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Abstract 

Detection of large vessel occlusion (LVO) using machine learning on computed tomography 

angiography (CTA) may help stroke triage, yet applicability across varied patient and image 

characteristics has not been examined.  The study will examine which characteristics are 

important when using a convolutional neural network to identify LVO on CTA. A retrospective 

cohort study (November 2017–May 2019) at a comprehensive stroke center evaluated 677 

stroke-alerted patients with an LVO of the internal carotid artery, M1, or M2 (n=150) and a 
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matching number without LVO were included. An Inception module-based network was trained 

for binary classification of LVO presence. Results were examined by LVO location, window 

settings, non-LVO findings, demographics, risk factors, presentation status and times, 

interventions, and outcomes. Three hundred patients were included (48% women; median age 

65). Mean±95% CI for cross-validation test and external validation, respectively, are area under 

precision-recall curve 0.871±0.094 and 0.742±0.018 and area under receiver operating 

characteristic curve 0.920±0.051 and 0.852±0.004. 145 true positive (TP), 5 false negative (FN), 

39 false positive (FP), and 111 true negative (TN) patients were identified. Significant 

comparisons (P<0.05) identified: lower window settings for misclassifications, smoking history 

for all FN versus 33% TP (P=0.005), and tissue plasminogen activator treatment for 41% FP 

versus 20% TN (P=0.017).  Our LVO detection tool had high performance across patient 

characteristics with few exceptions. FP had pathology warranting detection, including distal 

occlusions. Lower window settings among misclassifications highlight the need for image 

quality when using machine learning for decision support. 

 

Introduction 

Patients with acute ischemic stroke due to LVO are at high risk for poor outcomes and benefit 

from early identification and reperfusion.1–7 Automated detection of LVO using machine 

learning on the increasingly available imaging modality of CTA may help stroke triage.8–11 

Several studies have successfully demonstrated this application with high performance, yet 

applicability across varied patient and image characteristics has not been examined.12–17  

 

Any machine learning algorithm is biased by the population included and data that it is trained 

on, which prompts the need to critically evaluate performance of LVO detection algorithms in 
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the context of patient and image characteristics.18,19 Many factors are known to cause variation in 

imaging appearance of vessels and LVO, including LVO location, age-related vascular changes, 

risk factors such as smoking and hypertension, and time from stroke onset to imaging.20–23 CTA-

specific properties such as contrast enhancement also vary on a patient-to-patient basis.24 It is 

also worth investigating algorithm performance relative to interventions and outcomes, since 

these can be associated with stroke features and severity reflected in CTA.25,26 Algorithm 

evaluation in the context of such factors can identify any that are associated with poor 

performance and may require closer attention when using an automated LVO detection tool for 

clinical decision support.  

 

The aim of this study is to determine what patient and image characteristics are important when 

using a convolutional neural network (CNN) to identify potential LVO from CTA. To this end, a 

CNN was trained on the task of LVO detection from CTA, and performance was subsequently 

examined in the context of patient demographics, stroke risk factors, clinical status on arrival, 

interventions, outcomes, time intervals during triage and intervention, LVO location, image 

window settings, and other imaging findings. 

 

In this retrospective study, we aimed to determine which patient and imaging characteristics are 

important when training a convolutional neural net to identify LVO on CTA.  
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Methods 

Patients and Data 

This retrospective cohort study was approved by the Vanderbilt University institutional review 

board (#191100). Among 677 stroke-alerted patients at a comprehensive stroke center during the 

period November 2017–May 2019, 150 with anterior circulation LVO and 150 without LVO 

were included, with selection process detailed in Figure 1. Only the first stroke was considered 

for patients who had multiple during the timeframe. LVO is defined as occlusion of the internal 

carotid artery (ICA) or the middle cerebral artery’s first (M1) or proximal second (M2) segment. 

LVO labels were per chart review, or if ambiguous in documentation, images were re-examined 

by author LTD, a board-certified neuroradiologist. Exclusion criteria were patients without head 

non-contrast computed tomography (NCCT) or CTA available; images that were unsuccessfully 

transferred to the research server, uninterpretable as far as LVO label, or distorted upon 

processing; intracranial hemorrhage or implant such as external ventricular drain; and rare 

pathology such as posterior circulation occlusion, common carotid artery occlusion, intracranial 

mass, and moyamoya.  

