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Abstract 

Background: A child’s socioeconomic environment can shape central aspects of their life, 

including vulnerability to mental disorders. Negative environmental influences in youth may 

interfere with the extensive and dynamic brain development occurring at this time. Indeed, 

there are numerous yet diverging reports of associations between parental socioeconomic 

status (SES) and child cortical brain morphometry. Most of these studies have used single 

metric- or unimodal analyses of standard cortical morphometry that downplay the probable 

scenario where numerous biological pathways in sum account for SES-related cortical 

differences in youth. Methods: To comprehensively capture such variability, using data from 

9758 children aged 8.9-11.1 years from the ABCD Study®, we employed linked independent 

component analysis (LICA) and fused vertex-wise cortical thickness, surface area, curvature 

and grey-/white-matter contrast (GWC). LICA revealed 70 uni- and multimodal components. 

We then assessed the linear relationships between parental education, parental income and 

each of the cortical components, controlling for age, sex, genetic ancestry, and family 

relatedness. We also assessed whether cortical structure moderated the negative relationships 

between parental SES and child general psychopathology. Results: Parental education and 

income were both associated with larger surface area and higher GWC globally, in addition 

to local increases in surface area and to a lesser extent bidirectional GWC and cortical 

thickness patterns. The negative relation between parental income and child psychopathology 

were attenuated in children with a multimodal pattern of larger frontal- and smaller occipital 

surface area, and lower medial occipital thickness and GWC. Conclusion: Structural brain 

MRI is sensitive to SES diversity in childhood, with GWC emerging as a particularly relevant 

marker together with surface area. In low-income families, having a more developed cortex 

across MRI metrics, appears beneficial for mental health. 
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Introduction 

The socioeconomic environment of a child can shape many central aspects of their life, 

including life expectancy, present and prospective cognitive abilities, school performance, 

and susceptibility for mental health struggles (Thomas & Coecke, 2023). Childhood is also 

marked by extensive brain development. These neuronal optimization processes, caused by 

genetic and environmental factors in complex interplay, are indirectly detectable by magnetic 

resonance imaging (MRI) (Jernigan et al., 2016; Lebel & Deoni, 2018; Norbom et al., 2021). 

Although brain plasticity fosters adaptation and learning, by the same token, environmental 

variables including socioeconomic status (SES) can affect brain development and influence 

the risk of mental disorders (Dearing et al., 2006; Farah, 2017; Letourneau et al., 2013).  

As theorized by sociologist Pierre Bourdieu, SES is a complex dimensional construct 

used to assess social (connections), cultural (skills, knowledge and education), symbolic 

(prestige), and financial capital (Bourdieu, 2011).Within neuroscience, SES is often assessed 

by material gains like income, and non-material gains such as education and occupation 

(Long & Renbarger, 2023). This tradition has been critiqued and expanded to include 

subjective and individual experiences of social class (W. M. Liu et al., 2004), and cultural 

knowledge and abilities of marginalized minority groups that often go unrecognized (Yosso, 

2005). 

Low parental SES is associated with a broad array of negative outcomes in children. 

This includes lower cognitive abilities, a discrepancy that widens across childhood (Duyme et 

al., 1999; von Stumm & Plomin, 2015; Zhang et al., 2020), and poorer academic 

achievements (Sirin, 2005). Youths from lower SES families are also 2–3 times more likely 

to suffer from mental health problems than their higher SES peers (Letourneau et al., 2013; 

Reiss, 2013). Although the association between parental SES and youth psychopathology is 

established, how the brain affects these relations, remain poorly understood. SES is also 
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heritable (Hill et al., 2019; Ørstavik et al., 2014; Tambs et al., 2012) complicating the causal 

relations with brain and mental health.  

Childhood is a central period for brain maturation, involving multiple biological 

processes that show spatial and temporal heterogeneity across tissue types, metrics, and 

individuals (Jernigan et al., 2016; Lebel & Deoni, 2018; Norbom et al., 2021). The cerebral 

cortex shows a particularly lengthy developmental trajectory, with protracted decreases in 

apparent thickness and early increases in surface area and curvature (Norbom et al., 2021; 

Sydnor et al., 2021). Beyond morphometry, a prominent feature of youth development is an 

increase in cortical brightness. Variations in cortical brightness can be assessed through T1-

weighted (T1w) intensity metrics such as the grey/white-matter contrast (GWC) (Salat et al., 

2009). As cholesterol in myelin is a major determinant of the T1w-signal (Koenig, 1991; 

Koenig et al., 1990), GWC has been suggested as a viable proxy for intracortical myelination 

(Jørgensen et al., 2016), a crucial feature of postnatal brain development, allowing for 

efficient signal transmission and structural support (Bartzokis, 2012; Baumann & Pham-

Dinh, 2001; S. Liu et al., 2019; Waxman & Bennett, 1972).  

