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Abstract 46 

 47 

Chronic pain is a pervasive and debilitating condition with increasing implications for 48 

public health, affecting millions of individuals worldwide. Despite its high prevalence, the 49 

underlying neural mechanisms and pathophysiology remain only partly understood. Since 50 

its introduction 35 years ago, brain diffusion MRI has emerged as a powerful tool to 51 

investigate changes in white matter microstructure and connectivity associated with 52 

chronic pain. This review synthesizes findings from 58 articles that constitute the current 53 

research landscape, covering methodologies and key discoveries.  54 

 55 

We discuss the evidence supporting the role of altered white matter microstructure and 56 

connectivity in chronic pain conditions, highlighting the importance of studying multiple 57 

chronic pain syndromes to identify common neurobiological pathways. We also explore 58 

the prospective clinical utility of diffusion MRI, such as its role in identifying diagnostic, 59 

prognostic, and therapeutic biomarkers. 60 

 61 

Further, we address shortcomings and challenges associated with brain diffusion MRI in 62 

chronic pain studies, emphasizing the need for the harmonization of data acquisition and 63 

analysis methods. We conclude by highlighting emerging approaches and prospective 64 

avenues in the field that may provide new insights into the pathophysiology of chronic pain 65 

and potential new therapeutic targets.  66 

 67 

Due to the limited current body of research and unidentified targeted therapeutic strategies, 68 

we are forced to conclude that further research is required. However, we believe that brain 69 

diffusion MRI presents a promising opportunity for enhancing our understanding of 70 

chronic pain and improving clinical outcomes. 71 

  72 
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Introduction 73 
 74 

Over the past 25 years, significant progress has been made in the understanding of chronic 75 

pain (CP), particularly with respect to the integral role of brain processes 1. While many 76 

studies have now thoroughly documented the effects of various CP conditions on both brain 77 

structure and function 2,3, much of this research has concentrated on gray matter alterations. 78 

Studies investigating structural changes to white matter (WM) in relation to chronic pain 79 

(CP) remain scarce and inconclusive 4–8. This is significant as white matter comprises 80 

nearly half of the brain 9, has importance in development 10–12, in function 13–15 , in learning 81 

16 and is known to be impaired in numerous neurological conditions — including 82 

Alzheimer's, Parkinson's, depression, multiple sclerosis, and traumatic brain injury 17–22. 83 

 84 

In line with trends in other scientific disciplines, the search for accurate biomarkers is a 85 

major focus within the pain research community. The increasing quality and availability of 86 

neuroimaging data makes it one of the most promising avenues for the development of 87 

biomarkers 3,23–27. Notably, longitudinal and machine learning approaches have yielded 88 

significant insights into brain characteristics that predict placebo response 28, longitudinal 89 

pain symptom change 29 and transition from subacute phase to CP 30.  90 

 91 

Although the primary focus here is on the white matter, findings from other modalities can 92 

contextualize the study of WM in CP. Utilizing structural Magnetic Resonance Imaging 93 

(MRI) techniques, such as T1- and T2-weighted imaging, researchers have identified 94 

common and distinct brain features across various pain conditions 31. Even though recent 95 

meta-analysis report subtle, spatially distributed alterations in gray matter regions, 96 

including the amygdala, thalamus, hippocampus, insula, anterior cingulate cortex, and 97 

inferior frontal gyrus across CP conditions 32,33, unique "brain signatures" specific to 98 

individual pain conditions have also been observed. For example, patterns of gray matter 99 

density co-variation enabled the classification of individual brains to their condition – 100 

either chronic back pain (CBP), complex regional pain syndrome (CRPS) or knee 101 

osteoarthritis (OA) 32. Interestingly, these structural characteristics extend beyond the 102 

traditionally expected somatosensory regions, they are non-randomly distributed and may 103 

play a role to both the onset and maintenance of CP -- as seen in individuals transitioning 104 

from subacute to chronic low back pain (CLBP) who present smaller amygdala and 105 
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hippocampi volumes 34. Collectively, these observations reinforce the utility of a nuanced 106 

and more global, condition-specific approach to chronic pain.  107 

 108 

Studies examining functional MRI (fMRI), such as BOLD-weighted images, also indicate 109 

that certain dynamic features of brain activity, at rest or during task, are characteristic of 110 

various CP conditions. For instance, fibromyalgia patients show hypersensitivity to visual 111 

and pressure stimuli 35–37, whereas chronic lower back pain (CLBP) patients display distinct 112 

patterns of nucleus accumbens (NAc) activity in response to noxious stimuli 38. At the level 113 

of resting-state networks, fMRI studies have primarily emphasized changes in the default 114 

mode network, driven largely by sustained pain signaling via the medial prefrontal cortex  115 

39. Emerging research on dynamic connectivity further underscores the significance of 116 

looking at brain dynamics, revealing that dynamic features are more predictive of pain 117 

experiences than their static counterparts 40. Given these observations, examining the way 118 

white matter (WM) architecture constrains gray matter and functional alterations could 119 

offer valuable insights for the development and individualization of novel therapeutic 120 

interventions. Interestingly, some of these brain features appear to be plastic, displaying 121 

the capacity to partially reverse and reorganize either upon receiving treatment or as the 122 

condition progresses 34,41,42.  123 

 124 

Diffusion magnetic resonance imaging (dMRI), which measures the signal loss due to the 125 

diffusion of water molecules in biological tissues as diffusion-sensitizing gradients are 126 

applied 43, stands as the most promising non-invasive tool for investigating structural 127 

changes in white matter. Introduced in the late 1980s, advancements in dMRI 128 

methodologies have been substantial 44, leading to increasingly sophisticated models for 129 

measuring white matter microstructure and reconstructing white matter connectivity. Early 130 

implementations primarily relied on calculating the Apparent Diffusion Coefficient 131 

(ADC), a scalar measure computed by averaging apparent diffusion on 1 to 3 directional 132 

dMRI scans 45. While these rapid scan sequences have become standard in clinical 133 

evaluations of specific pathologies like strokes and tumors, they lack specificity to define 134 

the microstructure and are rarely used for the evaluation of chronic pain patients. By the 135 

late 1990s, Diffusion Tensor Imaging (DTI) 46 was introduced, building on the limitations 136 

of ADC. By acquiring dMRI images in at least 6 directions, DTI can reconstruct diffusion 137 
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directional preference, enabling the computation of metrics such as Fractional Anisotropy 138 

(FA) and Mean Diffusivity (MD). Nevertheless, in the context of tractography, DTI has 139 

limitations in capturing complex fiber configurations such as crossing or kissing fibers. To 140 

address this, High Angular Resolution Diffusion Imaging (HARDI) was developed in the 141 

early 2000s 47. By acquiring dMRI in at least 45 directions, HARDI was designed to resolve 142 

complex intravoxel structures. 143 

 144 

Despite these advancements, the field of chronic pain (CP) has yet to yield the full potential 145 

of diffusion MRI-based methods. Diffusion tensor imaging (DTI) remains the most 146 

prevalent method in the field, so much so that it is frequently used as a synonym for dMRI 147 

in literature. However, for the community to update its methods, a cautionary note is 148 

warranted: if HARDI and multi-shell protocols gain widespread acceptance without 149 

standardization, there is a risk of exacerbating variability and noise in the CP literature. 150 

Therefore, the aim of this review is to critically assess the existing research concerning the 151 

characteristics of brain white matter revealed through diffusion MRI techniques. We 152 

examine impairments in white matter across various chronic pain conditions, as defined by 153 

the International Association for the Study of Pain (IASP), drawing upon findings from the 154 

58 articles that met our inclusion criteria 48,49. 155 

  156 
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Methods 157 

 158 
Information source 159 

PubMed and Scopus databases were interrogated for articles dated up to 10th March 2022. 160 