 

Stroke alert database was provided by the Vanderbilt Stroke Program. Patient characteristics 

were acquired from electronic medical records, securely recorded using Research Electronic 

Data Capture (REDCap), and deidentified and date-shifted prior to downloading for analysis.27,28 

Characteristics considered include demographics, stroke risk factors, whether patient was 

transferred, National Institutes of Health Stroke Scale (NIHSS), blood pressure on arrival, 

interventions, outcomes, timestamps during triage and intervention, and radiology reports. NCCT 

of the head and thin slice (1mm) CTA of the combined head and neck were acquired in Digital 
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Imaging and Communications in Medicine (DICOM) format from Vanderbilt University 

Medical Center databases in Agfa IMPAX 6 and ImageVU, deidentified, and stored in the 

Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT 

database.29  

 

Image Processing 

Open-source tools were used for image processing.30–33 NCCT and CTA were converted from 

DICOM to Neuroimaging Informatics Technology Initiative format, CTA were cropped to 

include head only, and all images were registered to a common template NCCT selected from the 

dataset. Skull was removed by using a validated brain extraction method on each patient’s NCCT 

and then applying the mask from NCCT skull removal to the same patient’s CTA.34 For each 

CTA, Hounsfield unit window width and level were adjusted based on visual inspection, a 40mm 

axial maximum intensity projection image (MIP) to optimally depict anterior circulation was 

generated, and intensity was normalized to range 0-1. The CNN PhiNet was tested for feasibility 

of training on this dataset using images at each step of processing, and it was only able to learn 

effectively after application of manually involved steps of individualized window adjustment and 

reduction from three to two dimensions with MIP generation.  

 

Model Training, Evaluation, and Selection 

Five deep CNNs were trained for binary classification of LVO or no LVO, using 240 CTA MIPs 

with 10-fold cross-validation. A balanced set of 60 images was withheld for external validation. 

The 240 cross-validation images were overall balanced between labels, but split into train, 

validation, and test sets for each fold did not specify balanced classes. For each fold, 10% (24 
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images) were used as a test set, and remaining images were split 80:20 for train and validation. 

Each of the 240 images was included in the cross-validation test set for exactly one fold. PhiNet, 

EfficientNet-B0, DenseNet-121, ResNet-50, and a network based on the Inception V1 module 

were implemented with Keras and TensorFlow.35–42 The output prediction of LVO presence was 

a value between 0-1. 

 

For each CNN, all 2400 predictions from the ten folds of cross-validation (train, validation, and 

test sets) were aggregated, F1 score was computed at every possible discrimination threshold, 

and the threshold was selected where F1 was highest. The threshold was applied to each 

prediction to determine a predicted class. The ten trained models from each fold of cross-

validation were evaluated separately on 1) the corresponding fold’s cross-validation test set of 24 

images and 2) the common external validation set of 60 images. Evaluation metrics were 

accuracy, sensitivity, precision, specificity, and F1 score at the selected threshold, area under 

precision-recall curve (AUPRC), and area under receiver operating characteristic curve (ROC-

AUC). Separately for cross-validation and external validation sets, each metric was averaged 

across folds and 95% confidence intervals (CI) computed. The CNN with highest sum of the 

seven mean metrics for the cross-validation test set was selected. Results are reported solely for 

the selected CNN.   

 

Characterization and Error Analysis 

Each patient had a single prediction from each of the ten folds when all cross-validation (train, 

validation, and test sets) and external validation set predictions were aggregated. The ten 

predictions for each of the 300 patients were averaged. The selected threshold was applied to 
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each patient’s average prediction to determine one predicted class per patient and sort into true 

positive (TP), false negative (FN), false positive (FP), and true negative (TN) groups. LVO 

location, window settings, demographics, known history of stroke risk factors, presentation 

status and times, interventions, and outcomes were compared for TP versus FN and FP versus 

TN using Fisher’s Exact Test for Count Data for categorical variables and the Wilcoxon Rank 

Sum Test for continuous variables, at a significance level of P<0.05. Information regarding non-

LVO pathology and artifacts for patients in each group was obtained from radiology reports. 

 

 

 

 

 

Results 

Patient Characteristics 

Among 300 patients, 145 (48%) were women, and median age (interquartile range [IQR]) was 65 

(55-76). LVO included 32 (21%) ICA, 82 (55%) M1, and 36 (24%) M2. Patient characteristics 

by LVO label are detailed in Table 1. Characteristics not reported due to low documentation 

rates are modified Rankin scale, 24-hour NIHSS, and Alberta Stroke Program Early CT score 

(ASPECTS). 