There are several reports of associations between parental SES and child cortical 

structure (Khundrakpam et al., 2020; Noble et al., 2015; Piccolo et al., 2016; Rakesh et al., 

2022; Tomasi & Volkow, 2021). Findings are discrepant both in terms of the sensitivity of 

different imaging modalities, and the direction. Still, a recent comprehensive review of 71 

studies pointed to quite consistent positive relations between parental SES and global as well 

as frontal surface area in childhood (Rakesh & Whittle, 2021). The review found no studies 

employing intensity metrics like GWC, or cortical curvature, but a single study on the related 

metric gyrification. The general divergence in findings could partly be explained by varying 

SES measures and distinct SES subfactor - cortical metric relationships (Farah, 2017; Rakesh 

& Whittle, 2021). Also, due to convention and availability, many recent studies use imaging 
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ROI’s from Desikan-Killiany or the Destrieux atlas (Desikan et al., 2006; Destrieux et al., 

2010). These atlases are not based on cyto- or myeloarchitecture, which are the main 

proposed neurobiological drivers of cortical thickness, area and GWC, but instead on gyral 

folding. Rather than adhering to a priori divisions, one could perform a data driven reduction 

of the vertex-wise data. A related challenge is that most studies have assessed a single-, or a 

few selected morphometric measures separately. This downplays the probable scenario of 

complex constructs like SES affecting numerous biological pathways with unique genetic and 

environmental determinants (Hogstrom et al., 2013; Rakic, 1988; Strike et al., 2019) that in 

sum underlie the SES – cortical structure relationship.  

Multivariate imaging approaches (Groves et al., 2011; Miller et al., 2016) can co-

model several sources of variability, which could increase effect sizes and improve 

neurobiological interpretation. For instance, while an independent component analysis (ICA) 

decomposes a signal into its constituent parts, linked ICA (LICA) can simultaneously “link”, 

or model common features across modalities irrespective of the units’ signal- and contrast-to-

noise ratios and spatial smoothness (Groves et al., 2011). LICA studies have reported unique 

structural patterns sensitive to brain development and psychopathology (Groves et al., 2012; 

Norbom et al., 2020; Wolfers et al., 2017). Moreover, a recent study using canonical 

correlation analysis (CCA) reported common modes capturing SES factors and patterns of 

cortical morphometry, including sulcal depth (Alnæs et al., 2020). Thus, while it is 

reasonable to use multimodal reduction approaches that go beyond standard morphometry by 

including cortical curvature and GWC for a comprehensive assessment of the parental SES 

and child cortical structure relationship, this has not previously been done.   

Using data obtained from 9758 children aged 8.9- 11.1 years from the Adolescent 

Brain Cognitive Development (ABCD) Study®, we used LICA to perform multimodal fusion 

of vertex-wise cortical thickness, surface area, curvature and GWC. We then assessed the 
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linear relation between parental education and parental income and each LICA component, 

and whether components could moderate the negative relationship between parental SES and 

general psychopathology. We hypothesized that parental education and income would show 

positive associations with global and frontal surface area (Noble et al., 2015; Rakesh & 

Whittle, 2021; Thomas & Coecke, 2023), and with widespread GWC for parental education 

(Norbom et al., 2022). We expected no parental SES - cortical thickness relations (Norbom et 

al., 2022; Rakesh & Whittle, 2021), and had no specific hypotheses pertaining to curvature or 

multimodal coupling. 

 

Materials and Methods 

 

Participants  

Data was acquired from the ABCD Study® using the curated annual release 4.0 (https://data-

archive.nimh.nih.gov/abcd), with further detail described in the Supplemental Information 

(SI). The ABCD study® consists of data from almost 12,000 children, aged approximately 9-

10 years at study inclusion, as well as their parents. The data is obtained across 21 sites in the 

United States of America and includes detailed demographic, genetic, behavioral and 

neuroimaging data that will be collected for a decade (Feldstein Ewing et al., 2018).  

The current study was based on the baseline assessment of the ABCD study®. From 

11,876 participants, 8 children had partly, or completely missing Child Behavior Checklist 

(CBCL) raw scores and were therefore excluded. 14 children with missing educational data 

for both parents and 631 children with completely missing parental income information were 

also excluded. Another 732 children were excluded due to missing genetic ancestry data. On 

the imaging side we had FreeSurfer processed data for 11591 individuals. Of these 535 

individuals did not pass MRI quality control or had missing data (see below) and were 
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therefore excluded. 565 subjects were excluded during the intersection of individuals with 

complete demographics and complete neuroimaging resulting in a final sample size of 9758 

participants (5124 females) aged 8.9- 11.1 years (mean =9.9, SD =0.6), including 18 triplets 

and 1662 mono- and dizygotic twins. 