Articles were also searched using the Medical Subject Headings (MeSH) term on PubMed.  161 

 162 

Review strategy  163 

This review follows the recommendations from the Preferred Reporting Items for 164 

Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) 165 

Checklist. Search strategies were developed with a librarian of the Health Sciences Library 166 

of the Université de Sherbrooke. The keywords chosen for the review were: “magnetic 167 

resonance imaging”, “diffusion”, “pain”, and “brain”. The full search strategy can be 168 

viewed in the supplementary material (supp 1.). 169 

 170 

Study strategy and inclusion/exclusion criteria 171 

The process for selecting studies in this investigation is depicted in Figure 1. First, from a 172 

collection of 447 papers, we discarded reviews and any articles that did not explicitly 173 

mention "diffusion," "brain," or "pain" in their title or abstract. Second, we eliminated case 174 

studies, non-English articles, and those in which pain was not the main focus. Third, we 175 

removed studies if they did not employ diffusion MRI (dMRI) to examine brain regions in 176 

individuals suffering from chronic pain or if the study population included participants 177 

under the age of one, veterans, amputees, recipients of deep brain stimulation (DBS), 178 

individuals with traumatic brain injury (TBI), postoperative patients, stroke or 179 

neurodegenerative disease-induced chronic pain sufferers, or subjects experiencing 180 

experimentally induced acute pain. Methodological articles and animal studies were also 181 

excluded. Fourth, we separated the remaining articles into three categories: chronic primary 182 

pain, chronic secondary pain based on the IASP classification 48,49, or articles missing 183 

information about the chronic pain condition, and only included articles on chronic primary 184 

pain. We further excluded studies that limited dMRI analysis solely to peripheral nerves, 185 

those that included only healthy control subjects, or those that failed to report results (a 186 

note on acute pain was also added in supplementary material [supp 2.]). Finally, an 187 

additional article was incorporated post hoc; this article had been referenced multiple times 188 
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in the selected literature and was identified as pertinent due to its focus on the use of dMRI 189 

in chronic pain, despite not being retrieved by our initial search terms in its title or abstract.   190 

 191 

Figure 1. Flowchart of the article selection process, 58 final articles were included for 192 

the analyzes in this review. 193 

 194 

Study selection and analyses 195 

The first three steps described in the section “study strategy and inclusion and exclusion 196 

criterias” were conducted by MS and PT; any disagreement was resolved between MS and 197 

PT. Subsequently, the classification into primary chronic pain and secondary chronic pain 198 

was made by MS and supported by PT and GLe. The remaining articles were then separated 199 

into five categories based on the IASP classification: (i) chronic widespread pain; (ii) 200 
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complex regional pain syndrome; (iii) chronic primary headache or orofacial pain; (iv) 201 

chronic primary visceral pain and (v) chronic primary musculoskeletal pain. If applicable, 202 

half of the articles in each category were separated and respectively analyzed by MS and 203 

PT. The remaining articles were analyzed by MM and GLe. Finally, each reviewer (MS, 204 

PT, MM and GLe) extracted, based on the chart developed by PT, general study design 205 

information and dMRI-specific study data.  206 

 207 

 Term Definition 

Local 
reconstruction 
methods 

ADC -- Apparent Diffusion 
Coefficient 

A measure used in MRI that reflects the magnitude of 
diffusion (of water molecules) within tissue in mm2/s. 

DTI -- Diffusion Tensor Imaging 

A technique that models the local diffusion of water 
in each voxel as a Gaussian distribution or ellipsoid. 
The three primary eigenvectors and eigenvalues of 
the tensor characterize the main diffusion directions 
and magnitudes. Common metrics derived from DTI 
include fractional anisotropy, colored fractional 
anisotropy, axial diffusivity, mean diffusivity and 
radial diffusivity (FA, RGB, AD, MD, and RD) 46.  

CSD -- Constrained Spherical 
Deconvolution 

An approach that reconstructs the fiber orientation 
distribution function (fODF) in each voxel. This is 
achieved by deconvolving the diffusion signal with a 
fiber response function 50.  

NODDI -- Neurite orientation and 
dispersion density imaging 

A method that represents the neurite orientation 
dispersion and density within each voxel. It utilizes a 
three-compartment tissue model: intracellular, 
extracellular, and cerebrospinal fluid isotropic 
compartments 51. 

 
Tractography 
reconstruction 

Deterministic tractography 

A tractography approach that solely follows the most 
likely fiber orientation when propagating the 
streamlines (seeding from the same location will 
always reconstruct the same streamline).  

Probabilistic tractography 

A tractography technique that probabilistically 
samples the fiber orientation representation during the 
streamline propagation process. 

Seeding and tracking mask regions 

These terms refer to the specific regions where 
streamline propagation starts (seeding) and the 
designated areas it is permitted to navigate through 
(tracking mask). 

Analysis 
method 

TBSS -- Tract Based Spatial 
Statistics 

A method designed to generalize voxelwise statistical 
analysis for DTI metric maps. This is achieved by 
projecting all subjects' FA data onto a mean FA tract 
skeleton, followed by applying voxelwise cross-
subject statistics 52,53. 

Tractometry 
A technique that quantifies diffusion metrics along 
specific fiber bundles 54,55. 

ROI – Region of Interest Analysis 

A method that segments distinct regions of interest 
within an image or dataset, facilitating focused 
analysis on specific brain structures or areas. 
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VBA – Voxel Based Analysis 

A technique employed to discern regional differences 
by juxtaposing measurements at the voxel level 
through registration. 

Connectivity 
analysis 

NBS – Network Based Statistics 

A method developed to control for multiple 
comparisons when mass-univariate testing is 
executed on network edge connections 56,57. 

Graph Theory Metrics 

A collection of mathematical measurements and 
algorithms tailored for the analysis and description of 
networks or graphs. Common metrics are small 
worldness and degree, among others. 

Table 1. Glossary of technical dMRI terms 208 

 209 

Results  210 

Of the 370 unique articles initially identified, 246 articles remained after removing reviews 211 

and articles which did not fit our inclusion criteria for the title and abstract. Subsequent 212 

removal of case-reports, articles not available in English and articles that only reported 213 

pain anecdotally yielded a total of 174 articles. Further exclusion of articles that did not 214 

acquire dMRI in brain regions or on a specified chronic pain condition population, left 106 215 

articles. Then, the remaining articles were separated into three categories: chronic primary 216 

pain (61 articles), chronic secondary pain (41 articles) and articles missing information 217 

about the chronic pain condition (4 articles); only chronic primary pain articles were kept. 218 

Afterwards, we excluded articles where the dMRI was acquired: on a nerve, only on 219 

healthy participants and articles without results, leaving 57 articles. Finally, one previously 220 

omitted article was added retrospectively because it was cited several times by the 221 

remaining articles, giving a total of 58 articles for the final analysis. Figure 2 presents an 222 

interactive overview of 58 articles that met our inclusion criteria regrouped according to 223 

the latest IASP chronic pain definition and their analysis method. 224 

In the interest of clarity and conciseness, a list of all abbreviations used in the results is 225 

provided below (Table 2). Furthermore, abbreviations are redefined at the beginning of 226 

every section as not all chronic pain types may pertain to the interest of the reader. 227 

Abbreviation Definition Abbreviation Definition 
ACC Anterior cingulate cortex IC Internal capsule 

CC Corpus callosum JHU Johns Hopkins University 

CR Corona radiata PAG Periaqueductal gray 

CST Corticospinal tract ROI Region of interest 

EC External capsule SLF Superior longitudinal fasciculus 

IFOF Inferior fronto-occipital 
fasciculus 

S1 Somatosensory cortex 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2023. ; https://doi.org/10.1101/2023.03.03.23286579doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.03.23286579
http://creativecommons.org/licenses/by-nd/4.0/


