatology :
473 474	16	JDD. 2020;19(12):1204-8. Epub 2020/12/22. doi: 10.36849/jdd.2020.5464. PubMed PMID: 33346512.
474	46.	Maghfour J, Rundle CW, Rietcheck HR, Dercon S, Lio P, Mamo A, et al. Assessing the effects of topical cannabidiol in patients with atopic dermatitis. Dermatology online journal. 2021;27(2). Epub 2021/04/06.
475		PubMed PMID: 33818989.
470	17	Puaratanaarunkon T, Sittisaksomjai S, Sivapornpan N, Pongcharoen P, Chakkavittumrong P, Ingkaninan
478	47.	K, et al. Topical cannabidiol-based treatment for psoriasis: A dual-centre randomized placebo-controlled
479		study. Journal of the European Academy of Dermatology and Venereology : JEADV. 2022;36(9):e718-
480		e20. Epub 2022/05/11. doi: 10.1111/jdv.18215. PubMed PMID: 35536599.
481	48	Pastore MN, Kalia YN, Horstmann M, Roberts MS. Transdermal patches: history, development and
482	10.	pharmacology. British journal of pharmacology. 2015;172(9):2179-209. Epub 2015/01/07. doi:
483		10.1111/bph.13059. PubMed PMID: 25560046; PubMed Central PMCID: PMCPMC4403087.
484	49.	Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and
485	.,.	opportunities in dermal/transdermal delivery. Therapeutic delivery. 2010;1(1):109-31. Epub 2010/12/07.
486		doi: 10.4155/tde.10.16. PubMed PMID: 21132122; PubMed Central PMCID: PMCPMC2995530.
487	50.	Lucas CJ, Galettis P, Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids.
488		British journal of clinical pharmacology. 2018;84(11):2477-82. Epub 2018/07/13. doi: 10.1111/bcp.13710.
489		PubMed PMID: 30001569; PubMed Central PMCID: PMCPMC6177698.
490	51.	
491		human skin: Exploring the effect of drug concentration, chemical enhancers, and essential oils.
492		International journal of pharmaceutics. 2022;616:121540. Epub 2022/02/07. doi:
493		10.1016/j.ijpharm.2022.121540. PubMed PMID: 35124116.
494	52.	
495		technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and]
496		International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging
497		(ISSI). 2008;14(3):249-60. Epub 2009/01/23. doi: 10.1111/j.1600-0846.2008.00316.x. PubMed PMID:
498		19159369.
499	53.	
500		Quality Traits of Medical Cannabis-Based Oil Preparations. Molecules (Basel, Switzerland). 2020;25(13).
501		Epub 2020/07/08. doi: 10.3390/molecules25132986. PubMed PMID: 32629796; PubMed Central PMCID: DVCPMC7419522
502	51	PMCPMC7412533.
503 504	54.	Stolar O, Hazan A, Vissoker RE, Kishk IA, Barchel D, Lezinger M, et al. Medical cannabis for the treatment of comorbid symptoms in children with autism spectrum disorder: An interim analysis of
504		biochemical safety. Frontiers in pharmacology. 2022;13:977484. Epub 2022/10/18. doi:
505		10.3389/fphar.2022.977484. PubMed PMID: 36249785; PubMed Central PMCID: PMCPMC9559854.
507	55.	
508	55.	improvement following full-spectrum, high-cannabidiol treatment for anxiety: open-label data from a two-
509		stage, phase 2 clinical trial. Communications medicine. 2022;2(1):139. Epub 2022/11/10. doi:
510		10.1038/s43856-022-00202-8. PubMed PMID: 36352103; PubMed Central PMCID: PMCPMC9628346.
511	56.	Tonoyan L, Babu D, Reiz B, Le T, Siraki AG. Heating of consumer cannabis oils can lead to free radical
512		initiated degradation, causing CBD and THC depletion. Free radical biology & medicine. 2022;192:77-83.
513		Epub 2022/09/17. doi: 10.1016/j.freeradbiomed.2022.09.005. PubMed PMID: 36113706.
514	57.	Feng W, Qin C, Cipolla E, Lee JB, Zgair A, Chu Y, et al. Inclusion of Medium-Chain Triglyceride in
515		Lipid-Based Formulation of Cannabidiol Facilitates Micellar Solubilization In Vitro, but In Vivo
516		Performance Remains Superior with Pure Sesame Oil Vehicle. Pharmaceutics. 2021;13(9). Epub
517		2021/09/29. doi: 10.3390/pharmaceutics13091349. PubMed PMID: 34575426; PubMed Central PMCID:
518		РМСРМС8472830.
519	58.	Chesney E, Oliver D, Green A, Sovi S, Wilson J, Englund A, et al. Adverse effects of cannabidiol: a
520		systematic review and meta-analysis of randomized clinical trials. Neuropsychopharmacology : official