 

Measurement of socioeconomic status 

Socioeconomic information was reported by a parent or guardian on behalf of themselves and 

a partner if relevant, by completing the “ABCD parental demographics survey”.  

Parental education was assessed with the question “What is the highest 

grade/level/degree you have completed or received” ranging from 0 = Never 

attended/Kindergarten only, to 21 = Doctoral degree. We recoded this variable to years of 

total education as described in SI and defined parental education as the highest educational 

score of either the reporting parent or their partner.  

Parental income was assessed with the question “How much did you earn, before 

taxes and other deductions, during the past 12 months?”, ranging from 1 = Less than $5.000, 

to 10 = $200.000 or greater. Total family income was assessed with the question “What is 

your total combined family income for the past 12 months?” using identical scoring. We 

recoded these variables using the median of each bracket as described in the SI and defined 

parental income as the highest number available from parent, partner, or combined income. 

The distributions of raw SES scores are shown in SI Figure 1. 

 

Assessment of general psychopathology 

Child psychopathology was assessed using the CBCL (Achenbach & Ruffle, 2000), which is 

a widely used caregiver report for identifying behavioral and emotional problems in children. 

The CBCL contains 119 items pertaining to particular behaviors, and the reporter must 
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assess, on a 3-point scale, to which extent these are characteristic of the child during the past 

six months. We calculated an overarching “p-factor” in accordance with “the general factor 

of psychopathology model 7” from Clark et al. (2021) where items were first grouped into 

three lower order factors, namely internalizing, externalizing and attention problems before 

being summed to a higher order p-factor. P-factor distribution within our final sample is 

presented in SI Figure 2. 

 

MRI acquisition, quality control, preprocessing and scanner harmonization 

MRI data was attained on 29 different 3T scanners from Siemens Prisma, General Electric 

(GE) 750 and Philips. The T1w image was an inversion prepared RF-spoiled gradient echo 

scan, using prospective motion correction when available, and with 1 mm isotropic voxel 

resolution. Detailed descriptions of acquisition parameters, and care and safety procedures 

implemented for scanning of children are presented elsewhere (Casey et al., 2018).  

We relied on the T1w quality control from the ABCD Data Analysis and Informatics 

Core which uses a standardized pipeline of automated and manual procedures (Hagler et al., 

2019). It yields a binary code for images recommended for inclusion, and 367 youths did not 

pass ABCD QC and were therefore excluded. Post FreeSurfer processing (see below) we 

additionally excluded 104 subjects due to missing surface-based data, and 64 subjects due to 

total amount of surface holes being => 200 before correction (Elyounssi et al., 2023; Rosen et 

al., 2018). 

 Quality approved T1w images were processed using the open-source neuroimaging 

toolkit FreeSurfer 7.1 (http://surfer.nmr.mgh.harvard.edu). FreeSurfer performs volumetric 

segmentations and cortical surface reconstructions, including the “white” and “pial” surface, 

which is the grey/white matter boundary and the grey/cerebrospinal fluid (CSF) boundary, 

respectively (Dale et al., 1999; Fischl et al., 1999). The computation of each imaging metric 
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including GWC is described in detail within SI. Within the current study lower GWC reflects 

more similar grey and white matter, a blurring that is documented across youth development 

(Norbom et al., 2019). Thickness, area, curvature and GWC surface maps were registered to 

fsaverage and smoothed using a Gaussian kernel of 15mm full width at half maximum 

(FWHM).  

 To adjust for systematic and unwanted scanner related variance, smoothed surfaces 

were subsequently imported to R and the package neuroCombat (Fortin et al., 2018) was 

employed at vertex level to harmonize data across scanners. We included five covariates to 

our Combat model, namely age, sex, p-factor, parental income, and parental education, to 

preserve such variance during the harmonization procedure. Box plots of mean or total MRI 

measures pre- and post-neuroCombat adjustments are presented in SI Figure 3-6. 

 

Multimodal fusion 

Combat corrected vertex-wise surfaces of cortical thickness, surface area, curvature and 

GWC were fused by FMRIB's Linked Independent Component Analysis (FLICA) (Groves et 

al., 2011) . FLICA decomposes data into spatially independent components of variation and 

is robust to inputs of differing units, smoothness, and signal- and contrast to noise ratios. It 

can discover both multimodal features, and detect single-modality structured components if 

present (Groves et al., 2011, 2012). The FLICA mixing matrix vectors are statistically 

independent but not required to be orthogonal and can therefore account for shared variance 

from variables external to the FLICA. FLICA was employed with 1000 iterations, and a log-

transform of surface area only. A model order of 70 was chosen based on having the highest 

cophenetic correlation coefficient after testing model orders ranging from 50-80. This range 

was chosen to balance coherent statistical analyses and interpretable findings with the ability 

to discern distinct patterns. The cophenetic correlation coefficient is an indication of how 
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well the similarities of the clustering result matches subject resemblances within the original 

dataset.  