 

Model Performance 

The Inception module-based network was selected at a threshold of 0.390 for LVO present. 

Results for cross-validation test sets across 10 folds as mean±95% CI are AUPRC 0.871±0.094, 
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ROC-AUC 0.920±0.051, accuracy 85.8±4.7%, sensitivity 94.3±6.0%, precision 80.9±8.7%, 

specificity 79.0±9.7%, and F1 score 0.863±0.051. Results for the external validation set 

evaluated on each fold’s model are AUPRC 0.742±0.018, ROC-AUC 0.852±0.004, accuracy 

81.2±2.7%, sensitivity 96.7±3.4%, precision 74.2±3.3%, specificity 65.7±6.8%, and F1 score 

0.838±0.019.  

 

Characterization and Error Analysis 

At the patient level, averaged results correspond to 145 TP, 5 FN, 39 FP, and 111 TN. LVO was 

identified for all 32 ICA occlusions, 78 (95%) M1 occlusions, 35 (97%) M2 occlusions, and 82 

(99%) patients who had subsequent endovascular thrombectomy. Performance was similar for 

last known well (LKW) to CT (includes NCCT and CTA) interval in early (within 6 hours) and 

late (greater than 6 hours) thrombectomy time windows, with accuracy of 86% and 85%, 

respectively.  

 

Table 2 describes TP versus FN and FP versus TN comparisons. Statistically significant 

differences were present for the following characteristics: history of smoking in 5 (100%) FN 

versus 48 (33%) TP (P=0.005), receipt of tPA in 16 (41%) FP versus 22 (20%) TN (P=0.017), 

and receipt of tPA specifically among patients with LKW to CT interval within 4.5 hours in 12 

(71%) FP versus 18 (40%) TN (P=0.046). Image intensity window settings were lower for 

misclassified examples, with window level median (IQR) of 160 (130-200) for FP versus 180 

(150-200) for TN (P=0.026), width 480 (310-660) for FP versus 600 (460-720) for TN 

(P=0.004), and width 580 (440-740) for TP versus 380 (380-400) for FN (P=0.016); window 

level 170 (150-210) for TP versus 150 (150-150) for FN was not significant (P=0.150). 
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Aggregated for incorrect versus correct predictions, window level median (IQR) is 150 (130-

185) versus 180 (150-202) (P=0.019) and width is 440 (320-595) versus 600 (460-725) 

(P<0.001).  

 

Example processed CTA MIPs of TP, FN, FP, and TN classifications are shown in Figure 2. The 

five FN patients had: 1) M1 occlusion and underwent successful thrombectomy with 

thrombolysis in cerebral infarction (TICI) 2c reperfusion, 2) M2 occlusion yet not a candidate for 

thrombectomy due to good collateral flow and NIHSS of 1, 3) M1 occlusion with likely chronic 

vasculopathy due to polysubstance use, and 4) and 5) M1 occlusion felt to be chronic and not 

amenable to intervention in these patients who both had known prior stroke. Among 39 FP, only 

11 patients had no pathology or artifacts noted. Fifteen FP had distal non-LVO occlusion: six in 

the distal M2, six in the third segment (M3) of the middle cerebral artery, one unspecified M2 or 

M3 short segment sylvian middle cerebral artery thrombosis, one likely chronic cervical ICA 

occlusion that was documented and verified as not LVO, and one with multifocal occlusions in 

the anterior cerebral, vertebral, and posterior cerebral arteries. Seven FP had severe unifocal or 

multifocal stenosis noted. Five FP had other pathology not necessarily specific to CTA findings: 

basilar artery focal filling defect, lacunar infarct of unknown chronicity, remote cerebellar 

infarct, likely thrombosed vertebral aneurysm plus cerebellar and thalamic strokes, and 

decreased mean transit time and cerebral blood flow in frontoparietal M3 region found on 

subsequent perfusion imaging without CT correlate. Three FP had artifact specified in the 

radiology report but were still interpretable as far as LVO label and thus had not been excluded 

from the dataset: 1) mild motion artifact in one with M3 occlusion, 2) limited by venous 
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contamination in one with lacunar infarct, and 3) suboptimal contrast opacification and quantum 

mottle, streak, and motion artifact.  