521		publication of the American College of Neuropsychopharmacology. 2020;45(11):1799-806. Epub
522		2020/04/09. doi: 10.1038/s41386-020-0667-2. PubMed PMID: 32268347; PubMed Central PMCID:
523	-	PMCPMC7608221.
524	59.	Meissner H, Cascella M. Cannabidiol (CBD). StatPearls. Treasure Island (FL): StatPearls Publishing
525	Cop	yright © 2022, StatPearls Publishing LLC.; 2022.
526	60.	Huestis MA, Solimini R, Pichini S, Pacifici R, Carlier J, Busardò FP. Cannabidiol Adverse Effects and
527		Toxicity. Current neuropharmacology. 2019;17(10):974-89. Epub 2019/06/05. doi:
528		10.2174/1570159x17666190603171901. PubMed PMID: 31161980; PubMed Central PMCID:
529		РМСРМС7052834.
530	61.	Maghfour J, Rietcheck H, Szeto MD, Rundle CW, Sivesind TE, Dellavalle RP, et al. Tolerability profile of
531		topical cannabidiol and palmitoylethanolamide: a compilation of single-centre randomized evaluator-
532		blinded clinical and in vitro studies in normal skin. Clinical and experimental dermatology.
533 534	62	2021;46(8):1518-29. Epub 2021/05/23. doi: 10.1111/ced.14749. PubMed PMID: 34022073.
535 535	62.	Xu DH, Cullen BD, Tang M, Fang Y. The Effectiveness of Topical Cannabidiol Oil in Symptomatic Relief of Peripheral Neuropathy of the Lower Extremities. Current pharmaceutical biotechnology.
536		2020;21(5):390-402. Epub 2019/12/04. doi: 10.2174/1389201020666191202111534. PubMed PMID:
537		31793418.
538	63	Maida V, Shi RB, Fazzari FGT, Zomparelli L. Topical cannabis-based medicines - A novel paradigm and
539	05.	treatment for non-uremic calciphylaxis leg ulcers: An open label trial. International wound journal.
540		2020;17(5):1508-16. Epub 2020/09/03. doi: 10.1111/iwj.13484. PubMed PMID: 32875692; PubMed
541		Central PMCID: PMCPMC7540661.
542	64.	Yin HY, Hadjokas N, Mirchia K, Swan R, Alpert S. Commercial Cannabinoid Oil-Induced Stevens-
543		Johnson Syndrome. Case reports in ophthalmological medicine. 2020;2020:6760272. Epub 2020/03/10.
544		doi: 10.1155/2020/6760272. PubMed PMID: 32148986; PubMed Central PMCID: PMCPMC7053463.
545	65.	Scheffer IE, Hulihan J, Messenheimer J, Ali S, Keenan N, Griesser J, et al. Safety and Tolerability of
546		Transdermal Cannabidiol Gel in Children With Developmental and Epileptic Encephalopathies: A
547		Nonrandomized Controlled Trial. JAMA network open. 2021;4(9):e2123930. Epub 2021/09/04. doi: 10.1001/jaman.texa.texa.texa.texa.texa.texa.texa.texa
548 549		10.1001/jamanetworkopen.2021.23930. PubMed PMID: 34477852; PubMed Central PMCID: PMCPMC8417764.
549 550	66	Heussler H, Cohen J, Silove N, Tich N, Bonn-Miller MO, Du W, et al. A phase 1/2, open-label assessment
551	00.	of the safety, tolerability, and efficacy of transdermal cannabidiol (ZYN002) for the treatment of pediatric
552		fragile X syndrome. Journal of neurodevelopmental disorders. 2019;11(1):16. Epub 2019/08/03. doi:
553		10.1186/s11689-019-9277-x. PubMed PMID: 31370779; PubMed Central PMCID: PMCPMC6676516.
554	67.	Habeebuddin M, Karnati RK, Shiroorkar PN, Nagaraja S, Asdaq SMB, Khalid Anwer M, et al. Topical
555		Probiotics: More Than a Skin Deep. Pharmaceutics. 2022;14(3). Epub 2022/03/27. doi:
556		10.3390/pharmaceutics14030557. PubMed PMID: 35335933; PubMed Central PMCID:
557		PMCPMC8955881.
558	68.	Damiani G, Bragazzi NL, McCormick TS, Pigatto PDM, Leone S, Pacifico A, et al. Gut microbiota and
559		nutrient interactions with skin in psoriasis: A comprehensive review of animal and human studies. World
560		journal of clinical cases. 2020;8(6):1002-12. Epub 2020/04/08. doi: 10.12998/wjcc.v8.i6.1002. PubMed
561	60	PMID: 32258071; PubMed Central PMCID: PMCPMC7103976.
562	69.	Le ST, Toussi A, Maverakis N, Marusina AI, Barton VR, Merleev AA, et al. The cutaneous and intestinal
563		microbiome in psoriatic disease. Clinical immunology (Orlando, Fla). 2020;218:108537. Epub 2020/07/18.
564 565	70	doi: 10.1016/j.clim.2020.108537. PubMed PMID: 32679247. Sinha S, Lin G, Ferenczi K. The skin microbiome and the gut-skin axis. Clinics in dermatology.
566	70.	2021;39(5):829-39. Epub 2021/11/18. doi: 10.1016/j.clindermatol.2021.08.021. PubMed PMID:
567		34785010.
568	71.	Todberg T, Kaiser H, Zachariae C, Egeberg A, Halling AS, Skov L. Characterization of the Oral and Gut
569	/ 11	Microbiota in Patients with Psoriatic Diseases: A Systematic Review. Acta dermato-venereologica.
570		2021;101(7):adv00512. Epub 2021/07/16. doi: 10.2340/00015555-3882. PubMed PMID: 34263334.
571	72.	Carmona-Cruz S, Orozco-Covarrubias L, Sáez-de-Ocariz M. The Human Skin Microbiome in Selected
572		Cutaneous Diseases. Frontiers in cellular and infection microbiology. 2022;12:834135. Epub 2022/03/25.
573		doi: 10.3389/fcimb.2022.834135. PubMed PMID: 35321316; PubMed Central PMCID:
574		РМСРМС8936186.
575	73.	Eppinga H, Sperna Weiland CJ, Thio HB, van der Woude CJ, Nijsten TE, Peppelenbosch MP, et al.
576		Similar Depletion of Protective Faecalibacterium prausnitzii in Psoriasis and Inflammatory Bowel Disease,
577		but not in Hidradenitis Suppurativa. Journal of Crohn's & colitis. 2016;10(9):1067-75. Epub 2016/03/14.
578		doi: 10.1093/ecco-jcc/jjw070. PubMed PMID: 26971052.