9 
 

ILF Inferior longitudinal fasciculus   

Table 2. Abbreviations of regions of interest 228 

 229 

 230 

Figure 2. An interactive overview of 58 articles that met our inclusion criteria regrouped 231 

according to the latest IASP chronic pain definition and their analysis method. In blue: 232 

primary headache and orofacial, red: primary visceral pain, green: primary 233 

musculoskeletal pain, purple: chronic widespread pain and orange: complex regional pain 234 

syndrome. Dynamic figure can be found here: https://osf.io/4wyqt/ 235 

 236 

Chronic primary headache or orofacial pain 237 

The IASP classification defines chronic primary headache or orofacial pain as headache or 238 

orofacial pain manifesting for at least 15 days per month and persisting for over three 239 

months. The duration of untreated daily pain is a minimum of two hours or may manifest 240 

in multiple shorter episodes 48. In reviewing this category, 21 articles were identified: 11 241 

focused on migraine 58–68, two on cluster headache 69,70, one on chronic headache 71, three 242 

on temporomandibular disorder (TMD) 72–74 and four on burning mouth syndrome 75–78. 243 

 244 

In the studies examining migraine, five investigations employed FSL-TBSS for voxel-245 

wise statistical analyses on whole-brain fractional anisotropy (FA) skeletons 58,64–67. While 246 

Neeb et al. 64 and Coppola et al. 65 solely relied on TBSS, Kattem Husøy et al. 58 and Szabó 247 

et al. 67 incorporated additional tractography analyses. Gomez-Beldarrain et al. 66 further 248 

extended their approach to include a region-of-interest (ROI) analysis, utilizing both white 249 
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and gray matter atlases. Neeb et al. reported no significant differences in FA, mean 250 

diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) between migraine 251 

patients and healthy controls. Coppola et al. examined both episodic and chronic migraines, 252 

finding no FA differences in episodic migraine patients but identifying higher RD and MD 253 

in bilateral superior and posterior corona radiata (CR), the bilateral genu of the corpus 254 

callosum (CC), the bilateral posterior limb of the internal capsule (IC) bilateral superior 255 

longitudinal fasciculus (SLF) in chronic migraine patients. Kattem Husøy et al. discovered 256 

elevated AD in major tracts, most notably in the bilateral CC, corticospinal tract (CST), 257 

inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and left 258 

SLF. They also noted lower volumes in the CC and IFOF when employing deterministic 259 

tractography, but only in the new-onset headache group. Szabó et al. found lower FA and 260 

higher MD and RD values in frontal white matter bundles. Probabilistic tractography, 261 

originating from TBSS seed regions, revealed these bundles to be connected to the 262 

orbitofrontal cortex, insula, thalamus, and dorsal midbrain. Gomez-Beldarrain et al. 263 

observed lower FA in the TBSS skeleton and identified significantly different TBSS 264 

clusters between controls and migraine patients, which were mapped to ROIs in the Johns 265 

Hopkins University (JHU) diffusion tensor imaging (DTI)-based Atlas and the MNI 266 

structural Atlas. The interior insula, bilateral cingulate gyri, and right uncinate fasciculus 267 

were pinpointed as regions with lower FA values. 268 

Three investigations exclusively utilized tractography 60,63,68. Chong et al. 60 employed 269 

probabilistic tractography to segment and average white matter microstructural properties 270 

with the aim of differentiating migraine patients from those with post-traumatic headaches. 271 

Their predictive model achieved an accuracy rate of 78%; however, no diffusion metrics 272 

were compared.  Planchuelo-Gomez et al. 63 used probabilistic tractography to build a 273 

whole brain connectome by measuring streamline counts between gray matter regions. 274 

They observed both higher and lower numbers of streamlines in connections involving 275 

specific regions such as the superior frontal gyrus. Additionally, they found variations in 276 

FA, AD, and RD in connections involving regions like the hippocampus. Silvestro et al. 68 277 

took a similar approach, employing probabilistic tractography to construct a whole-brain 278 

connectome. They quantified the connection probability between gray matter regions and 279 

further examined the resultant connectome using network-based statistics (NBS) and graph 280 

theory network analysis. Their findings highlighted nodes with significantly higher 281 
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connection probabilities in multiple regions, including the precuneus, cuneus, amygdala, 282 

calcarine cortex, and posterior cingulate cortex, anterior cingulate cortex (ACC), 283 

postcentral gyrus, lingual and fusiform gyri, middle frontal gyrus and inferior and superior 284 

parietal lobules. 285 

Three investigations utilized voxel-based analysis (VBA) 59,61,62. Zhang et al. 59 reported 286 

no significant differences using a whole-brain VBA approach via SPM12. On the other 287 

hand, Marciszewski et al. 61 observed elevated MD in various brain regions, including the 288 

spinal trigeminal nucleus, dorsal medial/lateral pons, midbrain periaqueductal gray (PAG), 289 

and cuneiform nucleus. They also identified higher FA in the white matter regions of the 290 

medial lemniscus and ventral trigeminal thalamic tract. Dasilva et al. 62 further extended 291 

their approach to include a ROI analysis, utilizing both white and gray matter atlases. They 292 

discovered lower FA values in specific patient subgroups: the ventro-lateral PAG was 293 

affected in migraine patients without aura, while the ventral trigemino-thalamic tract 294 

showed reduced FA in migraine patients with aura. 295 

 296 

In the studies examining cluster headache, two investigations employed FSL-TBSS for 297 

voxel-wise statistical analyses on whole-brain FA skeletons 69,70. Szabo et al. 69 reported a 298 

significant increase in MD, AD, and RD across widespread white matter regions in the 299 

frontal, parietal, temporal, and occipital lobes. They also found reduced FA in the CC and 300 

in specific frontal and parietal white matter tracts, such as the bilateral forceps minor and 301 

major, the bilateral CR, the IC and external capsule (EC), the cerebral peduncle, the parietal 302 

juxtacortical white matter and the IFOF, predominantly on the contralateral side of the 303 

pain. Notably, AD exhibited a negative correlation with the frequency of headache attacks. 304 

Teepker et al. 70 reported alterations in FA in multiple brain regions, including the 305 

brainstem, thalamus, IC, superior and inferior temporal regions, frontal lobe, occipital lobe, 306 

and cerebellum.  307 

 308 

In one study examining chronic headache, conducted by Miller et al. 71, they used 309 

deterministic tractography to segment and average diffusion metrics on tracts. They 310 

observed higher FA in the cingulum. 311 

 312 
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In the studies examining temporomandibular disorders (TMD), two investigations 313 

employed FSL-TBSS for voxel-wise statistical analyses on whole-brain FA skeletons 72,73. 314 

Both studies extended their analysis to include tractography. Moayedi et al. 73 went further 315 

by also incorporating VBA. Salomons et al. 72 conducted their analysis using TBSS and 316 

then segmented major tracts via probabilistic tractography. They observed that FA values 317 

in connected white matter tracts along the CST were associated with feelings of 318 

helplessness; however, no group comparison of diffusion metrics were reported. Moayedi 319 

et al., after performing TBSS analyses, employed probabilistic tractography, using seed 320 

regions identified from significant TBSS clusters, to measure connection probability. They 321 

also applied a whole-brain VBA. Their findings indicated lower FA in the anterior limb of 322 

the IC and the EC. Additionally, they observed a higher connection probability from the 323 

CC to the frontal pole and a lower connection probability from the CC to the dorsolateral 324 

prefrontal cortex. 325 

One investigation exclusively utilized whole-brain VBA 74. Gustin et al. 74 observed no 326 

significant differences in FA within the primary somatosensory cortex (S1), nor did they 327 

find any correlation between FA and reorganization of S1. 328 

 329 

In the studies examining burning mouth syndrome (BMS), two investigations employed 330 