 

Conclusions 

The LVO detection tool developed has high accuracy and sensitivity that holds true across 

patient characteristics with few exceptions. Analysis revealed statistically significant differences 

for the following variables: lower window settings for misclassifications, smoking history more 

frequent in FN than TP, and tPA administered to more FP than TN. Investigation of 

misclassifications revealed that many FP had pathology warranting detection including distal 

occlusions, and four of five FN had chronic changes or other factors that precluded them from 

being candidates for endovascular thrombectomy.  

 

Our model cross-validation performance with AUPRC 0.87, ROC-AUC 0.92, accuracy 86%, 

sensitivity 94%, specificity 79%, and precision 81% is comparable to prior studies of automated 

LVO detection and falls slightly short of radiologist performance of accuracy 96%, sensitivity 

96%, and specificity 97% in a study by Boyd et al.43 Table 3 compares our results with prior 

work on automated LVO detection from CTA, including studies using the commercial platforms 

Viz.ai and RapidLVO as well as two studies using non-commercial models.12–17 LVO definitions 

were similar to our study with the additional inclusion of anterior cerebral artery occlusions by 

Sheth et al. and posterior circulation occlusions by Stib et al. Some of these studies trained 

models on larger datasets and/or included multiple institutions and CT scanners, which may 

inherently improve generalizability, but this cannot be assumed. Several reported patient 

characteristics of their study population without subsequent analysis of results in the context of 
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these features. The only exception is the study by Dehkharghani et al. using RapidLVO software, 

which demonstrated similar performance across age groups, sex, location within or outside the 

United States, and CT scanner manufacturers.44 Our study found similar results with age and sex 

in addition to other demographics. With only five FN, it is unclear how much emphasis to place 

on the finding of higher prevalence of smoking history compared to TP, yet this factor may 

underlie the chronic vasculature changes found in three FN.21 Our model performed consistently 

across the artery of occlusion (100% ICA, 95% M1, and 97% M2), whereas a previous study 

found that the sensitivity of LVO detection using RapidLVO software was higher for ICA or M1 

than M2 occlusions (97% versus 90%) for their dataset.15 Our model also did not perform 

differently for patients presenting within 6 hours of stroke onset versus later than 6 hours; current 

guidelines recommend additional perfusion imaging for patients presenting later than 6 hours 

from LKW, yet this advanced imaging is less available at many sites, and its necessity is under 

scrutiny.1,45,46 Furthermore, LVO was identified by our model in all but one patient who 

ultimately had thrombectomy, supporting its potential use as a tool in deciding which patients 

require transport to thrombectomy-capable centers. 

 

Distal M2 or further distal occlusions were not labeled as LVO for the purposes of this study and 

had been documented as too distal for retrieval by thrombectomy. The highest level of 

recommendation for thrombectomy eligibility includes only ICA and M1 occlusion, while 

benefits are uncertain for M2, M3, or other occlusions.1 Occlusions that are harder to access 

directly are nonetheless important to identify and treat early with intravenous tPA, and there is 

evidence of benefit of emerging thrombectomy techniques and intra-arterial tPA for distal 

occlusions.47–50 Thus, it may in fact be advantageous that our model classified as positive the 
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fifteen FP with distal occlusion and additional five with thrombosis or other findings indicative 

of infarct. This pathology may be related to the higher frequency among FP than TN of 

administration of intravenous tPA, which was not attributable to any difference in time of 

presentation. Stib et al. discussed one FP for which they later found an infarct based on magnetic 

resonance imaging (MRI) and raised the idea that their model may be able to detect smaller 

infarcts than even radiologists can see on CTA.17 We did not investigate MRI findings, but it is 

possible that a similar idea applies in our study to one FP with CT perfusion findings indicating 

potential injury to the M3 region and others with signs of infarct on NCCT. Stenosis was our 

other prevalent finding among FP and is common in other studies, including 16 of 31 FP with 

intracranial atherosclerosis in the study by Chatterjee et al.13 RapidLVO software relies on 

detection of asymmetric vasculature density, and Amukotuwa et al. found that FP commonly had 

natural inter-hemispheric variation in vasculature, ipsilateral decreased vascular density due to 

stenosis or prior infarct, or contralateral increased vascular density due to opacified venous 

structures, aneurysm, hematoma, or reactive hyperemia.14,15 One FP from our study had noted 

venous contamination that may have contributed to misclassification. The slice range for MIP 

generation was selected based on a sample to optimize visualization of anterior circulation but 

may not have captured the entire anterior circulation for all CTAs due to anatomic variation, 

which may have created a false appearance of vascular asymmetry or cutoffs in some FP.  