 

Statistical analyses 

All demographic and behavioral data (see Figure 1 for a correlation matrix) were z-

standardized, and associations between parental SES and LICA component subject loadings 

were tested using linear mixed effects (LME) models in R. We used the “lme4” (Bates et al., 

2015), and the “lme.dscore” package from EMAtools, the latter for Cohens D calculations.  

First, we tested the linear association between parental education and the 70 LICA 

components in separate models. Parental education and subject loading were added as 

independent and dependent variables, respectively. Age, sex, and four genetic ancestry 

factors (GAFs) were included as fixed effects, the latter based on population inference from 

genetic variants (Huang et al., 2022), and were included to minimize confounds from 

population stratification. To maximize generalizability and statistical power, we included 

family ID and monozygotic twin status as random effects, to model shared environmental and 

genetic influences. We then ran identical analyses testing the linear association between 

parental income and each LICA component. Tests of the quadratic relationship between both 

parental SES metrics and LICA components are presented in the SI.  

Second, we tested the linear association between parental SES and child p-factor 

scores. We included parental education or income as independent variables in separate 

models and p-factor scores as the dependent variable. Fixed and random effects were 

identical to our previous models.  

Third, we tested whether relevant LICA components (defined as showing a significant 

association with parental SES), could moderate the relationship between parental SES and 

child p-factor scores. The interaction term between parental education and subject loading 
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was included as an independent variable, while child p-factor was added as a dependent 

variable. Parental education, subject loading, age, sex, and GAFs were added as fixed effects, 

while family ID and monozygotic twin status were added as random effects. We then ran 

identical analyses where parental education was replaced with parental income. 

Finally, to compare our multimodal results to more conventional unimodal 

approaches, we tested the linear association between parental SES and standardized mean 

cortical thickness, total surface area, mean curvature, and mean GWC in separate models.  

For all statistical analyses with multiple comparisons, p-values were adjusted by false 

discovery rate (FDR) using Benjamini-Hochberg’s procedure and a significance threshold of 

0.05. The statistical code used in the present paper can be found online (https://osf.io/etsjx/). 

 

 

Figure 1. Pearson’s correlations of key demographic and behavioral variables. The figure 
shows a correlation matrix of all the demographic and behavioral variables from the final 
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sample (n=9758), which were added as fixed effects and dependent variables for our main 
analyses. 
 
Results 

Multimodal decomposition 

FLICA decomposition resulted in 70 independent components (ICs) of youth cortical brain 

structure. Modal weighting was dominated by surface area followed by GWC, cortical 

thickness, and with relatively little contribution from curvature, as visualized in Figure 2. Of 

note, IC59, the only component showing a strong curvature weighting was highly driven by a 

single subject and was therefore disregarded. ICs were ordered based on total explained 

variance with IC1 and IC2 explaining 18.7% and 16% respectively. Both ICs were mainly 

unimodal, the first highly dominated by global surface area and the second by global GWC. 

The remaining components explained between 3.23-0.47% of total variance in the cortical 

decomposition, and all components should be interpreted as showing patterns beyond, or “in 

addition” to the other components.  

 



 

Figure 2. Linked independent component analysis (LICA) decomposition. The figure shows 
the color-coded relative weight of cortical thickness (CT), surface area (Area), curvature 
(Curv) and grey/white-matter contrast (GWC), within each of the 70 components.  
 

Linear associations between parental education and youth cortical structure 

LME models revealed significant associations between parental education and six ICs of 

youth cortical structure, namely IC1, IC2, IC10, IC20, IC49 and IC54 (see Table 1 and Figure 

3). 

Parental education showed a positive association with IC1, which was a bi-

hemispheric component, dominated by larger global surface area (87%) and to a lesser extent 
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lower global GWC (8%). This indicates that parental education is associated with larger 

cortical surface area and lower GWC in child offspring. 

Parental education showed a stronger positive association with IC2 than with IC1. IC2 

was a bi-hemispheric and mostly unimodal component of higher global GWC (90%) and to a 

lesser extent larger surface area (7%). Relative to the findings of IC1, this indicates that 

parental education is somewhat linked to higher GWC globally and larger surface area in 

childhood. 

The strongest association for parental education was a positive association with IC10. 

IC10 was bi-hemispheric and multimodal, capturing a joint pattern of lower GWC (43%) and 

higher thickness (28%) and surface area (27%) within temporal pole and insular regions, as 

well as lower medial occipital thickness. This indicates that beyond the global findings 

already described, parental education is associated with lower GWC, thicker cortex and larger 

surface area in insular cortical regions in childhood.  

Parental education showed a positive association with IC20, which showed a bi-

hemispheric pattern of larger occipital and smaller parietal surface area (77%) as well as an 

overlapping bidirectional and local thickness (11%) and GWC (8%) pattern. This indicates 

that parental education is linked to additional local variations in child cortical structure, 

particularly of larger surface area. 