FSL-TBSS for voxel-wise statistical analyses on whole-brain FA skeletons 76,77. Khan et 331 

al. 76 extended their study by incorporating probabilistic tractography to segment major 332 

white matter tracts. They found no significant differences in either TBSS-based diffusion 333 

metrics or average tract metrics and volumes. Tan et al. 77, who solely employed TBSS, 334 

also found no significant differences in the whole-brain FA skeleton. 335 

Two investigations exclusively utilized tractography to construct whole brain connectomes 336 

75,78. Both used probabilistic tractography to measure the streamline count between gray 337 

matter regions and subsequently applied graph theory network analysis methods to further 338 

examine the connectomes. Wada et al. 75 observed localized changes in connectivity within 339 

the ACC and prefrontal cortex, specifically in the medial orbitofrontal cortex and pars 340 

orbitalis. They also noted strengthened connections between the ACC and medial 341 

prefrontal cortex with regions such as the basal ganglia, thalamus, and brainstem. Despite 342 

these findings, no significant differences were observed in graph theory metrics. Kurokawa 343 

et al. 78 reported increased connectivity and betweenness centrality in the left insula, right 344 
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amygdala, and right lateral orbitofrontal cortex as well as reduced betweenness centrality 345 

and connectivity in the right inferotemporal cortex. 346 

 347 

 348 

Chronic primary visceral pain 349 

The IASP classification defines chronic primary visceral pain as persistent or recurrent 350 

pain (for longer than three months) that occurs in the internal organs of the head (or neck) 351 

region and of the thoracic, abdominal, or pelvic cavities, unexplained by any other 352 

condition 48. The pain anatomical location corresponds with typical referral pain patterns 353 

from specific internal organs. It can manifest in diverse forms, such as pain in the digestive 354 

system, the thoracic region, and the abdominal region, as well as pelvic pain originating 355 

from the viscera of the digestive, urinary, and genital systems. In this category, 19 studies 356 

were included. Among them, four focused on primary dysmenorrhea (PDM) 79–82,  seven 357 

on irritable bowel syndrome (IBS) 83–89, four on urologic chronic pelvic pain (UCPP) 90–93, 358 

two on prostatitis/chronic pelvic pain syndrome (CCP/CPPS) 94,95, one on cystitis/bladder 359 

pain syndrome 96 and one on provoked vestibulodynia (PVD) 97. 360 

 361 

In the studies examining primary dysmenorrhea (PDM), two investigations employed 362 

FSL-TBSS for voxel-wise statistical analyses on whole-brain fractional anisotropy (FA) 363 

skeletons 79,82. While both studies utilized TBSS, Liu et al. 82 extended their analysis to 364 

include tractography. Dun et al. 79 observed lower FA values, alongside higher mean 365 

diffusivity (MD) and radial diffusivity (RD), across various white matter fibers tracts. 366 

These tracts included the splenium part of the corpus callosum (CC), the posterior limb of 367 

the internal capsule (IC), the superior and posterior of the corona radiata (CR), as well as 368 

the posterior thalamic radiation. Conversely, Liu et al. reported higher FA and lower MD 369 

and RD values, primarily in the CC, fornix, bilateral IC, bilateral external capsule (EC), 370 

CR, and bilateral posterior thalamic radiation, bilateral sagittal stratum, right cingulum and 371 

bilateral superior longitudinal fasciculus (SLF). In addition, tractography was employed by 372 

Liu et al. to visually inspect connectivity originating from TBSS seed regions.  373 

Two investigations exclusively utilized tractography 80,81. Both studies performed 374 

tractography in a population atlas to manually segment white matter tracts of interest. 375 

Subsequently, these segmentations were registered to the native space for a region-of-376 
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interest (ROI) analysis of diffusion tensor imaging (DTI) metrics. He et al. 80 reported 377 

lower FA values in connections between the thalamus and somatosensory cortex (S1) as 378 

well as between the thalamus and insula. Conversely, they found higher FA values in the 379 

tracts connecting the thalamus to the dorsal anterior cingulate cortex (ACC) and the 380 

supplementary motor area. Liu et al. 81 observed lower FA and axial diffusivity (AD), along 381 

with higher RD and MD, in a specific cluster located in the dorsal posterior cingulum and 382 

in the parahippocampal segment of the cingulum bundle. 383 

   384 

In the studies examining irritable bowel syndrome (IBS), three investigations employed 385 

FSL-TBSS for voxel-wise statistical analyses on whole-brain FA skeletons 86–88. Chen et 386 

al. 87 further refined their TBSS analysis with a ROI approach using multiple atlases, 387 

including the Johns Hopkins University (JHU) white matter atlas, Harvard-Oxford cortical 388 

structural atlas, MNI structural atlas, Talairach Daemon labels, and the Juelich histological 389 

atlas. Similarly, both Hubbard et al. 86 and Nan et al. 88 employed an ROI-based approach, 390 

albeit solely using the JHU white matter atlas for segmentation.  Chen et al. observed higher 391 

FA values in the fornix and EC adjacent to the right posterior insula. Hubbard et al., while 392 

not finding any significant differences in the whole FA skeleton, did report lower FA in 393 

the lower dorsal cingulum; however, they found no variations in MD and RD values. Nan 394 

et al. reported lower FA and higher RD specifically in the genu of the CC, with no observed 395 

differences in MD. 396 

Two studies exclusively employed tractography methods 83,89. Irimia et al. 83 utilized 397 

deterministic tractography to calculate average tract DTI metrics while Liu et al. 89 applied 398 

tractography originating from the bilateral posterior cingulate gyrus to compute metrics 399 

such as average tract FA, fiber length, and streamline count. Irimia et al. observed higher 400 

FA values in white matter bundles innervating the S1. In contrast, Liu et al. did not report 401 

any significant differences in their measured parameters. 402 

Two studies employed voxel-based analysis (VBA) 84,85. Ellingson et al. 84 extended their 403 

analysis by incorporating a ROI approach using the JHU atlas and applied probabilistic 404 

tractography to compute the number of streamlines between certain atlas ROIs. Qi et al. 85 405 

similarly extended their analysis by applying tractography but originated it from fMRI-406 

defined ROI clusters to compute average tract DTI metrics, streamline count, and path 407 

length. Ellingson et al. observed higher FA values in various grey matter regions including 408 
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the globus pallidus, putamen, medial thalamus, and sensory and motor cortices as well as 409 

in white matter regions such as the primary cortical projections from the thalamus, 410 

posterior cingulate, frontal lobe and ACC white matter and CC when using VBA. They 411 

also reported higher MD within the globus pallidus, IC, thalamus, CR, and areas connected 412 

to sensory, pre-frontal, and posterior parietal regions. In terms of tract density, they found 413 

higher values in tracts connecting the thalamus to the prefrontal cortical regions and the 414 

medial dorsal nuclei to the ACC. Conversely, they observed lower tract density in 415 

connections between the globus pallidus and the thalamus. In contrast, Qi et al. did not find 416 

any significant differences in path length, tract count, or FA within the fibers connecting 417 

the bilateral ventral ACC to the inferior parietal lobules. 418 

 419 

In the studies examining urologic chronic pelvic pain (UCPP), one study conducted by 420 

Huang et al. 91 utilized FSL-TBSS for voxel-wise statistical analyses on whole-brain FA 421 

skeletons. Huang et al. extended their TBSS analysis by incorporating a ROI approach 422 

using the JHU white matter atlas. Huang et al. reported lower FA and higher AD values in 423 

the thalamic radiation but found no significant differences in either MD or RD. 424 