 

Amukotuwa et al. found FN to commonly have short-segment or incomplete occlusion with 

distal reconstitution, small nondominant branch occlusions, or collaterals resulting in normal or 

increased vessel density on the side of the occlusion.14,15 One FN from our study had an acute 

LVO with robust collaterals, and several other FN with chronic occlusions or vasculopathy may 
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also have had time for collateral formation. Occlusions with robust collaterals have slower 

infarct progression and thus lower consequence of delayed identification and treatment. Only one 

patient in our study with acute LVO who was a thrombectomy candidate was not identified, 

which may be explained by lower window settings and likely poorer image quality among FN. 

 

The windowing findings highlight the importance of considering input data quality when using 

an automated algorithm for clinical decision support. Windowing was adjusted to optimize 

vessel visualization for each CTA, and lower settings among misclassifications indicate lower 

signal-to-noise ratio likely due to poor contrast attenuation. Contrast enhancement is variable due 

to patient factors including weight and cardiac output, contrast factors such as injection duration 

and rate, and scan factors including duration and delay.24 While target contrast and scan 

parameters exist for each type of CTA scan, patient variation is difficult to control for. Ability to 

detect LVO by visual inspection is the primary consideration for whether CTA quality is 

sufficient for both the acute stroke triage setting and inclusion criteria for this study. Thus, even 

the three FP with documented limitation by artifacts were included, as well as scans for which it 

was relatively difficult to achieve similar optimization of vessel visualization as other scans, 

which were often those requiring a lower window range. Optimized window settings for CTA 

have been found to 1) reduce variability in vessel measurement relative to variation in contrast 

attenuation and 2) improve accuracy of CTA source image-based ASPECTS regardless of rater 

experience or specialty.51,52 Prior LVO detection studies have not discussed windowing, and 

some used vessel segmentation or tubular filtering methods that enhance signal-to-noise ratio and 

are perhaps less dependent on contrast attenuation differences or other factors underlying image 

variation.15,17 It is possible that if our algorithm was trained on a larger dataset, it could identify 
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LVO despite poor contrast attenuation or artifact, and this may also obviate the need for 

individualized window adjustment beforehand. However, it is also possible that the effect of 

CTA quality of individual images has been overlooked in studies using different methods and 

often larger datasets. Scans with poorer quality should not simply be excluded in algorithm 

training or application, as this would limit the fundamental utility and applicability as a tool for 

triage. Chatterjee et al. excluded cases with inadequate contrast and motion artifact in their study 

yet mentioned ongoing efforts to optimize detection in poor quality CTAs.13  

 

Manual chart review by one author is a possible source of error. Posterior circulation and anterior 

cerebral artery occlusions were excluded due to rarity in this dataset, yet these are included in 

some LVO definitions because carefully selected patients may be candidates for thrombectomy.1 

Image processing included manual steps of individual image window range adjustment and 

selection based on visual inspection of the axial slice range used to generate the MIP. This limits 

utility of the tool in clinical practice without further development. Windowing based on visual 

inspection is a potential source of inconsistency, although it was performed by the same author 

for all images which provides some consistency. Note that during development, the model was 

not able to learn when the same window range was applied to all images, so individual 

adjustment was a necessary processing step; with sufficient data, windowing may be another 

feature that can be learned. The MIP slice range selection is a potential source of error as 

previously discussed, yet the reduction from three-dimensional to two-dimensional data enabled 

the model to learn effectively and efficiently from a small dataset of 300 images. Model training, 

performance, characterization analysis, and generalizability are limited by this being a single 

institution study of 300 patients. The small study size is the major limitation in training complex 
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deep learning algorithms and the consequent performance and robustness across features such as 

diverse anatomy and image quality. Although the algorithm could identify LVO with high 

accuracy and sensitivity and without performance bias based on demographic factors and most 

stroke risk factors within our own study population, the applicability in a larger context is biased 

by the patients included.18,19  

 

This study is the first to characterize performance of a machine learning based LVO detection 

tool in the context of comprehensive patient and imaging characteristics, with key findings of 

lower window settings among misclassifications and distal occlusion or stenosis prevalent 

among false positives. Image quality should be carefully considered when using automated LVO 

detection for decision support. The tool is otherwise highly accurate and sensitive across patient 

characteristics, demonstrating broad applicability that supports the use of machine learning to aid 

stroke triage. 
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Figure Legends 
 
 
 