Parental education showed a positive association with IC49, a component with a bi-

hemispheric pattern of higher thickness (55%) within occipital, temporal and parietal regions 

extending into the frontal lobe, as well as a bi-directional pattern for GWC in similar regions 

(40%). Parental education is therefore linked to additional local variations, particularly of 

higher cortical thickness and higher and lower GWC locally in childhood. 

Parental education showed a negative association with IC54. It generally showed a bi-

hemispheric pattern of larger occipital and smaller frontal surface area (77%), larger medial 
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occipital thickness (13%), and higher medial occipital-, and lower lateral occipital GWC 

(10%). This suggests that parental education is linked to further local variations in child 

cortical structure, particularly of smaller occipital and larger frontal surface area. 

In summary, our results suggest that children with more educated parents have higher 

GWC and larger surface area globally, as well as additional local cortical variations of larger 

frontal and insular surface area and to a lesser extent bidirectional GWC patterns and higher 

thickness. 
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 PARENTAL EDUCATION PARENTAL INCOME 

IC Cohens D T statistic  p-value 

(uncorrected) 

p-value 

(corrected) 

Cohens D T statistic p-value 

(uncorrected) 

p-value 

(corrected) 

1 0.1 4.52 <0.000* <0.000* 0.09 4.25 <0.000* 0.001* 

2 0.13 5.8 <0.000* <0.000* 0.15 6.72 <0.000* <0.000* 

3 0.06 2.7 0.007* 0.411 0.05 2.4 0.016* 0.952 

4 -0.07 -3 0.003* 0.167 -0.09 -3.81 <0.000* 0.009* 

5 0 -0.07 0.947 0.997 -0.03 -1.32 0.186 0.974 

6 -0.01 -0.49 0.628 0.997 0 -0.13 0.896 0.974 

7 -0.07 -3.24 0.001* 0.074 -0.03 -1.42 0.156 0.974 

8 0 -0.02 0.982 0.997 0.02 0.78 0.434 0.974 

9 0 0 0.997 0.997 0.03 1.33 0.185 0.974 

10 0.14 6.17 <0.000* <0.000* 0.11 5.08 <0.000* <0.000* 

11 0.01 0.38 0.704 0.997 -0.01 -0.26 0.794 0.974 

12 -0.02 -0.9 0.37 0.997 0.01 0.33 0.738 0.974 

13 0.03 1.38 0.169 0.997 0.02 0.86 0.388 0.974 

14 -0.03 -1.2 0.23 0.997 -0.01 -0.52 0.606 0.974 

15 -0.04 -1.6 0.11 0.997 -0.04 -1.56 0.118 0.974 

16 0.02 1.06 0.291 0.997 0.01 0.62 0.537 0.974 

17 -0.03 -1.49 0.136 0.997 -0.05 -2.35 0.019* 0.974 

18 -0.01 -0.64 0.522 0.997 -0.01 -0.63 0.528 0.974 

19 -0.01 -0.47 0.635 0.997 -0.05 -2.12 0.034* 0.974 

20 0.09 4.13 <0.000* 0.002* 0.08 3.8 <0.000* 0.01* 

21 0.04 2.02 0.044* 0.997 0.07 3.23 0.001* 0.077 

22 0.05 2.42 0.016* 0.899 0.02 0.93 0.352 0.974 

23 -0.01 -0.34 0.732 0.997 0.01 0.35 0.729 0.974 

24 0.02 0.95 0.34 0.997 0.02 1.01 0.311 0.974 

25 -0.06 -2.64 0.008* 0.486 -0.05 -2.3 0.021* 0.974 

26 -0.04 -1.62 0.106 0.997 -0.03 -1.26 0.207 0.974 

27 0 0.07 0.946 0.997 -0.03 -1.49 0.136 0.974 

28 -0.02 -0.7 0.483 0.997 -0.03 -1.36 0.175 0.974 

29 -0.05 -2.22 0.027* 0.997 0 0.17 0.864 0.974 

30 -0.02 -0.68 0.495 0.997 -0.02 -0.97 0.331 0.974 

31 0.04 1.61 0.108 0.997 0 0.15 0.882 0.974 

32 0.01 0.27 0.791 0.997 0.03 1.2 0.23 0.974 

33 0.04 1.77 0.076 0.997 0 -0.05 0.964 0.974 
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34 0.01 0.41 0.681 0.997 0.01 0.43 0.671 0.974 