Three studies employed VBA 90,92,93. The 2018 study by Woodworth 92 focused solely on 425 

whole-brain VBA, while the 2015 Woodworth study 90 extended its analysis to include 426 

probabilistic tractography. Alger et al. 93 incorporated a ROI approach using the JHU white 427 

matter atlas. In the 2018 study, Woodworth reported significant correlations between DTI 428 

measures and urinary protein quantifications; however, no comparative analyses were 429 

conducted between different groups in terms of diffusion metrics. The 2015 Woodworth 430 

study found lower FA, lower generalized FA, lower tract density, and higher MD in brain 431 

regions typically associated with the perception and integration of pain information. 432 

Interestingly, the study did not compare IBS patients to a control group but did find them 433 

to be significantly different from UCPP patients. Alger et al. primarily aimed to evaluate 434 

the variability in FA measurements. Their study obtained data from various acquisition 435 

sites for neurologic chronic pain syndrome in healthy controls but did not conduct any 436 

comparative analyses on diffusion metrics. 437 

 438 

In the studies examining prostatitis/chronic pelvic pain syndrome (CCP/CPPS), one 439 

study utilized FSL-TBSS for voxel-wise statistical analyses on whole-brain FA skeletons 440 
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94. Farmer et al. 94 reported no significant differences in whole-brain FA skeletons across 441 

various DTI measures.  442 

In a single study conducted by Huang et al. 95, both VBA and tractography were employed 443 

to calculate whole-brain connectome and graph theory metrics. Huang et al. observed lower 444 

global efficiency in the right middle frontal gyrus (orbital part) and higher global efficiency 445 

in the left middle cingulate and paracingulate gyrus. Additionally, they reported increased 446 

local efficiency in the left middle cingulate and paracingulate gyri, as well as the 447 

paracentral lobule.  448 

 449 

In the study examining cystisis/bladder pain syndrome, a study utilized FSL-TBSS for 450 

voxel-wise statistical analyses on whole-brain FA skeletons 96. Farmer et al. 96 reported 451 

lower FA values in specific regions: the right thalamic radiation, the left forceps major, 452 

and the right longitudinal fasciculus. Conversely, they observed higher FA in the right SLF 453 

as well as in the bilateral inferior longitudinal fasciculus (ILF). 454 

 455 

In the study examining provoked vestibulodynia (PVD), a study conducted by Gupta et 456 

al. employed VBA on the whole brain and a ROI approach with the Harvard-Oxford 457 

subcortical atlas to segment gray matter regions 97. The investigators reported extensive 458 

increases in FA within the somatosensory and basal ganglia regions as well as variations 459 

in MD specifically in the basal ganglia. 460 

 461 

Chronic primary musculoskeletal pain  462 

The IASP classification defines chronic primary musculoskeletal pain as persistent or 463 

recurrent (for longer than three months) pain that occurs in the muscles, bones, joints, or 464 

tendons 48. A classic example is chronic primary low-back pain. This category is further 465 

subclassified based on pain anatomical location, including the upper back as chronic 466 

primary cervical pain, the mid-back as chronic primary thoracic pain, the lower back as 467 

chronic primary low-back pain, and the limbs as chronic primary limb pain. In this 468 

category, ten studies were included. Among them, five focused on sub-acute/chronic low 469 

back pain (SBP/CLBP) 34,98–101, three on chronic musculoskeletal pain syndrome 102–104, 470 

one on nonspecific low back pain 105 and one on chronic neck pain 106. 471 

 472 
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In the studies examining sub-acute/chronic low back pain (SBP/CLBP), four studies 473 

employed FSL-TBSS to conduct voxel-wise statistical analyses on whole-brain fractional 474 

anisotropy (FA) skeletons 98–101. Among these, Kim et al. 101 solely employed TBSS, 475 

Mansour et al. 98 extended their analysis to include tractography, and both Ma et al. 99 and 476 

Ceko et al. 100 applied a region of interest (ROI) approach. Specifically, Ma et al. utilized 477 

a white matter atlas for their ROI analysis, while Ceko et al. employed ROI clusters derived 478 

from a prior fMRI study. Kim et al. observed that CLBP patients exhibited reduced FA in 479 

both the somatosensory cortex (S1)-back and S1-finger regions when compared to controls 480 

by averaging FA skeleton diffusion tensor imaging (DTI) metrics in ROIs. Mansour et al. 481 

found lower FA values in three distinct clusters: one in the temporal part of the superior 482 

longitudinal fasciculus (SLF), a second in the left retro-lenticular part of the internal 483 

capsule (IC), and a third involving the left anterior limb of the IC as well as portions of the 484 

corpus callosum (CC), including the anterior corona radiata (CR) in SBP patients with pain 485 

that persisted compared to SBP patients that recovered after a year. Ma et al. reported lower 486 

FA in several regions: the CC, bilateral anterior and right posterior thalamic radiation, right 487 

SLF, and left anterior CR among CLBP patients. Contrarily, Ceko et al. didn’t find any 488 

whole-brain DTI metric differences in the FA skeleton, but instead measured an increased 489 

FA in the left insula post-treatment.  490 

One study exclusively used probabilistic tractography to reconstruct the whole brain 491 

connectome and evaluate the number of connections and connection probabilities 34. 492 

Vachon-Presseau et al. 34 observed higher density of connections between corticolimbic 493 

regions, such as the nucleus accumbens, the amygdala, the hippocampus and the prefrontal 494 

cortex in patients with pain that persisted compared to SBP patients that recovered after a 495 

year. No comparisons were made with respect to DTI metrics. 496 

 497 

In the studies examining non-specific chronic low back pain (NSCLBP), Pijnenburg et 498 

al. 105 study exclusively used probabilistic tractography to reconstruct the whole brain 499 

connectome and evaluate graph theory network analysis. The investigators observed lower 500 

local efficiency in NSCLBP cases; notably, no comparative analysis was conducted on 501 

diffusion metrics. 502 

 503 
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In the studies examining chronic musculoskeletal pain, two studies employed FSL-TBSS 504 

to conduct voxel-wise statistical analyses on whole-brain FA skeletons 102,103. Lieberman 505 

et al. 103 extended their analysis by incorporating a ROI approach using a white matter atlas. 506 

Bishop et al. 102 also employed an ROI approach using the JHU white matter atlas, a whole 507 

brain fixel-based analysis and a probabilistic tractography with constrained spherical 508 

deconvolution (CSD) reconstruction of the whole-brain connectome to apply network-509 

based statistics (NBS). Lieberman et al. found no significant differences in FA or axial 510 

diffusivity (AD) in the whole-brain TBSS FA skeleton. However, they reported higher 511 

radial diffusivity (RD) in multiple regions, including the body of the CC, right SLF and 512 

both anterior and posterior limbs of the IC. Further ROI analyses revealed lower FA in the 513 

splenium of the CC and the left temporal lobe branch of the cingulum bundle adjacent to 514 

the hippocampus. Elevated RD was also found in several regions, such as the splenium of 515 

the CC, the right limbs of the IC, part of the external capsule (EC) adjacent to the insular 516 

cortex, the SLF and the cerebral peduncle. Bishop et al. observed lower F1 values in the 517 

right EC, right SLF, and right uncinate fasciculus, as well as lower F2 values in the left 518 

cingulum and the splenium of the CC (F1 and F2 are respectively the first and second fiber 519 

population partial volume fractions, these diffusion properties can only be calculated when 520 

using advanced diffusion models that can account for multiple crossing fibers within a 521 

voxel). They also found lower mode of anisotropy in several areas including the splenium 522 

of the CC, left cerebral peduncle, and bilateral EC. In their whole-brain TBSS skeleton 523 

analysis, no differences in F1 and F2 were found. However, fixel-based analysis revealed 524 

reduced fiber density in the splenium of the CC and the right temporal lobe white matter 525 

region of the inferior frontal-occipital fasciculus (IFOF). No differences were observed in 526 

fiber cross-section. Utilizing a connectome approach, Bishop et al. reported increased 527 

connectivity between several regions, including the hippocampus, parietal cortex, 528 

thalamus, precuneus, and visual cortex structures like the calcarine and cuneus gray matter. 529 