Figure 1: Patient selection flow diagram. (a) Radiology reports were used for verification of 
LVO or cutoff. In case of ambiguity, images were re-examined by author LTD, a board-certified 
neuroradiologist. (b) Aimed to have equal numbers of LVO and no LVO examples and stopped 
verification when data was balanced. All 324 with LVO-related ICD codes and images available 
were verified, of which 196 had LVO and 128 did not; of other ICD codes, 109 of 114 checked 
did not have LVO, at which point verification was stopped. (c) Images failed to transfer to our 
server or were missing slices. (d) Original image was uninterpretable (e.g. due to severe motion 
degradation) and/or image was distorted upon registration as part of preprocessing. (e) Rare 
pathology consisted of posterior circulation occlusion (n=12), mass lesion, moyamoya, surgical 
device such as external ventricular drain, and common carotid artery occlusion. 
 
 
Figure 2: Example processed CTA MIPs of TP, FN, FP, and TN classifications. From left to 
right, TP in first row: 1) left ICA occlusion with window width (W) 480 and level (L) 150, 2) 
right M1 occlusion, W1000 L250, 3) left M1 occlusion, W600 L180, 4) right M2 occlusion, 
W400 L140. FN in second row: 1) right M1 with subsequent thrombectomy, W400 L150, 2) 
chronic left M1 occlusion and prior strokes, W420 L150, 3) left M2 occlusion with good 
collaterals and NIHSS 1, W380 L150, 4) chronic right M1 occlusion and prior strokes, W380 
L150. FP in third row: 1) venous contamination and lacunar infarct, W320 L130, 2) no noted 
pathology, W240 L110, 3) right M3 occlusion, W420 L150, 4) multifocal stenosis, W480 L160. 
TN in fourth row: 1) W820 L 220, 2) W400 L140, 3) W520 L170, 4) W800 L230. 
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Table 1: Patient characteristics by LVO label 
 
Characteristic LVO (n=150) No LVO (n=150) 
DEMOGRAPHICS   
Age, median (IQR) 65 (55-76) 66 (54-76) 
Female, n (%) 66 (44%) 79 (53%) 
Race, n (%)   
  Black 20 (13%) 26 (17%) 
  White 123 (82%) 119 (79%) 
  Other or Unknowna 7 (5%) 5 (3%) 
Ethnicity, n (%)   
  Hispanic or Latinx 3 (2%)  5 (3%) 
  Not Hispanic or Latinx 141 (94%) 141 (94%) 
  Unknown 6 (4%) 4 (3%) 
PAST MEDICAL HISTORY, n (%)   
Hypertension 95 (63%) 99 (66%) 
Diabetes 33 (22%) 42 (28%) 
Hyperlipidemia 55 (37%) 53 (35%) 
Smoking 53 (35%) 46 (31%) 
Coronary Artery Disease 33 (22%) 30 (20%) 
Congestive Heart Failure 21 (14%) 15 (10%) 
Atrial Fibrillation 42 (28%) 21 (14%) 
On Anticoagulation Medication 29 (19%) 14 (9%) 
Prior Stroke or TIA 29 (19%) 31 (21%) 
STATUS ON ARRIVAL   
Transfer from Outside Hospital, n (%) 101 (67%) 57 (38%) 
Pretreatment NIHSSb, median (IQR) 14 (8-19) 4 (1-11) 
Systolic Blood Pressure, median (IQR), mmHg 155 (140-173) 156 (137-185) 
Diastolic Blood Pressurec, median (IQR), mmHg 85 (76-100) 89 (77-103) 
LVO LOCATION   
Left-sided, n (%) 85 (57%) N/A 
Artery, n (%)   
 ICA 32 (21%) N/A 
 M1 82 (55%) N/A 
 M2 36 (24%) N/A 
INTERVENTION   
Received tPA, n (% out of all patients) 59 (39%) 38 (25%) 
Received tPA, n (% out of patients with LKW to CT ≤4.5 
hours)d 

47 (76%) 30 (48%) 

Subsequent Thrombectomy, n (%) 83 (55%) N/A 
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Table 1: Patient characteristics by LVO label (continued) 