- 579 74. Zorba M, Melidou A, Patsatsi A, Ioannou E, Kolokotronis A. The possible role of oral microbiome in autoimmunity. International journal of women's dermatology. 2020;6(5):357-64. Epub 2021/04/27. doi: 10.1016/j.ijwd.2020.07.011. PubMed PMID: 33898698; PubMed Central PMCID: PMCPMC8060669.
- 582 75. Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease. Periodontology 2000. 2020;83(1):14-25. Epub 2020/05/10. doi: 10.1111/prd.12296. PubMed PMID: 32385883.
- 76. Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunology letters. 2014;162(2 Pt A):22-38. Epub 2014/12/03. doi: 10.1016/j.imlet.2014.08.017.
 76. PubMed PMID: 25447398; PubMed Central PMCID: PMCPMC4346134.
- Vieira Colombo AP, Magalhães CB, Hartenbach FA, Martins do Souto R, Maciel da Silva-Boghossian C.
 Periodontal-disease-associated biofilm: A reservoir for pathogens of medical importance. Microbial
 pathogenesis. 2016;94:27-34. Epub 2015/09/30. doi: 10.1016/j.micpath.2015.09.009. PubMed PMID:
 26416306.
- 78. Weinstabl A, Hoff-Lesch S, Merk HF, von Felbert V. Prospective randomized study on the efficacy of blue
 light in the treatment of psoriasis vulgaris. Dermatology (Basel, Switzerland). 2011;223(3):251-9. Epub
 2011/11/23. doi: 10.1159/000333364. PubMed PMID: 22105015.
- 79. Reich A, Heisig M, Phan NQ, Taneda K, Takamori K, Takeuchi S, et al. Visual analogue scale: evaluation
 of the instrument for the assessment of pruritus. Acta dermato-venereologica. 2012;92(5):497-501. Epub
 2011/11/22. doi: 10.2340/00015555-1265. PubMed PMID: 22102095.
- 597 80. Lazaridou A, Elbaridi N, Edwards RR, Berde CB. Chapter 5 Pain Assessment. In: Benzon HT, Raja SN,
 598 Liu SS, Fishman SM, Cohen SP, editors. Essentials of Pain Medicine (Fourth Edition): Elsevier; 2018. p.
 599 39-46.e1.
- 81. Phan NQ, Blome C, Fritz F, Gerss J, Reich A, Ebata T, et al. Assessment of pruritus intensity: prospective study on validity and reliability of the visual analogue scale, numerical rating scale and verbal rating scale in 471 patients with chronic pruritus. Acta dermato-venereologica. 2012;92(5):502-7. Epub 2011/12/16. doi: 10.2340/00015555-1246. PubMed PMID: 22170091.
- 82. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-14. Epub
 2012/06/16. doi: 10.1038/nature11234. PubMed PMID: 22699609; PubMed Central PMCID:
 PMCPMC3564958.
- kin H, Peddada SD. Analysis of microbial compositions: a review of normalization and differential abundance analysis. NPJ biofilms and microbiomes. 2020;6(1):60. Epub 2020/12/04. doi: 10.1038/s41522-020-00160-w. PubMed PMID: 33268781; PubMed Central PMCID: PMCPMC7710733.

610

Figure 1. CONSORT flow diagram flowchart of phases of Efficacy and Safety of Cannabis Transdermal

Patch for Alleviating Psoriasis Symptoms: A Randomized Controlled Trial (CanPatch)