One study exclusively used an ROI approach, utilizing DTI and neurite orientation 530 

dispersion and density imaging (NODDI) metrics 104. By targeting ROIs within both white 531 

matter and gray matter atlases, Cruz-Almeida et al. 104 observed lower orientation 532 

dispersion index values in the white matter of several regions, including the anterior CR, 533 

right posterior thalamic radiation, uncinate fasciculus, superior cerebellar penduncle, and 534 

fornix. 535 
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 536 

In a study focused on chronic neck pain, conducted by Coppieters et al. 106, an ROI 537 

approach using a white matter atlas was employed to assess DTI metrics. The investigation 538 

revealed no significant differences in ROI-based DTI metrics between patients with 539 

chronic neck pain and healthy controls. 540 

 541 

 542 

Chronic widespread pain 543 

The IASP classification defines chronic widespread pain as persistent or recurrent (for 544 

longer than three months) diffuse musculoskeletal pain that occurs in a minimum of four 545 

body regions and in at least three of four body quadrants (upper–lower/left–right side of 546 

the body) 48,107. In this category, six studies were included. All of which focused on 547 

fibromyalgia (FM) 108–113.  548 

 549 

In the studies focused on fibromyalgia, one study conducted by Ceko et al. 109 utilized FSL-550 

TBSS for voxel-wise statistical analyses on whole-brain fractional anisotropy (FA) 551 

skeletons. Additionally, they employed tractography to examine connectivity originating 552 

from significant TBSS clusters. While no differences were observed in whole-brain FA 553 

skeletons with respect to diffusion tensor imaging (DTI) measures, the investigators did 554 

report lower FA in regions adjacent to areas where significant gray matter volume 555 

differences were identified.  556 

One study exclusively used tractography to construct whole brain connectomes using 557 

streamline counts between gray matter regions 110. Kim et al. 110 used probabilistic 558 

tractography to build a whole brain connectome by measuring streamline count between 559 

gray matter regions. Notably, they found no differences in the white matter fiber count 560 

connecting areas associated with hyperalgesia and clinical pain (no local diffusion metrics 561 

were compared).  562 

One study exclusively used a whole brain voxel-based analysis (VBA) 111. Hadanny et al. 563 

111 observed higher FA in several regions, including the anterior thalamic radiation, left 564 

insula, right thalamus, and superior thalamic radiation. 565 

Three studies exclusively used region of interest (ROI) based analysis methods 108,112,113. 566 

Sundgren et al. 108 used ROI masks for the whole brain and manually placed ROI spheres 567 
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to utilize a histogram comparison method. Their findings included lower FA in the right 568 

thalamus, with no significant results for apparent diffusion coefficient (ADC). Fayed et al. 569 

112 also manually positioned ROI spheres to compare FA and ADC metrics but found no 570 

significant differences between groups.  Lutz et al. 113 manually segmented ROIs to 571 

compare FA and ADC metrics. They observed lower FA in both the thalami, 572 

thalamocortical tracts, and both insular regions, alongside higher FA in the postcentral gyri, 573 

amygdala, hippocampi, superior frontal gyri, and anterior cingulate gyri. No significant 574 

differences were found in ADC metrics. 575 

 576 

 577 

Complex regional pain syndrome (CRPS) 578 

The IASP classification defines complex regional pain syndrome (CRPS) as persistent, or 579 

recurrent (for longer than three months) pain characterized by its regional distribution and 580 

time course. The pain typically begins distally in an extremity following trauma and is 581 

disproportionate in both magnitude and duration when compared to the usual course of 582 

pain after similar tissue injuries 48,114,115. While two subtypes of CRPS have been identified, 583 

they are beyond the scope of this review. In this category, two studies were included 116,117. 584 

 585 

In the studies focused on Complex regional pain syndrome (CRPS), two studies 586 

employed FSL-TBSS for voxel-wise statistical analyses on whole-brain fractional 587 

anisotropy (FA) skeletons 116,117. While both studies used TBSS, Geha et al. 117 extended 588 

their approach to include probabilistic tractography, which was applied to investigate 589 

connectivity originating from voxel-based morphometry (VBM) seed regions. Geha et al. 590 

reported a lower FA cluster within the left callosal fiber tract. Hotta et al. 116, who solely 591 

utilized TBSS, observed higher mean diffusivity (MD), axial diffusivity (AD), and radial 592 

diffusivity (RD) in the genu, body, and splenium of the corpus callosum (CC) as well as in 593 

the left anterior, posterior and right superior parts of the corona radiata (CR). Across the 594 

whole-brain FA skeletons, they observed average lower FA, higher MD and RD, and no 595 

differences were observed in AD. 596 

 597 

Summary of our findings 598 
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To illustrate the results covered in this review, we have provided a summary of the types 599 

of chronic pain, the analysis methods and the reported regions and tracts used for the study 600 

of chronic pain with diffusion MRI in figure 3. 601 

 602 

603 
Figure 3. An interactive visual summary of the reviewed studies in terms of the types of 604 
chronic pain studied (A), the used analysis methods (B) and the tracts and regions 605 
reported as significant findings (C). In blue: primary headache and orofacial, red: 606 
primary visceral pain, green: primary musculoskeletal pain, purple: chronic widespread 607 
pain and orange: complex regional pain syndrome. Dynamic figure can be found here: 608 
https://osf.io/4wyqt/ 609 
 610 

 611 

Discussion 612 

 613 

The purpose of this review was to provide a critical summary of the use of brain dMRI for 614 

the study of primary chronic pain conditions. Each article was classified according to the 615 

latest IASP chronic pain definition, dMRI sequence and analysis method. The main 616 

findings of this review highlight the difficulty of delineating common white matter 617 

abnormalities for each chronic pain condition. Indeed, as shown by figure 4, sixty-four 618 

percent (35/55) of all reported regions/tracts are only reported once or twice across all 619 
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studies. Furthermore, the variety of reported metrics for a given region accentuates the lack 620 

of consensus of white matter properties for each chronic pain condition. This observation 621 

comes in part from the vast number of possibilities to analyze and further report results 622 

from dMRI data. Notwithstanding, some regions are reported more consistently. For 623 

example, the corpus callosum is reported in twenty-four percent (14/58) of all studies and 624 

a few tracts and regions emanating from the thalamus are reported in over 10% of all 625 

studies. However, these findings must be interpreted with caution as these regions could 626 

either be relatively easier to investigate (due to size, shape and localization), more common 627 

in the pain literature and subject to “publication bias” 118 as the average study CP subjects 628 

sample size is relatively low (37 subject/study)118.￼629 
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630 

Figure 4. Visual representation of the association fibers (A), the projection fibers (B), the 631 

commissural fibers (C) and the gray matter regions (D) which were mentioned by at least 632 

three different articles in this review (above the dashed line in the heatmap). (E) An 633 

interactive heatmap of how consistently each tract and region is reported as significant 634 

findings across the studies of this review. The tracts and regions with warm colors (towards 635 

yellow) are reported more consistently (with a maximum of 14 studies that report the 636 

corpus callosum) relatively to tracts and regions with cold colors (towards blue; with over 637 

50% of regions mentioned only once or twice). Dynamic heatmap can be found here: 638 

https://osf.io/4wyqt/ 639 
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 640 

Seventy-nine percent of studies (46/58) have used DTI metrics group comparisons between 641 