Characteristic LVO (n=150) No LVO (n=150) 
OUTCOMES   
Reperfusion, n (% out of patients who had thrombectomy) 72 (87%) N/A 
TICI Score, n (% out of patients who had thrombectomy)   
  0 10 (12%) N/A 
  1  1 (1%) N/A 
  2a 0 (0%) N/A 
  2b 25 (30%) N/A 
  2c 13 (16%) N/A 
  3 34 (41%) N/A 
Length of Stay, median (IQR), days 5 (3-9) 3 (1-5) 
Disposition, n (%)   
  Expired 19 (13%) 4 (3%) 
  Home 43 (29%) 96 (64%) 
  Rehab Facility 37 (25%) 26 (17%) 
  Skilled Nursing Facility 34 (23%) 18 (12%) 
  Hospice 8 (5%) 2 (1%) 
  Other 9 (6%) 4 (3%) 
TIME INTERVALS, median (IQR), minutes   
LKW to Arrivale 284 (151-571) 330 (128-645) 
Arrival to Neurology Evaluationf 7 (3-13) 13 (7-21) 
Arrival to CTg 8 (3-13) 13 (6-26) 
LKW to CT 302 (168-628) 376 (148-700) 
  LKW to CT ≤4.5 hours, n (%) 62 (41%) 62 (41%) 
  LKW to CT ≤6 hours, n (%) 85 (57%) 72 (48%) 
LKW to tPA Initiation 136 (106-178) 157 (105-181) 
Arrival to OR for Thrombectomy 63 (53-79) N/A 
LKW to Thrombectomy Reperfusion 368 (247-708) N/A 
 
a) “Other or Unknown” race includes Asian, Black and Native Hawaiian, Filipino, unspecified 
other race, or not recorded. b, c, e-g) Characteristic was not documented for the following 
numbers of patients: b) 9, c) 23, e) 15, f) 41, and g) 15. d) CT refers to imaging performed at this 
facility; some patients received tPA at outside hospital prior to arrival.  
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Table 2: Comparison of TP versus FN and FP versus TN patient and image characteristics 
 
Characteristic TP 

(n=145) 
FN (n=5) P-

value 
FP (n=39) TN 

(n=111) 
P-

value  
DEMOGRAPHICS             
Age, median (IQR) 65 (56-76) 55 (48-61) 0.164 64 (48-76) 67 (56-77) 0.516 
Female, n (%) 63 (43%) 3 (60%) 0.655 16 (41%) 63 (57%) 0.098 
Race, n (%)     

1 

    

0.852 

  Black 20 (14%) 0 (0%) 8 (20%) 18 (16%) 
  White 118 (81%) 5 (100%) 30 (77%) 89 (80%) 
  Other or Unknown 7 (5%) 0 (0%) 1 (3%) 4 (4%) 
Ethnicity, n (%)   

1 

  

0.831 

  Hispanic or Latinx 3 (2%) 0 (0%) 2 (5%) 3 (3%) 
  Not Hispanic or Latinx 136 (94%) 5 (100%) 36 (92%) 105 (95%) 
  Unknown 6 (4%) 0 (0%) 1 (3%) 3 (3%) 
PAST MEDICAL 
HISTORY, n (%) 

            

Hypertension 91 (63%) 4 (80%) 0.653 21 (54%) 78 (70%) 0.078 
Diabetes 31 (21%) 2 (40%) 0.303 11 (28%) 31 (28%) 1 
Hyperlipidemia 53 (37%) 2 (40%) 1 13 (33%) 40 (36%) 0.847 
Smoking 48 (33%) 5 (100%) 0.005* 15 (39%) 31 (28%) 0.232 
Coronary Artery Disease 32 (22%) 1 (20%) 1 7 (18%) 23 (21%) 0.819 
Congestive Heart Failure 21 (15% 0 (0%) 1 5 (13%) 10 (9%) 0.538 
Atrial Fibrillation 40 (28%) 2 (40%) 0.620 5 (13%) 16 (14%) 1 
On Anticoagulation 
Medication 

27 (19%) 2 (40%) 0.248 3 (8%) 11 (10%) 1 

Prior Stroke or TIA 27 (19%) 2 (40%) 0.248 5 (13%) 26 (23%) 0.177 
STATUS ON ARRIVAL             
Transfer from Outside 
Hospital, n (%) 

98 (68%) 3 (60%) 0.662 19 (49%) 38 (34%) 0.127 

Pretreatment NIHSS, 
median (IQR) 

14 (8-19) 5 (1-14) 0.091 6.5 (2-12) 4 (1-9) 0.131 

Systolic Blood Pressure, 
median (IQR), mmHg 

155 (140-
174) 

153 (113-
158) 

0.470 153 (138-
182) 

156 (136-
186) 

0.915 

Diastolic Blood Pressure, 
median (IQR), mmHg 

86 (76-
100) 

78 (72-93) 0.556 91 (80-
110) 