35 -0.01 -0.29 0.775 0.997 -0.02 -0.72 0.472 0.974 

36 -0.01 -0.25 0.8 0.997 0.01 0.5 0.618 0.974 

37 -0.03 -1.42 0.156 0.997 -0.01 -0.56 0.579 0.974 

38 0 -0.17 0.866 0.997 -0.02 -1.05 0.295 0.974 

39 -0.04 -1.97 0.049* 0.997 -0.02 -0.69 0.492 0.974 

40 -0.01 -0.36 0.718 0.997 0 -0.22 0.828 0.974 

41 -0.06 -2.8 0.005* 0.313 -0.03 -1.31 0.191 0.974 

42 0 -0.16 0.872 0.997 -0.01 -0.49 0.624 0.974 

43 -0.03 -1.31 0.191 0.997 -0.05 -2.24 0.025 0.974 

44 -0.03 -1.49 0.136 0.997 0 0.03 0.974 0.974 

45 -0.04 -1.82 0.069 0.997 -0.07 -3.28 0.001* 0.065 

46 -0.03 -1.31 0.192 0.997 0.04 1.88 0.061 0.974 

47 0 -0.06 0.952 0.997 0.05 2.07 0.039* 0.974 

48 -0.04 -1.64 0.101 0.997 -0.03 -1.3 0.194 0.974 

49 0.09 4.17 <0.000* 0.002* 0.1 4.3 <0.000* 0.001 

50 0.03 1.33 0.184 0.997 -0.02 -1.07 0.286 0.974 

51 0.02 0.88 0.381 0.997 0.04 1.53 0.126 0.974 

52 -0.03 -1.46 0.144 0.997 0 -0.1 0.92 0.974 

53 0.01 0.63 0.53 0.997 0.04 1.7 0.09 0.974 

54 -0.09 -4.13 <0.000* 0.002 -0.08 -3.41 0.001* 0.041* 

55 0.04 1.84 0.066 0.997 0.06 2.47 0.013* 0.791 

56 0 0.18 0.856 0.997 0.01 0.65 0.516 0.974 

57 0 -0.16 0.871 0.997 -0.01 -0.33 0.743 0.974 

58 0.03 1.23 0.218 0.997 0.04 1.67 0.095 0.974 

59 -0.33 - - - 0.17 - - - 

60 0.05 2.25 0.025* 0.997 0.02 1.07 0.286 0.974 

61 -0.03 -1.24 0.214 0.997 -0.01 -0.33 0.738 0.974 

62 0.01 0.39 0.696 0.997 -0.03 -1.29 0.197 0.974 

63 0.03 1.31 0.192 0.997 0.02 0.96 0.335 0.974 

64 -0.04 -1.73 0.085 0.997 -0.06 -2.53 0.012* 0.694 

65 -0.02 -0.73 0.465 0.997 -0.03 -1.23 0.219 0.974 

66 -0.03 -1.42 0.156 0.997 -0.05 -2.26 0.024* 0.974 

67 0 0.19 0.853 0.997 -0.04 -1.66 0.098 0.974 

68 0.03 1.15 0.251 0.997 0.04 1.64 0.102 0.974 

69 -0.01 -0.51 0.608 0.997 0 -0.18 0.855 0.974 



70 0.02 0.86 0.392 0.997 0.03 1.38 0.166 0.974 

Table 1. Associations between parental socioeconomic status (SES) and cortical component 
loadings. The table depicts Cohens D, T statistic, and uncorrected- and FDR-corrected p-
values from the statistical analyses of the associations between parental education, parental 
income, and each component loading. Significant p-values are marked with Asterix (*).  
 

 

Figure 3. Spatial visualization of independent components (ICs) showing a significant 
association with parental education and/or income. All components were thresholded with a 
minimum and maximum of 7 and 20 standard deviations, respectively, except for surface area 
within IC1 and IC2, and GWC within IC2, which were thresholded with a higher value to 
reveal nuances in the global pattern. 
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Linear associations between parental income and youth cortical structure 

LME models revealed significant associations between parental income and 7 ICs of youth 

cortical structure, namely IC1, IC2, IC4, IC10, IC20, IC49 and IC54 (see Table 1 and Figure 

3).  

In addition to the ICs already described above, parental income showed a negative 

association with IC4. IC4 was dominated by larger occipito-parietal- and smaller frontal 

surface area (89%) of the right hemisphere, and to a lesser extent higher right hemisphere 

frontal and occipital GWC (6%). This indicates that beyond the relations already described, 

parental income is associated with local, right-hemisphere variations in child cortical 

structure, of smaller occipito-parietal and larger frontal surface area, as well as lower local 

GWC to a lesser extent. Quadratic associations between parental income and LICA 

components are presented in the SI and SI Table 2. The spread of effect sizes for ICs 

significantly associated with SES subfactors across scanners are presented in SI Figure 8.  

 

Linear associations between parental SES and child p-factor, and moderation effects of 

cortical structure 

LME models revealed significant negative associations between the child p-factor scores and 

both parental education (d=-0.24, t=-10.90, p= <.001) and parental income (d=-0.31, t=-

13.67, p= <.001). We then tested whether the negative parental SES – p-factor relations were 

moderated by individual differences in cortical structure. 