CP and healthy controls as part of their reported findings. While this seems to be a common 642 

first step, thirty-one percent of studies (18/58) reported further analyses than DTI metric 643 

group comparisons (seven articles in the orofacial pain category, seven articles in the 644 

visceral pain category, three articles in the musculoskeletal pain category and one article 645 

in the widespread pain category). These additional analysis methods are highlighted in 646 

figure 5 to illustrate the diversity of dMRI analysis approaches.  647 

 648 

Figure 5. Distribution of alternative metrics to diffusion metrics comparisons between 649 

chronic pain (CP) and healthy controls used in diffusion MRI. Dynamic figure can be found 650 

here: https://osf.io/4wyqt/ 651 

 652 

Interestingly, twenty-four percent of the studies (14/58) reported no differences between 653 

the groups that were investigated. Of these, five were in the orofacial pain category (two 654 

migraine, one TMD and two BMS studies), two in the musculoskeletal pain category (one 655 

CLBP and one chronic neck pain), five in the visceral pain category (three IBS, one UCPP 656 

and one CP/CPPS) and two on widespread pain (fibromyalgia). 657 

 658 

Finally, six percent of the studies (4/59) reported differences of FA or ODI in the fornix 659 

(two in visceral pain, one in CRPS and one in MSK) even though, due to its unique location 660 

surrounded by CSF, it is most likely affected by partial volume effects (PVE) even when 661 
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using state-of-the art dMRI acquisition sequences 119. Furthermore, as presented later, 662 

when using a TBSS approach, the fornix is almost absent from the TBSS FA skeleton. 663 

 664 

Main critics of the approaches used in the 58 articles 665 

 666 

Acquisition parameters 667 

Diffusion MRI metrics, though quantitative, are somewhat restricted in terms of their 668 

sensitivity and specificity. This necessitates careful interpretation of these metrics, 669 

considering methodological, technical, and biological factors.  A notable issue affecting 670 

the consistency and reliability of dMRI is the substantial variation in scanning parameters 671 

across different studies. For instance, a recent study explored the variability in diffusion-672 

weighted MRI across multiple sites, scanners, and subjects. The study demonstrated that, 673 

under specific acquisition conditions, the variability between different scanners assessing 674 

the same subject could be comparable to the variability between different subjects assessed 675 

on the same scanner 120. As for any MRI sequences, many parameters need to be properly 676 

chosen to ensure high-quality diffusion-sensitive images. Three key parameters 677 

significantly influence both dMRI image quality and the outcomes of their subsequent 678 

analyses: 1) the b-value; representing the strength, duration and timing of the diffusion 679 

encoding gradients 43,121; 2) the number of diffusions encoding gradient directions; 680 

generally representing the number of diffusion gradient directions applied over a sphere 681 

122,123; and 3) the voxel dimensions; representing the length, width and height of the 3D 682 

image voxels 124. For reference, the most common acquisition parameters used for DTI are 683 

in the range of a b-value of 1000 s/mm2, 30 unique gradient directions and a 2mm isotropic 684 

resolution.  685 

 686 

1) Across studies, the b-value parameter was the most stable with ~75% of studies using a 687 

b-value of 1000 s/mm2. However, some studies reported b-values in an unusual range—688 

such as 700, 800, 900, 1200, and 1300 s/mm2—without providing any explanation. 689 

Additionally, certain studies failed to report the b-value at all. Strikingly, only two groups 690 

performed multi-shell acquisitions, an acquisition strategy introduced over 15 years ago 691 

125, which allows for state-of-the-art dMRI analysis. Using modern multiband sequences, 692 
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multi-shell images for whole brain in-vivo imaging can be acquired in an acceptable 693 

amount of time -- between 10 and 20 minutes at most.  694 

 695 

2) When investigating the number of diffusion encoding gradient directions, we found that 696 

approximately 55% of the studies acquired a minimum of 30 directions (with a maximum 697 

of 99 directions). This parameter, however, exhibited significant variability; some studies 698 

used as few as six or nine directions. This is of concern because the theoretical minimum 699 

required to adequately describe a diffusion tensor is six gradient directions 126,127. In the 700 

broader context of tractography and fiber orientation estimation, high angular resolution 701 

diffusion imaging (HARDI) has emerged as an effective acquisition strategy designed to 702 

address the limitations of traditional diffusion tensor imaging (DTI) 128,129. Based on the 703 

acquisition of over 50 gradient directions at a single high b-value, HARDI (even when 704 

paired with a multi-shell acquisition) can be completed in a reasonable timeframe, between 705 

10 and 20 minutes at most. 706 

 707 

3) Lastly, when investigating image resolution, the overall voxel volume ranged from 708 

2.4mm3 to 20mm3. While forty-seven percent of studies used the conventional 2mm 709 

isotropic resolution, there was notable variability, with some studies acquiring highly 710 

anisotropic voxels -- such as 1.875x1.873x3 or 2x2.5x4mm3. These anisotropic voxel 711 

dimensions can introduce biases into diffusion magnetic resonance imaging (dMRI) 712 

analyses. For instance, larger voxels are more likely to contain multiple fiber populations, 713 

thereby reducing fiber orientation homogeneity and affecting diffusion metrics 124. 714 

Additionally, anisotropic voxels can influence tractography algorithms, particularly in 715 

situations involving branching fibers130. 716 

  717 
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718 
Figure 6. Overview of the different acquisition parameters used in the studies of the 719 
review. Distribution of the b-value in s/mm2 (A), the number of diffusion encoding 720 
gradient directions (B) and the resolution in mm3 (C). Dynamic figure can be found here: 721 
https://osf.io/4wyqt/ 722 
 723 

Overall, the observations made in this section highlight the heterogeneity of acquisition 724 

parameters and pre-processing pipelines across chronic pain dMRI studies. This diversity 725 

underscores a critical challenge for the field: the need for a more unified approach that 726 

would facilitate comparative and cumulative research.  For a recent review of dMRI 727 

preprocessing, we refer to article 131and for a more detailed characterization of the impact 728 

of MRI acquisition parameters on diffusion models, we refer to international benchmark 729 

competitions reports, notably that discuss the impact of different inversion time (TI) and 730 

echo time (TE) 132–134. 731 

 732 

Processing and analysis tools 733 

The tools provided by the FMRIB group at Oxford were the most used, with over 70% of 734 

the papers using one of the FSL tools to process their dMRI data. Almost 50% of the papers 735 

use the Tract Based Spatial Statistic (TBSS) pipeline 135 to identify voxel-wise differences. 736 

Although TBSS is a valid approach that provides significant advantages over classic 737 
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whole-brain voxel-based analysis when it comes to group comparison, this method does 738 

not use the full potential of dMRI images as it summarizes the complexity of the whole-739 

brain white matter into a WM skeleton that is only a few voxels wide. Also, this approach 740 

does not completely exclude registration errors 136. Therefore, almost no information 741 

coming from tracks spanning up to the cortex or tracks that are smaller or located in 742 

complex regions can be found in the TBSS maps. The other most commonly used software 743 

to process dMRI data were ExploreDTI 137 and MRtrix 138, both offering advanced tools 744 

specifically designed for dMRI data to generate tractography and diffusion metrics maps. 745 

To circumvent issues brought by TBSS, some studies presented a clever approach to 746 

identify white matter tracts impacted by the chronic pain condition under study. They used 747 

the clusters of significant differences identified in the TBSS results as seeds to perform 748 

probabilistic tractography. Although this approach allows for the identification of actual 749 

white matter tracts that were not present in the WM skeleton, it still cannot reconcile the 750 

fact that a significant volume of white matter was not included in the original TBSS 751 

analysis. Similarly, several groups identified GM ROIs from fMRI experiments and then 752 

expanded this region to include adjacent white matter as a WM ROI to extract diffusion 753 

properties. These approaches need to be interpreted carefully as a WM bundle passing close 754 

to a GM region does not necessarily connect with that region. Indeed, many WM tracts 755 

travel long distances in the brain without connecting with each region they are bordering 756 

along the way. A more appropriate approach could have been to use the GM ROI to 757 

generate seeds from/to which WM fibers might connect and extract anatomically plausible 758 

tracks from a whole brain tractogram. 759 

 760 

To illustrate the constraints of the TBSS methods, we examined the disparities between 761 