89 (76-
103) 

0.341 

LVO LOCATION             
Left-sided, n (%) 83 (57%) 2 (40%) 0.653 N/A N/A N/A 
Artery, n (%)             
  ICA 32 (22%) 0 (0%) 

0.714 

N/A N/A 

N/A 
  M1 78 (54%) 4 (80%) N/A N/A 
  M2 35 (24%) 1 (20%) N/A N/A 
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Table 2: Comparison of TP versus FN and FP versus TN patient and image characteristics 
(continued) 
 
Characteristic TP 

(n=145) 
FN (n=5) P-

value 
FP 

(n=39) 
TN 

(n=111) 
P-

value  
INTERVENTION       
Received tPA, n (%) 58 (40%) 1 (20%) 0.649 16 (41%) 22 (20%) 0.017* 
Received tPA, n (% among 
LKW to CT ≤4.5hrs)a 

46 (77%) 1 (50%) 0.428 12 (71%) 18 (40%) 0.046* 

Subsequent 
Thrombectomy, n (%) 

82 (57%) 1 (20%) 0.173 N/A N/A N/A 

OUTCOMES             
Reperfusion, n (%)b 71 (87%) 1 (100%) 1 N/A N/A N/A 
TICI Score, n (%)b     

0.289 

    

N/A 

  0 10 (12%) 0 (0%) N/A N/A 
  1 1 (1%) 0 (0%) N/A N/A 
  2a 0 (0%) 0 (0%) N/A N/A 
  2b 25 (31%) 0 (0%) N/A N/A 
  2c 12 (15%) 1 (100%) N/A N/A 
  3 34 (42%) 0 (0%) N/A N/A 
Length of Stay, median 
(IQR), days 

5 (3-9) 2 (2-7) 0.265 3 (1-5) 3 (2-4) 0.626 

Disposition, n (%)     

0.380 

    

0.874 

  Expired 19 (13%) 0 (0%) 1 (3%) 3 (3%) 
  Home 39 (27%) 4 (80%) 26 (67%) 70 (63%) 
  Rehab Facility 26 (25%) 1 (20%) 6 (15%) 20 (18%) 
  Skilled Nursing Facility 34 (23%) 0 (0%) 6 (15%) 12 (11%) 
  Hospice 8 (6%) 0 (0%) 0 (0%) 2 (2%) 
  Other 9 (6%) 0 (0%) 0 (0%) 4 (4%) 
TIME INTERVALS             
LKW to CT ≤6hrs, n (%) 83 (57%) 2 (40%) 0.653 21 (54%) 51 (46%) 0.458 
LKW to CT ≤4.5hrs, n (%) 60 (41%) 2 (40%) 1 17 (44%) 45 (41%) 0.850 
IMAGE WINDOW 
SETTING, median (IQR) 

            

  Level 170 (150-
210) 

150 (150-
150) 

0.150 160 (130-
200) 

180 (150-
200) 

0.026* 

  Width 580 (440-
740) 

380 (380-
400) 

0.016* 480 (310-
660) 

600 (460-
720) 

0.004* 

 
*Significant at P-value<0.05. a) CT refers to imaging performed at this facility; some patients 
received tPA at outside hospital prior to arrival. b) Reperfusion and TICI score percentages are 
only out of patients who had subsequent thrombectomy.  
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Table 3: Comparison with prior studies on automated LVO detection from CTA. Cross-
validation test set (CV) and external validation set (EV) mean results are listed for this study. 

Study Software/CNN # Patients ROC-AUC Sensitivity Specificity 
This study Inception V1 

module-based  
300 0.92 CV, 

0.85 EV 
0.94 CV, 
0.97 EV 

0.79 CV, 
0.66 EV 

Barreira et al.12 Viz.ai 875 0.86 0.90 0.83 
Chatterjee et al.13 Viz.ai 650 - 0.82 0.94 
Amukotuwa et al., 
single-center14 

RapidLVO 477 0.86 0.97 0.81 

Amukotuwa et al., 
multicenter15 

RapidLVO 926 0.95 0.95 0.79 

Dehkharghani et al.44 RapidLVO 217 0.99 0.96 0.98 
Sheth et al.16 DeepSymNet 

(novel CNN) 
297 0.88 - - 

Stib et al.17: single-
phase CTA  

DenseNet-121 540 0.74 0.77 0.71 

Stib et al.17: multi-
phase CTA 

DenseNet-121 540 0.89 1 0.77 
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