LME models revealed no moderation effect of cortical structure on the parental 

education - child p-factor relationship (SI Table 3). We found a significant negative 

moderation effect of IC54 (d= -0.07, t= -3.06, corrected p= 0.016) on the negative 

relationship between parental income and child p-factor scores (Figure 4 and SI Table 3). 

This indicates that the relationship between parental income and psychopathology in 
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childhood is attenuated for children with larger frontal-, and smaller occipital surface area 

and lower medial occipital thickness and GWC.     

 

Figure 4. A visualization of the moderation effect of IC54 on the relationship between 
parental income and child p-factor scores. For visualization, the sample is divided by median 
split, so that subjects who show a high loading on IC54 are marked in red, and subjects who 
show a low loading on IC54 are marked in green. 
 

Linear associations between parental SES and unimodal global cortical metrics 

To compare our findings to standard unimodal assessments, we ran LME models testing the 

association between parental SES and unimodal metrics, separately. These results are 

described in the SI and SI Table 4. In short, unimodal assessments showed close 

correspondence to our multimodal fusion analyses, with significant positive associations for 

both parental education and parental income and total surface area as well as mean GWC. We 
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did not find any significant associations between either parental SES metric and mean 

cortical thickness or mean curvature.  

 

Discussion 

We sought to characterize the relationships between the socioeconomic environment and a 

child’s cortical structure, and whether it moderated the association between parental SES and 

child psychopathology. Children from more educated and affluent parents had a combination 

of larger surface area and GWC, in addition to local variations of larger surface area and to a 

lesser extent bidirectional GWC and thickness patterns. The negative relationship between 

parental income and child psychopathology was attenuated for children showing a pattern of 

larger frontal and smaller occipital surface area and lower medial occipital thickness and 

GWC. 

 The multimodal decomposition of vertex-wise cortical metrics revealed that most of 

the variance within the data could be explained by global surface area, and global GWC. 

Despite the participants’ relatively young age, the prominence of global surface area could in 

part be due to sex-related differences. As expected in a sample with a narrow age range, 

cortical thickness was less dominant, as was curvature with minimal contribution. A more 

detailed discussion of our FLICA decomposition is discussed within the SI. 

In line with previous studies (Noble et al., 2015; Rakesh & Whittle, 2021) our results 

showed that parental education and income were both associated with larger cortical surface 

area in children. The neurobiology underlying MRI based area differences in late childhood 

are not fully understood. Increased pericortical myelin and axon calibers could possibly be 

protruding- and pushing the cortical surface outward, increasing its size, while at the same 

time decreasing cortical folding and thickness (Seldon, 2005). Indeed, although contributions 
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were small, fused cortical thickness and GWC showed global negative patterns in accordance 

with a thinner and brighter cortex. Curvature, on the other hand, did not show this pattern.  

Children from higher SES families also showed globally higher GWC, emerging as 

the strongest finding for parental income and, apart from a multimodal insular pattern, also 

for parental education. While it can be challenging to interpret separate components with 

opposing patterns, our unimodal analyses concordantly showed a positive association 

between both parental SES metrics and global GWC. There has to our knowledge been no 

previous tests of the relations between parental SES and child GWC. However, our findings 

correspond well with a recent paper that assessed parental SES and its associations to the 

related, but directionally inverse, intensity metric T1w/T2w ratio (Norbom et al., 2022). Here, 

widespread negative relations were found between general- and subfactor parental SES and 

T1w/T2w ratio. Effect sizes were also larger than for standard morphometry, including 

cortical surface area and cortical thickness. GWC thus appears to be a highly sensitive 

imaging marker not only for youth cortical development generally (Norbom et al., 2019, 

2020), but also specifically for SES related variance.  

From a neurobiological standpoint, although consistently reported and thus in line 

with our hypothesis, the direction of GWC results is counterintuitive. GWC decreases across 

childhood and adolescence, pointing to grey and white matter intensities becoming more 

similar, possibly due to higher levels of intracortical myelin. Our results may thus indicate 

that children from lower SES families have a more developed cortex. Possible reasons for the 

direction of findings are discussed in detail elsewhere (Norbom et al., 2022), but include a 

disadvantageous effect of excess myelin, cortical surface misclassification, and other tissue 

properties accounting for GWC variations. On the other hand, our results fit with the theory 

that exposure to poverty and early adversity can foster accelerated maturation (Belsky, 2019; 

Colich et al., 2020). This notion has also been supported by MRI based studies (Colich et al., 
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2020). It would be beneficial to employ quantitative relaxometry to further probe the 

underlying neurobiology linking SES to GWC.  