TBSS and a track-based approach for two specific tracks, namely the fornix and the 762 

accumbofrontal (AcF) track, both of which are of particular significance in chronic pain 763 

research owing to the regions they connect. Notably, the fornix serves as the primary 764 

pathway for efferent signals from the hippocampus, and it plays a critical role in memory 765 

circuitry 119. Moreover, hippocampus volume has been shown to be a risk factor in the 766 

transition from acute to chronic pain 34. The AcF track connects the orbitofrontal cortex to 767 

the nucleus accumbens 139, both regions that are also implicated in the transition from acute 768 

to chronic pain 30. To demonstrate the benefits of employing targeted approaches for 769 
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investigating white matter tracks involved in chronic pain, we analyzed the overlap of two 770 

streamline bundles extracted using separate techniques with a commonly used whole brain 771 

FA skeleton (method described in supplementary material [supp 3.]).  As a quantitative 772 

measure of overlap, voxels intersected by these tracks were extracted and the percentage 773 

of voxels overlapping the binarized FA skeleton were output for each track. The fornix and 774 

AcF tracks are displayed in Figure 7 along with the percentage of overlapping voxels 775 

showing 15% voxels overlap between TBSS and tractography approached for the fornix 776 

(figure 7 left), and only 12% voxels overlap for the AcF track (figure 7 right). This analysis 777 

was reproduced for a few other subjects from the OpenPain database and similar overlaps 778 

were obtained (not shown). 779 

 780 

 781 

Figure 7. A visualization of the overlap between the FSL FA skeleton used commonly in 782 
whole brain diffusion MRI analysis and two different reconstructed white matter bundles 783 
taken from two different tractography analysis approaches.  The population average right 784 
fornix (Fx) bundle used in the RecobundleX analysis pipeline is displayed in blue with 785 
regions overlapping the FA skeleton displayed in yellow. Voxels overlapping the bundle 786 
were extracted and the percentage of these voxels overlapping the FA skeleton are 787 
displayed as a bar graph. The same metrics are displayed for the Left Accumbofronal (AcF) 788 
track which was generated in native imaging space by extracting tracks that traversed 789 
ROIs (pink) from the nucleus accumbens and the orbital frontal gyrus. Only a small 790 
proportion of these tracks overlap the whole brain FA skeleton from FSL, suggesting that 791 
more targeted analysis approaches may be more sensitive to detecting microstructural 792 
alterations in some white matter structures.   793 
 794 

 795 

Where should the field go? 796 
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Similar to the challenges faced by fMRI for processing and analysis 127,130, dMRI is facing 797 

reproducibility and replication issues. As evidenced by the results of this review, there is a 798 

substantial degree of variability in published findings, methodologies, and metrics across 799 

different studies. While there exists several good guidelines discussing future directions 800 

for neuroimaging-based pain biomarker research 3,25,140,141, we suggest specific strategies 801 

to address dMRI's challenges: i) updating dMRI signal modelling, ii) increase access and 802 

availability of dMRI data for CP, and iii) adopting standardized pipelines specific to dMRI. 803 

 804 

i) Updating dMRI local reconstruction methods: To identify and increase group 805 

differences, novel biomarkers that increase sensitivity and specificity must be found. 806 

Recent advancements in magnetic resonance (MR) hardware and acquisition schemes—807 

such as high angular resolution diffusion imaging (HARDI), diffusion spectrum imaging 808 

(DSI), and multi-shell protocols—as well as analysis methods enable the exploration of 809 

such brain markers 142. However, the field of chronic pain (CP) has yet to yield the full 810 

potential of these methods. For instance, diffusion tensor imaging (DTI) has been so 811 

prevalent that it is often used interchangeably with dMRI in literature. More recent studies 812 

in dMRI have moved away from DTI, as it fails to accurately represent multiple fiber 813 

populations within a single white matter voxel. The tensor model typically falls short in 814 

capturing accurate microstructural information in voxels where fiber crossing occurs; given 815 

that this happens in approximately 60 to 90% of all white matter voxels in the brain 143, the 816 

DTI method is increasingly seen as providing anatomically unsound information – 817 

especially when applying tractography. Recent dMRI research has begun to move away 818 

from DTI, adopting newer methods aiming for a more precise representation of underlying 819 

white matter tissue organization. Within the studies reviewed here, four studies employed 820 

whole-brain connectome metrics and two utilized multi-compartment local models. While 821 

these newer methods are promising, a caveat is warranted: if HARDI and multi-shell 822 

protocols gain widespread acceptance without standardization, there is a risk of 823 

exacerbating variability and noise in the CP literature. Notably, the application of these 824 

methods on DTI data will most likely provide unreliable results. Therefore, we advocate 825 

for the adoption of these advanced techniques only within a structured framework of 826 

standardized protocols, reproducible analytical pipelines and cross-validation. 827 

 828 
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ii) Increasing access and availability of dMRI data for pain: One of the notable 829 

challenges in the study of chronic pain using diffusion magnetic resonance imaging (dMRI) 830 

is the limited access and availability of extensive open-access datasets. These limitations 831 

hamper the statistical power and generalizability of research findings. As such, studies 832 

included in this review had a maximum of 103 participants and a minimum of 7 participants 833 

(with an average of 37.33 ± 27.39 participants). Recent advancements in the 834 

democratization of machine learning methods, in data sharing 144,145, in data harmonization 835 

146,147, and the adoption of uniform metrics present significant opportunities for addressing 836 

this issue. By leveraging these advancements, researchers have the potential to rapidly 837 

expand and enrich open-access datasets specifically focused on chronic pain. 838 

 839 

iii) Adopting standardized pipelines specific to dMRI: Both the field of chronic pain 840 

research and diffusion magnetic resonance imaging (dMRI) are subject to large intra-group 841 

variability. For chronic pain, such variability can be attenuated by refining the specificity 842 

of clinical evaluations, thereby reducing confounds related to the chronic pain condition 843 

itself. One approach could be selecting study participants with consistent clinical criteria 844 

or ensuring a large enough sample size for data-driven selection. For dMRI, variations can 845 

be minimized at every stage, from data collection to analysis. It is important to note that 846 

dMRI has specific challenges, unlike other types of structural MR imaging. These 847 

challenges include image susceptibility distortions, region-of-interest positioning, image 848 

registration, and data smoothing. Conventional structural MR analysis techniques, such as 849 

whole-brain voxel-based analysis, might be less suitable due to common dMRI pitfalls 148. 850 

Therefore, we recommend that the acquisition parameters, pre-processing, processing and 851 

analysis be conducted with standardized pipelines specific to dMRI. 852 

 853 

Overall, the goal of this review was not to favor one method over another but to provide 854 

an overview of the current state of the field. However, in writing this review, we emphasize 855 

the difficulty of finding commonalities amidst the diverse methods used for image 856 

acquisition, analysis, and communication. Consequently, we pinpoint specific areas that 857 

require attention and potential improvements. Ultimately, we hope that addressing these 858 

challenges will allow pain researchers to capture more reproducible, specific and subtle 859 

white matter abnormalities. 860 
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 861 

Limitations 862 

Due to evolving chronic pain definitions and dMRI nomenclature, it is likely that articles 863 

performing dMRI on primary chronic pain patients were missed in this review 48. Some 864 

papers might have identified their participants otherwise had they used these new 865 

definitions. For example, an article from Geha et al 117, referenced by other studies in this 866 

review, was erroneously excluded because its dMRI nomenclature did not meet our 867 

inclusion criteria.  868 
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