Multimodal fusion revealed that parental education and income were associated with 

complex multimodal cortical patterns, including larger frontal and insular surface area, 

coupled with lower insular GWC and thickness. Although previous research is discrepant, the 

most consistent morphometric pattern is indeed a positive association between parental SES 

and frontal surface area (Rakesh & Whittle, 2021). Although based on large tissue volumes, 

overlapping multimodal patterns should improve our inferences of the underlying 

neurobiology. For instance, children from higher-income parents had right hemisphere 

increases in frontal surface area weakly coupled with thinner cortex and lower GWC. 

Similarly, our insular component coupled larger surface area with lower GWC. In youth MRI 

studies, these are well documented maturational patterns (Norbom et al., 2021) that in sum 

are understood to reflect a combination of pericortical and cortical myelination, increased 

axon caliber, remodeling of dendritic arbour and reductions in glial cells (Huttenlocher & 

Dabholkar, 1997; Petanjek et al., 2008, 2011; Peter R., 1979; Seldon, 2005; Vidal-Pineiro et 

al., 2020). While structure to function relations are not analogous, future fMRI studies could 

assess whether the socioeconomic environment also affects frontal cortex and insular 

function. 

As expected, parental SES was not closely linked to cortical thickness in youth, only 

showing a few highly local variations within multimodal components. Findings were 

corroborated by unimodal mean thickness analyses showing no significant associations to 

either parental SES metric. This is in line with previous research pointing to mixed- and 

mostly null findings regarding parental SES and cortical thickness (Rakesh & Whittle, 2021). 

Yet, our observations underscore the advantage of multimodal fusion in discerning subtle 

patterns that are not captured in unimodal thickness assessments. Overall, our findings could 



 24

indicate that cortical thinning across youth might be affected more by genetic factors, while 

surface area (Strike et al., 2019) and GWC could be more sensitive to environmental impact. 

However, a recent ABCD study found a relation between family income and ROI based 

cortical thickness (Tomasi & Volkow, 2021), as did several papers testing the related concept 

of neighborhood disadvantage (Rakesh & Whittle, 2021; Taylor et al., 2020; Vargas et al., 

2020). A similar study by Hackman et al. (2021) did not corroborate these findings.  

Multi- and unimodal assessments did not reveal an association between child 

socioeconomic environment and cortical curvature. Developmental folding differences across 

youth have been less explored, and to our knowledge no studies have previously assessed the 

SES - youth curvature relation. Nevertheless, a multivariate brain structure–behavior 

mapping revealed several modes of covariation, including one capturing general economic 

deprivation, and the related metric sulcal depth (Alnæs et al., 2020).  

In line with our hypothesis and current literature (Letourneau et al., 2013; Reiss, 

2013) children from less educated and lower income families were reported to have higher 

levels of general psychopathology. We tested whether cortical macro-, and microstructure 

moderate this relationship. We found a small moderation indicating that in low-income 

families child psychopathology were attenuated in children with a multimodal pattern of 

larger frontal- and smaller occipital surface area, and lower medial occipital thickness and 

GWC. Within higher income families where general psychopathology levels are low, we 

found the reverse pattern. Still, this finding should be interpreted with caution awaiting 

replication. Future studies should also employ longitudinal designs to test whether cortical 

structure mediates the relation between parental SES and future psychopathology in youth 

(Farah, 2017; Maxwell & Cole, 2007). 

 There are several limitations to our study. First, regarding our SES estimations, we did 

not include subjective or cultural aspects of the construct (W. M. Liu et al., 2004; Yosso, 



 25

2005) nor did we investigate the unique contributions of our SES metrics. Also, income and 

education are distal markers for proximal causal pathways including stress, cognitive 

stimulation, obstetric complications, prenatal care, toxins and nutrition (Evans & Kim, 2013; 

Farah, 2017; Thomas & Coecke, 2023). Second, our study design can only capture 

correlational relationships and cannot infer causation. Similarly, longitudinal MRI data is 

needed to test the maturation of cortical structure and its relation to SES over time. Third, 

several brain related findings including the moderation effect, were of small magnitude. This 

is not surprising as publication bias and historically small samples may have promoted 

inflated neurodevelopmental effects (Button et al., 2013; Ioannidis, 2008) that should be 

attenuated when assessing ABCD (Dick et al., 2021). Also, for many outcomes in nature 

causal relations are in reality small (Dick et al., 2021), including clinical effects within 

psychology and psychiatry (Meyer et al., 2001), and in multimodal imaging and health 

outcomes (Miller et al., 2016).  

It is presently unclear how childhood socioeconomic diversity becomes 

neurobiologically embedded and influence current and future risk for mental health problems. 

In the present study we report that children with more educated or affluent parents have a 

combination of larger global and regional surface area, a larger difference between grey and 

white matter intensities, and that in low-income families, having what appears to be a more 

developed cortex across metrics is beneficial to mental health. 
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